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Abstract

Neural Networks (NN) provide a powerful method for machine learning training and pre-
diction. For effective training, it is often desirable for multiple parties to combine their data –
however, doing so conflicts with data privacy. In this work, we provide novel three-party and
four-party secure computation protocols for various NN building blocks such as matrix mul-
tiplication, Rectified Linear Units, MaxPool, normalization etc. This enables us to construct
three-party and four-party information-theoretically secure protocols for training and prediction
of CNNs, DNNs and a number of other NN architectures such that no single party learns any
information about the data.

Experimentally, we build a system and train a (A) 3-layer DNN (B) 4-layer CNN from Min-
iONN, and (C) 4-layer LeNet network. Compared to the state-of-the-art prior work SecureML
(Mohassel and Zhang, IEEE S&P 2017) that provided (computationally-secure) protocols for
only the network A in the 2 and 3-party setting, we obtain 93X and 8X improvements, respec-
tively. In the WAN setting, these improvements are more drastic - for example, we obtain an
improvement of 407X. Our efficiency gains come from a > 8X improvement in communication,
coupled with the complete elimination of expensive oblivious transfer protocols. In fact, our
results show that the overhead of executing secure training protocols is only between 17-33X of
the cleartext implementation even for networks that achieve > 99% accuracy.

1 Introduction

Neural networks (NN) have proven to be a very effective tool to produce predictive models that
are widely used in applications such as healthcare, image classification, finance, and so on. The
accuracy of these models gets better as the amount of training data increases [40]. Large amounts
of training data can be obtained by pooling in data from multiple contributors, but this data is
sensitive and cannot be revealed in the clear due to compliance requirements [15, 6] or proprietary
reasons. To enable training of NN models with good accuracy, it is highly desirable to be able to
securely train over data from multiple contributors such that plaintext data is kept hidden from
the training entities.

In this work, we provide a solution for the above problem in the N server model. We model the
problem as follows: a set of M parties who own training data wish to execute training over their
joint data using N servers. First, these M parties send (“secret shares” of) their input data to the
N servers. The servers collectively run an interactive protocol to train a neural network over the
joint data to produce a trained model that can be used for inference. The security requirement is
that no individual party or server learns any information about any other party’s training data.
We call this the N -server model. We focus on the setting of N = 3 or 4, while M can be arbitrary.
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Figure 1: Architecture

The trained model is also kept hidden from any single server/party (and retained as secret shares).
These secret shares can be put together by the servers (or by any other party) to reconstruct the
model in the clear, if needed. If the model is retained as secret shares between the N servers, then
inference (or prediction) can be executed with this trained model on any new input, while once
again keeping the model, the new input point, and the output prediction, private from other parties
as well as servers. For example, a group of M hospitals, each having sensitive patient data (such
as heart rate readings, blood group, sugar levels etc.) can use the above architecture to train a
model that can be used as a Machine Learning as a Service (MLaaS) to help predict some disease
or irregular health behaviour. This architecture is shown in Figure 1.

Fortunately, cryptography and specifically secure multi-party computation (MPC) [39, 24, 8, 18]
provides a framework to solve the above problem. However, using general purpose MPC for complex
tasks such as neural network training leads to highly inefficient, sometimes even “impossible-to-
execute” protocols.

In this work, we build specialized protocols in the 3-server and 4-server settings that are approx-
imately 8X–407X faster than, the state-of-the-art prior work, SecureML [31]. Our central result is
the demonstration that the price of secure NN training over sensitive data can be quite low. For
instance, the overhead of training a wide-class of NNs on a batch size of 128 using our 3-server
protocols is only 17-33X that of training the same neural network over cleartext data. Compara-
tively, the state-of-the-art prior work SecureML [31] provided protocols for secure training in the
2-server and 3-server models for the same network and those protocols had an execution time of
approximately 1634X and 140X that of our cleartext implementation. Additionally, in the 4-server
model, the price of security can be brought down further and we achieve even lower overheads –
only 13-22X compared to the cleartext cost. All our protocols enjoy information-theoretic security
and are secure in the semi-honest adversarial model. (i.e., the adversary is not restricted to be a
probabilistic polynomial time (PPT) algorithm, and tries to learn information through a faithful
protocol execution). We are the first to demonstrate practicality to a broader class of NN training
algorithms (CNNs). Our techniques are powerful enough to train neural networks that produce an
inference accuracy of greater than 99% on the MNIST dataset [3] with practical overheads. Simi-
larly, compared to recent works that considered only the problem of secure inference, we show that
the overall execution time of our protocols are 42.4X faster than MiniONN [30], and 27X, 3.68X
faster than concurrent and independent works of Chameleon [35] and Gazelle [27] respectively.
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1.1 Our Contributions

Our main technical contribution is the construction of efficient 3-party (and, 4-party) protocols
for various functions commonly used in machine learning algorithms – linear layer and convolutions
(that are essentially matrix multiplications), Rectified Linear Unit (ReLU), Maxpool, normaliza-
tion and their derivatives. We demonstrate the performance benefits of our protocols by running
the tasks of secure training and secure inference on various neural networks, and comparing with
the state of the art in privacy preserving machine learning as well as cleartext training.

Our Protocols. Computing neural networks requires repeated computing of a mix of matrix
multiplications followed by non-linear activation functions such as ReLU and Maxpool. Hence, to
be efficient we give protocols for evaluating all these functions in such a way that they can be
combined easily. All our protocols maintain the invariant that parties begin with shares of input
value(s) over a ring (Z264 in our case for system efficiency) and end the protocol with shares of the
output value (again over the same ring). For example, if they begin with shares of matrices X and
Y and execute matrix multiplication, they end the protocol with shares of Z, where Z = X · Y .

We provide information-theoretic security against semi-honest corruption of a single server
and any subset of clients, i.e., no server (together with any subset of clients) can learn any
information about inputs of the honest clients even if it runs in unbounded time1. When N = 3
or 4, as considered in our work, this is the best corruption threshold that one could hope to
achieve against computationally unbounded adversaries [19]. We prove simulation-based security
of in the Universal Composability (UC) framework [12, 13]. This means that the sub-protocols
can be pieced together by the 3 (or 4) servers in an arbitrary manner to implement a wide-class
of neural networks. Our main performance benefits come from avoiding the use of expensive
garbled circuits to compute the non-linear activation functions. Our protocols have > 8X im-
provement in communication complexity over garbled circuits based approach (that incurs security
parameter multiplicative communication overhead to the data size) used in all previous works
for computing non-linear functions. We provide a detailed overview of our techniques in Section 1.2.

Secure Training. To illustrate the generality and performance of our protocols, we implement
training on 3 neural networks – (A) a DNN with three layers from SecureML [31], (B) A CNN from
MiniONN [30] and (C) A 4-layer LeNet network [28]. We train all the networks on the MNIST
data-set [3]. The overall execution time of our MPC protocol for Network A in the 3-server model
over a LAN network is under an hour (roughly 52.8 minutes), while cleartext evaluation takes
around 3 minutes on a similar machine. This illustrates that the cost of secure computation for
neural network training can be within 20X of the no-security baseline. For our largest CNN network
(Network C) with 99.15% accuracy, our protocols in the 3-server case executes in roughly 42.51
hours, while the corresponding cleartext execution time is 2.11 hours. We show how to modify
our protocols in the 4-party setting to provide even better performance. For example, our 3-layer
network has an execution time of 46.4 minutes and the 4-layer LeNet network has an execution
time of 27.5 hours in the LAN setting.
Prior Work. The only prior work to consider secure training of neural networks is SecureML [31]
that provides computationally secure protocols in the 2-server and 3-server models for Network A
above (accuracy 93.4%). To train, their protocol in the 2-server model SecureML had an overall
execution time of roughly 4900 minutes in the LAN setting and 4333 hours in the WAN setting,
while their protocol in the 3-server model had an overall execution time of roughly 421.4 minutes

1When the trained model is revealed to the adversary, we give the standard guarantee that nothing is revealed
about honest clients’ inputs beyond the model.
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in the LAN setting. By constructing information-theoretic protocols that have an overall execution
time of roughly 52.8 minutes in the LAN setting and 10.64 hours in the WAN setting, we illustrate
improvements of 93X and 407X respectively over their 2-server results and 8X improvement in
the 3-server model. Additionally, we show how to implement a much larger class of networks
(including convolutional neural networks) that can obtain accuracies of > 99% on the MNIST
dataset. [31] also split their protocols into an offline (independent of data) and online phase. Even
when comparing only their online times with our total times, we obtain a 1.34X improvement in
the LAN setting and a 5.6X improvement in the WAN setting over their 2-server results and a
3.26X improvement over their 3-server results2. Our drastic improvements can be attributed to
8X improvement in communication complexity and elimination of expensive oblivious transfer
protocols, which are another major source of overhead.

Secure Inference. Next, we consider the problem of secure inference for the same networks when
the trained model is secret shared between the servers. There has been a significant effort on this
problem and a series of recent works have made significant progress. The work of MiniONN [30]
further optimizes the protocols of SecureML [31] (specifically for offline compute of matrix multi-
plications and convolutions) in the 2-server model. Concurrently and independently, the works of
Chameleon [35] and Gazelle [27] also consider the problem of secure inference in the 3-server and
2-server models, respectively. Chameleon removes expensive oblivious transfer protocols (needed
for secure multiplications) by using third party as dealer. Gazelle focused on making the linear
layers (such as matrix multiplication and convolution) more communication efficient by providing
specialized packing schemes for additively homomorphic encryption schemes. All of the previous
schemes [31, 30, 35, 27] use expensive garbled circuits for activations. Our focus is on providing
better protocols for the non-linear activation functions to reduce their communication complex-
ity. As our experiments show, the overall execution time of our protocols are 42.4X faster than
MiniONN, 27X faster than Chameleon and 3.68X faster than Gazelle. These gains come from a
corresponding 38X, 1.63X and 4.05X reduction in communication over MiniONN, Chameleon, and
Gazelle, respectively.

1.2 Techniques

Secure protocols for neural network algorithms generally follow the paradigm of executing arith-
metic computation, such as matrix multiplication and convolutions, using Beaver triplets or homo-
morphic encryption and executing Boolean computation, such as ReLU, Maxpool and its deriva-
tives, using Yao’s garbled circuits. In order to make these protocols compatible with each other,
share conversion protocols are also used to move from an arithmetic encoding (either arithmetic
sharing or homomorphic encryption ciphertext) to a Boolean encoding (garbled encoding) and vice-
versa. While the cost of securely evaluating arithmetic layers can be high (and a lot of work has
gone into reducing this cost [31, 30, 35, 27]), the communication cost of securely evaluating Boolean
computations is prohibitive due to the use of Yao’s garbled circuits that incur a multiplicative fac-
tor overhead of 128 (the security parameter, κ). This is precisely where our new protocols come
to the rescue. We develop new protocols for Boolean computation (such as ReLU, Maxpool and
its derivatives) that have much lesser communication overhead (approximately 8X better) than the
cost of converting to a Yao encoding and executing a garbled circuit.

Since we are in the 3-server setting, another tempting option might be to use techniques from
Sharemind [9] and its successors [10, 14] that use techniques of bit extraction to perform the

2Due to the structure of their protocol, their 3-server protocol has a larger online time than their 2-server protocol
while reducing the offline cost
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Boolean computation. However, as shown in Chameleon [35], in the context of machine learning
applications, the performance of these protocols is slower than the cost of converting to Yao’s
garbled circuit and executing a garbled circuits protocol. Furthermore, we show that by carefully
constructing comparison and other Boolean protocols that avoid expensive bit extraction protocols,
we can obtain much better performance than using garbled circuits. We now present our techniques
in more detail.

In the 3-server setting, we denote the servers (or, parties) by P0, P1 and P2. All our protocols
maintain the invariant that P0 and P1 hold 2-out-of-2 shares of all intermediary computation
values. We describe all our protocols in the three-party setting and point out differences with the
4-party version as appropriate.

Matrix multiplication and Convolutions. First, implementing information-theoretic matrix
multiplication over shares when 3 parties are involved is straight-forward using matrix-based Beaver
multiplication triplets [7] and is omitted from the discussion here. Convolutions are implemented in
a very similar manner to matrix multiplication. In the four-party case, matrix multiplication is even
easier. Xb for b ∈ {0, 1} denote additive shares (over ZL) of a variable X. We have P0 hold X0, Y0,
P1 hold X0, Y1, P2 hold X0, Y1, and P3 hold X1, Y0. Now, each party can now compute XiYj (for
appropriate i, j) locally and once these shares are re-randomized (using shares of the zero matrix),
we can ensure that P0 and P1 hold fresh shares of XY , without any party learning any information.

Non-linear activations. Our biggest challenge is in computing the non-linear activation
functions such as ReLU′(x) (defined to be 1 if x > 0 and 0 otherwise) and ReLU(x) (defined to be
max(x, 0)). We compute these functions securely through a series of novel steps. We first define
a functionality called private compare (denoted by FPC). This three-party functionality assumes
that P0 and P1 each have a share of the bits of `−bit value x (over some field Zp) as well as a
common random `−bit string r and a random bit β as input. This functionality computes the
bit (x > r) (which is 1 if x > r and 0 otherwise) and XOR masks it with the bit β. This output
is given to the third party P2. We implement this functionality by building on the techniques of
[20, 34] (who provided a computationally-secure protocol for a similar functionality) and provide
an information-theoretic secure variant.

While it may seem that such a comparison protocol should suffice to implement ReLU′(x),
unfortunately several barriers must be overcome. First, the above protocol required bits of the
`-bit x to be secret shared between P0 and P1 over a field Zp. While we could potentially execute
our entire protocol over this field Zp, this would lead to the following severe inefficiencies. To begin,
the comparison protocol required bits of x to be shared between P0 and P1. However, secure matrix
multiplication is highly inefficient if we were to work with Boolean values (which we would have to
if parties start out with shares of bits of x). To overcome this, we define a 3-party functionality
(and provide a corresponding protocol), that we call FMSB, that allows x to be secret shared as
an element over a ring ZN and still computes the MSB(x). This protocol exploits the fact that
computing the MSB of a value x over a ring ZN is equivalent to computing the LSB of 2x over the
same ring as long as N is odd. It then makes use of our previous comparison protocol to perform
the comparison without actually having to convert x from its ring representation to bits, which is
where we get high efficiency gains.

Now, we could execute our protocol over the ring ZN with N being odd. However doing so
is fairly inefficient as matrix multiplication over the ring Z264 (or Z232) is much faster. This is
because (as observed in [31]), native implementation of matrix multiplication over long (or int)
automatically implements the modulo operation over Z264 (or Z232) and many libraries heavily
optimize matrix multiplication over these rings, which give significant efficiency improvements
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compared to operations over any other ring. We then provide a protocol that converts values
(6= L−1) that are secret shared over ZL into shares over ZL−1. This protocol may be of independent
interest.

Finally, this design (and our protocol) enables us to run our comparison protocol (the protocol
that realizes FPC above) over a small field Zp (we choose p = 67 concretely) and this reduces
the communication complexity significantly. Using all these protocols, we obtain our protocol
for computing ReLU′(x) (the derivative of ReLU). Having constructed a protocol that computes
ReLU′(x), we use this along with the multiplication protocol to compute ReLU(x).

Division, normalization and Maxpool is implemented using the ReLU′(·) and multiplication
protocols, while an efficient protocol for the derivative of maxpool is constructed exploiting specific
number-theoretic properties.

Putting it all together. Finally, we demonstrate how to tie these various sub-protocols
to obtain protocols for training various neural network. Since we prove the simulation security of
all our protocols in the universal composability framework, combining and proving the security of
our final protocols is easy.

1.3 Organisation of the paper

We describe the security model and the neural network training algorithms that we use in
Section 2. Section 3 contains our low level 3-server protocols that are used as building blocks
in our main protocols for various functionalities. We point out our modifications to the 4-server
case here as well. In Section 4, we describe protocols for all machine learning functions such as
matrix multiplication, convolution, ReLU (its derivative), Maxpool (its derivative) and so on. We
discuss theoretical efficiency of our protocols in Section 5. We present the detailed evaluation of our
experiments in Section 6. We present related work in Section 7 and conclude in Section 8. Due to
lack of space, we defer further details of security, machine learning algorithms, ideal functionalities,
security proofs and further details of our 4-party protocols to the Appendix.

2 PRELIMINARIES

2.1 Threat Model and Security

We will model and prove the security of our construction in the simulation paradigm [25, 12, 13].
At a very high level, security is modeled by defining two interactions: a real interaction where the
parties execute a protocol in the presence of an adversary A, and the environment Z, and an ideal
interaction where parties send their inputs to a trusted functionality machine F that carries the
desired computation truthfully. Security requires that for every adversary A in the real interaction,
there is an adversary S (called the simulator) in the ideal interaction, such that no environment Z
can distinguish between real and ideal interactions. In our setting, the adversary corrupts at most
one party and learns everything that this party sees during the protocol. The adversary is semi-
honest, and follows the protocol specification honestly (also known as honest-but-curious security).
The adversary is not restricted to run in polynomial time (i.e., we provide information-theoretic
security), but we require honest parties to be polynomial time machines. As is standard in all
information-theoretic protocols, we only assume point-to-point secure channels between all pairs of
parties in the protocol. Finally, protocols typically invoke other sub-protocols. In this framework,
the hybrid model is like a real interaction, except that some invocations of the sub-protocols are
replaced by the invocation of an instance of an ideal functionality F ; this is called the “F-hybrid
model”. For further details on our threat model and security, we refer the reader to Appendix B.1.
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2.2 Neural Networks

Our main focus in this work is on Deep and Convolutional Neural Network (DNN and CNN)
training algorithms. At a very high level, every layer in the forward propagation comprises of a
linear operation (such as matrix multiplication in the case of fully connected layers and convolution
in the case of Convolutional Neural Networks, where weights are multiplied by the activation),
followed by a (non-linear) activation function f . One of the most popular activation functions is
the Rectified Linear Unit (ReLU) defined as ReLU(x) = max(0, x). The backward propagation
updates the weights appropriately making use of derivative of the activation function (in this case
ReLU′(x), which is defined to be 1 if x > 0 and 0 otherwise) and matrix multiplication. Cross
entropy is used as the loss function and stochastic gradient descent is used for minimizing the loss.

A large class of networks can be represented using the following functions: matrix multiplication,
convolution, ReLU, MaxPool (which is defined as the maximum of a set of values, usually in a sub-
matrix), normalization (which is defined to be xi∑

xi
for a given set of values {x1, · · · , xn}) and their

derivatives. In this work, we consider three neural networks for training - A) a 3 layer DNN (same
as the neural network in [31]) that provides an inference accuracy of 93.4% on the MNIST data
set [3] (after training for 15 epochs) B) A 4-layer network from MiniONN [30] and C) a 4-layer
LeNeT network that provides an inference accuracy of ¿ 99% on the same data set (after training for
15 epochs). For inference, we additionally consider one more neural network from Chameleon [35].
More details on these networks are presented in Appendix B.2.

3 Protocols

In this section, we will mostly focus on the 3-party protocols and point out the main opti-
mizations that can be done in the 4-party setting. We will describe all our 3-party protocols and
prove their correctness and semi-honest simulation based security against a single corruption. We
do this in three steps: first, in Section 3.1, we provide protocols for “supporting functionalities”
(see Appendix D); these are funtionalities and protocols that will be used as building blocks to
construct protocols for our main functionalities. in Section 3.2, we describe the modifications to
supporting protocols in the four party case. Next, in Section 4, we provide protocols for our “main
functionalities”; these are functionalities that correspond to various neural network functions and
layers such as linear layer, convolution layer, ReLU, and so on. Finally, in Section 4.7, we outline
how to put these main protocols together to obtain protocols for a large class of neural networks.
We now set notation.

Notation. In our protocols, we use additive secret sharing over the four rings ZL, ZL−1, Zp and
Z2, where L = 2` and p is a prime. Note that ZL−1 is a ring of odd size and Zp is a field. We use
2-out-of-2 secret sharing and use 〈x〉t0 and 〈x〉t1 to denote the two shares of x over Zt – specifically,

the scheme generates r
$←− Zt, sets 〈x〉t0 = r and 〈x〉t1 = x − r (mod t). We also use 〈x〉t to denote

sharing of x over Zt (we abuse notation and write 〈x〉B to denote sharing of x over Z2). The
algorithm Sharet(x) generates the two shares of x over the ring Zt and algorithm Reconstt(x0, x1)
reconstructs a value x using x0 and x1 as the two shares over Zt (reconstruction is simply x0 + x1
over Zt). Also, for any `−bit integer x, we use x[i] to denote the ith bit of x. Then, {〈x[i]〉t}i∈[`]
denotes the shares of bits of x over Zt. For an m× n matrix X, we denote by 〈X〉t0 and 〈X〉t1 the
matrices that are created by secret sharing the elements of X component-wise (other notation on
X, such as Reconstt(X0, X1) is similarly defined component-wise).

We assume that parties P0, P1 preshare fresh shares of 0 (that can be generated using common
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randomness between pair of parties). These shares of 0 can be used to refresh the secret shares
by each party locally adding its share of 0 to the share that needs to be refreshed. When we
use the term “fresh share” of some value x, we mean that the randomness used to generate the
share of x has not been used anywhere else in that or any other protocol. In the following, we
say “party Pi generates shares 〈x〉tj for j ∈ {0, 1} and sends to Pj to mean party Pi generates

(〈x〉t0, 〈x〉t1)← Sharet(x) and sends 〈x〉tj to Pj for j ∈ {0, 1}”.
In all our main protocols (Section 4), we maintain the invariant that parties P0 and P1 begin

with “fresh” shares of input value (over ZL) and output a “fresh” share of the output value (again
over ZL) at the end of the protocol – this will enable us (as shown in Section 4.7) to arbitrarily
compose our main protocols to obtain protocols for a variety of neural networks. Party P2 takes
the role of “assistant” in all protocols and has no input to protocols. In the supporting protocols
alone, P2 sometimes receives output.

3.1 Supporting Protocols

In this section, we describe various building blocks to our main protocols. These protocols
sometime deviate from the invariant described above – i.e., P0 and P1 do not necessarily begin/end
protocols with shares of input/output over ZL. Further, P2 sometimes receives output in these
protocols.

3.1.1 Matrix Multiplication

Algorithm 1 describes our 3-party protocol for secure multiplication (functionality FMATMUL in
Figure 2, Appendix D) where parties P0 and P1 hold shares of X ∈ Zm×nL and Y ∈ Zn×vL and the
functionality outputs fresh shares of Z = X · Y to P0, P1.
Intuition. Our protocol relies on standard cryptographic technique for multiplication of using
Beaver triplets [7] generalized to the matrix setting. P2 generates these triplet shares and sends to
parties P0, P1. The proof of the following lemma is provided in Appendix E.

Algorithm 1 Mat. Mul. ΠMatMul({P0, P1}, P2):

Input: P0 & P1 hold (〈X〉L0 , 〈Y 〉L0 ) & (〈X〉L1 , 〈Y 〉L1 ) resp.

Output: P0 gets 〈X · Y 〉L0 and P1 gets 〈X · Y 〉L1 .
Common Randomness: P0 and P1 hold shares of zero matrices over Zm×vL resp.; i.e., P0 holds
〈0m×v〉L0 = U0 & P1 holds 〈0m×v〉L1 = U1

1: P2 picks random matrices A
$←Zm×nL andB

$←Zn×vL and generates for j ∈ {0, 1}, 〈A〉Lj , 〈B〉Lj , 〈C〉Lj
and sends to Pj , where C = A ·B.

2: For j ∈ {0, 1}, Pj computes 〈E〉Lj = 〈X〉Lj − 〈A〉Lj and 〈F 〉Lj = 〈Y 〉Lj − 〈B〉Lj .

3: P0 & P1 reconstruct E & F by exchanging shares.

4: For j ∈ {0, 1}, Pj outputs −jE · F + 〈X〉Lj · F + E · 〈Y 〉Lj + 〈C〉Lj + Uj .

Lemma 1. Protocol ΠMalMul({P0, P1}, P2) in Algorithm 1 securely realizes FMATMUL (see Figure 2,
Appendix D).

3.1.2 Select Share

Algorithm 2 describes our 3-party protocol realizing the functionality FSS (see Figure 11, Ap-
pendix D). Parties P0, P1 hold shares of x, y over ZL and also of a selection bit α ∈ {0, 1} over ZL.
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Parties P0, P1 get fresh shares of x if α = 0 and fresh shares of y if α = 1.
Intuition. We note that selecting between x and y can be arithmetically expressed as (1−α) ·x+
α · y = x+ α · (y − x). We compute the latter expression in our protocol using one call to FMATMUL

for multiplying α and (y − x).

Algorithm 2 SelectShare ΠSS({P0, P1}, P2):

Input: P0, P1 hold (〈α〉L0 , 〈x〉L0 , 〈y〉L0 ) and (〈α〉L1 , 〈x〉L1 , 〈y〉L1 ), resp.

Output: P0, P1 get 〈z〉L0 and 〈z〉L1 , resp., where z = (1− α)x+ αy.
Common Randomness: P0 and P1 hold shares of 0 over ZL denoted by u0 and u1.

1: For j ∈ {0, 1}, Pj compute 〈w〉Lj = 〈y〉Lj − 〈x〉Lj
2: P0, P1, P2 call FMATMUL({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈α〉Lj , 〈w〉Lj ) and P0, P1

learn 〈c〉L0 and 〈c〉L1 , resp.

3: For j ∈ {0, 1}, Pj outputs 〈z〉Lj = 〈x〉Lj + 〈c〉Lj + uj .

Lemma 2. Protocol ΠSS({P0, P1}, P2) in Algorithm 2 securely realizes FSS in the FMATMUL−hybrid
model.

3.1.3 Private Compare

Algorithm 3 describes our three-party protocol realizing the functionality FPC (Figure 8, Ap-
pendix D). The parties P0 and P1 holds shares of bits of x in Zp, i.e., {〈x[i]〉p0}i∈[`] and {〈x[i]〉p1}i∈[`],
respectively. P0, P1 also hold an `-bit integer r and a bit β. At the end of the protocol, P2 learns
a bit β′ = β ⊕ (x > r).
Intuition. Our starting point is the idea for 2-party comparison present in [20, 34]. We build
on this to give a much more efficient information theoretic 3-party protocol. We want to compute
β′ = β ⊕ (x > r). That is, for β = 0, we compute x > r and for β = 1, we compute 1⊕ (x > r) ≡
(x ≤ r) ≡ (x < (r + 1)) over integers. We have a corner case of r = 2` − 1 that we discuss below.
In this case, x ≤ r is always true.

Consider the case of β = 0. In this case, β′ = 1 iff (x > r) or the leftmost bit where x[i] 6= r[i],
x[i] = 1. We compute wi = x[i]⊕ r[i] = x[i] + r[i]− 2x[i]r[i] and c[i] = r[i]− x[i] + 1 +

∑`
k=i+1wk.

Since r is known to both P0, P1, shares of both wi and ci can be computed locally. Now, we can
prove that ∃ i.ci = 0 iff x > r. (For formal proof, see Appendix E.) Hence, both P0, P1 send shares
of ci to P2 who reconstructs ci by adding and looks for 0. To ensure security against a corrupt P2,
we hide exact values of non-zero ci and index of 0 by multiplying with random si and permuting
these values by a common permutation π. These si and π are common to both P0 and P1.

In the case when β = 1 and r 6= 2` − 1, we compute (r + 1) > x using similar logic as above.
In the corner case of r = 2` − 1, both parties P0, P1 know that result of x ≤ r ≡ (r + 1) > x over
integers should be true. Hence, they together pick shares of ci such that there is exactly one 0.
This is done by P0, P1 having common values ui that they use to create a valid share of a 0 and
`− 1 shares of 1 (see Step 11).

Note that for the re-randomization using si’s to work, it is crucial that we work over a field
such as Zp. We prove the correctness and security of the lemma below formally in Appendix E.

Lemma 3. Protocol ΠPC({P0, P1}, P2) in Algorithm 3 securely realizes FPC (Figure 8, Appendix D)
when p > `+ 2.
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Algorithm 3 PrivateCompare ΠPC({P0, P1}, P2):

Input: P0, P1 hold {〈x[i]〉p0}i∈[`] and {〈x[i]〉p1}i∈[`], respectively, a common input r (an ` bit integer)
and a common random bit β.

Output: P2 gets a bit β ⊕ (x > r).
Common Randomness: P0, P1 hold ` common random values si ∈ Z∗p for all i ∈ [`] and a

random permutation π for ` elements. P0 and P1 additionally hold ` common random values
ui ∈ Z∗p.

1: Let t = r + 1 mod 2`.

2: For each j ∈ {0, 1}, Pj executes Steps 3–14:

3: for i = {`, `− 1, . . . , 1} do

4: if β = 0 then

5: 〈wi〉pj = 〈x[i]〉pj + jr[i]− 2r[i]〈x[i]〉pj

6: 〈ci〉pj = jr[i]− 〈x[i]〉pj + j +
∑̀

k=i+1

〈wk〉pj

7: else if β = 1 AND r 6= 2` − 1 then

8: 〈wi〉pj = 〈x[i]〉pj + jt[i]− 2t[i]〈x[i]〉pj

9: 〈ci〉pj = −jt[i] + 〈x[i]〉pj + j +
∑̀

k=i+1

〈wk〉pj

10: else

11: If i 6= 1, 〈ci〉pj = (1− j)(ui + 1)− jui, else 〈ci〉pj = (−1)j · ui.
12: end if

13: end for

14: Send {〈di〉pj}i = π
({
si〈ci〉pj

}
i

)
to P2

15: For all i ∈ [`], P2 computes di = Reconstp(〈di〉p0, 〈di〉
p
1) and sets β′ = 1 iff ∃i ∈ [`] such that

di = 0.

16: P2 outputs β′.
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3.1.4 Share Convert

Algorithm 4 describes our three-party protocol for converting shares over ZL to ZL−1 realizing
the functionality FSC (see Figure 9, Appendix D). Here, parties P0, P1 hold shares of 〈a〉L such
that a 6= L− 1. At the end of the protocol, P0, P1 hold fresh shares of same value over L− 1, i.e.,
〈a〉L−1.

In this algorithm, we use κ = wrap(x, y, L) to denote κ = 1 if x + y ≥ L over integers and 0
otherwise. That is, κ denotes the wrap-around bit for the computation x+ y mod L.
Intuition: Let θ = wrap(〈a〉L0 , 〈a〉L1 , L). Now we note that if θ = 1, i.e., if the original shares
wrapped around L, then we need to subtract 1, else original shares are also valid shares of same
value of L − 1. Hence, in the protocol we compute shares of bit θ over L − 1 and subtract from
original shares locally. This protocol makes use of novel modular arithmetic to securely compute
these shares of θ, an idea which is potentially of independent interest. We explain these relations
in the correctness proof below.

Algorithm 4 ShareConvert ΠSC({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively such that ReconstL(〈a〉L0 , 〈a〉L1 ) 6= L− 1.

Output: P0, P1 get 〈a〉L−10 and 〈a〉L−11 .
Common Randomness: P0, P1 hold a random bit η′′, a random r ∈ ZL, shares 〈r〉L0 , 〈r〉L1 , α =

wrap(〈r〉L0 , 〈r〉L1 , L) and shares of 0 over ZL−1 denoted by u0 and u1.

1: For each j ∈ {0, 1}, Pj executes Steps 2–3

2: 〈ã〉Lj = 〈a〉Lj + 〈r〉Lj and βj = wrap(〈a〉Lj , 〈r〉Lj , L).

3: Send 〈ã〉Lj to P2.

4: P2 computes x = ReconstL(〈ã〉L0 , 〈ã〉L1 ) and δ = wrap(〈ã〉L0 , 〈ã〉L1 , L).

5: P2 generates shares {〈x[i]〉pj}i∈[`] and 〈δ〉L−1j for j ∈ {0, 1} and sends to Pj .

6: P0, P1, P2 call FPC({P0, P1}, P2) with Pj , j ∈ {0, 1} having input
(
{〈x[i]〉pj}i∈[`], r, η′′

)
and P2

learns η′.

7: For j ∈ {0, 1}, P2 generates 〈η′〉L−1j and sends to Pj .

8: For each j ∈ {0, 1}, Pj executes Steps 9–11

9: 〈η〉L−1j = 〈η′〉L−1j + (1− j)η′′ − 2η′′〈η′〉L−1j

10: 〈θ〉L−1j = βj + (1− j) · (−α− 1) + 〈δ〉L−1j + 〈η〉L−1j

11: Output 〈y〉L−1j = 〈a〉Lj − 〈θ〉
L−1
j + uj (over L− 1)

Lemma 4. Protocol ΠSC({P0, P1}, P2) in Algorithm 4 securely realizes FSC (Figure 9, Appendix D)
in the FPC−hybrid (Figure 8, Appendix D) model.

Proof. Here, we prove the correctness of our protocol and defer the proof of security to Appendix E.
For correctness we need to prove that ReconstL−1(〈y〉L−10 , 〈y〉L−11 ) = ReconstL(〈a〉L0 , 〈a〉L1 ) =
a. Looking at Step 11 of the protocol and the intuition above, it suffices to prove that
ReconstL−1(〈θ〉L−10 , 〈θ〉L−11 ) = θ = wrap(〈a〉L0 , 〈a〉L1 , L).

First, by correctness of functionality FPC, η′ = η′′ ⊕ (x > r). Next, let η =
ReconstL−1(〈η〉L−10 , 〈η〉L−11 ) = η′ ⊕ η′′ = (x > r). Next, note that x ≡ a + r mod L. Hence,
wrap(a, r, L) = 0 iff x > r. By the correctness of wrap, following relations hold over the integers:
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1. r = 〈r〉L0 + 〈r〉L1 − αL.

2. 〈ã〉Lj = 〈a〉Lj + 〈r〉Lj − βjL.

3. x = 〈ã〉L0 + 〈ã〉L1 − δL.

4. x = a+ r − (1− η)L.

5. Let θ be such that a = 〈a〉L0 + 〈a〉L1 − θL.

Computing, (1) − (2) − (3) + (4) + (5) gives us θ = β0 + β1 − α + δ + η − 1. This is exactly,
what the parties P0 and P1 calculate in Step 10.

3.1.5 Compute MSB

Algorithm 5 describes our three party protocol realizing the functionality FMSB (see Figure 10,
Appendix D) that computes the most significant bit (MSB) of a value a ∈ ZL−1. Parties P0, P1

hold shares of a over odd ring ZL−1 and end up with secret shares of MSB(a) over ZL.
Intuition: Borrowing from [34], note that when the shares of the private input (say a) are
over an odd ring (such as after using FSC), the MSB computation can be converted into a LSB
computation. More precisely, over an odd ring, MSB(a) = LSB(y), where y = 2a. Now, P2 assists
in computation of shares of LSB(y) as follows: P2 picks a random integer x ∈ ZL−1 and sends shares
of x over ZL−1 and shares of x[0] over ZL to P0, P1. Next, P0, P1 compute shares of r = y + x and
reconstruct r by exchanging shares. We note that LSB(y) = y[0] = r[0] ⊕ x[0] ⊕ wrap(y, x, L − 1)
over an odd ring. Also, wrap(y, x, L− 1) = (x > r), which can be computed using a call to private
compare functionality FPC. To enable this, P2 also secret shares {x[i]}i∈[`] over Zp. Steps 6-10
compute the equation LSB(y) = y[0] = r[0] ⊕ x[0] ⊕ (x > r) by using the arithmetic equation for
xor computation (note that x⊕ r = x+ r − 2xr; when one of x or y is public and known to both
P0 and P1, then this computation can be done over the shares locally. When both are private and
kept as shares, this computation is done using one call to multiplication (Step 9 in the protocol).).

Lemma 5. Protocol ΠMSB({P0, P1}, P2) in Algorithm 5 securely realizes FMSB (Figure 10, Ap-
pendix D) in the (FPC,FMATMUL)-hybrid (Figure 8, Appendix D) model.

Correctness follows along the intuition provided above and we give formal proofs of correctness
and security in Appendix E.

3.2 Modifications in the 4-party case

In the 4-party case, the main change is in the way matrix multiplication is implemented. We do
not require Beaver triplets and can do matrix multiplication much more efficiently in the following
way. For the secure multiplication of matrices X and Y , the parties P0 and P1 hold shares of X and
Y , where X ∈ Zm×nL and Y ∈ Zn×vL ; parties P2 and P3 have no input. At the end of the protocol,
P0 and P1 learn shares of matrix X ·Y . If 〈X〉Lj , j ∈ {0, 1} are the shares of X and 〈Y 〉Lj , j ∈ {0, 1}
are the shares of Y , P0 sends 〈X〉L0 to P2 and 〈Y 〉L0 to P3; similarly, P1 sends 〈X〉L1 to P2 and 〈Y 〉L1
to P3. Now, every party computes the 〈X〉Li j value that they can (and appropriately randomize
these shares). Now, note that the sum of all shares held by all 4 parties is indeed X · Y . Hence,
P2 and P3 can send their respective shares to P0 and P1 (after re-randomizing) to complete
the protocol. The protocol is described in Algorithm 6. This protocol has a communication
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Algorithm 5 ComputeMSB ΠMSB({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L−10 and 〈a〉L−11 , respectively.

Output: P0, P1 get 〈MSB(a)〉L0 and 〈MSB(a)〉L1 .
Common Randomness: P0, P1 hold a random bit β and random shares of 0 over L, denoted by
u0 and u1 resp.

1: P2 picks x
$← ZL−1. Next, P2 generates 〈x〉L−1j , {〈x[i]〉pj}i, 〈x[0]〉Lj for j ∈ {0, 1} and sends to

Pj .

2: For j ∈ {0, 1}, Pj computes 〈y〉L−1j = 2〈a〉L−1j and 〈r〉L−1j = 〈y〉L−1j + 〈x〉L−1j .

3: P0, P1 reconstruct r by exchanging shares.

4: P0, P1, P2 call FPC({P0, P1}, P2) with Pj , j ∈ {0, 1} having input
(
{〈x[i]〉pj}i∈[`], r, β

)
and P2

learns β′.

5: P2 generates 〈β′〉Lj and sends to Pj for j ∈ {0, 1}.
6: For j ∈ {0, 1}, Pj executes Steps 7–8

7: 〈γ〉Lj = 〈β′〉Lj + jβ − 2β〈β′〉Lj
8: 〈δ〉Lj = 〈x[0]〉Lj + jr[0]− 2r[0]〈x[0]〉Lj
9: P0, P1, P2 call FMATMUL({P0, P1, P2}) with Pj , j ∈ {0, 1} having input (〈γ〉Lj , 〈δ〉Lj ) and Pj learns

〈θ〉Lj .

10: For j ∈ {0, 1}, Pj outputs 〈α〉Lj = 〈γ〉Lj + 〈δ〉Lj − 2〈θ〉Lj + uj .

complexity that is 1.66X smaller than the corresponding 3-party protocols resulting in more effi-
cient protocols. The proof of the following lemma is easy to see and is provided in the Appendix E.

Algorithm 6 Mat. Mul. ΠMatMul({P0, P1}, P2, P3):

Input: P0 & P1 hold (〈X〉L0 , 〈Y 〉L0 ) & (〈X〉L1 , 〈Y 〉L1 ) resp.

Output: P0 gets 〈X · Y 〉L0 and P1 gets 〈X · Y 〉L1 .
Common Randomness: P0 and P1 as well as P2 and P3 hold shares of zero matrices over Zm×vL

resp.; i.e., P0 holds 〈0m×v〉L0 = U0, P1 holds 〈0m×v〉L1 = U1, P2 holds 〈0m×v〉L0 = V0, and P3 holds
〈0m×v〉L1 = V1

1: P0 sends 〈X〉L0 to P2 and 〈Y 〉L0 to P3.

2: P1 sends 〈Y 〉L1 to P2 and 〈X〉L1 to P3.

3: P2 computes 〈W 〉L0 = 〈X〉L0 · 〈Y 〉L1 + V0 and P3 computes 〈W 〉L1 = 〈X〉L1 · 〈Y 〉L0 + V1.

4: P2 sends 〈W 〉L0 to P0 and P3 sends 〈W 〉L1 to P1.

5: Pj , j ∈ {0, 1} outputs 〈Z〉Lj = 〈X〉Lj · 〈Y 〉Lj + 〈W 〉Lj + Uj .

Lemma 6. Protocol ΠMatMul({P0, P1}, P2, P3) in Algorithm 6 securely realizes FMATMUL.

We make minor modifications to some other protocols in the 4-party setting as well, which we
present in the full version of this paper.
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Protocol
3PC 4PC

Rounds Comm. Rounds Comm.

MatMulm,n,v 2
2(2mn+ 2nv

2
2(mn+ nv

+mv)` +mv)`
SS 2 10` 2 6`+ 4
PC 1 2` log p 1 2` log p
SC 4 4` log p+ 6` 4 4` log p+ 6`

MSB 5 4` log p+ 16`+ 2 4 4` log p+ 2`+ 4

Table 1: Round & comm. complexity of sub-protocols.

3.3 Overheads of supporting protocols

The communication and round complexity of our supporting protocols for 3PC and 4PC is
provided in Table 1. MatMulm,n,v denotes matrix multiplication of an m× n matrix with an n× v
matrix. All other complexities are provided for single elements.

4 Main Protocols

In this section, we describe all our main protocols for functionalities such as linear layer, derivate
of ReLU, ReLU and so on. We maintain the invariant that parties P0 and P1 begin with “fresh”
shares of input value (over ZL) and output a “fresh” share of the output value (again over ZL) at
the end of the protocol. Party P2 takes the role of “assistant” in all protocols and has no input.

4.1 Linear and Convolutional Layer

We note that a linear (or fully connected) layer in a neural network is exactly a matrix multi-
plication. Similarly, a convolutional layer can also be expressed as a (larger) matrix multiplication.
As an example the 2-dimensional convolution of a 3 × 3 input matrix X with a kernel K of size
2× 2 can be represented by the matrix multiplication shown below.

Conv2d

x1 x2 x3
x4 x5 x6
x7 x8 x9

 , [k1 k2
k3 k4

] =


x1 x2 x4 x5
x2 x3 x5 x6
x4 x5 x7 x8
x5 x6 x8 x9

×

k1
k2
k3
k4


For a generalization, see e.g. [5] for an exposition on convolutional layers. Hence both these

layers can be directly implemented using Algorithm 1 from Section 3.1.

4.2 Derivative of ReLU

Algorithm 7 describes our three party protocol for realizing the functionality FDRELU (see Fig-
ure 3, Appendix D) that computes the derivative of Relu, denoted by ReLU′, at a. Parties P0, P1

hold secret shares of a over ring ZL and end up with secret shares of ReLU′(a) over ZL. Note that
ReLU′(a) = 1 if MSB(a) = 0, else ReLU′(a) = 0.
Intuition: As is clear from the function ReLU′ itself, the protocol computes the shares of MSB(a)
and flips it to compute ReLU′(a). Recall that functionality FMSB expects shares of a over ZL−1.
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Hence, we need to convert shares over ZL to fresh shares over ZL−1 of the same value. Recall that
for correctness of FSC we require that value is not equal to L−1. This is ensured by first computing
shares of c = 2a and then calling FSC. We ensure3 that ReLU′(a) = ReLU′(c) by requiring that
a ∈ [0, 2k] ∪ [2` − 2k, 2` − 1], where k < ` − 1. We provide a formal proof of the security lemma
below in Appendix E.

Algorithm 7 ReLU′, ΠDRELU({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively.

Output: P0, P1 get 〈ReLU′(a)〉L0 and 〈ReLU′(a)〉L1 .
Common Randomness: P0, P1 hold random shares of 0 over ZL, denoted by u0 and u1 resp.

1: For j ∈ {0, 1}, parties Pj computes 〈c〉Lj = 2〈a〉Lj .

2: P0, P1, P2 call FSC({P0, P1}, P2) with P0, P1 having inputs 〈c〉Lj & 〈c〉L1 & P0, P1 learn 〈y〉L−10

& 〈y〉L−11 , resp.

3: P0, P1, P2 call FMSB({P0, P1}, P2) with Pj , j ∈ {0, 1} having input 〈y〉L−1j & P0, P1 learn 〈α〉L0
& 〈α〉L1 , resp.

4: For j ∈ {0, 1}, Pj outputs 〈γ〉Lj = j − 〈α〉Lj + uj .

Lemma 7. Protocol ΠDRELU({P0, P1}, P2) in Algorithm 7 securely realizes FDRELU (Figure 3, Ap-
pendix D) in the (FSC,FMSB)−hybrid model for all a ∈ [0, 2k] ∪ [2` − 2k, 2` − 1], where k < `− 1.

4.3 ReLU

Algorithm 8 describes our 3-party protocol for realizing the functionality FRELU (see Figure 4,
Appendix D) that computes ReLU(a). Parties P0, P1 hold secret shares of a over ring ZL and end
up with secret shares of ReLU(a) over ZL. Note that ReLU(a) = a if MSB(a) = 0, else 0. That is,
ReLU(a) = ReLU′(a) · a.
Intuition: Our protocol implements the above relation by using one call each to FDRELU and
FMATMUL. Note that FMATMUL is invoked for multiplying two matrices of dimension 1× 1 (or just one
integer multiplication). The security lemma that we show in the Appendix is stated below.

Algorithm 8 ReLU, ΠReLU({P0, P1}, P2):

Input: P0, P1 hold 〈a〉L0 and 〈a〉L1 , respectively.

Output: P0, P1 get 〈ReLU(a)〉L0 and 〈ReLU(a)〉L1 .
Common Randomness: P0, P1 hold random shares of 0 over ZL, denoted by u0 and u1 resp.

1: P0, P1, P2 call FDRELU({P0, P1}, P2) with Pj , j ∈ {0, 1} having input 〈a〉Lj and P0, P1 learn 〈α〉L0
and 〈α〉L1 , resp.

2: P0, P1, P2 call FMATMUL({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈α〉Lj , 〈a〉Lj ) and P0, P1

learn 〈c〉L0 and 〈c〉L1 , resp.

3: For j ∈ {0, 1}, Pj outputs 〈c〉Lj + uj .

Lemma 8. Protocol ΠReLU({P0, P1}, P2) in Algorithm 8 securely realizes FRELU (Figure 4, Ap-
pendix D) in the (FDRELU,FMATMUL)-hybrid model.

3This essentially means that the absolute value of a is not very large, and in particular not larger than 2k. This
is not a limitation in all the ML applications that we work with.
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4.4 Division

We discuss our 3-party protocol realizing the functionality FDIV (see Figure 5, Appendix D).
Parties P0, P1 hold shares of x and y over ZL. At the end of the protocol, parties P0, P1 hold shares
of bx/yc over ZL when y 6= 0.
Intuition: Our protocol implements long division where the quotient is computed bit-by-bit
sequentially starting from the most significant bit. In each iteration, we compute the current
dividend by subtracting the correct multiple of the divisor. Then we compare the current dividend
with a multiple of the divisor (2iy in round i). Depending on the output of the comparison, ith

bit of the quotient is 0 or 1. This comparison can be written as a comparison with 0 and hence
can be computed using a single call to FDRELU. We use this selection bit to select between 0 and 2i

for quotient and 0 and 2iy for what to subtract from divident. This selection can be implemented
using FMATMUL (similar to ReLU computation). Hence, division protocol proceeds in iterations and
each iteration makes one call to FDRELU and two calls to FMATMUL. Due to space constraints, we
provide the protocol in Algorithm 13, Appendix E.

4.5 Maxpool

Algorithm 9 describes our 3-party protocol realizing the functionality FMAXPOOL (see Figure 6,
Appendix D) to compute maximum of n values. Parties P0, P1 hold shares of {xi}i∈[n] over ZL and
end up with fresh shares of max({xi}i∈[n]).
Intuition. The protocol implements the max algorithm that runs in (n− 1) sequential steps. We
start with max1 = x1. In step i, we compute the shares of maxi = max(x1, . . . , xi) as follows:
We compute shares of wi = xi − maxi−1. Then, we compute shares of βi = ReLU′(wi) that is 1
if xi ≥ maxi−1 and 0 otherwise. Next, we use FSS to select between maxi−1 and xi using βi to
compute maxi. Note, that in a similar manner, we can also calculate the index of maximum value,
i.e. k such that xk = max({xi}i∈[n]). This is done in steps 6&7. Computing the index of max
value is required while doing prediction as well as to compute the derivative of maxpool activation
function needed for back-propagation during training.

Lemma 9. Protocol ΠMP({P0, P1}, P2) in Algorithm 9 securely realizes FMAXPOOL in the
(FDRELU,FSS)−hybrid model.

4.6 Derivative of Maxpool

The derivative of the maxpool function is defined as the unit vector with a 1 only in the position
with the maximum value (see functionality FDMAXPOOL presented in Figure 7 in Appendix D). Here,
we describe the more efficient Algorithm 10 that works for the special (and often-used) case of 2×2
maxpool, where n = 4. In general, this algorithm works when n divides L. For the more general
case, see Algorithm 14, Appendix E.
Intuition. The key observation behind this protocol is that when n divides L (i.e., n|L), we have
that a mod n = (a mod L) mod n. The first step that P0 and P1 run is FMAXPOOL that gives them
shares of the index ind ∈ [n] with the maximum value. These shares are over L and must be
converted into shares of the unit vector Eind which is a length n vector with 1 in position ind and
0 everywhere else. P0 and P1 share a random rinZn and have P2 reconstruct k = (ind + r) mod n
by sending shares of r and ind (over ZL) to P2. P2 then creates shares of Ek and sends the shares
back to P0 and P1 who “left-shift” these shares by r to obtain shares of Eind. This works because
a mod n = (a mod L) mod n is true when n|L. The proof of the lemma below is in the Appendix.
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Algorithm 9 Maxpool ΠMP({P0, P1}, P2):

Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.

Output: P0, P1 get 〈z〉L0 and 〈z〉L1 , resp., where z = Max({xi}i∈[n]).
Common Randomness: P0 and P1 hold two shares of 0 over ZL denoted by u0 and u1 and v0

and v1.

1: For j ∈ {0, 1}, Pj sets 〈max1〉Lj = 〈x1〉Lj and 〈ind1〉Lj = j.

2: for i = {2, . . . , n} do

3: For j ∈ {0, 1}, Pj computes 〈wi〉Lj = 〈xi〉Lj − 〈maxi−1〉Lj
4: P0, P1, P2 call FDRELU({P0, P1}, P2) with Pj , j ∈ {0, 1} having input 〈wi〉Lj and P0, P1 learn

〈βi〉L0 and 〈βi〉L1 , resp.

5: P0, P1, P2 call FSS({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈βi〉Lj , 〈maxi−1〉Lj , 〈xi〉Lj )

and P0, P1 learn 〈maxi〉L0 and 〈maxi〉L1 , resp.

6: For j ∈ {0, 1}, Pj sets 〈ki〉Lj = j · i.
7: P0, P1, P2 call FSS({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈βi〉Lj , 〈indi−1〉Lj , 〈ki〉Lj ) and

P0, P1 learn 〈indi〉L0 and 〈indi〉L1 , resp.

8: end for

9: For j ∈ {0, 1}, Pj outputs (〈maxn〉Lj + uj , 〈indn〉Lj + vj).

Algorithm 10 Efficient Derivative of n1×n2 Maxpool Πn1xn2DMP({P0, P1}, P2) with n|L, n = n1n2:

Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.

Output: P0, P1 get {〈zi〉L0 }i∈[n] and {〈zi〉L1 }i∈[n], resp., where zi = 1, when xi = Max({xi}i∈[n])
and 0 otherwise.

Common Randomness: P0 and P1 hold shares of 0 over ZnL denoted by U0 and U1 and a random
r ∈ ZL.

1: P0, P1, P2 call FMAXPOOL with Pj , j ∈ {0, 1} having input {〈xi〉Lj }i∈[n], to obtain 〈indn〉Lj resp.
(from the second part of FMAXPOOL’s output).

2: P0 sends 〈k〉L0 = 〈indn〉L0 + r to P2, while P1 sends 〈k〉L1 = 〈indn〉L1 to P2.

3: P2 computes t = ReconstL(〈k〉L0 , 〈k〉L1 ), computes k = t mod n and creates shares of Ek, denoted
by 〈E〉L0 and 〈E〉L1 , and sends the shares to P0 and P1 resp.

4: P0 and P1 locally “cyclic-shift” their shares by g = r mod n. That
is, let 〈E〉Lj = (〈E0〉Lj , 〈E1〉Lj , · · · , 〈En−1〉Lj ). Pj computes 〈D〉Lj as

(〈E(−g mod n)〉Lj , 〈E(1−g mod n)〉Lj , · · · , 〈E(n−1−g mod n)〉Lj ).

5: Pj , j ∈ {0, 1} outputs 〈D〉Lj + Uj .
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Protocol Rounds Communication

Linearm,n,v 2 2(2mn+ 2nv +mv)`
Conv2dm,i,f,o 2 2(2m2f2o+ 2f2oi+m2o)`
DReLU 8 8` log p+ 22`+ 4
ReLU 2 10`
NORM(lD) or DIV(lD) 10lD (8` log p+ 42`+ 4)lD
Maxpooln 9n (8` log p+ 32`+ 4)n
DMPn 2 2(n+ 1)`

Table 2: 3PC Main protocols: Comm. & Round Complexity

Lemma 10. Πn1xn2DMP({P0, P1}, P2) in Algorithm 10 securely realizes FDMAXPOOL in the
FDMAXPOOL−hybrid model.

4.7 Neural Network Protocols

Our main protocols can be put together in an easy manner to execute training on a wide class of
neural networks. For example, consider the 3 layer neural network from SecureML that consists of
a fully connected layer, followed by a ReLU, followed by another fully connected layer, followed by
another ReLU, followed by the function ASM(ui) = ReLU(ui)∑

ReLU(ui)
(for further details on this network,

we refer the reader to Appendix B.2). To implement this, we first invoke FMATMUL, followed by
FRELU, then again followed by FMATMUL and FRELU and finally we invoke FDIV to compute ASM(·)4.
Back propagation is computed by making calls to FMATMUL as well and FDRELU with appropriate
dimensions. We remark that we can put together these protocols easily since our protocols all
maintain the invariant that parties begin with arithmetic shares of inputs and complete the protocol
with arithmetic shares of the output.

5 Communication and Rounds

The communication and round complexity of our protocols for the various ML functionalities
are presented in Table 2 for the 3-party case and in Table 3 for the 4-party case. Linearm,n,v denotes
a matrix multiplication of dimension m×n with n× v. Conv2dm,i,f,o denotes a convolutional layer
with input m × m, i input channels, a filter of size f × f , and o output channels. lD denotes
precision of bits. Maxpooln and DMPn denotes Maxpool and its derivative over n elements. For
ReLU and DMPn, the overheads in addition to DReLU and Maxpooln respectively are presented
as these protocols are always implemented together in a neural network. All communication is
measured for `−bit inputs and p denotes the field size (which is 67 in our case).

Our gains mainly come from the secure evaluation of non-linear functions such as ReLU and
Maxpool and their derivatives. SecureML [31] took a garbled circuit approach to evaluate these
functions – i.e., after completion of an arithmetic (linear) computation such as matrix multiplica-
tion, they ran a protocol to convert shares of intermediary values into encoding suitable for garbled

4ASM(·) consists of a summation and a division. Summation is a local computation and does not require a protocol
to be computed.
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circuits. The non-linear function was then evaluated using the garbled circuit after which shares
were once again converted back to be suitable for arithmetic computation. This approach leads to a
multiplicative factor communication overhead proportional to the security parameter κ, as garbled
circuits require communicating encoding proportional to κ, for every bit in the circuit. Overall,
this leads to a communication complexity > 768` for every `− bit input [21] (As shown in [21],
as well as used in SecureML, this cost is 6κ`, where κ is the security parameter). On the other
hand, in our approach, we provide new protocols to compute such non-linear activation functions.
For example, the ReLU protocol that we construct avoids paying κ multiplicative overhead and has
communication complexity of 8` log p+32`+4, which is approximately 96` (when p = 67 as is in our
setting). This leads to an 8X improvement in the communication complexity of the protocols for
non-linear functions. When computing linear functions, we use the same Beaver triplet technique
as [7, 31, 35] in the 3-party case and provide more efficient protocols in the 4-party case with a
1.66X improvement in communication.

6 Evaluation

System Details. We test our prototype by running experiments over Amazon EC2 c4.8x large
instances in two environments – one that models a LAN setting and another, the WAN setting.
Our system is implemented in about 7200 lines of C++ code with the use of standard libraries.
The ring size is set to Z264 and we use the uint64 t native C++ datatype for all variables. As
noted in [31], compared to using a field for the underlying protocols or using dedicated number
theoretic libraries such as NTL [4], this has the benefit of implementing modulo operations for free.
We use the Eigen Library [1] for faster matrix multiplications (both in the MPC setting and the
stand-alone, single party code which provides the benchmark when no security is involved).
LAN setting. We use 3 (and 4 respectively) Amazon EC2 c4.8xlarge machines running Ubuntu
in the same region. At the time of running the experiments, the average bandwidth was 625MB/s
and the average ping time was 0.215ms.
WAN setting. In the WAN setting, we rent machines in different regions (Oregon, Ohio and
North California) with the same machine specifications as in the LAN setting. At the time of
running the experiments, the average bandwidth was 40MB/s and the average ping time was 69ms.
Number encoding. Typically neural networks work over floating point numbers. As observed
by all prior works, to make them compatible with efficient cryptographic techniques, they must
be encoded into integer/fixed point form. We use the methodology from [31] to support decimal
arithmetic in an integer ring (described in Appendix C). In all our experiments we use ` = 64 and
13 bits of precision (cleartext training is also done with these parameters).

Summary of experiments. We develop a prototype that fully implements end-to-end secure
three and four-party neural network training algorithms. We test the performance of our protocols
by evaluating over 3 different neural networks that train over the MNIST dataset [3]. We also
demonstrate the performance of secure inference in Section 6.3. Finally, in Section 6.4, we also
present microbenchmarks that measure the performance of various sub-protocols such as Linear
Layer, Convolutional Layer, ReLU and Maxpool (and its derivatives) that enables the estimation
of the performance cost of other networks using the above functions. We are also the first to
compare the performance of our protocols to cleartext (insecure) training and make a strong case
for the practicality of secure neural network training and inference5.

5We compare our protocols with our stand-alone C++ implementation of the corresponding neural networks. We
do not consider optimized ML implementations such as Tensorflow or Pytorch.
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Protocol Rounds Communication

Linearm,n,v 2 2(mn+ nv +mv)`
Conv2dm,i,f,o 2 2(m2f2o+ f2oi+m2o)`
DReLU 7 8` log p+ 8`+ 4
ReLU 2 6`+ 2
NORM(lD) or DIV(lD) 9lD (8` log p+ 20`+ 8)lD
Maxpooln 9n (8` log p+ 14`+ 6)n
DMPn 2 2(n+ 1)`

Table 3: 4PC Main protocols: Comm. & Round Complexity

Our times for secure training are extrapolated from 10 iterations and for inference all times are
averaged over 10 executions. We consider overall execution time (and do not split times into an
offline, data independent phase, and an online, data dependent phase). The learning rate is 2−5 in
all experiments, except in the SecureML [31] network, where we retain their learning rate of 2−7.

6.1 Neural Networks

Benchmarks. We consider three networks that perform training over MNIST dataset for hand-
written digit recognition. This dataset contains 60,000 training samples of handwritten digits.
Each image is a 28*28 square image, with each pixel represented using 1 Byte. The inference set
contains 10,000 images. We use these networks for training as well as inference.

Network A. The first network is the Deep Neural Network from [31] which is a 3-layer network
comprising of only fully connected (linear) layers and uses ReLU as the activation function.
This network, after training for 15 epochs, has a prediction accuracy of 93.4% as illustrated in
[31].
Network B. The next is the Convolutional Neural Network from [30]; while [30] used this
network for prediction, we use the network to train over the MNIST dataset. This network
comprises of 2 convolutional layers followed by 2 linear layers and uses ReLU as well as Maxpool
as its activation functions. We show that this network, after training for 15 epochs, has a
prediction accuracy of 98.77%.
Network C. Finally, we also run our protocols over the (standard) LeNet network [28], which
is a larger version of the network from [30]. We show that this network, after training for 15
epochs, has a prediction accuracy of 99.15%.

In addition to these networks for training, for the case of secure inference, we also consider
a network from Chameleon [35] for comparison in the 3-party setting. This network has one
convolutional layer and two fully connected layers and uses ReLU as the activation function. This
network gives inference accuracy of 99%. We will refer to this network as Network D. For a
detailed description of these networks see Appendix B.2.
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6.2 Secure Training

We evaluate our protocols for secure training in both the LAN and WAN settings over the
networks A, B, and C listed above. In many cases, the networks we train, achieve more than
99% accuracy for inference. We remark that we are the first work to show the feasibility of
secure training on large and complex NNs that achieve high levels of accuracy. We present times
for cleartext execution, 3PC and 4PC. We vary the epochs between 5 and 15 for all networks
except Network A which does not achieve good accuracy for smaller epochs and vary the batch
size between 4 and 128 for networks B and C. Table 4 presents a summary of our results in the
LAN/WAN setting in comparison with cleartext execution (no security baseline) as a function of
the number of epochs for training (batch size fixed to 128), while Table 5 presents the results when
the batch size is varied and the number of epochs is fixed to 5.

Epochs Accuracy Cleartext
3PC (hr) 4PC (hr)

LAN WAN LAN

A 15 93.4% 0.05 0.88 10.64 0.78

B
5 97.94% 0.27 8.96 40.3 6.21
10 98.05% 0.54 17.93 80.6 12.43
15 98.77% 0.81 26.89 120.9 18.64

C
5 98.15% 0.7 14.17 77.38 9.18
10 98.43% 1.41 28.34 154.77 18.36
15 99.15% 2.11 42.51 232.15 27.54

Table 4: Secure training execution times for batch size 128.

Batch size Accuracy Cleartext
3PC (hr) 4PC (hr)

LAN WAN LAN

B
4 99.15% 0.35 14.65 149.58 10.19
16 98.99% 0.23 11.74 66.61 7.99
128 97.94% 0.27 8.96 40.3 6.21

C
4 99.01% 1.13 23.04 170 15.04
16 99.1% 0.66 18.46 80.57 12.11
128 98.15% 0.7 14.17 77.38 9.18

Table 5: Secure training execution times for 5 epochs.
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Framework
LAN (hr) WAN (hr)

Offline Online Total Offline Online Total

A
SecureML 2PC 80.5 1.2 81.7 4277 59 4336
SecureML 3PC 4.15 2.87 7.02 - - -

Our 3PC 0 0.88 0.88 0 10.64 10.64

Table 6: Training time comparison for Network A for batch size 128 and 15 epochs with Se-
cureML [31].

LAN setting. As can be seen from the timings, we obtain secure protocols that have an overhead
of between 17-51X when comparing with an insecure (cleartext), stand-alone execution. In the
four-party setting, this ratio is between 13-34X. WAN Setting. In this setting, we obtain secure
protocols that have an overhead of between 110-427 times when comparing with the cleartext
execution. In fact, all our protocols (even the more complex neural networks) have an execution
time of only a few hundred hours. Given that the WAN setting is a more natural and representative
setup for MPC protocols relying on non-colluding parties, we feel that our work serves as a key
enabler for such a technology.

Comparison with prior work. The only prior work to consider neural network training
was SecureML [31] (Network A). They considered both 2 and 3 party training on a 3-layer
DNN. Our 3 party protocol is roughly 8X faster than their 3 party protocol and 93X faster than
their 2 party protocol. Our 4 party protocol is faster the our 3 party protocol and hence we
get even better improvements there. Furthermore, SecureML split their times into a slow (data
independent) offline phase and a faster (data dependent) online phase. Even comparing only their
online time with our overall 3PC time, we obtain an improvement of 1.33X over their 2PC and
a 3.26X improvement over their 3PC (their 3PC trades off some offline cost with a larger online
cost). In the WAN setting, our improvements are even more dramatic and we get an improvement
of 407X. Refer to Table 6 for details.

6.3 Secure Inference

We also evaluate our protocols for the task of secure inference for the networks A, B, C and D.
These networks can either be a result of secure training using 3PC or 4PC protocol and are secret
shared between P0 and P1, or they can be secret shared between these parties at the beginning of
the protocol.
Comparison with prior work. A sequence of previous works have considered a single secure
inference in the LAN setting for various networks. Table 7 summarizes our comparison with state-of-
the-art secure inference protocols. Networks A and B were considered in SecureML [31], MiniONN
[30] and Gazelle [27] using different techniques for secure computation between 2 parties. Each of
these works split their compute into an input independent offline phase and an input dependent
online phase. In our protocols, we don’t have any offline phase and hence, the offline cost is 0. Our
protocols in the 3PC setting achieve at least 2X improvement in small networks that have a small
number of non-linear operations (such as Network D) and between 4-38X improvements in larger
networks. The corresponding numbers in the 4PC setting are 3X and between 5.2-49X. In fact,
in all cases, our total time is lower than the online time of previous best protocols (ignoring the
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Framework
Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

A
SecureML 4.7 0.18 4.88 - - -
Our 3PC 0 0.05 0.05 0 4.03 4.03
Our 4PC 0 0.04 0.04 0 2.08 2.08

B

MiniONN 3.58 5.74 9.32 20.9 636.6 657.5
Gazelle 0.481 0.33 0.81 47.5 22.5 70.0

Our 3PC 0 0.22 0.22 0 17.28 17.28
Our 4PC 0 0.16 0.16 0 13.43 13.43

C
Our 3PC 0 0.34 0.34 0 37.03 37.03
Our 4PC 0 0.23 0.23 0 25.49 25.49

D

DeepSecure - - 9.67 - - 791
Chameleon 3PC 1.34 1.36 2.7 7.8 5.1 12.9

Gazelle 0.15 0.05 0.20 5.9 2.1 8.0
Our 3PC 0 0.1 0.1 0 7.93 7.93
Our 4PC 0 0.067 0.067 0 5.33 5.33

Table 7: Single image inference time comparison of various protocols in the LAN setting.

offline time). We are the first to evaluate on Network C (which is considerably larger in size) and
the table shows our runtime and communication for both 3PC and 4PC. Finally, for network D,
we also compare our protocols with the 3PC protocols in Chameleon [35]. This benchmark shows
that our 3PC beats the state-of-the-art for 3PC by 27X.

In all cases, our performance gains can be attributed to much better communication complexity
of our protocols compared to previous works (see comparison in Table 7). In particular, as men-
tioned before, we avoid the use of garbled circuits for the non-linear activation functions such as
ReLU. In all previous works, garbled circuits are the major factor in large communication.
Single vs Batch Prediction. Table 8 summarizes our results for secure inference over different
networks for 1 prediction and batch of 128 predictions in both the LAN and WAN settings. Due
to use of matrix based beaver triplets for secure multiplication protocol in linear and convolutional
layers, and batching of communication, the time for multiple predictions grows sub-linearly. Se-
cureML also did predictions for batch size 100 for Network A and took 14s and 143s in the LAN
and the WAN settings, respectively. In contrast, we take only 0.41s and 3.6s for 128 predictions
using 3PC protocol.

6.4 Microbenchmarks

Table 9 presents microbenchmark timings for our various ML functionality protocols varied
across different dimensions. All timings are average timings. While we have reduced the timings of
non-linear function computations significantly, as can be seen from the table, they do have much
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Runtime 3PC (s) Runtime 4PC (s)
LAN WAN LAN

Batch size → 1 128 1 128 1 128

A 0.05 0.41 3.1 3.6 0.04 0.256

B 0.22 11.37 5.15 63.52 0.16 9.71

C 0.34 16.41 5.33 97.53 0.23 14.64

D 0.1 3.75 3.96 19.63 0.067 2.83

Table 8: Prediction timings for batch size 1 vs 128 for our protocols on Networks A-D over MNIST.

higher cost than computation of linear layers and convolutional layers.

7 Related Work

Most prior works have focused on privacy-preserving machine learning prediction. As discussed
earlier, the only work to consider neural network training is SecureML [31]. The work of Min-
iONN [30] builds on [31] and constructs more efficient protocols for neural network prediction. The
concurrent and independent works of Chameleon [35] and Gazelle [27] build protocols for 3 and 2
party neural network prediction. Chameleon primarily makes use of a third party to avoid expensive
oblivious transfer protocols in SecureML, while Gazelle builds better packing mechanisms for addi-
tively homomorphic encryption schemes based on lattices that bring down the cost of linear layers
such as matrix multiplication and convolution. Their protocols for non-linear activation functions
such as ReLU and Maxpool remain the same as in SecureML. On the other hand, we provide more
communication efficient protocols for non-linear activation functions (which form the largest over-
head in secure neural network protocols) while implementing the linear layers using Beaver triplets
for 3-party computation and a much more communication efficient protocol for 4-party compu-
tation. Other frameworks, such as Sharemind [9] provide a way to obtain generic 3-party secure
computation. As discussed in Chameleon [35], the protocols obtained from these frameworks are
at least an order of magnitude slower than [35] (whose performance itself we better). We provide
a more detailed overview of other related works in Appendix A.

8 Conclusions

We develop new 3 and 4-party information-theoretically secure protocols for neural network
training and prediction such that no single party learns any information about the data. Our key
contribution is more communication efficient protocols for non-linear activation functions. Exper-
imentally, we test our protocol over a wide class of networks and demonstrate the practicality of
our approach. We obtain several orders of magnitude improvements over previous state-of-the-art
protocols (that trained smaller, lower accuracy networks). Our results indicate that the overhead
of executing the secure MPC protocols is between 13-33X of the cleartext implementation even for
larger networks achieving > 99% accuracy over the MNIST dataset.
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Protocol Dimension
Runtime (ms) Comm. (MB)

3PC 4PC 3PC 4PC

Conv2dm,f,i,o

8, 5, 16, 50 39.3 18.2 8.57 4.35
28, 3, 1, 20 18.19 16.4 4.16 3.16
28, 5, 1, 20 34.45 15.8 6.61 4.22

MatMulm,n,v

1, 100, 1 7.34 8.3 0.064 0.032
1, 500, 100 52.5 21.35 16.17 8.1
784, 128, 10 114.9 39.2 33.77 17.51

Maxpool
8× 8× 50, 4× 4 609.7 501.8 25.92 21.51

24× 24× 16, 2× 2 654.7 476.9 59.71 49.85
24× 24× 20, 2× 2 776.6 593 74.64 62.32

DMP
8× 8× 50, 4× 4 27.7 21.24 3.07 3.07

24× 24× 16, 2× 2 53.4 48.3 8.89 8.89
24× 24× 20, 2× 2 61.9 53.9 11.11 11.11

DReLU
64× 16 111.3 89.9 7.2 6.1

128× 128 1180 848.3 115.34 97.64
576× 20 870 536.2 81.1 68.65

ReLu
64× 16 4.29 4.13 0.819 0.368

128× 128 31.4 30.9 13.1 5.89
576× 20 25.07 19.11 9.21 4.14

Table 9: Microbenchmarks for various ML functionality protocols in LAN setting.
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A Other Related Work

In recent years, privacy preserving machine learning has received considerable attention from
the research community [29, 11, 23, 31, 30]. Research in this domain can be broadly divided into
(1) privacy preserving classification (2) privacy preserving training. Since we already discussed and
compared our work against [31, 30, 35, 36, 27], here we focus on other related works.
Privacy preserving classification. Bost et al. [11] propose a number of building block func-
tionalities to perform secure inference for linear classifiers, decision trees and naive bayes in the
two-party setting. Later, [38] gave an improved protocol for prediction using decision trees. The
work of Gilad-Barach et al. [23] show how to perform secure neural network prediction over en-
crypted data using homomorphic encryption techniques, by approximating the ReLU activation
function to a quadratic function that is more “friendly” towards homomorphic encryption schemes.
Since this approximation results in loss in accuracy, there have been works that approximate using
higher degree polynomials [16], but incur higher cost.
Privacy preserving training. The problem of secure training on joint data is much more chal-
lenging problem. Perhaps the first work to consider this was by Lindell and Pinkas [29] that
provided algorithms to execute decision tree based training over shared data. Nikolaenko et al. [33]
implemented a secure matrix factorization to train a movie recommender system. Shokri and
Smatikov [37] considered the problem of secure neural network training when data is horizon-
tally partitioned. Here, the parties run the training on their data individually, and exchange the
changes in coefficients obtained during training. The effect of leakage occurring in this scheme is
well-understood and hence, no formal security guarantee is obtained. More recently, as mentioned
earlier, Mohassel and Zhang [31] show protocols for linear regression, logistic regression and neural
networks in the 2-server model. Hesamifard et al. [26] design methods to approximate activation
functions such as ReLU and Sigmoid with low degree polynomials to achieve efficient homomorphic
encryption schemes for training CNNs, but their protocols are quite inefficient. An orthogonal line
of work builds on differential privacy [22] for privacy preserving ML applications [17].

B Preliminaries Cont’d

B.1 Threat Model and Security

We provide a very high level formulation of security in this framework and refer the reader to
[13] for further details. All parties P1, · · · , Pn (our specific focus is when n = 3) are modelled as
non-uniform interactive Turing machines (ITMs). Honest parties are restricted to run in proba-
bilistic polynomial time (PPT). An adversary A, who interacts with and acts as instructed by the
environment Z, “corrupts” a fraction of the parties; in our case of n = 3, the adversary corrupts up
to one of them. These corrupted parties are under the control of the adversary and the adversary
can view all messages sent and received by these parties, as well as their individual random tapes,
inputs and outputs (these collection of messages is referred to as the view of the party). However,
all parties follow the protocol specification honestly (i.e., we consider honest-but-curious security).
The environment receives the complete view of all adversarial parties in the interaction. At the end
of the interaction, the environment outputs a single bit. The environment and the adversary are not
restricted to run in probabilistic polynomial time - i.e., we provide information-theoretic security
guarantees. As is standard in all information-theoretic protocols, we only assume point-to-point
secure channels between all pairs of parties in the protocol and do not concern ourselves with how
these channels are implemented.

We now two interactions: In the real interaction, the parties run a protocol Π in the presence
of A and Z, with input z, z ∈ {0, 1}∗. Let REALπ,A,Z denote the binary distribution ensemble
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describing Z’s output in this interaction. In the ideal interaction, parties send their inputs to
a trusted functionality machine F that carries the desired computation truthfully. Let S (the
simulator) denote the adversary in this idealized execution, and IDEALF ,S,Z the binary distribution
ensemble describing Z’s output after interacting with adversary S and ideal functionality F .

A protocol Π is said to securely realize a functionality F if for every adversary A in the real
interaction, there is an adversary S in the ideal interaction, such that no environment Z, on any
input, can tell the real interaction apart from the ideal interaction, except with negligible probability
(in the security parameter κ). In other words, if the two binary distribution ensembles above are
statistically indistinguishable.

Finally, protocols typically invoke other sub-protocols. In this framework the hybrid model
is like a real interaction, except that some invocations of the sub-protocols are replaced by the
invocation of an instance of an ideal functionality F ; this is called the “F-hybrid model”.

B.2 Neural Network Training Algorithms

We discuss the neural networks considered in this work as well as some ML background in this
section. First network that we consider is from SecureML [31] that we refer to as Network A.
Network A [31]. We follow the exact same network as in [31] – for completeness, we provide
details of the network here as well. In particular, we consider a 3 layer DNN trained over the
MNIST data [3]. The dimensions of the DNN are: (input) 784× 128× 128× 10 (output) and each
layer is fully connected. We use a standard one hot encoding for the output classification.

We follow the notation from [32] closely. At a very high level, every layer in the forward
propagation comprises of a linear operation (such as matrix multiplication in the case of fully
connected layers and convolution in the case of Convolutional Neural Networks, where weights are
multiplied by the activation), followed by a (non-linear) activation function f . One of the most
popular activation functions is the Rectified Linear Unit (ReLU) defined as ReLU(x) = max(0, x).

Usually, the softmax function, defined as SM(ui) = e−ui∑
e−ui

is applied to the output of the last layer.

This function, being hard to compute cryptographically in a secure manner, is approximated by
the function ASM(ui) = ReLU(ui)∑

ReLU(ui)
– this is similar to what is done in the work of [31]. The idea

behind the SM function is to convert the output values into a probability distribution - the same
effect being also achieved by the ASM function. The backward propagation updates the weights
appropriately making use of derivative of the activation function (in this case ReLU′(x), which is
defined to be 1 if x > 0 and 0 otherwise) and matrix multiplication.

Forward/Backward Prop Equations. We denote by l a generic layer of the network,
where 1 ≤ l ≤ L. We use wljk to denote the weight of the connection from kth neuron in the

(l − 1)th layer to neuron jth in the lth layer. We use alj , b
l
j for the activation and bias of the jth

neuron in the lth layer. We also define zlj =
∑

k w
l
jka

l−1
k + blk for notational convenience. We use

yj to denote the output.
We drop the lower indices to denote the corresponding vector/matrix – for instance, wl denotes

the weight matrix between the (l − 1)th and lth layer, whereas wljk denote individual values. The
cost function used is the cross entropy function and is given by:

C = − 1

n

∑
s

∑
j

(
yj ln aLj + (1− yj) ln(1− aLj )

)
(1)

where n is the number of samples and s is a generic sample. The forward propagation is governed
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by the following equation:

alj = σ(zlj) = σ

(∑
k

wljka
l−1
k + blk

)
(2)

where σ is the non-linear operation, in our case ReLU(·). Using � to denote Hadamard product
(element wise product) we define δlj as the error of neuron j in layer l and is given by ∂C/∂zlj . The
backward propagation equations are an approximation of actual gradients given that the forward
pass contains ASM(·). The backward propagation equations are faithful to sigmoid function as the
last layer activation function6 and are given by the following 4 equations:

δL = aL − y (3a)

δl = (wl+1)T δl+1 � ReLU′(zl) (3b)

∂C

∂blj
= δlj (3c)

∂C

∂wljk
= al−1k δlj (3d)

Eq. (3a) computes the error of the last layer, Eq. (3b) gives a way of computing the errors for
layer l in terms of the errors for layer l + 1, the weights wl+1 and zl. Finally, Eq. (3c) and (3d)
give compute the gradients of the biases and weights respectively.

Stochastic Gradient Descent (SGD). SGD is an iterative algorithm to minimize a function.
We use SGD to train our DNN by initializing the weights to random values. In the forward pass,
the network propagates from the inputs a1 to compute the output y and in the backward pass the
gradients are computed and the weights are updated. For efficiency reasons, instead of computing
the forward and backward pass on each data sample, frequently a small set of samples are chosen
randomly (called a mini-batch) and propagated together. The size of the mini-batch is denoted by
B, set to 128 in this work. The complete algorithm for the 3-layer neural network is described in
Algorithm 11.

Other networks. The other three networks we consider are as follows:

Network B [30] This is a 4-layer convolutional neural network that has the following structure.
First is a 2-dimensional convolutional layer with 1 input channel, 16 output channels and a 5 × 5
filter. The activation functions following this layer are ReLU, followed by a 2 × 2 maxpool. The
second layer is a 2-dimensional convolutional layer with 16 input channels, 16 output channels
and another 5 × 5 filter. The activation functions following this layer are once again ReLU and a
2× 2 maxpool. The third layer is an 256× 100 fully-connected layer. The next activation function
is ReLU. The final layer is a 100 × 10 linear layer and this is normalized using ASM(·) to get a
probability distribution. The loss function is cross entropy and stochastic gradient descent is used
to minimize loss. Back propagation equations are computed appropriately. This network, after
training for 15 epochs, provides an inference accuracy of 98.77% on the MNIST dataset.
Network C [28]. This is a 4-layer convolutional neural network with similar structure as above but
more number of output channels and bigger linear layers. First layer is a 2-dimensional convolutional
layer with 1 input channel, 20 output channels and a 5×5 filter. The activation functions following
this layer are ReLU, followed by a 2×2 maxpool. The second layer is a 2-dimensional convolutional

6sigmoid function is given by f(x) = 1/(1 + e−x)
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Algorithm 11 DNN ΠML:

Input: Inputs are read into a1 one mini-batch at a time.

1: for l = 2 : L do

2: zx,l = wlax,l−1 + bl

3: ax,l = σ(zx,l)

4: end for

5: ASM(aLi ) =
ReLU(aLi )∑
ReLU(aLi )

6: δx,L = ASM(ax,L)− yx

7: for l = L− 1 : 2 do

8: δx,l = wl+1δx,l+1 � ReLU′(zx,l)

9: end for

10: for l = L : 2 do

11: bl → bl − α
|B|
∑

x δ
x,l

12: wl → wl − α
|B|
∑

x δ
x,l(ax,l−1)T

13: end for

layer with 20 input channels, 50 output channels and another 5× 5 filter. The activation functions
following this layer are once again ReLU and a 2 × 2 maxpool. The third layer is an 800 × 500
fully-connected layer. The next activation function is ReLU. The final layer is a 500 × 10 linear
layer and this is normalized using ASM(·) to get a probability distribution. This network, after
training for 15 epochs, provides an inference accuracy of 99% on the MNIST dataset.
Network D [35]. This network’s structure is as follows: the first layer is a 2-dimensional convo-
lutional layer with a 5× 5 filter, stride of 2, and 5 output channels. The activation function next is
ReLU. The second layer is a fully connected layer from a vector of size 980 to a vector of size 100.
Next is another ReLU activation function. The last layer is a fully connected layer from a vector
of size 100 to a vector of size 10. Finally the arg max function is used to pick among the 10 values
for predicting the digit. Chameleon [35] claims that this network gives accuracy of 99%.

C Arithmetic operations on shared decimal numbers

In order for neural network algorithms to be compatible with cryptographic applications, they
must typically be encoded into integer form (most neural network algorithms work over floating
point numbers). Now, decimal arithmetic must be performed over these values in an integer ring
which requires careful detail. We follow the methodology of [31] and describe details below.

C.1 Number Encoding

We use fixed point arithmetic to perform all the computations required by the DNN. In other
words, all numbers are represented as integers in the uint64 t native C++ datatype. We use
a precision of lD = 13 bits for representing all numbers. In other words, an integer 215 in this
encoding corresponds to the float 4 and an integer 264−213 corresponds to a float −1. Since we use
unsigned integers for encoding, ReLU(·) compares its argument with 263. Such encoding is gaining
popularity in the systems community with the introduction of fixed-point data types [2].
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C.2 Decimal arithmetic

To perform decimal arithmetic in an integer ring, we use the same solution as is used in [31].
Addition of two fixed point decimal numbers is straightforward. To perform multiplication, we
multiply the two decimal numbers and truncate the last lD bits of the product. Theorem 1 in [31]
shows that this above truncation technique also works over shared secrets (2-out-of-2 shares) i.e.,
the two parties can simply truncate their shares locally preserving correctness with an error of at
most 1 bit with high probability. Denoting an arithmetic shift by ΠAS(a, α), truncation of shares
i.e., dividing shares by a power of 2 is described in Algorithm 12. We refer the reader to [31] for
further details.

Algorithm 12 Truncate ΠTruncate({P0, P1}):

Input: P0 & P1 hold an positive integer α and 〈X〉L0 & 〈X〉L1 resp.

Output: P0 gets 〈X/2α〉L0 and P1 gets 〈X/2α〉L1 .

1: P0 computes ΠAS(〈X〉L0 , α).

2: P1 computes −ΠAS(−〈X〉L1 , α).

D Functionalities

All the functionalities we describe below are 3-party functionalities. We call the functionalities
directly related to high-level ML functions (such as matrix multiplication, derivative of ReLU, ReLU,
Maxpool, and division) as main functionalities. For these, we will maintain the following invariant:
Parties P0, P1 have shares over ZL of certain values as input and party P2 has no input. At the
end, P0, P1 end up with shares over ZL of output of a certain function of the input values7.

Our protocols also rely on some supporting functionalities such a private compare, share-convert,
compute MSB, etc, that we describe after main functionalities. We note that for these supporting
functionalities the above invariant may not hold.

D.1 Main functionalities

We first describe the main functionalities whose corresponding protocols can be put together
to get a complete protocol for an ML algorithm.

Matrix Multiplication

The first 3-party functionality that we describe computes matrix multiplication over secret
shared values and secret shares the resultant product matrix amongst two parties. P0 holds a pair
(X0, Y0) and P1 holds a pair (X1, Y1), where X0, X1 ∈ Zm×nL and Y0, Y1 ∈ Zn×vL ; P2 has no input.
The functionality computes X = ReconstL(X0, X1), Y = ReconstL(Y0, Y1) and Z := X · Y ∈ Zm×vL .
Then, it computes (〈Z〉L0 , 〈Z〉L1 )← ShareL(Z). It sends 〈Z〉Lj to Pj , j ∈ {0, 1}. The functionality is
described in Figure 2.

Derivative of ReLU

Parties P0 and P1 have values that are viewed as shares of a ∈ ZL as input; P2 has no input.
The functionality takes the shares as input from P0 and P1, computes ReLU′(a) which is a bit that

7It is trivial to extend these functionalities to the 4-party setting where P3 also has no input and output.
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Functionality FMATMUL({P0, P1}, P2)

FMATMUL interacts with parties P0, P1, P2 & adversary S.

Inputs. Receive (X0, Y0) from P0 and (X1, Y1) from P1, where X0, X1 ∈ Zm×n
L and Y0, Y1 ∈ Zn×v

L .
Outputs. Compute:

• X = ReconstL(X0, X1);Y = ReconstL(Y0, Y1)

• Z = X · Y ∈ Zm×v
L

• (〈Z〉L0 , 〈Z〉L1 )← ShareL(Z).

Send 〈Z〉Lj to Pj , j ∈ {0, 1}.

Figure 2: 3-party Mat. Mul. ideal functionality FMATMUL.

is 1 if MSB(a) = 0 and 0 otherwise. That is, ReLU′(a) = 1 iff a ≥ 0. It then generates shares of
this bit as output to P0 and P1. The functionality is described in Figure 3.

Functionality FDRELU({P0, P1}, P2)

FDRELU interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive a0 ∈ ZL from P0 and a1 ∈ ZL from P1.
Outputs. Compute:

• a = ReconstL(a0, a1).

• Let α = 1⊕MSB(a).

• (〈α〉L0 , 〈α〉L1 )← ShareL(α).

Send 〈α〉Lj to Pj , j ∈ {0, 1}.

Figure 3: 3-party ReLU′ ideal functionality FDRELU.

ReLU

Parties P0 and P1 have values that are viewed as shares of a ∈ ZL as input; P2 has no input.
The functionality takes the shares as input from P0 and P1, reconstructs a, computes ReLU(a)
(which is a if ReLU′(a) = 1 and 0 otherwise) and then generates shares of this value (over ZL) as
output to P0 and P1. The functionality is described in Figure 4.

Division

Parties P0 and P1, as input, have values that are viewed as shares of x, y ∈ ZL; P2 has no input.
The functionality takes the shares as input from P0 and P1, reconstructs x and y. It computes
z = x/y (which is defined to be bxy c, where x and y, y 6= 0 are non-negative integers) and then
generates shares of z (over ZL) as output to P0 and P1. The functionality is described in Figure 5.
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Functionality FRELU({P0, P1}, P2)

FRELU interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive a0 from P0 and a1 from P1, where a0, a1 ∈ ZL.
Outputs. Compute:

• a = ReconstL(a0, a1).

• Let α = ReLU′(a) and c = αa.

• (〈c〉L0 , 〈c〉L1 )← ShareL(c).

Send 〈c〉Lj to Pj , j ∈ {0, 1}.

Figure 4: 3-party ReLU ideal functionality FRELU.

Functionality FDIV({P0, P1}, P2)

FDIV interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive (x0, y0) from P0 and (x1, y1) from P1, where x0, x1, y0, y1 ∈ ZL.
Outputs. Compute:

• x = ReconstL(x0, x1) and y = ReconstL(y0, y1).

• Let z = bxy c.

• (〈z〉L0 , 〈z〉L1 )← ShareL(z).

Send 〈z〉Lj to Pj , j ∈ {0, 1}.

Figure 5: 3-party Division ideal functionality FDIV.

Maxpool

Parties P0 and P1, as input, have n values each that are viewed as shares of {xi}i∈[n] ∈ ZL; P2

has no input. The functionality takes the shares as input from P0 and P1, reconstructs each xi. It
computes z = max({xi}i∈[n]) and ind is the index such that z = xind. It then generates shares of z
and ind (over ZL) as output to P0 and P1. The functionality is described in Figure 6.

Derivative Maxpool

Parties P0 and P1, as input, have n values each that are viewed as shares of {xi}i∈[n] ∈ ZL; P2

has no input. The functionality takes the shares as input from P0 and P1, reconstructs each xi.
It computes z = max({xi}i∈[n]) and ind is the index such that z = xind. Then, it creates a vector
{yi}i∈[n] such that yi = 1 if i = ind, else yi = 0. It then generates shares of yi as output to P0 and
P1. The functionality is described in Figure 7.

D.2 Supporting functionalities

In this section, we describe some supporting functionalities
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Functionality FMAXPOOL({P0, P1}, P2)

FMAXPOOL interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive {xi,0}i∈[n] from P0 and {xi,1}i∈[n] from P1, where a0, a1 ∈ ZL.
Outputs. Compute:

• For all i ∈ [n], xi = ReconstL(xi,0, xi,1).

• Let z = max({xi}i∈[n]) and ind is such that z = xind.

• (〈z〉L0 , 〈z〉L1 )← ShareL(z).

• (〈ind〉L0 , 〈ind〉L1 )← ShareL(ind).

Send (〈z〉Lj , 〈ind〉Lj ) to Pj , j ∈ {0, 1}.

Figure 6: 3-party Maxpool ideal functionality FMAXPOOL.

Functionality FDMAXPOOL({P0, P1}, P2)

FDMAXPOOL interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive {xi,0}i∈[n] from P0 and {xi,1}i∈[n] from P1, where a0, a1 ∈ ZL.
Outputs. Compute:

• For all i ∈ [n], xi = ReconstL(xi,0, xi,1).

• Let z = max({xi}i∈[n]) and ind is such that z = xind.

• Construct {yi}i∈[n] s.t. yi = 1 if i = ind, else 0.

• For all i ∈ [n], (〈yi〉L0 , 〈yi〉L1 )← ShareL(yi).

Send {〈yi〉Lj }i∈[n] to Pj , j ∈ {0, 1}.

Figure 7: 3-party Maxpool ideal functionality FDMAXPOOL.

Private Compare

It is a 3-party functionality such that parties P0 and P1 have values in Zp that are viewed as
shares of bits of an `−bit value x, a common `−bit value r and a bit β as input; P2 has no input.
Define (x > r) to be the bit that is 1 if x > r and 0 otherwise. The functionality takes all the above
values as input from P0 and P1 and gives β′ = β ⊕ (x > r) to P2 as output. The functionality is
described in Figure 8.

Share Convert

Parties P0 and P1 have values in ZL as input, that are viewed as shares of a value a ∈ ZL
(a 6= L − 1); P2 has no input. The functionality takes the shares as input from P0 and P1,
reconstructs a, generates fresh shares of a over ZL−1 and gives 〈a〉L−10 to P0 and 〈a〉L−11 to P1 as
output. The functionality is described in Figure 9.
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Functionality FPC({P0, P1}, P2)

FPC interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive ({x[i]0}i∈[`], r, β) from P0 and ({x[i]1}i∈[`], r, β) from P1, where for all i ∈ [`],
x[i]0, x[i]1 ∈ Zp, r is an `−bit integer and β ∈ {0, 1}.

Outputs. Compute:

• x[i] = Reconstp(x[i]0, x[i]1),∀i ∈ [`].

• Let x be the `− bit (non-negative) integer defined by the `− bits {x[i]}i∈[`].
• β′ = β ⊕ (x > r).

Send β′ to P2.

Figure 8: 3-party Private Compare ideal functionality FPC.

Functionality FSC({P0, P1}, P2)

FSC interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive a0 ∈ ZL from P0 and a1 ∈ ZL from P1.
Outputs. Compute:

• a = ReconstL(a0, a1). Proceed only if a 6= L− 1.

• (〈a〉L−10 , 〈a〉L−11 )← ShareL−1(a).

Send 〈a〉L−1j to Pj , j ∈ {0, 1}.

Figure 9: 3-party Share Convert ideal functionality FSC.

Compute MSB

Parties P0 and P1, as input, have values that are viewed as shares over ZL−1 of a ∈ ZL−1; P2

has no input. The functionality reconstructs a, computes the MSB of a and then generates shares
of this bit as output to P0 and P1. The functionality is described in Figure 10.

Functionality FMSB({P0, P1}, P2)

FMSB interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive a0 ∈ ZL − 1 from P0 and a1 ∈ ZL − 1 from P1.
Outputs. Compute:

• a = ReconstL−1(a0, a1).

• Let α = MSB(a).

• (〈α〉L0 , 〈α〉L1 )← ShareL(α).

Send 〈α〉Lj to Pj , j ∈ {0, 1}.

Figure 10: 3-party MSB ideal functionality FMSB.
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Select Share

Parties P0 and P1 hold a pair of values that are viewed as shares of x, y ∈ ZL as well as values
that are viewed as shares of α ∈ {0, 1} as input; P2 has no input. The functionality takes the shares
as input from P0 and P1, reconstructs x, y, α. It generates shares of x if α is 0, else shares of y and
outputs to P0 and P1. The functionality is described in Figure 11.

Functionality FSS({P0, P1}, P2)

FSS interacts with parties P0, P1, P2 and adversary S.

Inputs. Receive (α0, x0, y0) from P0 and (α1, x1, y1) from P1.
Outputs. Compute:

• x = ReconstL(x0, x1), y = ReconstL(y0, y1) and α = ReconstL(α0, α1).

• Let z = (1− α)x+ αy.

• (〈z〉L0 , 〈z〉L1 )← ShareL(z).

Send 〈z〉Lj to Pj , j ∈ {0, 1}.

Figure 11: 3-party Select Share ideal functionality FSS.

E Remaining protocols and security proofs for 3-party

Here, we provide the protocols skipped in Section 3 and Section 4 for the 3-party case and
corresponding security proofs. We also provide the proof of optimized 4-party matrix multiplication.

3-party Matrix Multiplication

Proof of Lemma 1: Let Zj be the output of the party Pj . For correctness we need to prove
that i.e. ReconstL(Z0, Z1) = X · Y . We calculate Z0 + Z1 =

(
〈X〉L0 · F + E · 〈Y 〉L0 + 〈C〉L0 + U0

)
+(

−E · F + 〈X〉L1 · F + E · 〈Y 〉L1 + 〈C〉L1 + U1

)
= −E ·F +X ·F +E ·Y +C = −(X−A) · (Y −B) +

X · (Y −B) + (X −A) · Y +A ·B = X · Y .
Security against corrupt P2 is easy to see since it gets no message and only generates a fresh

matrix Beaver triplet of correct dimensions. Now, we prove security against corruption of either
P0 or P1. Party P0 receives 〈A〉L0 , 〈B〉L0 , 〈C〉L0 and 〈E〉L1 , 〈F 〉L1 . We note that all of these uniform
random matrices because A,B are uniformly chosen and fresh shares are generated of A,B,C.

Also, the final output of Pj , j ∈ {0, 1} is a fresh random share of X · Y (as they have each been
randomized by random matrix Uj) and contain no information about X and Y .

Select Share

Proof of Lemma 2: We first prove the correctness of our protocol, i.e., z := ReconstL(〈z〉L0 , 〈z〉L1 )
is x when α = 0 and y when α is 1. Note that w = y − x and from correctness of FMATMUL,
c = ReconstL(〈c〉L0 , 〈c〉L1 ) = α · w = α · (y − x). And finally, z = x+ c = (1− α) · x+ α · y. Hence,
correctness holds.

To argue security, first observe that P2 learns no information from the protocol (as
FMATMUL({P0, P1}, P2) provides outputs only to P0 and P1). Now, Pj , j ∈ {0, 1} only learn fresh
shares of the outputs in Step 2 and hence any information learned by either party can be perfectly
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simulated through appropriate shares of 0 (over ZL). Finally, Pj outputs a fresh share of the final
output in Step 3 as the respective shares are randomized by uj .

Private Compare

Proof of Lemma 3: We first prove correctness of our protocol, i.e., β′ = β ⊕ (x > r). Define
x[i] as x[i] := Reconstp(〈x[i]〉p0, 〈x[i]〉p1) ∈ {0, 1} for all i ∈ [`]. We treat x and r as ` bit integers
and x > r tells if x is greater8 than r. Below, we do a case analysis on value of β.

Case β = 0. For correctness, we require β′ = (x > r). For each i ∈ [`], define wi =
Reconstp(〈wi〉p0, 〈wi〉

p
1). Note that w[i] = x[i] + r[i] − 2r[i]x[i] = x[i] ⊕ r[i]. For each i ∈ [`],

define ci = Reconstp(〈ci〉p0, 〈ci〉
p
1). Note that c[i] = r[i]− x[i] + 1 +

∑`
k=i+1wk. Let i∗ be such that

for all i > i∗, x[i] = r[i] and x[i∗] 6= r[i∗]. We claim that the following holds:

• For all i > i∗, c[i] = 1. This is because both r[i]− x[i] and
∑`

k=i+1wk are 0.

• For i = i∗, if x[i] = 1, c[i] = 0, else c[i] = 2.

• For i < i∗, c[i] > 1. This is because r[i]− x[i] is either 1 or −1 and
∑`

k=i+1wk > 1. For this
step, we require that there is no wrap around modulo p, which is guaranteed by p > `+ 2.

This proves that x > r iff there exists a i ∈ [`] such that c[i] = 0. Finally, the last step of
multiplying with random non-zero si and permuting all the sici preserves this characteristic. This
condition is exactly what P2 checks.

Case β = 1. For correctness, we require β′ = 1 ⊕ (x > r) = (x ≤ r). The last expression is
equivalent to x < (r + 1) when r 6= 2` − 1 and otherwise x ≤ r is always true. Note that t = r + 1.
Now, similar to logic above, we compute t > x when r 6= 2` − 1. This condition is easy to check
since r is known to both P0 and P1.

When r = 2` − 1, we know that β′ = 1. Also, β′ = 1 iff there exists a unique i such that di is
0. Hence, the parties create a vector starting with 1 followed by ` − 1 zeroes. Scaling by si and
permutation creates a uniform vector with exactly one zero.

Now we prove security of our protocol. First note that P0 and P1 receive no messages in the
protocol and hence, our protocol is trivially secure against corruption of P0 or P1. Now, we have
to simulate the messages seen by P2 given P2’s output, namely β′. To do this, if β′ = 0, pick

di
$←− Z∗p, for all i ∈ [`]. If β′ = 1, then pick an i∗

$←− [`], set di∗ = 0 with all other di
$←− Z∗p. Now,

compute (〈di〉p0, 〈di〉
p
1)← Sharep(di) and send 〈di〉pj for all i ∈ [`], j ∈ {0, 1} as the message from Pj

to P2. This completes the simulation. To see that the simulation is perfect, observe that whether
or not ∃i∗, with di∗ = 0 depends only on β′. Additionally, when β′ = 1, the index i∗ where di∗ = 0
is uniformly random in [`] due to the random permutation π. Finally, the non-zero di values are
randomly distributed over Z∗p since the si values are random in Z∗p.

Share Convert

Proof of Lemma 4: We have already seen correctness. To see the security, first observe that the

only information that P2 sees is x = a+ r (over ZL) and η′. Since r
$←− ZL and is not observed by

P2, we have that x is uniform over ZL and so information sent to P2 can be simulated by sampling

8x > r iff the leftmost bit where x[i] 6= r[i], x[i] = 1.
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x
$←− ZL and sending shares of x from Pj to P2 for j ∈ {0, 1}. Next, η′′ is a random bit not observed

by P2 and thus, η′ is a uniform random bit to P2. Hence, η′ can be perfectly simulated.
Finally, the only information that P0 and P1 observe are fresh shares of the following values:

∀i ∈ [`], x[i], δ, and η′ that can be perfectly simulated by sharing 0. The outputs of P0 and P1 are
fresh shares of a over ZL−1 as they are randomized using u0 and u1 respectively.

Compute MSB

Proof of Lemma 5: First, we prove correctness of our protocol, i.e., α := ReconstL(〈α〉L0 , 〈α〉L1 ) =
MSB(a). As already mentioned, over an odd ring, the MSB computation can be reduced to LSB
computation. More precisely, over an odd ring, MSB(a) = LSB(y), where y = 2a. Hence, it suffices
to compute LSB(2a).

In the protocol, r = y + x(modL − 1). Hence, LSB(y) = y[0] = r[0] ⊕ x[0] ⊕ wrap(y, x, L − 1).
Next, we note that wrap(y, x, L − 1) = (x > r). First, P0, P1, P2 compute x > r as follows. They
invoke FPC such that P2 learns β′ = β ⊕ (x > r). Next, P2 secret shares β′ to P0, P1. Note that
γ = β′ + β − 2ββ′ = β ⊕ β′ = (x > r) = wrap(y, x, L − 1). Next, similarly, δ = r[0] ⊕ x[0]. Then,
θ = γδ and α = γ + δ − 2θ = γ ⊕ δ = LSB(y) = MSB(a).

Next, we prove security of our protocol. Parties P0 and P1 learn the following information:
2a + x (from Step 3), 〈r〉L−1j , {〈x[i]〉pj}i, 〈x[0]〉Bj (Step 1) and 〈β′〉Bj (Step 5). However, these are
all fresh shares of these values and hence can be perfectly simulated by sending random fresh share
of 0. Finally, Pj outputs a fresh share of MSB(a) as the share is randomized with uj . The only
information that P2 learns is bit β′. However, β′ = β ⊕ (r > c), where β is a random bit unknown
to P2. Hence, the distribution of β′ is uniformly random from P2’s view and hence the information
learned by P2 can be perfectly simulated.

4-Party Matrix Multiplication

Proof of Lemma 6: We first prove the correctness of our protocol, i.e. ReconstL(Z0, Z1) = XY .
To see this, observe that 〈Z〉L0 +〈Z〉L1 =

∑
j=0,1〈X〉Lj ·〈Y 〉Lj +〈W 〉Lj +Uj =

∑
j=0,1〈X〉Lj ·〈Y 〉Lj +〈W 〉Lj

(as U0 +U1 = 0m×v). Now,
∑

j=0,1〈W 〉Lj =
∑

j=0,1〈X〉Lj · 〈Y 〉L1−j (since V0 +V1 = 0m×v). Therefore,

〈Z〉L0 + 〈Z〉L1 =
∑

j=0,1〈X〉Lj · 〈Y 〉Lj + 〈X〉Lj · 〈Y 〉L1−j = (〈X〉L0 + 〈X〉L1 ) · (〈Y 〉L0 + 〈Y 〉L1 ) = X · Y .
We first prove security of our protocol against corruption of either P2 or P3. Observe that P2

and P3 only observe (〈X〉L0 , 〈Y 〉L1 ) and (〈X〉L1 , 〈Y 〉L0 ), resp., which are fresh shares of X and Y and
therefore, reveal no information about X or Y . Hence, these messages can be simulated by simply
sending a pair of random matrices in (Zm×nL ,Zn×vL ). These are the only messages that P2 and P3

observe.
Now, we prove security against corruption of either P0 or P1. Party Pj , j ∈ {0, 1} receive

〈W 〉Lj respectively. However, these are fresh shares of 〈X〉L0 · 〈Y 〉L1 + 〈X〉L1 · 〈Y 〉L0 as they have been
randomized by the random Vj matrix, respectively. Hence, they contain no information about X
and Y and can be simulated by sending a random matrix in Zm×vL .

Finally, Pj outputs 〈Z〉Lj = 〈X〉Lj · 〈Y 〉Lj + 〈W 〉Lj + Uj , which is a fresh random share of X · Y
(as they have each been randomized by random matrix Uj) and contain no information about X
and Y .

Derivative of ReLU

Proof of Lemma 7: First, we prove the correctness of our protocol, i.e., γ :=
ReconstL(〈γ〉L0 , 〈γ〉L1 ) = ReLU′(a) = 1 ⊕ MSB(a), where a is the value underlying the input
shares. Note that when a belongs to the range [0, 2k] ∪ [2` − 2k, 2` − 1], where k < ` − 1,
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MSB(a) = MSB(2a) = MSB(c). Also, it holds that 2a 6= L − 1, and precondition of FSC is
satisfied. From correctness of FSC, y := ReconstL−1(〈y〉L−10 , 〈y〉L−11 ) = 2a. Next, from correctness
of FMSB, α := ReconstL(〈α〉L0 , 〈α〉L1 ) = MSB(y) = MSB(2a). Finally, γ = 1 − α = 1 −MSB(a) as
required. Also, note that 〈γ〉Lj are fresh shares of γ since both parties locally add shares of 0 to
randomize the shares.

To see the security, first observe that P2 learns no information from the protocol (as both
FSC({P0, P1}, P2) and FMSB({P0, P1}, P2) provide outputs only to P0 and P1). Now, Pj , j ∈ {0, 1}
only learns a fresh share of 2a (over ZL−1) in Step 2 and a fresh share of α = MSB(2a) in Step 3
and hence any information learned by either party can be perfectly simulated through appropriate
shares of 0. Finally, Pj outputs a fresh share of ReLU′(a) as the respective shares are randomized
by uj .

ReLU

Proof of Lemma 8: First, we prove the correctness of our protocol, i.e., c :=
ReconstL(〈c〉L0 , 〈c〉L1 ) = ReLU(a) = ReLU′(a) · a, where a is the value underlying the input shares.
It follows from correctness9— of FDRELU that α := ReconstL(〈α〉L0 , 〈α〉L1 ) = ReLU′(a). Now from the
correctness of FMATMUL it follows that c = α · a.

To argue security, observe that P2 learns no information from the protocol (as both
FDRELU({P0, P1}, P2) and FMATMUL({P0, P1}, P2) provide outputs only to P0 and P1). Now, Pj , j ∈
{0, 1} only learns a fresh share of α = ReLU′(a) in Step 1 and a fresh share of αa (over ZL) in Step 2
and hence any information learned by either party can be perfectly simulated through appropriate
shares of 0. Finally, Pj outputs a fresh share of ReLU(a) as the respective shares are randomized
by uj .

Division

The formal protocol description is provided in Algorithm 13.

Lemma 11. Protocol ΠDIV({P0, P1}, P2) in Algorithm 13 securely realizes FDIV in the
(FDRELU,FMATMUL)−hybrid model when y 6= 0.

Proof. We first prove the correctness of our protocol, i.e., q := ReconstL(〈q〉L0 , 〈q〉L1 ) = bx/yc. Our
protocol mimics the standard long division algorithm and proceeds in ` iterations. In the ith

iteration we compute the q[i], the ith bit of q starting from the most significant bit.
We will prove by induction and maintain the invariant: βi = q[i], ki = 2iβi, ui = y ·

∑`−1
j=i kj .

Assume that invariant holds for i > m, then we will prove that it holds for i = m. Note that
zm = (x− um+1 − 2my). We note that βm or q[m] is 1 iff x− um+1 > 2my, that is, ReLU′(zm) = 1.
By correctness10 of FDRELU, βm = ReconstL(〈βm〉L0 , 〈βm〉L1 ) = ReLU′(zm). Next by correctness of
FMATMUL, km = βm2m and vm = βm · 2my = kmy. Hence, um = um+1 + vm = y ·

∑`−1
j=m kj .

To argue security, first observe that P2 learns no information from the protocol (as both
FDRELU({P0, P1}, P2) and FMATMUL({P0, P1}, P2) provide outputs only to P0 and P1). Now, Pj , j ∈
{0, 1} only learn fresh shares of the outputs in Step 4, 5 and 6 and hence any information learned
by either party can be perfectly simulated through appropriate shares of 0 (over ZL). Finally, Pj
outputs a fresh share of the final output in Step 9 as the respective shares are randomized by sj .

9When we instantiate the functionality FDRELU using protocol ΠDRELU, we would ensure that the conditions of
Lemma 7 are met.

10When we instantiate the functionality FDRELU using protocol ΠDRELU, we would ensure that the conditions of
Lemma 7 are met.
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Algorithm 13 Division: ΠDIV({P0, P1}, P2)

Input: P0, P1 hold (〈x〉L0 , 〈y〉L0 ) and (〈x〉L1 , 〈y〉L1 ), resp.

Output: P0, P1 get 〈x/y〉L0 and 〈x/y〉L1 .
Common Randomness: Pj , j ∈ {0, 1} hold ` shares 0 over ZL denoted by wi,0 and wi,1 for all
i ∈ [`] resp. They additionally also hold another share of 0 over ZL, denoted by s0 and s1.

1: Set u` = 0 and for j ∈ {0, 1}, Pj holds 〈u`〉Lj (through the common randomness).

2: for i = {`− 1, . . . , 0} do

3: Pj , j ∈ {0, 1} compute 〈zi〉Lj = 〈x〉Lj − 〈ui+1〉Lj − 2i〈y〉Lj + wi,j .

4: P0, P1, P2 call FDRELU({P0, P1}, P2) with Pj , j ∈ {0, 1} having input 〈zi〉Lj and P0, P1 learn

〈βi〉L0 and 〈βi〉L1 , resp.

5: P0, P1, P2 call FMATMUL({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈βi〉Lj , 〈2i〉Lj ) and

P0, P1 learn 〈ki〉L0 and 〈ki〉L1 , resp.

6: P0, P1, P2 call FMATMUL({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈βi〉Lj , 〈2iy〉Lj ) and

P0, P1 learn 〈vi〉L0 and 〈vi〉L1 , resp.

7: For j ∈ {0, 1}, Pj computes 〈ui〉Lj = 〈ui+1〉Lj + 〈vi〉Lj .

8: end for

9: For j ∈ {0, 1}, Pj outputs 〈q〉Lj =
∑`−1

i=0〈ki〉Lj + sj .

Maxpool

Proof of Lemma 9: We first prove the correctness of our protocol, i.e., maxn :=
ReconstL(〈maxn〉L0 , 〈maxn〉L1 ) stores the maximum value of the elements {xi}i∈[n] and

indn := ReconstL(〈indn〉L0 , 〈indn〉L1 ) stores the index of maximum value.
We will prove this by induction and will maintain the invariant that maxi holds the value of

max(x1, . . . , xi) and indi holds the value for k s.t. maxi = xk. It is easy to see that this holds for
i = 1. Suppose this holds for i = m−1. Then we will prove that it holds for i = m. Now, in Step 3,
we calculate wm = xm −maxm−1. By correctness 11 of FDRELU, βm = ReLU′(wm). That is, βm = 1
iff xm > maxm−1. Next, by correctness of FSS, maxm is maxm−1 if βm = 0 and xm otherwise. In
Step 6, we compute shares of km = m. In Step 7, by correctness of FSS, indm = indm−1 if βm = 0
and m otherwise. This proves correctness.

To argue security, first observe that P2 learns no information from the protocol (as
FDRELU({P0, P1}, P2) and FSS({P0, P1}, P2) provides outputs only to P0 and P1). Now, Pj , j ∈ {0, 1}
only learn fresh shares of the values βi,maxi, indi and hence any information learned by either party
can be perfectly simulated through appropriate shares of 0 (over ZL). Finally, Pj outputs a fresh
shares of the final output in Step 9 as the respective shares are randomized by uj and vj .

Derivative of Maxpool

We provide a proof of correctness and security of Algorithm 10 followed by the algorithm in the
general case.
Proof of Lemma 10: Let k∗ be the index of the maximum value and Er denote the unit vector
with 1 in the rth position and 0 everywhere else. For correctness, we show that ReconstL(〈D〉L0 +
U0, 〈D〉L1 + U1) = Ek∗ in Algorithm 10.

11When we instantiate the functionality FDRELU using protocol ΠDRELU, we would ensure that the conditions of
Lemma 7 are met.
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From the correctness of FMAXPOOL, we have that P0 and P1 hold shares of indn (which is the
index of the maximum value). P2 receives 〈indn〉L0 + r and 〈indn〉L1 from P0 and P1 resp. and
reconstructs t = indn + r mod L and then computes k = t mod n. P2 provides P0 and P1 with
shares 〈E〉L0 and 〈E〉L1 that reconstruct to Ek. Now, observe that k = ((indn + r) mod L) mod n.
Let g = r mod n. Since n|L, we have that k = (indn + g) mod n. Now, let shares
〈E〉Lj = (〈E0〉Lj , 〈E1〉Lj , · · · , 〈En−1〉Lj ). In this, 〈Ek〉L0 and 〈Ek〉L1 reconstruct to 1, while all other

k′ 6= k reconstruct to 0. Since 〈D〉Lj = (〈E(−g mod n)〉Lj , 〈E(1−g mod n)〉Lj , · · · , 〈E(n−1−g mod n)〉Lj ),

〈D(k−g) mod n〉L0 and 〈D(k−g) mod n〉L1 alone will reconstruct to 1 with all other indices reconstruct-
ing to 0. Since (k − g) mod n = indn mod n, we have that 〈D〉L0 and 〈D〉L1 reconstruct to Ek∗ ,
hence proving the statement. To argue security, first observe that P0 and P1 obtain shares of indn
from the call to FMAXPOOL. Now, since r is uniformly random in ZL, P2 learns no information from
shares 〈k〉L0 and 〈k〉L1 (which reconstruct to indn + r). Finally, Pj , j ∈ {0, 1} only learn fresh shares
of the values E(indn+r) mod n and hence any information learned by either party can be perfectly
simulated through appropriate shares of 0 (over ZL). Finally, Pj outputs a fresh shares of the final
output in Step 5 as the shares are randomized by U0 and U1.

Derivative of Maxpool in the general case. We first observe that this function can be
computed using steps similar to 6&7 from Algorithm 9. The idea is for the parties to invoke
FSS({P0, P1}, P2) sequentially with shares of the unit vector representing the current maximum.
Let Ek, k ∈ [n] denote the unit vector of length n with 1 in its kth position and 0 everywhere else.
E0 denotes the all zeroes vector. Details are presented in Algorithm 14.

Algorithm 14 Derivative of Maxpool ΠDMP({P0, P1}, P2):

Input: P0, P1 hold {〈xi〉L0 }i∈[n] and {〈xi〉L1 }i∈[n], resp.

Output: P0, P1 get {〈zi〉L0 }i∈[n] and {〈zi〉L1 }i∈[n], resp., where zi = 1, when xi = Max({xi}i∈[n])
and 0 otherwise.

Common Randomness: P0 and P1 hold shares of 0 over ZnL denoted by U0 and U1.

1: For j ∈ {0, 1}, Pj sets 〈max1〉Lj = 〈x1〉Lj and 〈DMP1〉Lj = Ej .

2: for i = {2, . . . , n} do

3: For j ∈ {0, 1}, Pj computes 〈wi〉Lj = 〈xi〉Lj − 〈maxi−1〉Lj
4: P0, P1, P2 call FDRELU({P0, P1}, P2) with Pj , j ∈ {0, 1} having input 〈wi〉Lj and P0, P1 learn

〈βi〉L0 and 〈βi〉L1 , resp.

5: P0, P1, P2 call FSS({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈βi〉Lj , 〈maxi−1〉Lj , 〈xi〉Lj )

and P0, P1 learn 〈maxi〉L0 and 〈maxi〉L1 , resp.

6: For j ∈ {0, 1}, Pj sets 〈Ki〉Lj = Ej·i.

7: P0, P1, P2 call FSS({P0, P1}, P2) with Pj , j ∈ {0, 1} having input (〈βi〉Lj , 〈DMPi−1〉Lj , 〈Ki〉Lj )

and P0, P1 learn 〈DMPi〉L0 and 〈DMPi〉L1 , resp.

8: end for

9: For j ∈ {0, 1}, Pj outputs 〈DMPn〉Lj + Uj .

Lemma 12. Protocol ΠDMP({P0, P1}, P2) in Algorithm 14 securely realizes FDMAXPOOL in the
FDRELU,FSS−hybrid model.

Proof. For correctness, we show that ReconstL(〈DMPn〉L0 + U0, 〈DMPn〉L1 + U1) = Ek∗ in Algo-
rithm 14. This proof is nearly identical to the proof of correctness of Algorithm 9. As before, we
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prove this by induction and will maintain the invariant that maxi holds the value of max(x1, . . . , xi)
and now show that DMPi holds the value Ek for k s.t. maxi = xk. It is easy to see that this holds
for i = 1. Suppose this holds for i = m − 1. Then we will prove that it holds for i = m. Now,
in Step 3, we calculate wm = xm −maxm−1. By correctness of FDRELU, βm = ReLU′(wm). That is,
βm = 1 iff xm > maxm−1. Next, by correctness of FSS, maxm is maxm−1 if βm = 0 and xm otherwise.
In Step 6, we compute shares of km = Em. In Step 7, by correctness of FSS, DMPm = DMPm−1
if βm = 0 and Em otherwise. This proves correctness. To argue security, first observe that P2

learns no information from the protocol (as FDRELU({P0, P1}, P2) and FSS({P0, P1}, P2) provides
outputs only to P0 and P1). Now, Pj , j ∈ {0, 1} only learn fresh shares of the values βi,maxi,DMPi
and hence any information learned by either party can be perfectly simulated through appropriate
shares of 0 (over ZL). Finally, Pj outputs a fresh shares of the final output in Step 9 as the shares
are randomized by U0 and U1.
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