
ACCUMULATING CONVERSATIONAL SKILLS USING CONTINUAL LEARNING

Sungjin Lee

Microsoft Research, Redmond, WA, USA

ABSTRACT
While neural conversational models have led to promising ad-
vances in reducing hand-crafted features and errors induced
by the traditional complex system architecture, training neu-
ral models from scratch requires an enormous amount of data.
If pre-trained models can be reused when they have many
things in common with a new task, we can significantly cut
down the amount of required data. To achieve this goal, we
adopt a neural continual learning algorithm to allow a con-
versational agent to accumulate skills across different tasks in
a data-efficient way. We present preliminary results on con-
versational skill accumulation on multiple task-oriented do-
mains.

Index Terms— conversational agents, continual learning,
neural conversational model

1. INTRODUCTION

Conversational bots become increasingly popular in a wide
range of business areas. In order to support the rapid devel-
opment of bots, a number of bot building platforms have been
launched, for example, Microsoft Bot Framework 1, Alexa
Skills Kit 2 and so on. But the development of a business-
critical bot still requires a serious effort from the design to ac-
tual implementation of several components such as language
understanding, state tracking, action selection, and language
generation. Not only does this complexity prevent casual de-
velopers from building quality bots but also introduces an un-
avoidable degradation in performance due to some non-trivial
problems including unclear state representation design, insuf-
ficient labeled data and error propagation down the pipeline.
Recently, neural approaches have shown the potential to solve
such problems – the neural networks induce a latent represen-
tation in the course of the joint optimization of all components
without requiring any labeling on internal state. Now neu-
ral networks are at the center of services like Conversation
Learner 3 and Rasa 4 which allow developers to interactively
build bots with much less hand-crafted features.

Despite such appealing aspects, neural approaches have
own challenges to overcome: training a neural conversational

1https://dev.botframework.com/
2https://developer.amazon.com/alexa-skills-kit
3https://labs.cognitive.microsoft.com/en-us/project-conversation-learner
4http://rasa.com/

model from scratch requires numerous dialog examples. The
data-intensiveness problem intensifies when it comes to a
composite task that consists of multiple subtasks. If one can
repurpose already built models by composing them for a new
task, we can significantly cut down the amount of required
data. For example, one can add a payment handling capa-
bility to a new bot by repurposing any model that is already
trained on payment-related conversations. However, it is not
straightforward to compose neural networks due to lack of
semantic modularity. Furthermore, one cannot simply train a
model on a series of different tasks due to the Catastrophic
Forgetting [1] problem. In order to address such difficulties,
we propose to build on recent developments in the space
of continual learning for neural models. Specifically, we
adopt a variant of Elastic Weight Consolidation (EWC) al-
gorithm to continuously learn a new task without forgetting
valuable skills that are already learned. We present prelimi-
nary results on conversational skill accumulation on multiple
task-oriented domains.

The rest of this paper is organized as follows. In Section 2
we present a brief summary of related work. In Section 3
we describe our approach for continual learning for conversa-
tional agents. In Section 4 we discuss our experiments. We
finish with conclusions and future work in Section 5.

2. RELATED WORK

Broadly there are two lines of work addressing the data-
intensiveness problem. The first makes use of domain-
specific information and linguistic knowledge to abstract
out the data [2, 3, 4, 5]. The second line of work adopts
data recombination approaches to generate counterfeit data
that mimics target domain dialogs [6, 4]. The prior ap-
proaches, however, partly bring us back to the downside
of traditional approaches: The difficulty in maintenance in-
creases as the number of rules grows; The system quality
depends on external expertise; It is hard to scale out over
different domains. The data recombination approaches in-
crease the size of training, leading to a significant increase in
training time. There are various types of continual learning
methods [7, 8, 9, 10, 11, 12, 13], though, in this work, we fo-
cus on model-based algorithms such as EWC [14, 15], since
variants of EWC allow us to efficiently consider the impor-
tance measure of each parameter for different tasks without



expensive architectural changes.

3. CONTINUAL LEARNING FOR
CONVERSATIONAL AGENTS

In this section, we describe our conversation model and an
adaptive online algorithm for continual learning which to-
gether allow us to sequentially train a conversation model
over multiple tasks without forgetting earlier tasks.

3.1. Conversation Model

Our conversational model builds upon the Hybrid Code Net-
work [3] which servers as a key component for the recent in-
teractive bot development technologies such as Conversation
Learner and Rasa. At a high level, our model have five com-
ponents: sentence RNNs 5; a context RNN; domain-specific
software; domain-specific action templates; and a conven-
tional entity extraction module for identifying entity mentions
in text. Both the context RNN and the developer code main-
tain state. Each action template can be a textual communica-
tive action or an API call. Figure 1 shows the overall op-
erational loop. The cycle begins when the user provides an
utterance, as text (step 1). Second, an utterance embedding
is formed, using the sentence RNN (step 2). Third, an entity
extraction module identifies entity mentions (step 3), for ex-
ample, identifying “Seattle” as a 〈city〉 entity. The text and
entity mentions are then passed to “Entity tracking” code pro-
vided by the developer (step 4), which grounds and maintains
entities, for example, mapping the text “Seattle” to a specific
row in a database. This code can optionally return “context
features” which are features the developer thinks will be use-
ful for distinguishing among actions, such as which entities
are currently present and which are absent. The feature com-
ponents from steps 1-4 are concatenated to form a feature
vector (step 5). This vector is passed to the context RNN.
The context RNN computes a hidden state (step 6), which is
retained for the next timestep (step 7), and passed to a bilin-
ear layer which projects the hidden state to the response space
(step 8), yielding a response embedding. A set of embeddings
for each distinct system action template are generated, using
the sentence RNN (step 9). This set of embeddings get ranked
according to the similarity to the response embedding (step
10). With a softmax, a probability distribution over action
templates is generated (step 11). From the resulting distribu-
tion (step 12), the best action is selected (step 13). The se-
lected action is next passed to “Entity output” developer code
that can substitute in entities (step 14) and produce a fully-
formed action, for example, mapping the template “〈city〉,
right?” to “Seattle, right?”. In step 15, control branches de-
pending on the type of the action: if it is an API action, the
corresponding API call in the developer code is invoked (step
16), for example, to render rich content to the user. APIs can

5All sentence RNNs share the parameters.

act as sensors and return features relevant to the dialog, so
these can be added to the feature vector in the next timestep
(step 17). If the action is text, it is rendered to the user (step
18), and cycle then repeats. The action taken is provided as
an embedding to the context RNN in the next timestep (step
19). Note that there are a few improvements in our model
over the HCN model, we encode system actions using RNNs
rather than just featurizing the system action taken with a bi-
nary vector which is all zero values except for the index of
the taken action; we rank a set of candidate system actions by
matching them with the context rather than performing clas-
sification without looking into the actions.

3.2. Adaptive Elastic Weight Consolidation

In order to achieve continual learning, we need to minimize
the total loss function summed over all tasks, L = ΣµLµ,
without access to the true loss functions of prior tasks. A
catastrophic forgetting arises when minimizing Lµ leads to an
undesirable increase in the loss on prior tasks Lν with ν < µ.
Variants of the EWC algorithm tackle this problem by opti-
mizing a modified loss function:

L̃µ = Lµ + c
∑
k

Ωµk(θ̄k − θk)2︸ ︷︷ ︸
surrogate loss

(1)

where c represents an weighting factor between prior and cur-
rent tasks, θ all model parameters introduced in Section 3.1,
θ̄k the parameters at the end of the previous task and Ωµk regu-
larization strength per parameter k. The bigger Ωµk , the more
influential is the parameter. EWC defines Ωµ, for example,
to be a point estimate which is equal to the diagonal entries
of the Fisher information matrix at the final parameter values.
Since EWC relies on a point estimate, we empirically noticed
that sometimes Ωµ fails to capture the parameter importance
when the loss surface is relatively flat around the final param-
eter values as Ωµ essentially decreases to zero.

In contrast to EWC, [15] computes an importance mea-
sure online by taking the path integral of the change in loss
along the entire trajectory through parameter space. Specif-
ically, the per-parameter contribution ωµk to changes in the
total loss is defined as follows:

ωµk = −
∫ tµ

tµ−1

gk(θ(t))θ′k(t)dt (2)

where θ(t) is the parameter trajectory as a function of time t,
g(θ) = ∂L

∂θ and θ′k(t) = ∂θ
∂t . Note that the minus sign indi-

cates that we are interested in decreasing the loss. In practice,
we can approximate ωµk as the sum of the product of the gra-
dient gk(t) with the parameter update ∆k(t). Having defined
ωµk , Ωµk is defined such that the regularization term carries the
same units as the loss by dividing ωµk by the total displace-



Fig. 1. The overall operational loop. Trapezoids refer to programmatic code provided by the software developer, and shaded boxes are
trainable components.

ment in parameter space:

Ωµk =
∑
ν<µ

ωνk
(∆ν

k)2 + ζ
(3)

where ∆ν
k quantifies how far the parameter moved during the

training process for task ν. ζ is introduced to keep the ex-
pression from exploding in cases where the denominator gets
close to zero. Note that, with this definition, the quadratic
surrogate loss in (1) yields the same change in loss over the
parameter displacement ∆k as the loss function of the previ-
ous tasks.

However, note that unlike prior studies on weight con-
solidation, where knowledge transfer is conducted between
similar tasks, our tasks have a large difference in the number
of distinct action templates. This leads to a huge difference
in the scale of the loss and, in turn, makes the value of impor-
tance measure incomparable between different tasks. Thus,
to make the importance measures comparable, we rescale
the losses of each task by dividing it by − log 1

n where n is
the number of distinct action templates for each task, assum-
ing the initial loss is governed by random guesses. We call
this version of EWC Adaptive Elastic Weight Consolidation
(AEWC).

4. EXPERIMENTS

4.1. Data

To test our method, we used two task-oriented dialog datasets:
bAbI6 [16] and Google multi-domain dialog datasets (GMD) [17].

Basic statistics of the datasets are shown in Table 1 and Ta-
ble 2. bAbI6 deals with restaurant finding tasks. GMD con-
tains two different tasks – buying a movie ticket and reserving
a restaurant table. 6 We generated distinct action templates
by replacing entities with slot types and consolidating based
on dialog act annotations.

Metric
bAbI6

Train Dev Test
Dialogs 1618 500 1117
Avg. turns per dialog 20.08 19.30 22.07
Avg. tokens per user turn 3.14 3.17 3.10
Avg. tokens per system turn 9.94 9.95 10.59

Table 1. Data statistics of bAbI6. The number of distinct
system actions is 58.

Metric
GMD

Train Dev Test
Dialogs 1478 460 1027
Avg. turns per dialog 9.00 7.16 7.32
Avg. tokens per user turn 6.09 6.42 6.36
Avg. tokens per system turn 22.38 22.09 22.48

Table 2. Data statistics of GMD. The number of distinct sys-
tem actions is 441.

6The user’s goal in bAbI6 is to obtain specific pieces of restaurant infor-
mation such as phone number or address, whereas the user’s goal in GMD is
focused on booking a table. This makes dialogs in these two datasets signifi-
cantly different.



4.2. Comparative models

To test if conversational skills are successfully accumulated,
we continuously train a model on two tasks, task A and B. The
resulting model should work well on both task A and B. We
compare four models trained by different training schemes:
1) Weight Transfer (WT): we train a model on task A, and
continue to train the model on task B, 2) AEWC: the same as
WT except for AEWC being applied. 3) L2: we use L2 loss
instead of the EWC surrogate loss in Eq. 1 4) No Transfer
(NT): for reference, we train a model just on task B. We first
take bAbI6 as task A and GMD as B and then switch the order.

4.3. Training details

For the sentence RNN, we use a bidirectional LSTM [18] with
100 hidden units for each direction. The context RNN is a
unidirectional LSTM with 200 hidden units. We initialized all
LSTM-RNNs using the Xavier uniform distribution [19]. The
word embedding weight matrix was initialized with the GloVe
embeddings with 100 dimension [20]. We used the Adam op-
timizer [21], with gradients computed on mini-batches of size
1 and clipped with norm value 5. The learning rate was set to
1 × 10−3 throughout the training and all the other hyperpa-
rameters were left as suggested in [21]. We performed early
stopping based on the performance of the evaluation data to
avoid overfitting. As a simple transfer mechanism, we initial-
ized all weight parameters with prior weight parameters when
there is a prior model. The ωk and ∆k are updated contin-
uously during training, whereas the importance measure Ωk
and the prior weight θ̃ are only updated at the end of each task.
After updating the Ωk, the ωk are set to zero. We set the trade-
off parameter c to 0.025, chosen from {0.1, 0.05, 0.025, 0.01}
based on validation performance.

4.4. Results

The result is shown in Table 3. Since there are multiple action
templates that are appropriate for a given dialog context, we
use Recall@3 as performance metric. In both cases, i.e. B→
G and G→ B, AEWC successfully manages to learn task B
while retaining the performance on task A. In contrast, though
WT reaches a higher performance on task B, the performance
on task A sharply drops down, meaning WT fails to accu-
mulate the conversational skills learned from prior tasks. L2
places somewhere in between. This result is natural because
WT has no regularization, AEWC allows for smart regular-
ization depending on importance measure, and L2 is a simple
importance-agnostic regularization. In Fig. 2, we provide a
plot for G → B that shows how the performance on task A
changes as we train on task B. This curves clearly demon-
strate that AEWC tries to optimize on task B in such a way
that it doesn’t hurt task A, whereas WT only optimizes on
task B, keeping decreasing the performance on task B. To ob-
tain a better understanding of the implicit skill accumulation

NT WT L2 AEWC

B→G
G 55.09 52.91 24.97 48.42
B 3.60 57.49 65.69 65.99

G→B
B 68.38 68.27 55.09 64.08
G 2.82 19.78 38.31 53.66

Table 3. Experimental results on conversational skill accu-
mulation. “B” and “G” stand for bAbI6 and GMD, respec-
tively. The first column represents the ordering of training
datasets. The second column indicates test datasets.

Fig. 2. Performance curves of AEWC and WT on GMD and bAbI6
when training on bAbI6 after GMD.

during training, we provide a visualization on the importance
measures for different tasks in Appendix A.

5. CONCLUSION

We have presented a continual learning-based approach to re-
purposing already trained neural conversational models to ad-
dress the data-intensiveness problem. We tested our method
through conversation skill accumulation across different task-
oriented domains. Future work includes experiments with
real users to evaluate actual dialog success for a complex task
with multiple subtasks.

6. REFERENCES

[1] Robert M French, “Catastrophic forgetting in connec-
tionist networks,” Trends in cognitive sciences, vol. 3,
no. 4, pp. 128–135, 1999.

[2] Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Mil-
ica Gasic, Lina M Rojas-Barahona, Pei-Hao Su, Stefan
Ultes, and Steve Young, “A network-based end-to-end
trainable task-oriented dialogue system,” arXiv preprint
arXiv:1604.04562, 2016.



[3] Jason D Williams, Kavosh Asadi, and Geoffrey Zweig,
“Hybrid code networks: practical and efficient end-to-
end dialog control with supervised and reinforcement
learning,” arXiv preprint arXiv:1702.03274, 2017.

[4] Tiancheng Zhao, Allen Lu, Kyusong Lee, and Maxine
Eskenazi, “Generative encoder-decoder models for task-
oriented spoken dialog systems with chatting capabil-
ity,” in Proceedings of the 18th Annual SIGdial Meeting
on Discourse and Dialogue, 2017, pp. 27–36.

[5] Arash Eshghi, Igor Shalyminov, and Oliver Lemon,
“Bootstrapping incremental dialogue systems from min-
imal data: the generalisation power of dialogue gram-
mars,” in Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, 2017,
pp. 2210–2220.

[6] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina
M. Rojas-Barahona, Pei-Hao Su, David Vandyke, and
Steve Young, “Multi-domain neural network language
generation for spoken dialogue systems,” in Proceed-
ings of the 2016 Conference on North American Chap-
ter of the Association for Computational Linguistics
(NAACL), June 2016.

[7] Andrei A Rusu, Neil C Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell, “Progressive neural networks,” arXiv preprint
arXiv:1606.04671, 2016.

[8] Sang-Woo Lee, Chung-Yeon Lee, Dong-Hyun Kwak,
Jiwon Kim, Jeonghee Kim, and Byoung-Tak Zhang,
“Dual-memory deep learning architectures for lifelong
learning of everyday human behaviors.,” in IJCAI, 2016,
pp. 1669–1675.

[9] Chrisantha Fernando, Dylan Banarse, Charles Blun-
dell, Yori Zwols, David Ha, Andrei A Rusu, Alexander
Pritzel, and Daan Wierstra, “Pathnet: Evolution chan-
nels gradient descent in super neural networks,” arXiv
preprint arXiv:1701.08734, 2017.

[10] Zhizhong Li and Derek Hoiem, “Learning without for-
getting,” in European Conference on Computer Vision.
Springer, 2016, pp. 614–629.

[11] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo
Kim, “Less-forgetting learning in deep neural net-
works,” arXiv preprint arXiv:1607.00122, 2016.

[12] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio, “An empirical investiga-
tion of catastrophic forgetting in gradient-based neural
networks,” arXiv preprint arXiv:1312.6211, 2013.

[13] Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerou-
nian, Faustino Gomez, and Jürgen Schmidhuber, “Com-
pete to compute,” in Advances in neural information
processing systems, 2013, pp. 2310–2318.

[14] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al., “Overcoming catastrophic
forgetting in neural networks,” Proceedings of the Na-
tional Academy of Sciences, p. 201611835, 2017.

[15] Friedemann Zenke, Ben Poole, and Surya Ganguli,
“Continual learning through synaptic intelligence,” in
International Conference on Machine Learning, 2017,
pp. 3987–3995.

[16] Antoine Bordes and Jason Weston, “Learning
end-to-end goal-oriented dialog,” arXiv preprint
arXiv:1605.07683, 2016.

[17] Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhi-
nav Rastogi, Ankur Bapna, Neha Nayak, and Larry
Heck, “Building a conversational agent overnight with
dialogue self-play,” arXiv preprint arXiv:1801.04871,
2018.

[18] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[19] Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, 2010, pp.
249–256.

[20] Jeffrey Pennington, Richard Socher, and Christopher D
Manning, “Glove: Global vectors for word representa-
tion,” Proceedings of the Empiricial Methods in Nat-
ural Language Processing (EMNLP 2014), vol. 12, pp.
1532–1543, 2014.

[21] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” The International Conference
on Learning Representations (ICLR)., 2015.

Appendices

A. WEIGHT IMPORTANCE VISUALIZATION

To obtain a better understanding of the implicit skill accu-
mulation during training, we visualized the difference of nor-
malized values of the importance measures across different
tasks. Due to space limitations, we sampled a set of param-
eters from the model that was continuously trained on GMD
and bAbI6, and then plotted a heatmap of the difference,



Fig. 3. Parameter importance visualization. The intensity of
red color indicates the strength of the importance of each pa-
rameter for GMD whereas blue color for bAbI6.

i.e., ΩbAbI6 − ΩGMD in Fig. 3. The intensity of red color in-
dicates the strength of the importance of each parameter for
GMD, whereas blue color for bAbI6. Fig. 3a shows that, with
AEWC, parameters that contribute to decreasing the loss of
different tasks are clearly separated, thus avoiding the catas-
trophic forgetting problem. On the contrary, there are much
fewer parameters in red in Fig. 3b. This means that the learn-
ing process does not consider the importance of each param-
eter for GMD when it trains on bAbI6.




