
On the Local Hessian in Back-propagation

Huishuai Zhang
Microsoft Research Asia

Beijing, 100080
huzhang@microsoft.com

Wei Chen
Microsoft Research Asia

Beijing, 100080
wche@microsoft.com

Tie-Yan Liu
Microsoft Research Asia

Beijing, 100080
tyliu@microsoft.com

Abstract

Back-propagation (BP) is the foundation for successfully training deep neural
networks. However, BP sometimes has difficulties in propagating a learning signal
deep enough effectively, e.g., the vanishing gradient phenomenon. Meanwhile, BP
often works well when combining with “designing tricks” like orthogonal initial-
ization, batch normalization and skip connection. There is no clear understanding
on what is essential to the efficiency of BP. In this paper, we take one step towards
clarifying this problem. We view BP as a solution of back-matching propagation
which minimizes a sequence of back-matching losses each corresponding to one
block of the network. We study the Hessian of the local back-matching loss (local
Hessian) and connect it to the efficiency of BP. It turns out that those designing
tricks facilitate BP by improving the spectrum of local Hessian. In addition, we can
utilize the local Hessian to balance the training pace of each block and design new
training algorithms. Based on a scalar approximation of local Hessian, we propose
a scale-amended SGD algorithm. We apply it to train neural networks with batch
normalization, and achieve favorable results over vanilla SGD. This corroborates
the importance of local Hessian from another side.

1 Introduction

Deep neural networks have been advancing the state-of-the-art performance over a number of tasks
in artificial intelligence, from speech recognition [Hinton et al., 2012], computer vision [He et al.,
2016a] to natural language understanding [Hochreiter and Schmidhuber, 1997]. These problems
are typically formulated as minimizing non-convex objectives parameterized by the neural network
models. Typically, the models are trained with stochastic gradient descent (SGD) or its variants and
the gradient information is computed through back-propagation (BP) [Rumelhart et al., 1986].

It is known that BP sometimes has difficulties in propagating a learning signal deep enough effectively,
e.g., the vanishing/exploding gradient phenomenon, [Hochreiter, 1991, Hochreiter et al., 2001].
Recent designing tricks, such as orthogonal initialization [Saxe et al., 2014], batch normalization
[Ioffe and Szegedy, 2015] and skip connection [He et al., 2016a], improve the performance of
deep neural networks on almost all tasks, which are interpreted to be able to alleviate the vanishing
gradient to some extent. However, a recent work [Orhan and Pitkow, 2018] shows that a network
with non-orthogonal skip connection always underperforms a network with orthogonal (identity is a
special case) skip connection and neither network has vanishing gradient as back-propagating through
layers. This suggests that vanishing gradient is not the core reason for a network being good or not.
We ask that if vanishing gradient is a superficial reason, what is essential to the efficiency of BP?

In this paper, we consider this question from the optimization’s perspective and give an answer: the
Hessian of the local back-matching loss is responsible for the difficulty of training deep nets with
BP. Specifically, we start from a penalized loss formulation, which takes the intermediate feature
outputs as variables of the optimization and the penalty is to enforce the coordination (architecture)
connection [Carreira-Perpinan and Wang, 2014]. Minimizing the penalized loss following backward

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



order leads to a back-matching propagation procedure which involves minimizing a sequence of
back-matching losses. Each back-matching loss penalizes the mismatch between a target signal from
the upper block and the output of the current block, which is determined by the parameters and the
inputs of the block1. We show that BP is equivalent to minimizing each back-matching loss with
one-step gradient update. This is to say, BP is a solution of the back-matching propagation procedure.

However, in general, the one-step gradient update may/may not be a good solution to minimize
the back-matching loss contingent on the Hessian, as is well known that bad-conditioned Hessian
can have enormous adversarial impact on the convergence of the first-order methods [Ben-Tal and
Nemirovski, 2001]. Loosely speaking, if the local Hessian is badly-conditioned, the one-step gradient
update does not minimize the back-matching loss sufficiently and the target signal distorts gradually
when backward through layers.

We mathematically derive the formula of local Hessian and show that the designing tricks including
batch normalization and skip connection can drive local Hessian towards a good-conditioned matrix
to some extent. This explains why practical designing tricks can stabilize the backward process. In
particular, by analyzing the local Hessian of residual block, we can answer the questions about skip
connection in [Orhan and Pitkow, 2018] via local Hessian.

Besides interpreting existing practical techniques and providing guidance to design neural network
structure, we can also utilize local Hessian to design new algorithms. The general idea is to employ
the information of the local Hessian to facilitate the training of neural networks. We propose a
scale-amended SGD algorithm to balance the training pace of each block by considering the scaling
effect of local Hessian. More specifically, we approximate the local Hessian with a scalar and use the
scalar to amend the gradient of each block. Such a scale-amended SGD is built upon the regular BP
process, and hence it is easy to implement in current deep learning frameworks [Bastien et al., 2012,
Abadi et al., 2016, Paszke et al., 2017, Seide and Agarwal, 2016]. We apply this scale-amended SGD
to feed-forward networks with batch normalization and empirically demonstrate that it improves the
performance by a considerable margin. This further advocates the key role of the local Hessian in
efficient learning of deep neural networks.

1.1 Related Works

The penalty loss formulation is inspired by methods of auxiliary coordinates (MAC) [Carreira-
Perpinan and Wang, 2014] and proximal backpropagation [Frerix et al., 2018]. Specifically, Carreira-
Perpinan and Wang [2014] applies block coordinate descent to optimize the penalized objective.
Frerix et al. [2018] applies proximal gradient when updating W . In contrast, we start from the
penalty loss formulation and focus on the local Hessian for each subproblem in the back-matching
propagation, and argue that the local Hessian is critical to the efficiency of BP.

Our scale-amended SGD is related to the algorithms tackling the difficulty of BP for training deep nets
by incorporating second-order/metric information [Martens, 2010, Amari, 1998, Pascanu and Bengio,
2014, Ollivier, 2015, Martens and Grosse, 2015] and the block-diagonal second order algorithms
[Lafond et al., 2017, Zhang et al., 2017, Grosse and Martens, 2016]. These second-order algorithms
approximate the Hessian/Fisher matrix and are computationally expensive. In contrast, the scale-
amended SGD only amends the vanilla SGD with a scalar for each block based on the approximation
of local Hessian. The scale-amended SGD is closely related to the layer-wise adaptive learning rate
strategy [Singh et al., 2015, You et al., 2017]. However, these two layer-wise learning rate strategies
do not have explanation of why the rate is set in that way.

2 BP as a solution of back-matching propagation

In this section, we first introduce the quadratic penalty formulation of the loss of neural network
and the back-matching propagation procedure which minimizes a sequence of local back-matching
losses following the backward order. Then we connect BP to the one-step gradient update solution of
back-matching propagation procedure. The quality of such a solution on minimizing back-matching
loss is determined by its local Hessian.

1Here a block can be composed of one layer or multiple layers.

2



Procedure 1 Back-matching Propagation

Input: W k
b , zkb for b = 1, ..., B and zk0 = Xk.

for b = B, ..., 1 do
W k+1

b ← argmin
W b

`b
(
W b,z

k
b−1

)
, (3)

z
k+ 1

2
b−1 ← argmin

zb−1

`b
(
W k

b ,zb−1

)
, (4)

end for
Output: A new parameter W k+1

Suppose the loss of training a neural network is given by2

J(W ;X, y) = `(y;F (W , X)), (1)

where `(·) is the loss function with respect to the training targets y and the network output, F (·, ·) is
the network mapping, W is the trainable parameter of the network and X is the input data. Carreira-
Perpinan and Wang [2014] introduces the intermediate output of the network as auxiliary variables
and the architecture connection as a quadratic penalty, and proposes to minimize the following
quadratic penalty formulation of the loss,

Q(W , z; γ) = `(y, FB(WB , zB−1)) +

B−1∑
b=1

γ

2
‖zb − Fb(W b; zb−1)‖2, (2)

where Fb(·, ·) is a block mapping, W b, zb−1 are the trainable parameter and the input of network
block b, respectively, for b = B, ..., 1 and z0 is the input data X .

It has been argued in [Nocedal and Wright, 2006] that under mild condition, the solutions of
minimizing (2) converge to the solution of the original problem (1) as γ →∞. Carreira-Perpinan and
Wang [2014] minimizes objective (2) via z-step and W -step, which is essentially a block coordinate
descent algorithm.

Inspired by the form (2), we study the back-matching propagation procedure (Procedure 1), which
minimizes a sequence of local back-matching losses following the backward order. The local
back-matching loss for block b at step k is denoted by `b

`b(W b, zb−1) =

`
(
yk;FB(WB , zB−1)

)
, for b = B

1
2

∥∥∥zk+ 1
2

b − Fb(W b, zb−1)
∥∥∥2 , for b = B − 1, ..., 1,

(5)

where z
k+ 1

2

b is computed by (4) repeatedly. We note that zk is computed by forward pass given

a new Xk and is not updated by Procedure 1 and zk+
1
2

b is an intermediate variable to store the
desired change on the output zb which is used to compute W k+1

b−1 . For each subproblem at b, we
alternatively optimize over W b and zb−1 while fixing the other as in the forward process because
jointly optimizing over W b and zb−1 is non-convex even if Fb represents matrix-vector product.

A direct explanation of the back-matching loss is that given the target signal zk+
1
2

b propagated from
upper block, which is believed to be the direction of zkb to decrease the loss, the new weight W k+1

and the new target signal for lower block z
k+ 1

2

b−1 should minimize the matching loss `b.

We are not suggesting Procedure 1 as a new algorithm to train neural network. Actually, Procedure
1 may not be stable in practice if solving each subproblem fully [Lee et al., 2015, Wiseman et al.,
2017] because the solution of (3) and (4) may deviate from last updated value too much and jump
out of the trust region. Instead, we connect BP to the one-step gradient update solution of (3) and
(4) and argue that the conditions of the subproblems (3) and (4) affect the efficiency of BP given the
explanation of back matching loss.
Proposition 1. If (3) is solved by one-step gradient update with step size µ and (4) is solved by
one-step gradient update with step size 1, then W k+1 produced by the procedure 1 is the same as
gradient update of the original problem (1) with step size µ.

2For simplicity we omit the bias term in the sequel.

3



Proof. The proof is relegated to Supplemental A due to space limit.

We note that the form of the back-matching loss is mentioned in target propagation [Lee et al., 2015,
Le Cun, 1986] which is motivated by the biological implausibility of BP while we formulate it from
minimizing a penalized objective. We also note that the connection between BP and the one-step
gradient update of minimizing (2) in backward order is made in [Frerix et al., 2018] for the case Fb(·)
is either activation function or linear transformation.

Here we view BP as a solution of back-matching propagation and study the local Hessian matrices of
back-matching losses (3) and (4),

Local Hessian: Hvec(W ) =
∂2`b

(
W b, z

k
b−1
)

∂vec(W )2
, Hz =

∂2`b
(
W k

b , zb−1
)

∂z2
b−1

. (6)

The Hessian of training deep neural networks has been studied in previous works Dauphin et al.
[2014], Orhan and Pitkow [2018], Li et al. [2016], Sagun et al. [2017], Jastrzębski et al. [2018]. They
all analyze and calculate the Hessian of the objective with respect to the whole network parameter. In
contrast, we study the Hessian of the local back-matching loss and connect it to the efficiency of BP.

Loosely speaking, if the local Hessian of (5) with respect to W is good-conditioned, the solution
of (3) minimizes the local back-matching loss sufficiently, which implies that the target signal is
efficiently approximated by updating parameters of current block, and if the local Hessian of (5)
with respect to z is good-conditioned, the solution of (4) minimizes the local back-matching loss
sufficiently, which implies that the target signal is efficiently back-propagated. Next, we show how
skip connection and batch normalization improve the spectrum of the local Hessian.

3 Explain the efficiency of BP via local Hessian

Because the condition of local Hessian determines how efficiently the back-matching loss is mini-
mized by updating the parameters of current block and how accurately the error signal propagates
back to the lower layer, we evaluate how good a block is via analyzing its local Hessian. We first
analyze the local Hessian of a fully connected layer3 and then show that the skip connection and
batch normalization improve the spectrum of local Hessian and hence facilitate the efficiency of BP.

3.1 Block of a fully connected layer

We consider a block b composed of a fully connected layer with nb outputs and nb−1 inputs. The
mapping function is given by

zb = Fb(W b, zb−1) = W b · zb−1, (7)

where W b is an nb × nb−1 matrix.

Suppose that after the gradient step on zb from upper layer, we get an intermediate variable z
k+1/2
b .

The Hessian of back matching loss (5) with respect to zb−1 and wb are

Hz = (W k
b )
TW k

b , (8)

Hw =

m∑
j=1

zkb−1[j](z
k
b−1[j])

T , (9)

respectively, where m is the batch size, [j] represents the j-th sample and wb is a vector of a row of
W b. Then Hvec(Wb) is a block diagonal matrix with each block being Hw where vec(W b) is a long
vector stacking the rows of W b first.

For (8) the local Hessian with respect to zb−1, we derive the distribution of its eigenvalues. For the
convenience of analysis, we assume the elements of wb are independently generated from Gaussian
distribution with mean 0 and variance σ2 and nb, nb−1 →∞ and the ratio nb/nb−1 → c ∈ (0,+∞).

3The formula for convolution layer is given in Supplemental C.

4



Then by the Marchenko-Pastur law [Marčenko and Pastur, 1967], we have the density of the eigenvalue
λ of (8) as follows,

ν(A) =

{
(1− c)10∈A + ν2(A), if 0 < c ≤ 1,

ν2(A), if c > 1,
(10)

where

dν2(λ) =
c

2πσ2

√
(c+ − λ)(λ− c−)

λ
1[c−,c+]dλ, (11)

with c+ = σ2(1 +
√
c)2/c, c− = σ2(1−

√
c)2/c.

This result affirms that the orthonormal initialization [Mishkin and Matas, 2016, Saxe et al., 2014]
facilitates backward propagation. If W b is an orthonormal matrix, the eigenvalues of Hz are
composed of nb 1’s and nb−1 − nb 0’s if nb < nb−1. This is the best spectrum of Hessian we can
expect for minimizing the back-matching loss (5).

However, in general, W b is not orthonormal and hence Hz is not identity. The gradient update
on zb−1 does not minimize the back-matching loss well. As back propagating to lower blocks,

the update z
k+ 1

2

b−t − zkb−t gets far from the direction of minimizing the back-matching loss `b for
t = 1, 2, ..., b. Such discrepancy becomes larger as the condition of Hz of each block is bad and as
the back-propagation goes deep.

For the local Hessian with respect to W , it is hard to control in general. Several recent works [Frerix
et al., 2018, Ye et al., 2017] suggest using forms involving HW to precondition vanilla SGD. We note
that Le Cun et al. [1991] has also studied the spectrum of Hw which gives a theoretical justification
for the choice of centered input over biased state variables.

We next study the local Hessian of blocks with skip connection and batch normalization and show
that these designing tricks can improve the spectrum of Hz and HW to some extent and hence make
the training deep neural networks easier.

3.2 Block with skip connection

Skip connection has been empirically demonstrated important to obtain state-of-the-art results [He
et al., 2016a,b, Huang et al., 2017a], while its functionality has various interpretations. Veit et al.
[2016] argue that residual network can be seen as an ensemble of shallow nets and avoids vanishing
gradient problem by introducing short paths. Jastrzebski et al. [2018] suggest that residual block
performs iterative refinement of features for higher layer while lower layers concentrate representation
learning behavior. These works focus on the interpretation of how Resnet works. We here try to
give an answer on why Resnet works from the optimization perspective. A recent work [Orhan and
Pitkow, 2018] argues that skip connection eliminates singular points of the Hessian matrix and there
are open questions in [Orhan and Pitkow, 2018], for which we can give answers by analyzing the
local Hessian of residual block.

Suppose that the mapping of residual block is given by

zb = Fb(W b, zb−1) = zb−1 + φb(W b, zb−1), (12)

where Fb(·) is the residual block mapping with parameters W b and input zb−1. The Hessians of the
back-matching loss (5) with respect to zb−1 and W b are given by

Hz =

(
I +

∂φb
∂zb−1

)T (
I +

∂φb
∂zb−1

)
− ∂

∂zb−1

(
∂Fb
∂zb−1

·
(
z
k+ 1

2
b − zkb

))
, (13)

HW =

(
∂Fb

∂vec(W b)

)T (
∂Fb

∂vec(W b)

)
− ∂

∂vec(W b)

(
∂Fb

∂vec(W b)
·
(
z
k+ 1

2
b − zkb

))
(14)

We can see that (14) the Hessian of local matching loss for residual block with respect to W b is the
same as the case without skip connection. Thus we focus on (13) the local Hessian with respect to
z. Specifically, we analyze the first part of (13), the Gauss-Newton matrix, which is a good positive
semidefinite approximation to the Hessian [Martens, 2016, Chen, 2011]. Define the condition number
of a matrix M as C(M) := σmax(M)/σmin(M), where σmax and σmin are the largest and smallest
non-zero singular values, respectively. The larger the condition number, the worse the problem.

5



Remark 1. If a) ∂φb

∂zb−1
is “small” relatively i.e., σmax

(
∂φb

∂zb−1

)
< 1− s for some constant s > 0,

and b) C
(

∂φb

∂zb−1

)
> 1+s

1−s , then

C

(
I +

∂φb
∂zb−1

)
< C

(
∂φb
∂zb−1

)
. (15)

This indicates that the condition number of the Gauss-Newton matrix with skip connection is
guaranteed to be smaller than that without skip connection given two assumptions. The assumption
b) is generally satisfied for neural network from the spectrum distribution analysis of fully-connected
layer in Section 3.1 while the assumption a) seems a bit strong. We cannot verify assumption a)
analytically because φb(·) typically involves more than two linear layers, nonlinear activations and
batch normalization layers. We leave the empirical study on the spectrum distribution of local Hessian
of the residual block for future work.

Interestingly, Orhan and Pitkow [2018] demonstrate that a network with an orthogonal connection
achieves the performance as good as the one with identity skip connection, which can be easily
explained from the fact that orthogonal skip connection does not change the condition number
of the local Gauss-Newton matrix (the first part of (13)). Furthermore, Orhan and Pitkow [2018]
also empirically show that a network with non-orthogonal skip connection always underperforms
a network with orthogonal (identity is a special case) skip connection though neither network has
vanishing gradient as back-propagating through layers. This can be easily argued from the formula
(13) as non-orthogonal skip connection has larger condition number than orthogonal skip connection
whose eigenvalues are all 1’s.

3.3 Block with batch normalization

Batch normalization (BN) is widely used for accelerating the training of feed-forward neural networks.
In this section, we consider adding a BN layer after a fully-connected layer. We fix the affine
transformation of BN to be identity for simplicity. If zkb represents one component of zkb and wb a
vector of one row of W b, then the BN layer mapping is given by

zkb = BN
(
z̃kb
)
=
(
z̃kb − E[z̃kb ]

)
/
√
Var[z̃kb ], where z̃kb = (wb)

Tzb−1. (16)

BP through a fully connected layer with BN is given in [Ioffe and Szegedy, 2015] and we provide
the form for the back matching loss in Supplemental B for completeness. The gradient formula is
quite complicated, as the E and Var involve batch information. To proceed the analysis, we ignore
the terms involving 1/m, which does not lose much as the batch size becomes large.

Now we compute the local Hessian of the fully connected layer with BN as follows4

Hz ≈
nb∑
i=1

wk
b (i) ·wk

b (i)
T

Var[z̃kb (i)]
=

nb∑
i=1

wk
b (i) ·wk

b (i)
T

Var[wk
b (i)

Tzkb−1]
, (17)

Hw ≈
∑m
j=1 z

k
b−1[j](z

k
b−1[j])

T

Var[z̃kb (i)]
=

∑m
j=1 z

k
b−1[j](z

k
b−1[j])

T

Var[wk
b (i)

Tzkb−1]
, (18)

where nb is the number of outputs of layer b, wk
b (i) is the vector of the i-th row of W k

b , and zkb−1[j]
represents the input of the block b of the sample j. We next show how BN facilitates BP for training
deep networks.

We first derive the distribution of the eigenvalues of (17) and compare it to (10) (the case without
BN). Our assumption on wb is the same as the one to derive (11). In contrast to that Hz being the
sum of outer products of Gaussian vectors in Section 3.1, here Hz is the sum of the outer products of
wb/‖wb‖’s which are the unit vectors equally distributed on the sphere. The density of the eigenvalue
λ of (17) is of the form (10) with [Marčenko and Pastur, 1967],

dν2(λ) =

√
(c+ − λ)(λ− c−)

2πλ
1[c−,c+]dλ, (19)

where c+ = (1 +
√
c)2, c− = (1−

√
c)2.

4We ignore the terms involving 1/m again.

6



Remark 2. Scaling the variance of the block parameter does not affect the spectrum of Hz in (17).

This is in contrast to (8) where the spectrum is linearly scaled with the variance of weight parameters.
Thus BP gains benefit because it acts as one-step gradient update with fixed step size 1 for all blocks.

Another benefit of BN is to improve the condition of Hw if zb−1 is the output of a BN .
Remark 3. If zb−1 is the output of BN and wb is independent of zb−1, then Ediag(Hw) = I/‖wb‖2.

This indicates the problem (3) is well-conditioned and hence large step size is allowed [Ioffe and
Szegedy, 2015].

4 Utilize local Hessian: An example

As previous section has shown the importance of the local Hessian, this section discuss how to utilize
local Hessian to improve the performance on current deep learning tasks. One direct way of using
local Hessian is to design better architecture. The spectrum of local Hessian can be a criteria to
determine whether a building block is good or not for BP. One potential usage of local Hessian could
be in neural architecture search [Zoph and Le, 2016]. As most of the time in neural architecture
search is used to train huge amount of small networks and it will greatly accelerate if using local
Hessian to prune the search space.

Another direction is to utilize the local Hessian to design new algorithms to improve the training of
existing neural networks. Several works can be understood as examples, e.g., proximal propagation
[Frerix et al., 2018] and Riemannian approaches [Cho and Lee, 2017, Huang et al., 2017b].

In this section, we propose a way to employ the information of the local Hessian to facilitate the
training of deep neural networks. Ideally, good alternatives to minimize back-matching loss `b
are H−1W δwb and H−1z δzb−1, where δwb and δzb−1 are the gradient computed via BP rule given
zk+

1
2 − zk. However, HW and Hz are often indefinite and expensive to compute. We suggest using

two scalars mb,W and mb,z to evaluate how HW and Hz scale the norm of a vector with general
position, respectively. Then the back-matching loss can be approximated as

`b
(
W b,z

k
b−1

)
≈ `b

(
W k

b ,z
k
b−1

)
+

〈
∂`b

∂W k
b

,W b −W k
b

〉
+

1

2
(W b −W k

b )
THW (W b −W k

b )

≈ `b
(
W k

b ,z
k
b−1

)
+

〈
∂`b

∂W k
b

,W b −W k
b

〉
+

1

2
mb,W ‖W b −W k

b‖22, (20)

`b
(
W k

b ,zb−1

)
≈ `b

(
W k

b ,z
k
b−1

)
+

〈
∂`b
∂zkb−1

,zb−1 − zkb−1

〉
+

1

2
mb,z‖zb−1 − zkb−1‖22, (21)

where the approximation is composed of a second-order Taylor expansion and a scaling effect of
local Hessian, and W b may represent vec(W b) contingent on the context.

We next propose an algorithm scale-amended SGD to take the effect of mb,W and mb,z into account
to balance the training pace of each block. Scale-amended SGD uses mb,W and mb,z to amend the
scale of vanilla BP of each block. We set the initial backward factor of the output layer m = 1, which
indicates that the derivative of the loss with respect to the output of the network is regarded as the
desired changes on the output to minimize the loss.

Then following the backward order, if a block has parameter W b and gradient δW b computed by
BP, then we use δ′W b := δW b/m/mb,W as the scale-amended gradient to update W b, where m is
the backward factor on the output of the block and mb,W is the scalar used to approximate Hb,W .
Then we update the backward factor m for next block via m← m ·mb,z , where mb,z is the scalar
used to approximate Hb,z . This strategy is described in Algorithm 2.

4.1 Scale-amended SGD for feed-forward networks with BN

Note that for the feed-forward networks with BN layers, we can obtain a reliable estimation of mb,W

and mb,z . Specifically, we assume that W b is row homogeneous [Ba et al., 2016], i.e., they represent
the same level of information and are roughly of similar magnitude, and define

‖W b‖22,µ :=
1

#row(W b)

#row(W b)∑
i=1

wb(i)
Twb(i),

7



Algorithm 2 Scale-amended SGD
Input: Gradient δW b and scaling factor mb,W ,mb,z . for b = 1, ..., B; Initialize m = 1.
for b = B, ..., 1 do

δ′W b ← δW b/m/mb,W (22)
m← m ·mb,z (23)

end for

where wb(i) is the i-th row of W b. Under this assumption, the scalars to approximate the local
Hessians (17) and (18) of the fully connected layer with BN are computed as follows,

mb,z := ‖W T
b ‖22,µ/‖W b‖22,µ, mb,W := 1/‖W b‖22,µ. (24)

We next evaluate the scale-amended SGD on training VGG nets [Simonyan and Zisserman, 2015]
for image classification tasks with two datasets: CIFAR-10 [Krizhevsky and Hinton, 2009] and
CIFAR-100 [Krizhevsky and Hinton, 2009]. We modify the VGG nets by keeping the last fully
connected layers and removing the intermediate two fully connected layers and all the biases. Each
intermediate layer of the VGG nets concatenates a BN layer right before the activation function and
the BN has no trainable parameters.

During training, the images of CIFAR-10 and CIFAR-100 datasets are randomly flipped and rotated
for data augmentation. The hyper-parameters for vanilla SGD and our scale-amended SGD are the
same including learning rate η = 0.1 (because the backward factor for linear layer of CIFAR10 is
around 10

512 , small learning rate η = 0.005 works better for CIFAR10 to use scale-amened SGD),
momentum 0.9 and weight decay5 coefficient 0.005. We reduce the learning rate by half once the
validation accuracy is on plateau (ReduceLROnPlateau in PyTorch with patience=10), which works
well for both vanilla-SGD and scale-amended SGD.

We compare the learning curves between scale-amended SGD and vanilla SGD on training VGG13
for CIFAR10 and CIFAR-100 classification tasks. Two algorithms start from the same initialization
and pass the same batches of data. Both algorithms are run 300 epochs. We plot the learning curves
in Figure 1. From Figure 1, we can see that the learning curves of our algorithm and SGD have

0 50 100 150 200 250 300

10 3

10 2

10 1

100

Av
er

ag
e 

tra
in

in
g 

lo
ss

Training Loss of VGG13 on CIFAR10
Scale-amended SGD
Vanilla SGD

0 50 100 150 200 250 300
epochs

10 1

te
st

 e
rro

r

Test Accuracy of VGG13 on CIFAR10
Scale-amended SGD
Vanilla SGD

0 50 100 150 200 250 300
0

1

2

3

4

5

av
er

ag
e 

tra
in

in
g 

lo
ss

Training Loss of VGG13 on CIFAR100
Scale-amended SGD
Vanilla SGD

0 50 100 150 200 250 300
epochs

0.4

0.6

0.8

te
st

 e
rro

r

Test Accuracy of VGG13 on CIFAR100
Scale-amended SGD
Vanilla SGD

Figure 1: Comparison of vanilla SGD and scale-amended SGD on training VGG13 for CIFAR10 and
CIFAR-100 classification. Hyperparameters are the same: learning rate 0.1 (except for CIFAR10
scale-amended SGD uses 0.005), momentum 0.9, weight decay 0.005.

similar trend (we plot curves of multiple runs and their average in Supplemental D). This is because
scale-amended SGD only modifies the magnitude of each block gradient as a whole and does not
involve any further information (second order information) and hyper-parameters are the same for
both algorithms. Scrutinizing more closely, we can see our training loss curve is almost always lower
than SGD’s and our test error ends with a considerably lower number. Thus the scale-amended SGD

5For scale-amended SGD, we first apply the weight decay and then amend the scale.

8



achieves favorable result over vanilla SGD on training feed-forward neural network with BN. More
extensive experiments can be found in Supplemental D.

5 Conclusion

In this paper we view BP as a solution of back-matching propagation which minimizes a sequence
of back-matching losses. By studying the Hessian of the local back-matching loss, we interpret the
benefits of practical designing tricks, e.g., batch normalization and skip connection, in a unified way:
improving the spectrum of local Hessian. Moreover, we propose scale-amended SGD algorithm
by employing the information of local Hessian via a scalar approximation. Scale-amended SGD
achieves favorable results over vanilla SGD empirically for training feed-forward networks with BN,
which corroborates the importance of local Hessian.

Acknowledgments

The authors would like to thank Prof. Yuejie Chi for helpful discussion.

References
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.

TensorFlow: A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and
Y. Bengio. Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering
applications, volume 2. Siam, 2001.

M. Carreira-Perpinan and W. Wang. Distributed optimization of deeply nested systems. In Artificial Intelligence
and Statistics, pages 10–19, 2014.

P. Chen. Hessian matrix vs. Gauss–Newton matrix. SIAM Journal on Numerical Analysis, 49(4):1417–1435,
2011.

M. Cho and J. Lee. Riemannian approach to batch normalization. In Advances in Neural Information Processing
Systems (NIPS), pages 5231–5241, 2017.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In Advances in Neural Information Processing
Systems (NIPS), pages 2933–2941, 2014.

T. Frerix, T. Möllenhoff, M. Moeller, and D. Cremers. Proximal backpropagation. In International Conference
on Learning Representations (ICLR), 2018.

R. Grosse and J. Martens. A Kronecker-factored approximate Fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning (ICML), 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European Conference on
Computer Vision, pages 630–645. Springer, 2016b.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität München,
1991.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

9



S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies, 2001.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, page 3, 2017a.

L. Huang, X. Liu, B. Lang, and B. Li. Projection based weight normalization for deep neural networks. arXiv
preprint arXiv:1710.02338, 2017b.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In International Conference on Machine Learning (ICML), pages 448–456, 2015.

S. Jastrzebski, D. Arpit, N. Ballas, V. Verma, T. Che, and Y. Bengio. Residual connections encourage iterative
inference. In International Conference on Learning Representations (ICLR), 2018.

S. Jastrzębski, Z. Kenton, N. Ballas, A. Fischer, A. Storkey, and Y. Bengio. SGD smooths the sharpest directions.
2018.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

J. Lafond, N. Vasilache, and L. Bottou. Diagonal rescaling for neural networks. arXiv preprint arXiv:1705.09319,
2017.

Y. Le Cun. Learning process in an asymmetric threshold network. In Disordered systems and biological
organization, pages 233–240. Springer, 1986.

Y. Le Cun, I. Kanter, and S. A. Solla. Eigenvalues of covariance matrices: Application to neural-network
learning. Physical Review Letters, 66(18):2396, 1991.

D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio. Difference target propagation. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 498–515. Springer, 2015.

S. Li, J. Jiao, Y. Han, and T. Weissman. Demystifying resnet. arXiv preprint arXiv:1611.01186, 2016.

V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices. Mathematics of
the USSR-Sbornik, 1(4):457, 1967.

J. Martens. Deep learning via Hessian-free optimization. In International Conference on Machine Learning
(ICML), pages 735–742, 2010.

J. Martens. Second-order optimization for neural networks. PhD thesis, University of Toronto, 2016.

J. Martens and R. Grosse. Optimizing neural networks with Kronecker-factored approximate curvature. In
International Conference on Machine Learning (ICML), pages 2408–2417, 2015.

D. Mishkin and J. Matas. All you need is a good init. In International Conference on Learning Representations
(ICLR), 2016.

J. Nocedal and S. J. Wright. Sequential quadratic programming. Springer, 2006.

Y. Ollivier. Riemannian metrics for neural networks I: feedforward networks. Information and Inference: A
Journal of the IMA, 4(2):108–153, 2015.

A. E. Orhan and X. Pitkow. Skip connections eliminate singularities. In International Conference on Learning
Representations (ICLR), 2018.

R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. In International Conference on
Learning Representations (ICLR), 2014.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in PyTorch. 2017.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature,
323(6088):533, 1986.

L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical analysis of the hessian of over-parametrized
neural networks. arXiv preprint arXiv:1706.04454, 2017.

A. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. In International Conference on Learning Representations (ICLR), 2014.

10



F. Seide and A. Agarwal. CNTK: Microsoft’s open-source deep-learning toolkit. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 2135–2135. ACM,
2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
International Conference on Learning Representations (ICLR), 2015.

B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor. Layer-specific adaptive learning rates for deep networks.
In IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pages 364–368,
Dec 2015.

A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow networks.
In Advances in Neural Information Processing Systems (NIPS), pages 550–558, 2016.

S. Wiseman, S. Chopra, M. Ranzato, A. Szlam, R. Sun, S. Chintala, and N. Vasilache. Training language models
using target-propagation. arXiv preprint arXiv:1702.04770, 2017.

C. Ye, Y. Yang, C. Fermuller, and Y. Aloimonos. On the importance of consistency in training deep neural
networks. arXiv preprint arXiv:1708.00631, 2017.

Y. You, I. Gitman, and B. Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888v3, 2017.

H. Zhang, C. Xiong, J. Bradbury, and R. Socher. Block-diagonal hessian-free optimization for training neural
networks. arXiv preprint arXiv:1712.07296, 2017.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning, 2016.

11



Supplementary Material

A Proof for Proposition 1

The proof is straightforward. The key is to show the one-step gradient update of

z
k+ 1

2
b−1 ← argmin

zb−1

`b
(
W k

b ,zb−1

)
(25)

with step size 1 satisfies

z
k+ 1

2
b−1 − zkb−1 = − ∂J

∂zb−1

∣∣∣
W=Wk,z=zk

, (26)

where J is given by Equation 1.

For the case b = B, we have `b(W b,zb−1) = `
(
yk;FB(WB ,zB−1)

)
, and the one-step gradient solution of

(25) is

z
k+ 1

2
B−1 = zkB−1 − 1 · ∂`B

∂zB−1

∣∣∣
WB=Wk

B
,zB−1=zk

B−1

, (27)

which satisfies (26).

For other cases of b, we have `b(W b,zb−1) =
1
2

∥∥∥∥zk+ 1
2

b − Fb(W b,zb−1)

∥∥∥∥2. Suppose the one-step gradient

solution of (25) satisfies (26) for some b. We next verify it for the case b− 1. Since

z
k+ 1

2
b−2 = zkb−2 − 1 · ∂`b−1

∂zb−2

∣∣∣
W b−1=Wk

b−1
,zb−2=zk

b−2

, (28)

then

z
k+ 1

2
b−2 − zkb−2 = − ∂`b−1

∂zb−2

∣∣∣
W b−1=Wk

b−1
,zb−2=zk

b−2

=

(
∂Fb−1

∂zb−2

∣∣∣
W b−1=Wk

b−1
,zb−2=zk

b−2

)T
· (zk+

1
2

b−1 − zkb−1)

= −
(
∂Fb−1

∂zb−2
· ∂J

∂zb−1

) ∣∣∣
W=Wk,z=zk

(29)

= − ∂J

∂zb−2

∣∣∣
W=Wk,z=zk

. (30)

Following chain rule, this completes the proof.

B BP through BN for back-matching loss

The gradient for the back matching loss of a fully connected layer with BN is given by

∂`b
∂zb

= zb − z
k+ 1

2
b , (31)

∂`b
∂z̃b

=
∂`b
∂zb
· 1√

Var[z̃b]
+

∂`b
∂Var[z̃b]

· 2(z̃b − E[z̃b])
m

+
1

m
· ∂`b
∂E[z̃b]

, (32)

∂`b
∂zb−1

= (W k
b )
T ∂`b
∂z̃b

, (33)

∂`b
∂wb

=
∂`b
∂z̃b
· (zkb−1)

T , (34)

wherem is the mini-batch size, and ∂`b
∂Var[z̃b]

and ∂`b
∂E[z̃b]

is the gradient on quantities Var[z̃b] and E[z̃b] respectively.

C Local Hessian for convolutional layer

In this part we derive the Hessian of the back-matching loss for a convolutional layer. We change the notation a
bit for clear representation. The weight parameter W is an array with dimension n ×m × w × h, where n
and m are the number of output features and the number of input features respectively, and w and h are the

12



width and height of convolutional kernels. Suppose the output feature size is q1 × q2 and the input feature size is
p1 × p2. We use bku1u2 to denote the output at location (u1, u2) of feature k and aju1u2 to denote the input at
location (u1, u2) of feature j, then the forward process is

bku1u2 =

n∑
j=1

∑
v1v2

aj(u1+v1)(u2+v2)wjkv1v2 , (35)

and the BP is given by

δaju1u2 =

m∑
k=1

∑
v1v2

δbk(u1+v1)(u2+v2)wjkv1v2 , (36)

δwjkv1v2 =
∑
u1u2

δbku1u2aj(u1+v1)(u2+v2). (37)

However, this formula of the forward and backward process of convolutional layer make the derivation of
Hessian complex. Note that the convolution operation essentially performs dot products between the convolution
kernels and local regions of the input. The forward pass of a convolution layer can be formulated as one big
matrix multiply with im2col operation. In order to describe back matching process clearly, we rewrite the
convolution layer forward and backward pass with im2col operation. We use W row and W col to represent
the weight matrices with dimension n× (mwh) and m× (nwh), respectively, which both are stretched out
from W (n,m,w, h). To mimic the convolutional operation, we rearrange the input features a into a big matrix
ai2c through im2col operation: each column of zi2c is composed of the elements of a that are used to compute
one location in b. Thus if b has dimension n× q1 × q2, then ai2c has dimension mwh× q1q2. Furthermore,
we stack the latter two dimensions of b into a tall vector, denoted as bcol which has dimension n× q1q2. The
forward process (35) of convolutional layer can be rewritten as

bcol = W rowai2c (38)

Similarly, we can rewrite the regular BP (36) and (37) as

δaju1u2(x) = wT
ju1u2→δb(x), (39)

δW row = Exδbcol(x)zTi2c(x), (40)

where wju1u2→ is a vector of dimension nq1q2, whose non-zero elements are those weights that interact with
input location ju1u2. There are approximately n × wh/c non-zero elements and c is a factor related with
pooling, padding and stride (if padding=same-size, stride=2, then c=4). The non-zero elements are scattered
into n blocks, with each block wh/c non-zero elements, whose location within the block is corresponding to
(u1, u2). With these notations, we can derive the formula of local Hessian, given by

HWn = Eai2caTi2c, (41)

Ha(j, u1, u2, k, v1, v2) =
∂2`

∂aju1u2akv1v2
= wT

ju1u2→wkv1v2→, (42)

Ha = W T
aW a, (43)

where W a is a nq1q2 ×mp1p2 matrix each column being wju1u2→. We know W a is a sparse matrix and
so is Ha. Moreover, HWn is a concentrated matrix as each component is a summation of q1q2 × batch-size
variables. As the convolutional layer is essentially a linear mapping, the formulas here is similar to those of the
fully connected layer although they are more involved.

C.1 Approximate convolution layer with BN

We approximate HWn by a scalar mb,Wn = s/‖W row‖22,µ, where s = q1q2 is the sharing parameter and
q1 × q2 is the output feature size.

We approximate Ha by a scalar mb,z = ‖W col‖22,µ/‖W row‖22,µ/c, where c is a factor related with pooling,
padding and stride (if padding=same-size, stride=2, then c=4).

D Other experiments

In order to verify the stability of scale-amended SGD, we run and plot multiple times of the learning curves
as in Figure 1 here. We do extensive experiments to verify the effectivity of scale-amended SGD on training
feed-forward neural networks with BN. First we introduce several baseline algorithms and their settings.

The first base algorithm is the vanilla SGD with Nesterov momentum 0.9. The learning rate is chosen to be
η = 0.1 given a pool of candidates {0.01, 0.05, 0.1, 0.2, 0.5}.

13



Figure 2: Multiple runs of Figure 1 for CIFAR100.

Table 1: Classification accuracies for CIFAR-10 and CIFAR-100.

CIFAR10 CIFAR100

VGG11 VGG13 VGG16 VGG19 VGG11 VGG13 VGG16 VGG19

SGD 92.34 93.90 93.72 93.47 71.84 74.07 72.86 71.35
LARS 91.81 93.40 93.47 93.48 67.26 70.35 69.90 69.52
LSALR 92.58 93.68 93.35 93.46 71.14 73.74 73.14 70.76
OURS 92.45 94.11 93.90 93.88 73.39 75.32 74.68 72.82

The second baseline algorithm is LSALR which uses η · (1 + log(1 + 1/‖δW l‖2)) as the learning rate for the
layer l. The global learning rate is set to be η = 0.1, which achieves best performance comparing from a pool of
candidates {0.006, 0.05, 0.1, 0.2, 0.5}.

The third baseline algorithm is LARS which uses η · ‖W l‖2
‖δW l‖2

as the learning rate for layer l. In our experiment, we
use the global learning rate η = 2 for LARS, which achieves best performance from a pool of {0.1, 1, 2, 5, 10}.

For baseline algorithms, we apply weight decay with coefficient 1e-3 if without specific description.

At last, we present the test accuracy of different VGG nets for classification of CIFAR-10 and CIFAR-100 in
Table 1. We report the median of 3 independent runs of each pair of model and algorithm. For this group of
experiments, we use global learning rate η = 0.1 and weight decay coefficient 5e-3 for our algorithm. Our
algorithm achieves higher test accuracy over its competitors on all four VGG models with margins.

14


	Introduction
	Related Works

	BP as a solution of back-matching propagation
	Explain the efficiency of BP via local Hessian
	Block of a fully connected layer
	Block with skip connection
	Block with batch normalization

	Utilize local Hessian: An example
	Scale-amended SGD for feed-forward networks with BN

	Conclusion
	Proof for Proposition 1
	BP through BN for back-matching loss
	Local Hessian for convolutional layer
	Approximate convolution layer with BN

	Other experiments

