
Gnome: A Practical Approach to NLOS Mitigation for GPS
Positioning in Smartphones

Xiaochen Liu
liu851@usc.edu

University of Southern California

Suman Nath
suman.nath@microsoft.com

Microsoft Research

Ramesh Govindan
ramesh@usc.edu

University of Southern California

ABSTRACT
Accurate positioning in urban areas is important for per-
sonal navigation, geolocation apps, and ride-sharing. Smart-
phones localize themselves using GPS position estimates, and
augment these with a variety of techniques including dead
reckoning, map matching, and WiFi localization. However,
GPS signals suffer significant impairment in urban canyons
because of limited line-of-sight to satellites and signal re-
flections. In this paper, we focus on scalable and deployable
techniques to reduce the impact of one specific impairment:
reflected GPS signals from non-line-of-sight (NLOS) satellites.
Specifically, we show how, using publicly available street-level
imagery and off-the-shelf computer vision techniques, we can
estimate the path inflation incurred by (the extra distance
traveled by) a reflected signal from a satellite. Using these
path inflation estimates we develop techniques to estimate
the most likely actual position given a set of satellite readings
at some position. Finally, we develop optimizations for fast
position estimation on modern smartphones. Using extensive
experiments in the downtown area of several large cities, we
find that our techniques can reduce positioning error by up
to 55% on average.

CCS CONCEPTS
• Information systems → Global positioning systems; • Net-
works → Mobile networks; Location based services; • Human-
centered computing → Mobile computing; Ubiquitous and
mobile computing systems and tools;

Research reported in this paper was sponsored in part by the Army Re-
search Laboratory under Cooperative Agreement W911NF-17-2-0196.
The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.
This work was supported in part by the CONIX Research Center, one
of six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MobiSys ’18, June 10–15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3/18/06. . . $15.00
https://doi.org/10.1145/3210240.3210343

KEYWORDS
GPS, Localization, NLOS Mitigation, Mobile Computing
ACM Reference Format:
Xiaochen Liu, Suman Nath, and Ramesh Govindan. 2018. Gnome:
A Practical Approach to NLOS Mitigation for GPS Positioning
in Smartphones. In MobiSys ’18: The 16th Annual International
Conference on Mobile Systems, Applications, and Services, June
10–15, 2018, Munich, Germany. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3210240.3210343

1 INTRODUCTION
Accurate positioning has proven to be an important driver
for novel applications, including navigation, advertisement
delivery, ride-sharing, and geolocation apps. While position-
ing systems generally work well in many places, positioning
in urban canyons remains a significant challenge. Yet it is
precisely in urban canyons in megacities that accurate posi-
tioning is most necessary. In these areas, smartphone usage
is high, as is the density of places (storefronts, restaurants
etc.), motivating the need for high positioning accuracy.

Over the last decade, several techniques have been used
to improve positioning accuracy, many of which are applica-
ble to urban canyons. Cell tower and Wi-Fi based localiza-
tion [56, 57] enable smartphones to estimate their positions
based on signals received from these wireless communica-
tion base stations. Map matching enables positioning sys-
tems to filter off-road location estimates of cars [28, 43].
Dead-reckoning uses inertial sensors (accelerometers, and
gyroscopes) to estimate travel distance, and thereby correct
position estimates [43]. Crowd-sourcing GPS readings [24]
or using differential GPS systems [38, 39] can also help im-
prove GPS accuracy. Despite these improvements, positioning
errors in urban canyons can average 15m.

That is because these techniques do not tackle the funda-
mental source of positioning error in urban canyons [8, 45]:
non-line-of-sight (NLOS) satellite signals at GPS receivers.
GPS receivers use signals from four or more satellites to tri-
angulate their positions (§2). Specifically, each GPS receiver
estimates the distance traveled by the signal from each visible
satellite: this distance is called the satellite’s pseudorange.
In an urban canyon, signals from some satellites can reach
the receiver after being reflected from one or more buildings.
This can inflate the pseudorange: a satellite may appear
farther from the GPS receiver than it actually is. This path
inflation can be tens or hundreds of meters, and can increase
positioning error.

Contributions. This paper describes the design of tech-
niques, and an associated system called Gnome, that revises

https://doi.org/10.1145/3210240.3210343
https://doi.org/10.1145/3210240.3210343

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

GPS position estimates by compensating for path inflation
due to NLOS satellite signals. Gnome can be used in many
large cities in the world, and requires a few tens of millisec-
onds on a modern smartphone to compute revised position
estimates. It does not require specialized hardware, nor does
it require a phone to be rooted. In these senses, it is immedi-
ately deployable.

This paper makes three contributions (§3) corresponding
to three design challenges: (a) How to compute satellite path
inflation? (b) How to revise position estimates? (c) How to
perform these computations fast on a smartphone?

Gnome estimates path inflation using 3D models of the
environment surrounding the GPS receiver’s position. While
prior work on NLOS mitigation [23, 34, 36, 40, 46, 47, 51, 54,
62] (§5) has used proprietary sources of 3D models, we use a
little known feature in Google Street View [21] that provides
depth information for planes (intuitively, each street-facing
side of a building corresponds to a plane) surrounding the
receiver’s position. This source of data makes Gnome widely
usable, since these planes are available for many cities in
North America, Europe and Asia. Unfortunately, these plane
descriptions lack a crucial piece of information necessary
for estimating path inflation: the height of building planes.
Gnome’s first contribution is a novel algorithm for estimating
building height from panoramic images provided by Street
View. Compared to prior work that determines building
height from public data [37, 55], or uses remote sensing radar
data [29–31, 60], our approach achieves higher coverage by
virtue of using Street View data.

To compute the path inflation correctly, Gnome needs to
know the ground truth position. However, GPS receivers
don’t, of course, provide this: they only provide satellite pseu-
doranges, and an estimated position. Gnome must therefore
infer the position most likely to correspond to the observed
satellite pseudoranges. To do this, Gnome’s second contri-
bution is a technique to search candidate positions near the
GPS location estimate, revise the candidate’s position by
compensating for path inflation, and then determine the re-
vised candidate position likely to be closest to the ground
truth. This contribution is inspired by, but different from the
prior work that attempts to infer actual positions by simulat-
ing the satellite signal path [40, 47, 54], or by determining
satellite visibility [23, 36, 62].

Gnome’s third contribution is to enable these computations
to scale to smartphones, a capability that, to our knowledge,
has not been demonstrated before. To this end, it leverages
the observation that 3D models of an environment are rel-
atively static, so Gnome aggressively pre-computes, in the
cloud, path inflation maps at each candidate position. These
maps indicate the path inflation for each possible satellite
position, and are loaded onto a smartphone. At runtime,
Gnome simply needs to look up these maps, given the known
positions of each satellite, to perform its pseudorange correc-
tions. Gnome also scopes the search of candidate positions
and hierarchically refines the search to reduce computation
overhead.

Gnome differs from [40, 47, 54] in two ways. First, these ap-
proaches use proprietary 3D models for ray-tracing, which are
not accessible in many cities. In contrast, Gnome leverages
highly available Street View data for satellite signal trac-
ing. Second, these approaches are offline while Gnome can
compute location estimates in real-time on Android devices.

Our evaluations (§4) of Gnome in four major cities (Frank-
furt, Hong Kong, Los Angeles and New York) reveal that
Gnome can improve position accuracy in some scenarios by
up to 55% on average (or up to 8m on average). Gnome
can process a position estimate on a smartphone in less
than 80ms. It uses minimal additional battery capacity, and
has modest storage requirements. Gnome’ cloud-based path
inflation map pre-computation takes several hours for the
downtown area of a major city, but these maps need only be
computed once for areas with urban canyons in major cities.
Finally, Gnome components each contribute significantly to
its accuracy: height adjustment accounts for about 3m in
error, and sparser candidate position selections also increase
error by the same amount.

2 BACKGROUND, MOTIVATION, AND
APPROACH

How GPS works. GPS is an instance of a Global Naviga-
tion Satellite System. It consists of 32 medium earth orbit
satellites, and each satellite continuously broadcasts its po-
sition information and other metadata at an orbit of about
2x107 meters above the earth. The metadata specify var-
ious attributes of the signal such as the satellite position,
timestamp, etc. Using these, the receiver computes, for each
received signal, its pseudorange or the signal’s travel distance,
by multiplying light of speed with the signal’s propagation
delay. With these pseudorange estimates, GPS uses three
satellites’ position to trilaterate the receiver’s position in 3D
coordinates. In practice, the receiver’s local clock is not ac-
curate compared with satellite’s atomic clock, so GPS needs
another satellite’s signal to estimate the receiving time. Thus,
a GPS receiver must be able to receive signals from at least
four satellites in order to fix its own position.

GPS Signal Impairments. GPS signals undergo four1 differ-
ent types of impairments [8] that introduce errors in position
estimates. The earth’s rotation between when the signal was
transmitted and received can impact travel time, as can the
Doppler effect due to the satellite’s velocity. Ionospheric and
tropospheric delays caused by the earth’s atmosphere can in-
flate pseudoranges. Multipath transmissions, where the same
signal is received directly from a satellite and via reflection,
can cause constructive or destructive interference and intro-
duce errors in the position fix. Finally, a receiver may receive
a signal, via reflection, from an NLOS satellite.

Many modern receivers compensate for, either in hardware
or software, the first two classes of errors. Specifically, GPS
receivers can compensate for earth’s rotation and satellite

1We have simplified this discussion. Additional sources of error can
come from clock skews, receiver calibration errors and so forth [8].

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

Doppler effects. GPS signals also contain metadata that spec-
ify approximate corrections for atmospheric delays. Higher
accuracy applications that need to eliminate such correlated
errors (the atmospheric delay is correlated in the sense that
two receivers within a few kilometers of each other are likely
to see the same coordinated delays) can use either Differential
GPS or Real-Time Kinematic GPS. Both of these approaches
use base stations whose precise position is known a priori.
Each base station can estimate correlated errors based on
the difference between its position calculated from GPS, and
its actual (known) position. It can then broadcast these cor-
rections to nearby receivers, who can use these to update
their position estimates.

Two other sources of error, multipath and NLOS reflections
are not correlated, so different techniques must be used to
overcome them. These sources of error are particularly severe
in urban canyons [36, 47, 62].

Urban Canyons. To understand how NLOS reflections can
impact positioning accuracy, consider Figure 1(a) in which a
satellite is within line-of-sight (LOS) of a receiver, so the latter
receives a direct signal. If a tall building blocks the LOS path,
the satellite signal may still be received after being reflected,
and causes NLOS reception (Figure 1(b)). Thus, depending
on the environment and the receiver’s position, a satellite’s
primary received signal can either be direct or reflected. In
addition, the primary signal can itself be reflected (more than
once), resulting in multipath receptions (Figure 1(c)).

To mitigate the impact of multipath, GPS receivers use
multipath correctors ([32, 66, 67]) that use signal phase to dis-
tinguish (and filter out) the reflected signal from the primary
signal. Modern receivers can reduce the impact of multipath
errors to a few meters.

However, when the primary signal is reflected (i.e., the
signal is from an NLOS satellite), the additional distance
traveled by the signal due to the reflection can inflate the
pseudorange estimate. The yellow lines in Figure 1 represent
reflected signal paths, which are longer than the primary
paths shown in green. The difference in path length between
these two signals can often be 100s of meters. Unfortunately,
GPS receivers cannot reliably distinguish between reflected
and direct signals, and this is the primary cause of positioning
error in urban areas. Our paper focuses on NLOS mitigation
for GPS positioning.

Alternative approaches. To mitigate NLOS reception er-
rors in urban canyons, smartphones use several techniques to
augment position fixes. First, they use proximity to cellular
base stations [33] or Wi-Fi access points [22] to refine their
position estimates. In this approach, smartphones use multi-
lateration of signals from nearby cell towers or Wi-Fi access
points whose position is known a priori in order to estimate
their own position. Despite this advance, positioning errors
in urban areas can be upwards of 15m, as our experiments
demonstrate in Figure 2.

Second, for positioning vehicles accurately, smartphones
use map matching and dead-reckoning [43] to augment posi-
tion fixes. Map matching restricts candidate vehicle positions

R

(c)

R

(b)

R

(a)

Figure 1: (a) A line-of-sight (LOS) signal path. (b) A non-line-
of-sitgh (NLOS) signal path. (c) Multipath

Green: Ground truth trace
Blue: iOS trace (Avg Error 14.4m)
Red: Android trace (Avg Error 15.1m)

Figure 2: An example of localization results in urban canyon
on today’s smartphone platforms

to street surfaces, and dead-reckoning uses vehicle speed
estimates to update positions when GPS is unavailable or er-
roneous. While these techniques achieve good accuracy (as we
show in §4), they are not applicable to localizing pedestrians
in urban settings.

Finally, as we have discussed above, approaches like Dif-
ferential GPS and Real-time Kinematics assume correlated
error within a radius of several hundred meters or several
kilometers. Errors due to NLOS receptions are not correlated
over these large spatial scales, so these techniques cannot be
applied in urban canyons.

Goal, Approach and Challenges. The goal of this paper
is to develop a practical and deployable system for NLOS
mitigation on smartphones. To be practical, such a system
must not require proprietary sources of information. To be
deployable, it must, in addition, be capable of correcting GPS
readings efficiently on the smartphone itself.

Our approach is motivated by the following key insight:
If we can determine the extra distance traveled
by an NLOS signal, we can compensate for this

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

extra distance, and recalculate the GPS location
on the smartphone.

This insight poses three distinct challenges. The first is how
to determine NLOS satellites and compute the extra travel
distance? While satellite trajectories are known in advance,
whether a satellite is within line-of-sight at a given location
𝐿 depends upon the portion of the sky visible at 𝐿, which in
turn depends on the position and height of buildings around
𝐿. This latter information, also called the surface geometry at
𝐿 can be used to derive the set of surfaces that can possibly
reflect satellite signals so that they are incident at 𝐿.

The second challenge is how to compensate for the extra
distance traveled by an NLOS signal (we use the term path
inflation to denote this extra distance) incident at a loca-
tion 𝐿. This is a challenge because a smartphone cannot,
in general, know the location 𝐿: it only has a potentially
inaccurate estimate of 𝐿. To correctly compensate for path
inflation, the smartphone has to determine that the location
whose predicted reflected signal best explains the GPS signals
observed at 𝐿.

The final challenge is to be able to perform these correc-
tions on a smartphone. Determining the visibility mask and
the surface geometry are significantly challenging both in
terms of computing and storage, particularly at the scale
of large downtown area of several square kilometers, and
especially because these are functions of 𝐿 (i.e., each dis-
tinct location in an urban area has a distinct visibility mask
and surface geometry). These computing and storage require-
ments are well beyond the capability of today’s smartphones.

In the next section, we describe the design of a system
called Gnome that addresses all of these challenges, while pro-
viding significant performance improvements in positioning
accuracy over today’s smartphones.

Prior work in this area has fallen into two categories: those
that filter out the NLOS signal [41, 46, 61], and those that
compensate for the extra distance traveled [14, 26, 40, 48].
Gnome falls into the latter class, but is unique in addressing
our deployability goals (§5).

3 GNOME DESIGN
In this section, we describe the design of Gnome. We begin
by describing how Gnome addresses the challenges identified
in §2, then describe the individual components of Gnome.

3.1 Overview
As described above, Gnome detects whether a satellite is
within line-of-sight or not, and for NLOS satellites, it es-
timates and compensates for the extra travel distance for
the NLOS signal. Gnome is designed to perform all of these
calculations entirely on a smartphone.

To determine whether, at a given location 𝐿, a satellite
is NLOS or not, and to compute the path inflation, Gnome
uses the satellite’s current position in the sky as well as the
surface geometry around 𝐿. Specifically, with a 3-D model of
the buildings surrounding 𝐿, Gnome can determine whether a
satellite’s signal might have been reflected from any building

Gnome Cloud

Panorama
& 3D Planes

User’s
Phone

Building
Height

Adjustment

Estimating
Path

Inflation
Gnome Mobile

Inflation
Model

Raw GPS
Measurement

Location
Prediction Result

Figure 3: Gnome workflow.

by tracing signal paths from the satellite to 𝐿, and use that
to compute the path inflation. There exist public services
to precisely determine the position for satellite at a given
time. Less well known is the fact that there also exist public
sources for approximate surface geometry: specifically, Google
Street View [21] provides both 2-D imagery of streets as well
as 3-D models (as an undocumented feature) of streets for
the downtown area of most large cities in the US, Europe,
and Asia. These 3-D models are, however, incomplete: they
lack building height information, which is crucial to trace
reflected signals from satellites. In the section below, we
describe how we use computer vision techniques to estimate a
building’s height. The availability of public datasets with 3-D
information makes Gnome widely applicable: prior work has
relied on proprietary datasets, and so has not seen significant
adoption.

To compensate for the NLOS path inflation on a smart-
phone, Gnome leverages the fact that modern mobile OSs
expose important satellite signal metadata such as what
satellite signals were received and their relative strength [10].
Gnome uses this information. The metadata, however, does
not inform Gnome whether the satellite was LOS or NLOS.
To determine whether a satellite is NLOS at 𝐿, Gnome can
use the derived surface geometry. Unfortunately, the GPS
signal only gives Gnome an estimate of the true location 𝐿,
so Gnome cannot know the exact path inflation. To address
this challenge, Gnome searches within a neighborhood of
the GPS-provided location estimate 𝐿𝑒𝑠𝑡 to find a candidate
for the ground truth 𝐿𝑐 whose positioning error after path
inflation adjustment is minimized.

Our third challenge is to enable Gnome to run entirely
on a smartphone. Clearly, it is unrealistic to load models of
surface geometry for every point in areas with urban canyons.
We observe that, while satellite positions in the sky are
time varying, the surface geometry at a given location 𝐿 is
relatively static. So, we precompute the path inflation, on the
cloud, of every point on the street or sidewalk from every
possible location in the sky. As we show later, this scales
well in downtown areas of large cities in the world because in
those areas tall buildings limit the portion of the sky visible.

Gnome is implemented (Figure 3) as a library on smart-
phones (our current implementation runs on Android) which,
given a GPS estimate and satellite visibility information,

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

0°

45°

90°

135°

180°

225°

270°

315°

60°

30°

2

6

12

13

15

17
19

24

Skyline

Figure 4: The skyline and satellites locations seen by a re-
ceiver. The receiver is at the center of the circle and the
squares represent satellites. The numbers represent satellite
IDs and color signifies signal strength.

outputs a corrected location estimate. The library includes
other optimizations that permit it to process GPS estimates
within tens of milliseconds.

3.2 Data sources
Gnome uses three distinct sources of data. First, whenever
Gnome needs a position fix, it uses the smartphone GPS API
to obtain the following pieces of information:

1. Latitude, longitude, and error : The latitude and lon-
gitude specify the estimated position, and the error
specifies the position uncertainty (the actual position
is within a circle centered at the estimated position,
and with radius equal to the error).

2. Satellite metadata: This information (often called
NMEA data [15]) includes each satellite’s azimuth and
elevation, as well as the signal strength represented
as the carrier-to-noise density, denoted 𝐶/𝑁0 [44].
Figure 4 shows an example of satellite metadata
obtained from a satellite during our experiments.
Each square represents a satellite with the number
as satellite ID. The color of the square indicates the
satellite’s signal strength: green is very good (𝐶/𝑁0 >
35), yellow is fair (25 < 𝐶/𝑁0 < 35), and red is bad
(𝐶/𝑁0 < 25). The blue line denotes the skyline for
a particular street in our data. Notice that satellite
number 6 which is NLOS with respect to the center
still has good carrier-to-noise density, so this metric is
not a good discriminator for NLOS satellites.

3. Propagation delay and pseudorange: This contains, for
each satellite, the estimated propagation delay and
pseudorange for the received signal. This data is read
from phone’s GPS module and has become accessible
since a recent release of Android. This information is
crucial to Gnome, as we shall describe later.

Figure 5: Upper: the original depth information (each colored
plane represents one surface of a building), together with the
missing height information in yellow. Lower: the correspond-
ing panoramic image

Second, Gnome uses street-level imagery data available
through Google Street View. This cloud service, when pro-
vided with a location 𝐿, returns an panoramic image around
𝐿.

Third, but most important, Gnome uses an approximate
3D model available through a separate Street View cloud
service [7]. This service, given a location 𝐿 returns a 3-D
model of all buildings or other structures around that point.
This model is encoded (Figure 5 top) as a collection of planes,
together with their depth (distance from 𝐿). Intuitively, each
plane represents one surface of a building. The depth informa-
tion is at the resolution of 0.7∘ in both azimuth and elevation,
and has a maximum range of about 120m [25].

Effectively, the 3D model describes the surface geometry
around 𝐿, but it has one important limitation. The maximum
height of a plane is 16m, a limitation arising from the range
of the Street View scanning device. This limitation is critical
for Gnome, because many buildings in urban canyons are an
order of magnitude or more taller, and a good estimate of
plane height is important for accurately determining satellite
visibility.

Google Earth [2] also provides a 3D map with models of
buildings. As of this writing, extracting these 3D models is
labor-intensive [5] and does not scale to large cities. Moreover,
its 3D models do not cover most countries in Asia, Europe,
and South America, whereas Street View coverage is available
in these continents. We leave it to future work to include 3D
models extracted from Google Earth.

3.3 Estimating Building Height
Figure 5 shows how the 3D model’s height differs from the
actual height of a building: the yellow line above the planes
is the actual height. To understand why obtaining height
information for planes is crucial, consider a GPS receiver that
is 15m away from a 30m building. All satellites behind the
building with an elevation less than 63° will be blocked from

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

the view of the receiver. However, with the planes we have
from Street View, all satellites above 45° will still be LOS.
Thus, our model may wrongly estimate an NLOS satellite as
LOS, and may compensate for the path inflation where no
such inflation exists.

Gnome leverages Street View’s panoramic images to solve
the issue. The basic idea is to estimate the building’s height
by detecting skylines in the Street View images, and then
extending each 3D plane to the estimated height. After ex-
tracting the surface geometry for a given location 𝐿, Gnome
selects all planes whose reported height in the surface ge-
ometry is more than 13m: with high likelihood, such planes
are likely to correspond to buildings higher than 15m. Next,
for each such tall plane, Gnome computes its latitude and
longitude (denoted by 𝐿𝑝𝑙𝑎𝑛𝑒) on the map. It does this using
the location 𝐿 and the relative location of the plane from 𝐿
(available as depth information in the 3D model).

Gnome then selects a viewpoint 𝐿𝑣 near the plane and com-
putes the vector 𝐷 from 𝐿𝑣 to 𝐿𝑝𝑙𝑎𝑛𝑒 which is the centroid
of the plane. This vector contains two pieces of information:
(a) it specifies the heading of the plane relative to 𝐿𝑣, and
(b) it specifies the distance from 𝐿𝑣 to the plane. Gnome
then downloads the Street View image at 𝐿𝑣 and identifies
the plane in the image using the heading information in 𝐻.
Figure 6 shows an example of this calculation. Figure 6(a)
shows the satellite view at a given location 𝐿 and the heading
vector for the plane (the blue box). The heading vector has
azimuth 𝜑. Figure 6(b) shows how Gnome uses 𝜑 to find the
plane’s horizontal location 𝑥 in the corresponding panoramic
image from Street View.

Now, Gnome runs a skyline detection algorithm on the
image. Skyline detection demarcates the sky from other struc-
tures in an image. Figure 7 shows the output of skyline de-
tection on some images. Intuitively, the part of the skyline
that intersects with the plane delineates the actual height of
the plane. Thus, in the three images on the right of Figure 7,
the intersection between the blue skyline and the red plane
signifies the top of the building. Unfortunately, this intersec-
tion is visible in a two-dimensional image, whereas we need
to augment the height of a plane in a 3D map.

We use simple geometry to solve this (Figure 6(b)). Recall
that the vector 𝐷 also encodes the distance 𝑑 from 𝐿𝑣 to the
plane 𝐿𝑝𝑙𝑎𝑛𝑒. To estimate the height, we need to estimate the
angle of elevation of the intersection 𝜃. We estimate this using
a property of Street View’s panorama images. Specifically,
for a 𝑊 × 𝐻 Street View panorama image, a pixel at (𝑥, 𝑦)
corresponds to a ray with azimuth 𝑥

𝑊 × 360° and elevation
𝐻/2−𝑦

𝐻 × 180°. So, to estimate 𝜃, we first find the pixel(s)
in the panoramic image corresponding to the intersection
between the skyline and the plane. 𝜃 is then the elevation
of that pixel, and we estimate the height of the building as
𝑑 × 𝑡𝑎𝑛(𝜃). Figure 8 shows the corrected height of all the
planes in the surface geometry of one viewpoint.

In practice, because the target plane may be occluded
by trees or other obstructions, we run the above procedure
on three viewpoints (Figure 7) near 𝐿𝑝𝑙𝑎𝑛𝑒 and estimate

the height of the building using the average of these three
estimates.

At the end of this procedure, for a given location 𝐿, we
will have an accurate surface geometry with better height
estimates than those available with Google Street View.

3.4 Estimating Path Inflation
To estimate the path inflation, Gnome uses ray tracing [19].
Consider a satellite 𝑆𝑖 and a reflection plane 𝑃𝑗 . As Figure 9
shows, if the receiver is at position 𝑅, Gnome first computes
its mirror point with respect to 𝑃𝑗 , denoted by 𝑅′. Then, it
initializes a ray to 𝑆𝑖 starting from 𝑅′ and intersects with 𝑃𝑗

at point 𝑁𝑖,𝑗 . For this ray to represent a valid reflection of a
signal from 𝑆𝑖 to 𝑅 on plane 𝑃𝑗 , three properties must hold.
First, 𝑁𝑖,𝑗 must be within the convex hull (or the boundary)
of the plane 𝑃𝑗 . Second, the ray 𝑁𝑖,𝑗 to 𝑆𝑖 must not intersect
any other plane. Finally, the ray from 𝑁𝑖,𝑗 to 𝑅 must not
intersect any other plane.

For each ray that represents a valid reflection, Gnome
employs geometry to calculate the path inflation (shown by
the solid red arrows in Figure 9). For a given plane, a given
satellite and a given receiver position, there can be at most
one reflected ray. For a given receiver 𝑅, Gnome repeats this
computation for every pair of 𝑆𝑖 and 𝑃𝑗 , and obtains a path
inflation in each case. It also computes whether 𝑆𝑖 is within
line-of-sight of 𝑅: this is true if the ray from 𝑆𝑖 to 𝑅 does
not intersect any other plane.

These calculations can result in two possibilities for 𝑆𝑖,
with respect to 𝑅. If the 𝑆𝑖 is within LOS of 𝑅, it will
likely be the case that there may be one or more planes
which provide valid reflections of the signal from 𝑆𝑖 to 𝑅.
In this case, Gnome ignores these reflected signals, since
they constitute multipath, and modern GPS receivers have
multipath rejection capabilities. Thus, when there is a LOS
path, path inflation is always assumed to be zero.

The second possibility is that 𝑆𝑖 is not within line-of-
sight of 𝑅. In this case, 𝑅 can, in theory, receive multiple
NLOS reflections from different planes. In practice, however,
because of the geometry of buildings and streets, a receiver
𝑅 will often receive only one reflected signal. This is because
building surfaces are either parallel or perpendicular to the
street. If a street runs north-south, and a satellite is on the
western sky, then, if the receiver is on the street, it will
receive a reflection only from a plane on the east side of the
street. However, in some cases, it is possible to receive more
than one signal. In our example, if there is a gap between
two tall buildings on the west side of the street, then it is
possible for that signal to be reflected by a plane on one of
those buildings perpendicular to the street (in addition to
the reflection from the east side). In cases like these, Gnome
computes path inflation using the plane nearer to 𝑅.

A signal from 𝑆𝑖 can, of course, be reflected off multiple
planes before reaching 𝑅. In our example, the signal may
first be reflected from a building on the east side, and then
again from a building on the west side of the street. If a
signal can reach the receiver after a single reflection and

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

Elevation = 0

Intersection P(x,y)

Image size (W x H)

Azimuth φ = x / W × 360°
Elevation θ = (H/2 - y) / H × 180°

(b)

Azimuth = 0

Viewpoint Lv

θ
φ

(a)

d = |Lv - Lplane|Viewpoint Lv

Azimuth = 0

(c)

D
Lplane

Lplane

Figure 6: Building height estimation. (a) shows how the vector 𝐷 is estimated from the surface geometry. (b) shows how the
panoramic image can be used for skyline detection and 𝜃 estimation. (c) shows how building height is estimated using 𝐷 and 𝜃.

Lv1

v1

Lv2
Lv3

v2

v3
Figure 7: For robust height estimation, Gnome uses three
viewpoints to estimate height, then averages these estimates.

Figure 8: The adjusted depth planes, augmented with the es-
timated height.

after a double reflection, the calculated pseudorange will be
very close to the single-reflection trace because of multipath
mitigation. If the signal can only reach the receiver after
two reflections, the signal strength will be low (< 20dB)
and will always be ignored in position computation [27]. For
this reason, Gnome only models single reflections to reduce
computational complexity.

NLOS
Signal

LOS
Signal

Extra
path

Reflection
Plane Pj

Receiver R Mirrored R’

Satellite Si

Intersection Nij

Figure 9: An example of ray-tracing and path inflation calcu-
lation.

3.5 Location Prediction
In this section, we describe how Gnome uses the path inflation
estimates to improve GPS positioning accuracy. Recall that
the GPS receiver computes a position estimate from satellite
metadata including pseudoranges for satellites. At a high level,
Gnome subtracts the path inflation from the pseudorange for
each satellite, then computes the new GPS position estimate.

However, the reported satellite pseudoranges correspond
to the ground truth position of the receiver, which is not
known! More precisely, let the estimated position be 𝐿𝑒 and
the ground truth be 𝐿𝑔 . The path inflation of satellite 𝑆𝑖 for
these two points can be different. If we use the path inflation
from 𝐿𝑒, but apply it to pseudoranges calculated at 𝐿𝑔, we
will obtain incorrect position estimates.

Searching Ground Truth Candidates. To overcome this,
Gnome selects several candidate positions within the vicinity
of 𝐿𝑒 (we describe below how these candidate positions are
chosen) and effectively tests whether a candidate location
could be a viable candidate for 𝐿𝑔, the ground truth posi-
tion. At each candidate 𝐿𝑐, it (a) reduces the pseudorange
of each NLOS satellite by the computed path elevation and
(b) recomputes the GPS position estimate with the revised
pseudoranges. This gives a new position estimate 𝐿′

𝑐. Gnome
chooses that 𝐿′

𝑐 (as the estimate for 𝐿𝑔) whose distance to

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

Ground
Truth

Candidate 1

Candidate 2

Candidate 3

Origin Output

Adjusted
Output 1Adjusted

Output 2
Adjusted
Output 3

Figure 10: After adjusting pseudoranges, candidate positions
nearer the ground truth will have estimates that converge to
the ground truth, while other candidate positions will have
random corrections.

its corresponding 𝐿𝑐 is least. Figure 11 shows the heatmap of
the relative distances between 𝐿𝑐 and 𝐿′

𝑐 for candidates in a
downtown area: notice how candidates closest to the ground
truth have the low relative distances. In practice, for a reason
described below, Gnome actually uses a voting strategy: it
picks the five candidate positions with the lowest relative
distance, clusters them, and uses the centroid of the cluster
as the estimated position.

The intuition for this approach is as follows. When a
candidate 𝐿𝑐 is close to (within a few meters of) the ground
truth, its reflections are most likely to be correlated with
the ground truth location 𝐿𝑔. In this case, the candidate’s
estimated position 𝐿′

𝑐 will likely converge to the true ground
truth position. Because 𝐿𝑐 is close to 𝐿𝑔 , the distance between
𝐿𝑐 and 𝐿′

𝑐 will be small (e.g., candidate 1 in Figure 10).
However, when 𝐿𝑐 is far away from 𝐿𝑔, Gnome corrects the
pseudoranges observed at 𝐿𝑔 with corrections appropriate
for reflections observed at 𝐿𝑐. In this case, Gnome is likely
to go astray since a LOS signal at 𝐿𝑔 may actually be an
NLOS signal at the candidate position, or vice versa. In these
cases, Gnome is likely to apply random corrections at the
candidate positions (e.g., candidates 2 and 3 in Figure 10).
Because these corrections are random, the relative distances
for distant candidate positions are unpredictable: they might
range from small to large values. To filter randomly obtained
small relative distances, Gnome uses the voting strategy
described above. For example, in Figure 11, the grid point
at the bottom right of the heatmap shows up among the
top three candidate positions with the lowest distance, for
exactly this reason.

Position Tracking. As described until now, each predicted
location is independent from the previous. However, most
smartphone positioning applications require continuously
tracking a user’s location. So, many navigation services,
and, more generally, most localization algorithms for robots,

Ground truth location
Gnome Output

Figure 11: Heatmap of the relative distance between candi-
date positions and the revised candidate positions. Candidates
close to ground truth have small relative distances.
drones or other mobile targets, smooth successive position
estimates by using a Kalman filter. Gnome uses a similar
technique to improve accuracy in tracking the smartphone
user. Specifically, a Kalman filter treats the input state as an
inaccurate observation and produces a statistically optimal
estimate of the real system state. When Gnome computes a
new location, its Kalman filter takes that location as input
and outputs a revised estimate of the actual position. We
refer the reader to [9] for details on Kalman filtering.

3.6 Scaling Gnome
As described, algorithms in Gnome to estimate building
height and path inflation, as well as to predict location can
be both compute and data intensive. 3D models can run into
several tens of gigabytes, and ray-tracing is a computationally
expensive operation. In this section, we describe how we
architect Gnome to enable it to run on a smartphone. We
use two techniques for this: pre-processing in the cloud, and
scoped refinement for candidate search.

Preprocessing in the cloud. Gnome preprocesses surface ge-
ometries in the cloud to produce path inflation maps. Because
surface geometries are relatively static, these path-inflation
maps can be computed once and reused by all users.

The input to this preprocessing step is a geographic area
containing urban canyons (e.g., the downtown area of a large
city). Given this input, Gnome first builds the 3D model of
the entire area. To do this, it first downloads street positions
and widths from OpenStreetMaps [17], and then retrieves
Street View images and 3D models every 5m or so along
every street in the area, similar to the technique used in [42].
At each retrieval location, it augments its 3D model with the
adjusted building height. At the end of this process, Gnome
has a database of 3D models for each retrieval point.

In the second step of pre-processing, Gnome covers every
street and sidewalk with a fine grid of candidate positions.
These candidate positions are used in the location prediction
algorithm. Our implementation uses a grid size of 2m × 2m,
and we explore the sensitivity of this choice in §4. For each

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

candidate position, Gnome pre-computes the path inflation
for every possible satellite position. Specifically, it does this
by using the pre-computed 3D models in the previous step
and does ray tracing for every point (at a resolution of 1∘

in azimuth and elevation) in a hemisphere centered at the
candidate position to determine the path inflation.

The output of these two steps is a path inflation map: for
each candidate position, this map contains the path inflation
from every possible satellite position. This map is pre-loaded
onto the smartphone. The map captures the static reflective
environment around the candidate position. This greatly
simplifies the processing on the smartphone: when Gnome
needs to adjust the pseudorange for satellite 𝑆𝑖 at candidate
position 𝐿𝑐, it determines 𝑆𝑖’s location from the satellite
metadata sent as part of the GPS, and uses that to determine
the path inflation from 𝐿𝑐’s path inflation map.

Scoped refinement for candidate search. Even with path
inflation maps, Gnome can require significant overhead on
a smartphone because it has to search a potentially large
number of candidate positions in its location prediction phase.
Gnome first scopes the candidate positions to be within the
error range reported by the GPS device — recall that GPS
receivers report a position estimate and an error radius. In
urban canyons, however, the radius can be large and include
hundreds or thousands of candidate positions. To further
optimize search efficiency, we use a coarse-to-fine refinement
strategy. We first consider candidate positions at a coarser
granularity (e.g., one candidate position in every 8m × 8m
grid) and select the best candidate. We then repeat the search
on the finer spatial scale around the best candidate selected
in the previous step. This reduces computational overhead
by 20×.

4 EVALUATION
Using a full-fledged implementation of Gnome, we evaluate
its accuracy improvement in 4 major cities in North America,
Europe and Asia. We also quantify the impact of individ-
ual design choices, and the overhead incurred in estimating
building height, path inflation, and in location prediction.

4.1 Methodology

Implementation. Our implementation of Gnome has two
components, one on Android and the other on the cloud and
requires 2100 lines of code in total. The cloud-side component
performs data retrieval (for both depth information and
Street View images), height adjustment, and path inflation
computations. The smartphone component pre-loads path
inflation maps and performs pseudorange adjustments at each
candidate position, recomputes the revised location estimate
using the Ublox API, and performs voting to obtain the
estimated location. Currently, Gnome directly outputs its
readings to a file. Without being rooted, Android does not
permit Gnome to be run in the background by another app.
Apps would have to incorporate its source code [6] in order
to use Gnome.

Los Angeles New York Frankfurt Hong Kong

Figure 12: The ground truth traces (yellow), Android output
(blue), and Gnome output (red) in the four cities.

Metrics. We measured several aspects of Gnome includ-
ing: positioning accuracy measured as the average distance
between estimated position and ground truth; processing
latency of various components, both on the cloud and mobile;
power consumption on the smartphone; and storage usage on
the smartphone for the path inflation maps.

Scenarios and Ground Truth collection. To evaluate accu-
racy, we take measurements using Gnome in the downtown
areas of four major cities in three continents: Los Angeles,
New York, Frankfurt, and Hong Kong. In most of these cities,
we have measurements from a smartphone carried by a pedes-
trian. These devices include Huawei Mate10, Google Pixel,
Samsung S8, and Samsung Note 8. In Los Angeles, we also
have measurements from a smartphone on a vehicle, and from
a smartphone on a stationary user. In the same city, we have
measurements both on an Android device and an iPhone.
Across our four cities, the total walking distance is 4.7km
and the total driving distance is 9.3km. Figure 12 shows the
pedestrian traces collected in the four cities.

For the stationary user, we placed the phone at ten fixed
known locations for 1 minute in each and recorded the loca-
tions output by Gnome app. For the pedestrian experiment,
tester 𝐴 walks while holding the phone running the Gnome
app. Meanwhile, another tester 𝐵 follows 𝐴 and takes a video
of 𝐴. We use the video to manually determine the ground
truth position of 𝐴: we pinpoint this location manually on a
map to determine the ground truth. For the driving experi-
ment, we place the phone in car’s cup holder and drive in the
target area. To collect the ground truth location of the car,
we use a somewhat unusual technique: we attach a stereo
camera [20] to the car and use the 3D car localization algo-
rithm described in [52]. The algorithm can estimate ground
truth positions with sub-meter accuracy, sufficient for our
purposes.

4.2 Results
Before we describe our results, we describe some statistics
about satellite visibility and path inflation in our dataset.
These results quantitatively motivate the need for Gnome,
and also give some context for our results.

In our data, only 14.4% of the observation points can see
more than four LOS satellites, and only 27.5% of all the
received satellites are LOS satellites (Figure 13). Thus, urban
canyons in large cities contain significant dead spots for GPS
signal reception. This also motivates our design decision to
not omit NLOS satellites as other work has proposed: since

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

Los Angeles New York Frankfurt Hong Kong Total
0

5

10

15

20

25

30

10.1

17.2

13.0
15.7 14.4

22.8

30.5
26.8

29.0 27.5

% of observation points w/ satellites >= 4
% of LOS satellites

Figure 13: Statistics of NLOS signals in the dataset

Figure 14: Extra NLOS signal path distribution.

four satellites are required for position fixes, omitting an
NLOS satellite would render unusable nearly 85% of our
readings.

Figure 14 shows the CDF of path inflation across the 4
cities in our dataset. Depending on the city, between 10%
and 15% of the observations incur a path inflation of more
than 50m. For two of the cities, 7-8% incur a path inflation
of over 100m because the signal is reflected from a building
plane that is far from the receiver and therefore leads to a
large increase in pseudorange. This suggests that correcting
these inflated paths can improve accuracy significantly, as
we describe next.

Accuracy. Figure 15 compares the average positioning er-
ror of Gnome, Android, and iPhone in four settings (sta-
tionary, walking, cycling, driving) for Los Angeles. We use
the track recording app for Android [1] and iPhone [3] as
location recorders. In the stationary setting, Gnome incurs
an average error of less than 5m while Android and iOS incur
more than twice that error. This setting directly quantifies
the benefits of compensating for path inflation. More impor-
tant, this shows how much of an improvement is still left
on the table after all the optimizations that smartphones
incorporate, include cell tower and Wi-Fi positioning, and
map matching [13]. The gains in the pedestrian setting are
relatively high: Gnome incurs only a 6.4m error, while the

Static Walking Driving0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g

Er
ro

r (
m

)

4.9
6.4 6.2

10.2

13.1

7.0

9.5

14.4

6.3

Gnome
Android
iOS

Figure 15: Average positioning accuracy in different scenarios.

iPhone’s error is the highest at 14.4m. In this setting, in addi-
tion to compensating for path inflation, Gnome also benefits
from trajectory smoothing using Kalman filters.

Gnome performance while driving in Los Angeles is com-
parable to that of Android and iOS. We conjecture that this
is because today’s smartphones use dead-reckoning based on
inertial sensors [11], and this appears to largely mask inaccu-
racy due to NLOS satellites. These benefits aren’t evident in
our walking experiments, where the phone movement likely
makes it difficult to dead-reckon using accelerometers and
gyroscopes.

Across our other cities also (Figure 16), Gnome consistently
shows better performance than Android localization. In New
York, Gnome obtains a 30% reduction in error, in Frankfurt,
a more than 38% error reduction, and in Hong Kong, a more
than 40% reduction. Equally important, this shows that the
methodology of Gnome is generalizable. In obtaining these
results, we did not have to modify the Gnome processing
pipeline in any way. As described before, the Street View
3D models are available for many major cities across the
world, which is the most crucial source of data for Gnome,
so Gnome is applicable across a large part of the globe.

The maximum localization errors for Gnome for the four
cities are 37m, 35m, 41m, and 29m respectively. In compar-
ison, the maximum errors for Android are 51m, 42m, 45m,
and 47m. These occur either because (a) the ground truth
location is not within the error radius reported by the GPS
receiver, so Gnome cannot generate candidate points near
the ground truth location (§3.6), or (b) because the error
radius is too large and includes some non-ground-truth can-
didates where the distance from the candidate point to the
pseudorange-adjusted position is short. The latter confuses
Gnome’s voting mechanism of candidate selection (§3.5). In
future work, we plan to explore mitigations for these corner
cases.

Processing Latency. Gnome performs some computation-
ally expensive vision and graphics algorithms. Fortunately, as
we now show below, the latency of these computations is not
on the critical path and much of the expensive computation
happens on the cloud. (In the paper, we have used the term
“cloud” as a proxy for server-class computing resources. In

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

Figure 16: Average accuracy in different cities.

Module Latency
Mobile: Client-side positioning 77 ms/estimate
Cloud: Street View data retrieval 1.9 s/viewpoint
Cloud: Height adjustment 2.1 s/viewpoint
Cloud: Path inflation calculation 28 s/candidate

Table 1: Processing latency measurement

fact, our experiments were carried out on a 12-core 2.4Ghz
Xeon desktop with 32GB of memory and running Ubuntu
16.04).

Table 1 summarizes the processing latency of several com-
ponents of Gnome. The critical path of position estimation
(which involves scoped refinement based candidate search)
on the smartphone incurs only 77ms. Thus, Gnome can sup-
port up to a 13Hz GPS sampling rate, which is faster than
default location update rates (10 Hz) on both Android and
iOS. Retrieval of depth data (a few KBs) and a panoramic
image (about 450KB) for each viewpoint (recall that Gnome
samples these at the granularity of 5m) takes a little under
2s, while adjusting the height of planes at each viewpoint
takes an additional 2s. By far the most expensive operation
(29s) is computing the path inflation for each candidate posi-
tion: this requires ray tracing for all points in a hemisphere
around the candidate position. This also explains why we
only compute single reflections: considering multiple reflec-
tions would significantly increase the computational cost. The
candidate positions are arranged in a 2m × 2m grid, and it
takes about 39 minutes to compute the path inflation maps
for a 1-km street, or about 17 hours for the downtown area
of Los Angeles which has 26.8km of roads. It is important to
remember that Gnome’s path inflation maps are compute-
once-use-often: a path inflation map for an urban canyon in a
major city need only be computed once. We choose the 2×2
candidate scale because it achieves the best balance between
the accuracy and runtime latency.

Power consumption. In Android 7.0, the battery option in
“Settings” provides detailed per-hour power reports for the
top-5 highest power usage apps. Gnome is implemented as
an app, so we obtain its power consumption by running it for
three hours. While doing so, we run the app in the foreground

Figure 17: Accuracy with different level of height adjustment.

with screen brightness set to the lowest. We compare Gnome’s
power consumption with that of the default Android location
API (implemented as a simple app), and our results are
averaged over multiple runs. During our experiment, Gnome
app consumes 151 mAh and is 31% higher than the default
Android location API, which consumes 112 mAh. Most of
the additional energy usage is attributable to the UBlox
library that computes adjusted locations. All the four phones
we tested have batteries larger than 2700mAh, so Gnome
would deplete the battery by about 5.5% every hour if used
continuously. Our implementation is relatively unoptimized
(Gnome is implemented in Python), and we plan to improve
Gnome’s energy efficiency in future work.

Storage Usage. We have generated path inflation maps for
the downtown area of Los Angeles, a 3.9𝑘𝑚2 area. The total
length of road is 26.8km and the average road width (road
width is used for sampling candidate positions) is 21.3m. In
this area, there are 2531 Street View viewpoints and Gnome
generates 16390 candidate positions at a 2m × 2m granularity.
The total size of the path inflation maps for Los Angeles is
340 MB in compressed binary format. While this is significant,
smartphone storage has been increasing in recent years, and
we envision most users loading path inflation maps only for
downtown areas of the city they live in.

4.3 Evaluating Gnome components
Each component of Gnome is crucial to its accuracy. We
evaluate several components for Los Angeles.

Height adjustment. In Los Angeles, there are nearly 15,000
planes of which about 30% need height adjustment. To under-
stand how the height adjustment affects the final localization
accuracy, we compute the accuracy when Gnome selects dif-
ferent random subsets of planes for which to perform height
adjustment. In Figure 17, the x-axis represents the fraction
of planes for which height adjustment is performed. In our
experiment, for each data point, we repeated the random
selection five times, and the figure shows the maximum and
minimum values for each data point. Height adjustment is
responsible for up to a 3m reduction in error.

Finally, our height estimates themselves can be erroneous.
We compared our estimated height with the actual height

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

0 50 100 150 200 250 300
Avg Latency (ms)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
Av

g
Er

ro
r (

m
)

(1x1)(2x2)
(3x3)

(4x4)

(6x6)
(8x8)

Figure 18: Latency vs Accuracy with different grid sizes.

for 50 randomly selected buildings in Los Angeles, whose
heights are publicly available. Our height estimates are correct
to within 5% at the median and within 14% at the 90th
percentile. Our position estimation accuracy is largely due to
the fact that we are able to estimate heights of buildings quite
accurately. There are two causes for the height estimation
error: (1) the inaccurate sky detection could recognize the
building’s top as part of the sky, which makes the estimated
height lower than the actual value, and (2) massive obstacles
like trees and taller buildings behind the target plane will
cause larger height measurement. The largest errors in both
cases are 16% and 23%.

Candidate selection and ranking. Candidate position gran-
ularity can also impact the error. Gnome uses a 2m × 2m
grid. Using a coarser 8m × 8m grid would reduce storage re-
quirements by a factor of 16 and could reduce the processing
latency on the smartphone. Figure 18 captures the tradeoff
between candidate granularity, accuracy and processing la-
tency. As the figure shows, candidate selection granularity
can significantly impact accuracy: an 8m × 8m grid would
add almost 3m error to Gnome while reducing processing
latency by about 50ms. Our choice of granularity is at the
point of diminishing returns: a finer grid of 1m × 1m would
more than triple processing latency while reducing the error
by about 10cm.

Position accuracy is also a function of the candidate search
strategy. Prior work has considered two different approaches.
The first [40, 47, 54] is based on path similarity. This line
of work uses ray-tracing to simulate the signal path and
calculate the difference between the simulated one and the
actual travel distance calculated by GPS module. The candi-
date whose path difference is least is selected as the output.
The second approach is called shadow matching [23, 36, 62].
It uses satellite visibility as ranking indicator and assumes
that NLOS signal always have worse carrier-to-noise density
𝐶/𝑁0 than LOS signal. It uses 𝐶/𝑁0 to classify each satel-
lite’s visibility at the ground truth point and compares that

0 10 20 30 40
Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Gnome
Path Similarity
Shadow Matching
Android

Figure 19: Accuracy of different candidate ranking ap-
proaches.

with simulated (from 3D models) satellite visibility at each
candidate point. The point with the highest similarity is the
estimated position. Figure 19 shows the error distribution in
Los Angeles: we include the Android error distribution for cal-
ibration. While all approaches improve upon Android, Gnome
is distributionally better than the other two approaches. The
crucial difference between Gnome and path similarity is that
Gnome revises the candidate positions using the path in-
flation maps, and this appears to give it some advantage.
Gnome is better than shadow matching because carrier-to-
noise-density is not a good predictor of NLOS signals (§3). In
addition to better localization, Gnome is more practical than
these prior approaches in three ways. First, these approaches
use proprietary 3D models for ray-tracing, which may not be
widely available for many cities. In Gnome, we use Google
Street View which is available for most cities (as shown in our
evaluation). Second, these approaches work offline and do not
explore efficient online implementations. For instance, path
simulation in [40, 47, 54] can take up to 2 sec on a desktop,
rendering them impractical for mobile devices. Finally, these
approaches rely on an external GPS receiver (UBlox) while
Gnome is implemented on Android phones.

Kalman filter. We also disabled the Kalman filter in Gnome
to evaluate its contribution to the final accuracy. As Figure ??
shows, Kalman filter improves accuracy by 1.2m for the
stationary case and about 0.5m in the other two scenarios.
The image on the right shows how the Kalman filter results
in a smoother trace closer to the ground truth.

5 RELATED WORK

NLOS Mitigation. Prior work has explored NLOS miti-
gation. These all differ from Gnome along one or more of
these dimensions: they either require specialized hardware,
use simplistic or proprietary 3D models, or have not demon-
strated scalability to smartphones. NLOS signals are known

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

Ground truth
Gnome w/o KF
Gnome w/ KF

Figure 20: Effectiveness of Kalman filter.

to be the major cause of GPS errors in urban canyons [8, 45].
Other work [35] has shown that ray-tracing a single reflection
generally works as well or better than ray-tracing multiple
reflections. Early work [26] uses the width of a street and
the height of its buildings to build a simple model of an
entire street as consisting of two reflective surfaces. This
model deviates from reality in most modern downtown areas,
where building heights vary significantly. To overcome this
drawback, other work proposes specialized hardware to build
models of reflective surfaces, including stereo fish-eye cameras
[48], LiDAR [14], or panoramic cameras [61].

A long line of work has explored using proprietary 3D
models to compute the path inflation, or simply to determine
whether a satellite is within line of sight or not. One branch
of this research uses 3D models to determine and filter out
NLOS satellites [34, 46, 51]. However, as we show, in our
dataset, nearly 90% of the GPS readings see fewer than 4
satellites, and removing NLOS satellites would render those
readings unusable. A complementary approach has explored,
as Gnome does, correcting the NLOS path inflation. Closest
to our work is the line of work [40, 47, 54] that uses candidate
positions like Gnome does, but estimates the ground truth
position using path similarity (§4). As we have shown earlier,
this approach performs worse than ours. A second line of
work [23, 36, 62] assumes that NLOS satellites generally have
lower carrier-to-noise density than LOS satellites: Figure 4
shows that this may not hold in general and §4 shows that
this approach also does not perform well.

Building height computation. Several pieces of work have
used techniques to build 3D models of buildings from a series
of 2D images, using a technique called structure-from-motion
(SfM, [50]). Our approach uses 3D models made available from
LiDAR devices mounted on Street View scanning vehicles.
Other work has used complementary methods to obtain the
height of buildings. Building height information is publicly
available from government websites [12, 16] or 3rd party
services [17, 18], and some work has explored building 3D
models using images and building height information [37, 55].
However, these datasets have spotty coverage across the
globe. Recognizing this, other work [29–31, 60] estimates
building heights using Synthetic Aperture Radar (SAR) data

generated with remote sensing technologies. This data also
has uneven coverage. Finally, one line of work [58, 59] analyzes
the shape and size of building shadow to estimate building
height. This approach needs the entire shadow to be visible
on the ground with few obstructions. In downtown areas,
the shadow of tall buildings fall on other buildings, and this
approach cannot be used.

Complementary approaches to improving localization accu-
racy. In recent years, the mobile computing community has
explored several complementary ways to improve location
accuracy: using the phone’s internal sensors to track the
trajectory of a user [53]; using cameras [4] or fusing GPS
readings with sensors, dead-reckoning, map matching, and
landmarks to position vehicles [28, 43]; using Wi-Fi access
point based localization [56, 57] as well as camera-based
localization [65]; and crowdsourcing GPS readings [24] to
estimate the position of a target. Other work [38, 39] has
explored accurate differential GPS systems which require
satellite signal correlation across large areas and don’t work
well in downtown areas. GPS signals have also been used for
indoor localization [49], and other work has explored improv-
ing trajectory estimation [63, 64] by using map-matching to
correct GPS readings. While map matching works well for
streets, it is harder to use for pedestrians. In contrast to this
body of work, Gnome attacks the fundamental problem in
urban canyons: GPS error due to satellite signal reflections.

6 CONCLUSION
In this paper, we have described a practical and deployable
method for correcting GPS errors resulting from non-line-
of-sight satellites. Our approach uses publicly available 3D
models, but augments them with the height of buildings es-
timated from panoramic images. We also develop a robust
method to estimate the ground truth location from candidate
positions, and an aggressive precomputation strategy and ef-
ficient search methods to enable our system to run efficiently
entirely on a smartphone. Results from cities in North Amer-
ica, Europe, and Asia show 6-8m positioning error reductions
over today’s highly optimized smartphone positioning sys-
tems. In the future, we plan to further optimize the energy
usage and storage requirements of our implementation, and
test it more extensively in urban canyons in other major
cities of the world.

Acknowledgements. We thank our shepherd Junehwa Song
and the anonymous referees for their feedback, which greatly
improved the quality of the paper’s presentation.

REFERENCES
[1] Gpx Logger for Android. https://play.google.com/store/apps/

details?id=com.eartoearoak.gpxlogger&hl=en.
[2] Google Earth Pro. https://www.google.com/earth/desktop/.
[3] Kinetic Lite Gps for Ios. https://itunes.apple.com/us/app/

kinetic-lite-gps/id390946616?mt=8.
[4] Mobileye Auto Mapping Technology. http://gpsworld.com/

gm-volkswagen-to-use-mobileye-auto-mapping-technology/.
[5] Site Modeling in Sketchup From Google Earth. https://youtu.be/

nVhM3IYMF8o.
[6] Gnome’s Code. http://github.com/USC-NSL/Gnome.

https://play.google.com/store/apps/details?id=com.eartoearoak.gpxlogger&hl=en
https://play.google.com/store/apps/details?id=com.eartoearoak.gpxlogger&hl=en
https://www.google.com/earth/desktop/
https://itunes.apple.com/us/app/kinetic-lite-gps/id390946616?mt=8
https://itunes.apple.com/us/app/kinetic-lite-gps/id390946616?mt=8
http://gpsworld.com/gm-volkswagen-to-use-mobileye-auto-mapping-technology/
http://gpsworld.com/gm-volkswagen-to-use-mobileye-auto-mapping-technology/
https://youtu.be/nVhM3IYMF8o
https://youtu.be/nVhM3IYMF8o
http://github.com/USC-NSL/Gnome

MobiSys ’18, June 10–15, 2018, Munich, Germany X. Liu et. al.

[7] Extract Depth Maps From Google Street
View. https://0xef.wordpress.com/2013/05/01/
extract-depth-maps-from-google-street-view/, 2017.

[8] Gps and Gnss for Geospatial Professionals. https://www.
e-education.psu.edu/geog862/, 2017.

[9] Kalman Filter. https://en.wikipedia.org/wiki/Kalman_filter,
2017.

[10] Raw Gnss Measurements on Android. https://developer.android.
com/guide/topics/sensors/gnss.html, 2017.

[11] Gps Module with Dead Reckoning. http://gpsworld.com/
skytraq-gnss-receiver-module-provides-indooroutdoor-positioning/,
2017.

[12] Building Information of Los Angeles. http://geohub.lacity.org/
datasets/, 2017.

[13] Map Matching. https://blog.mapbox.com/
matching-gps-traces-to-a-map-73730197d0e2, 2017.

[14] Position Estimation using Non-line-of-
sight Gps Signals. http://gpsworld.com/
innovation-position-estimation-using-non-line-of-sight-gps-signals,
2017.

[15] Nmea Protocol. https://en.wikipedia.org/wiki/NMEA_0183,
2017.

[16] Building Information of New York. http:
//www1.nyc.gov/nyc-resources/service/2266/
property-deeds-and-other-documents, 2017.

[17] Open Street Map. https://www.openstreetmap.org/, 2017.
[18] Propertyshark: Real-estate Data Source. https://www.

propertyshark.com/mason/, 2017.
[19] Ray Tracing. https://www.cs.unc.edu/~rademach/xroads-RT/

RTarticle.html, 2017.
[20] Zed Stereo Camera. https://www.stereolabs.com/zed/, 2017.
[21] Google Streetview. https://www.google.com/streetview/, 2017.
[22] Wifi Based Localization on An-

droid. https://gigaom.com/2012/11/29/
android-app-toggles-wi-fi-based-on-location-no-gps-needed,
2017.

[23] Mounir Adjrad and Paul D Groves. Enhancing Conventional Gnss
Positioning with 3d Mapping Without Accurate Prior Knowledge.
The Institute of Navigation, 2015.

[24] Ioannis Agadakos, Jason Polakis, and Georgios Portokalidis.
Techu: Open and Privacy-preserving Crowdsourced Gps for the
Masses. In Proceedings of the 15th Annual International Con-
ference on Mobile Systems, Applications, and Services, pages
475–487. ACM, 2017.

[25] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh,
Stéphane Lafon, Richard Lyon, Abhijit Ogale, Luc Vincent, and
Josh Weaver. Google Street View: Capturing the World At Street
Level. Computer, 43(6):32–38, 2010.

[26] David Bétaille, François Peyret, and Miguel Ortiz. How to En-
hance Accuracy and Integrity of Satellite Positioning for Mobility
Pricing in Cities: The Urban Trench Method. In Transport Re-
search Arena TRA 2014, page 8p, 2014.

[27] Andria Bilich and Kristine M Larson. Mapping the Gps Multipath
Environment using the Signal-to-noise Ratio (snr). Radio Science,
42(6), 2007.

[28] Cheng Bo, Xiang-Yang Li, Taeho Jung, Xufei Mao, Yue Tao, and
Lan Yao. Smartloc: Push the Limit of the Inertial Sensor Based
Metropolitan Localization using Smartphone. In Proceedings of
the 19th annual international conference on Mobile computing
& networking, pages 195–198. ACM, 2013.

[29] Dominik Brunner, Guido Lemoine, and Lorenzo Bruzzone. Extrac-
tion of Building Heights From Vhr Sar Imagery using an Iterative
Simulation and Match Procedure. In Geoscience and Remote
Sensing Symposium, 2008. IGARSS 2008. IEEE International,
volume 4, pages IV–141. IEEE, 2008.

[30] Dominik Brunnera, Guido Lemoinea, and Lorenzo Bruzzoneb.
Building Height Retrieval From Airborne Vhr Sar Imagery Based
on an Iterative Simulation and Matching Procedure. In Proc. of
SPIE Vol, volume 7110, pages 71100F–1, 2008.

[31] François Cellier and Elise Colin. Building Height Estimation
using Fine Analysis of Altimetric Mixtures in Layover Areas on
Polarimetric Interferometric X-band Sar Images. In Geoscience
and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE
International Conference on, pages 4004–4007. IEEE, 2006.

[32] Christopher J Comp and Penina Axelrad. Adaptive Snr-based
Carrier Phase Multipath Mitigation Technique. IEEE Trans-
actions on Aerospace and Electronic Systems, 34(1):264–276,
1998.

[33] Christopher Drane, Malcolm Macnaughtan, and Craig Scott. Po-
sitioning Gsm Telephones. IEEE Communications magazine, 36
(4):46–54, 1998.

[34] Vincent Drevelle and Philippe Bonnifait. Igps: Global Positioning
in Urban Canyons with Road Surface Maps. IEEE Intelligent
Transportation Systems Magazine, 4(3):6–18, 2012.

[35] Rudy Ercek, Philippe De Doncker, and Francis Grenez. Nlos-
multipath Effects on Pseudo-range Estimation in Urban Canyons
for Gnss Applications. In Antennas and Propagation, 2006.
EuCAP 2006. First European Conference on, pages 1–6. IEEE,
2006.

[36] Paul D Groves. Shadow Matching: A New Gnss Positioning
Technique for Urban Canyons. The journal of Navigation, 64(3):
417–430, 2011.

[37] Tao Guo and Yoshifumi Yasuoka. Snake-based Approach for
Building Extraction From High-resolution Satellite Images and
Height Data in Urban Areas. In Proceedings of the 23rd Asian
Conference on Remote Sensing, pages 25–29, 2002.

[38] Will Hedgecock, Miklos Maroti, Janos Sallai, Peter Volgyesi, and
Akos Ledeczi. High-accuracy Differential Tracking of Low-cost
Gps Receivers. In Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pages
221–234. ACM, 2013.

[39] Will Hedgecock, Miklos Maroti, Akos Ledeczi, Peter Volgyesi,
and Rueben Banalagay. Accurate Real-time Relative Localization
using Single-frequency Gps. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, pages 206–
220. ACM, 2014.

[40] Li-Ta Hsu, Yanlei Gu, and Shunsuke Kamijo. 3d Building Model-
based Pedestrian Positioning Method using Gps/glonass/qzss and
Its Reliability Calculation. GPS solutions, 20(3):413–428, 2016.

[41] LT Hsu and S Kamijo. Nlos Exclusion using Consistency Check
and City Building Model in Deep Urban Canyons. In ION GNSS,
pages 2390–2396, 2015.

[42] Yitao Hu, Xiaochen Liu, Suman Nath, and Ramesh Govindan.
Alps: Accurate Landmark Positioning At City Scales. In Pro-
ceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 1147–1158. ACM,
2016.

[43] Yurong Jiang, Hang Qiu, Matthew McCartney, Gaurav Sukhatme,
Marco Gruteser, Fan Bai, Donald Grimm, and Ramesh Govindan.
Carloc: Precise Positioning of Automobiles. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems,
pages 253–265. ACM, 2015.

[44] Angelo Joseph. Measuring Gnss Signal Strength. Inside GNSS, 5
(8):20–25, 2010.

[45] Elliott Kaplan and Christopher Hegarty. Understanding GPS:
Principles and Applications. Artech house, 2005.

[46] Ashwani Kumar, Yoshihiro Sato, Takeshi Oishi, and Katsushi
Ikeuchi. Identifying Reflected Gps Signals and Improving Posi-
tion Estimation using 3d Map Simultaneously Built with Laser
Range Scanner. Rapport technique, Computer Vision Laboratory,
Institute of Industrial Science, The University of Tokyo, 2014.

[47] Shunsuke Miura, Li-Ta Hsu, Feiyu Chen, and Shunsuke Kamijo.
Gps Error Correction with Pseudorange Evaluation using Three-
dimensional Maps. IEEE Transactions on Intelligent Trans-
portation Systems, 16(6):3104–3115, 2015.

[48] Julien Moreau, Sébastien Ambellouis, and Yassine Ruichek.
Fisheye-based Method for Gps Localization Improvement in Un-
known Semi-obstructed Areas. Sensors, 17(1):119, 2017.

[49] Shahriar Nirjon, Jie Liu, Gerald DeJean, Bodhi Priyantha, Yuzhe
Jin, and Ted Hart. Coin-gps: Indoor Localization From Direct
Gps Receiving. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, pages
301–314. ACM, 2014.

[50] Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer.
A Survey of Structure From Motion. Acta Numerica, 26:305–364,
2017.

[51] Sébastien Peyraud, David Bétaille, Stéphane Renault, Miguel
Ortiz, Florian Mougel, Dominique Meizel, and François Peyret.
About Non-line-of-sight Satellite Detection and Exclusion in a 3d
Map-aided Localization Algorithm. Sensors, 13(1):829–847, 2013.

[52] Hang Qiu, Fawad Ahmad, Ramesh Govindan, Marco Gruteser, Fan
Bai, and Gorkem Kar. Augmented Vehicular Reality: Enabling
Extended Vision for Future Vehicles. In Proceedings of the 18th
International Workshop on Mobile Computing Systems and
Applications, pages 67–72. ACM, 2017.

https://0xef.wordpress.com/2013/05/01/extract-depth-maps-from-google-street-view/
https://0xef.wordpress.com/2013/05/01/extract-depth-maps-from-google-street-view/
https://www.e-education.psu.edu/geog862/
https://www.e-education.psu.edu/geog862/
https://en.wikipedia.org/wiki/Kalman_filter
https://developer.android.com/guide/topics/sensors/gnss.html
https://developer.android.com/guide/topics/sensors/gnss.html
http://gpsworld.com/skytraq-gnss-receiver-module-provides-indooroutdoor-positioning/
http://gpsworld.com/skytraq-gnss-receiver-module-provides-indooroutdoor-positioning/
http://geohub.lacity.org/datasets/
http://geohub.lacity.org/datasets/
https://blog.mapbox.com/matching-gps-traces-to-a-map-73730197d0e2
https://blog.mapbox.com/matching-gps-traces-to-a-map-73730197d0e2
http://gpsworld.com/innovation-position-estimation-using-non-line-of-sight-gps-signals
http://gpsworld.com/innovation-position-estimation-using-non-line-of-sight-gps-signals
https://en.wikipedia.org/wiki/NMEA_0183
http://www1.nyc.gov/nyc-resources/service/2266/property-deeds-and-other-documents
http://www1.nyc.gov/nyc-resources/service/2266/property-deeds-and-other-documents
http://www1.nyc.gov/nyc-resources/service/2266/property-deeds-and-other-documents
https://www.openstreetmap.org/
https://www.propertyshark.com/mason/
https://www.propertyshark.com/mason/
https://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html
https://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html
https://www.stereolabs.com/zed/
https://www.google.com/streetview/
https://gigaom.com/2012/11/29/android-app-toggles-wi-fi-based-on-location-no-gps-needed
https://gigaom.com/2012/11/29/android-app-toggles-wi-fi-based-on-location-no-gps-needed

Gnome MobiSys ’18, June 10–15, 2018, Munich, Germany

[53] Nirupam Roy, He Wang, and Romit Roy Choudhury. I Am a
Smartphone and I Can Tell My User’s Walking Direction. In
Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, pages 329–342. ACM,
2014.

[54] Mohamed Sahmoudi, Aude Bourdeau, and Jean-Yves Tourneret.
Deep Fusion of Vector Tracking Gnss Receivers and a 3d City
Model for Robust Positioning in Urban Canyons with Nlos Signals.
In Satellite Navigation Technologies and European Workshop
on GNSS Signals and Signal Processing (NAVITEC), 2014 7th
ESA Workshop on, pages 1–7. IEEE, 2014.

[55] Shunta Saito, Takayoshi Yamashita, and Yoshimitsu Aoki. Multi-
ple Object Extraction From Aerial Imagery with Convolutional
Neural Networks. volume 2016, pages 1–9. Society for Imaging
Science and Technology, 2016.

[56] Souvik Sen, Božidar Radunovic, Romit Roy Choudhury, and Tom
Minka. You Are Facing the Mona Lisa: Spot Localization using
Phy Layer Information. In Proceedings of the 10th international
conference on Mobile systems, applications, and services, pages
183–196. ACM, 2012.

[57] Souvik Sen, Jeongkeun Lee, Kyu-Han Kim, and Paul Congdon.
Avoiding Multipath to Revive Inbuilding Wifi Localization. In
Proceeding of the 11th annual international conference on Mo-
bile systems, applications, and services, pages 249–262. ACM,
2013.

[58] Yang Shao, Gregory N Taff, and Stephen J Walsh. Shadow
Detection and Building-height Estimation using Ikonos Data.
International journal of remote sensing, 32(22):6929–6944, 2011.

[59] VK Shettigara and GM Sumerling. Height Determination of Ex-
tended Objects using Shadows in Spot Images. Photogrammetric
Engineering and Remote Sensing, 64(1):35–43, 1998.

[60] Uwe Soergel, Eckart Michaelsen, Antje Thiele, Erich Cadario, and
Ulrich Thoennessen. Stereo Analysis of High-resolution Sar Images
for Building Height Estimation in Cases of Orthogonal Aspect
Directions. ISPRS Journal of Photogrammetry and Remote
Sensing, 64(5):490–500, 2009.

[61] Sarab Tay and Juliette Marais. Weighting Models for Gps Pseudo-
range Observations for Land Transportation in Urban Canyons. In
6th European Workshop on GNSS Signals and Signal Processing,
page 4p, 2013.

[62] Lei Wang, Paul D Groves, and Marek K Ziebart. Smartphone
Shadow Matching for Better Cross-street Gnss Positioning in
Urban Environments. The Journal of Navigation, 68(3):411–433,
2015.

[63] Hao Wu, Weiwei Sun, and Baihua Zheng. Is Only One Gps Position
Sufficient to Locate You to the Road Network Accurately? In
Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pages 740–751. ACM,
2016.

[64] Hao Wu, Weiwei Sun, Baihua Zheng, Li Yang, and Wei Zhou.
Clsters: A General System for Reducing Errors of Trajectories Un-
der Challenging Localization Situations. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies,
1(3):115, 2017.

[65] Danfei Xu, Hernán Badino, and Daniel Huber. Topometric Local-
ization on a Road Network. In Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on,
pages 3448–3455. IEEE, 2014.

[66] Cheng Zhang, Wangdong Qi, Li Wei, Jiang Chang, and Yuexin
Zhao. Multipath Error Correction in Radio Interferometric Posi-
tioning Systems. arXiv preprint arXiv:1702.07624, 2017.

[67] Yujie Zhang and Chris Bartone. Multipath Mitigation in the
Frequency Domain. In Position Location and Navigation Sym-
posium, 2004. PLANS 2004, pages 486–495. IEEE, 2004.

	Abstract
	1 Introduction
	2 Background, Motivation, and Approach
	3 Design
	3.1 Overview
	3.2 Data sources
	3.3 Estimating Building Height
	3.4 Estimating Path Inflation
	3.5 Location Prediction
	3.6 Scaling

	4 Evaluation
	4.1 Methodology
	4.2 Results
	4.3 Evaluating components

	5 Related Work
	6 Conclusion
	References

