
FAME: Fast Attribute-based Message Encryption
Shashank Agrawal

∗

Visa Research

shaagraw@visa.com

Melissa Chase

Microsoft Research

melissac@microsoft.com

ABSTRACT

Time and again, attribute-based encryption has been shown to

be the natural cryptographic tool for building various types of

conditional access systems with far-reaching applications, but the

deployment of such systems has been very slow. A central issue

is the lack of an encryption scheme that can operate on sensitive

data very efficiently and, at the same time, provides features that

are important in practice.

This paper proposes the first fully secure ciphertext-policy and

key-policy ABE schemes based on a standard assumption on Type-

III pairing groups, which do not put any restriction on policy type

or attributes. We implement our schemes along with several other

prominent ones using the Charm library, and demonstrate that they

perform better on almost all parameters of interest.

1 INTRODUCTION

Over the course of a decade, attribute-based encryption (ABE) [52]

has been shown to have applications in a variety of settings like

network privacy [12], pay-per-view broadcasting [55], health record

access-control [9, 18], cloud security [53], verifiable computation

[49], and forward-secure messaging [32]. Moreover, companies like

Zeutro [1] use ABE to provide data security solutions for cloud

applications. This should not come as a surprise: as opposed to the

all-or-nothing approach of public-key encryption, ABE provides a

much more fine-grained control of encrypted data.

In a ciphertext-policy ABE (CP-ABE) scheme [28], for instance,

ciphertexts are attached to access policies and keys are associated

with sets of attributes. A key is able to recover the message hidden

in a ciphertext if and only if the set of attributes satisfy the access

policy. To give an example, a policy P could say ‘(Zipcode:90210
OR City:BeverlyHills) AND (AgeGroup:18-25)’ and an individual A
could have a key for {Zipcode:90210, AgeGroup:Over65}, in which

case A would not be able to decrypt any message encrypted under

P. A key policy (KP-ABE) scheme, on the other hand, is the dual

of CP-ABE with ciphertexts attached to attribute sets and keys

associated with access policies.

Despite being such a versatile cryptographic tool, ABE’s impact

on the real world has been limited. A central issue is the lack of

schemes that not only have strong security guarantees and fast

operations, but provide features that are highly desirable in practice.

In this paper, we propose new ABE schemes that simultaneously:

(1) put no restriction on size of policies or attribute sets;

(2) allow any arbitrary string to be used as an attribute;

(3) are based on the faster Type-III pairing groups;

(4) need a small number of pairings for decryption; and,

∗
Part of this work was done when the author was an intern at Microsoft Research,

Redmond.

(5) satisfy the natural security requirement under a standard

hardness assumption.
1

Each of these properties are crucial to make an ABE scheme usable

in the real world. As far as we know, our schemes are the first to

achieve all of them.

Furthermore, our schemes’ performance compares quite favor-

ably with the most prominent and state-of-the-art schemes in liter-

ature. Consider for example the CP-ABE scheme of Bethencourt,

Sahai, and Waters [16] (BSW), which is arguably the most popu-

lar ABE scheme among application designers, mainly due to its

simple structure and remarkable efficiency. However, security of

this scheme is not known to follow from a standard cryptographic

assumption. Our new CP-ABE scheme not only gives full security

under a standard assumption, but also encrypts, decrypts, and gen-

erates keys faster than BSW. In particular, decryption time is a mere

0.06s even if as many as 100 attributes are involved, whereas BSW

takes more than 2s. Our ciphertexts and keys are 25% smaller too.

Thus we believe that our more secure scheme can replace BSW as

the de facto instantiation of the ABE component in most applica-

tions (policy-sealed data [53] is one example), while substantially

improving the application’s performance at the same time.

We now argue why the properties our schemes satisfy are im-

portant to build a fast and usable ABE scheme.

Policies & attributes. As institutions grow, more and more com-

plex roles, entities, policies, procedures, etc. are added on a regular

basis. However, most ABE schemes known in literature put one or

the other restriction on what can be encoded into ciphertexts and

keys. These restrictions are in the form of bounds that need to be

fixed before an ABE system is deployed. For example, there could

be a bound on the number of attributes that could be encoded into

a key/ciphertext [4, 40, 43] or the size of access policies [19, 27, 57].

Such bounds not only limit the expressiveness of an ABE scheme,

but also adversely affect the time and space complexity of various

operations. A generous bound can slow down an ABE system con-

siderably, while a tight bound can only serve well for a limited

amount of time (after which a new system with a larger bound

would have to be deployed, requiring all data to be re-encrypted

and new keys to be generated). Our ABE schemes, on the other

hand, do not put any restriction on the size of policies or attribute

sets that can be encoded.

Attribute usage. Recall the policy P we defined earlier, given

by ‘(Zipcode:90210 OR City:BeverlyHills) AND (AgeGroup:18-25)’.
Suppose an ABE system encrypts some secret data under this policy.

If the user base is spread across the United States, then the system

1
To prove security, we model the hash function in our constructions as a random

oracle (RO). Note that all ABE schemes in literature that support an unlimited number

of attributes from an unbounded set (like we do) are proven secure in the RO model.

Moreover, the use of RO is fairly common in many cryptographic protocols used in

practice like Full Domain Hash signatures [14] and OAEP encryption [15].

should be able to issue keys for every zip code and city. Many promi-

nent ABE schemes in literature are small universe: they require an

a-priori polynomial bound on the number of different attributes

that could ever be used [19, 36, 42, 57, 58]. The size of public-key

then scales linearly with this bound (the set-up time is affected

similarly). We have roughly 43000 different zip codes in the US and

about 20000 different cities; if there are group elements for each

one of them then the public key will become very large.

But the problem does not stop here. What if we like to put user

names, addresses, etc. as part of the policies? The number of differ-

ent attributes will not just be in hundreds of millions, they will grow

rapidly with time. Though there are large universe ABE construc-

tions too [5, 10, 44, 50], they are not ideal because of the necessity

to map attributes to group elements manually. Our schemes, in

contrast, allow any string to be used as an attribute, be it names of

people, home addresses, etc. The mapping is via a hash function

which is modeled as a random oracle in the security proof.

Pairings. As of today, pairing friendly elliptic curves are the

only mathematical structures available for building practical ABE

schemes. They are given by a triple of groups (G,H,GT) with an

efficiently computable map e that associates pairs of elements from

groups G and H with elements in GT . Among them, asymmet-

ric prime-order (Type-III) pairings have been the recommended

choice by experts [25]. The other two options are not suitable:

composite-order curves have large representation
2

and very slow

pairing operations [33]; and symmetric prime-order (Type-I) groups

have serious security issues [24, 37]. Note that in constrast to ABE

schemes that are proven secure under Type-I setting and then im-

plemented in Type-III [51], we use only Type-III throughout the

paper.

Decryption. The decryption procedure in an ABE scheme is ar-

guably the most important one. It is this function that the users of

an ABE system invoke most of the times, often on computation-

ally weak devices. In much of the initial work in ABE [28, 42, 57],

decryption was fairly expensive, particularly for complex access

structures, because a pairing computation was needed for each

attribute. Our schemes require only 6 pairing operations for decryp-

tion, regardless of the number of attributes involved! This leads to

significant savings in decryption time. Furthermore, our encryption

and key generation procedures operate primarily in the smaller and

faster source group of a bilinear map. Concretely, any ciphertext

or key has 3 elements from this group per attribute, and only a

constant number (just 3) from the other. This unique feature of our

schemes makes it even more practical.

Security. Our schemes satisfy the natural security requirement

for ABE, which is commonly known as full or adaptive security.

A fully secure scheme provides confidentiality for data encrypted

under policies chosen anytime during a system’s life-cycle, even

after the system parameters have been published and several keys

have been distributed. On the contrary, selectively secure schemes

can only guarantee security for policies that are declared upfront,

i.e. before the system is deployed [27, 28, 48].

2
Since the elliptic curve group order must be infeasible to factor, it must be at least

(say) 1024 bits. On the other hand, a 160-bit prime-order elliptic curve group provides

an equivalent level of security (NIST SP 800-57).

Further, our ABE schemes are proven secure under (a variant

of) the decisional linear assumption (DLIN) [17], which is a well-

understood and time-tested hardness assumption on bilinear pair-

ings. This gives a high level of confidence in security as opposed

to q-type assumptions [5, 11, 50, 57] which are fairly new and not

very well understood. Moreover, many different types of q-type

assumptions have been proposed in the context of ABE, and it is

not clear how they compare with each other or with the standard

assumptions.

See Table 1.1 for a property-wise comparison of our schemes

against the most prominent and state-of-the-art schemes in litera-

ture.

Predicate encryption. The starting point for the design of our

ABE schemes is the recent work of Chen, Gay, and Wee [19]. They

give encryption schemes not just for ABE but a variety of other

predicates like inner-product [38], building on the predicate en-

coding [58] and dual system group [21] abstractions. However,

their ABE schemes are small universe (need an a-priori bound on

the number of attributes) and put restrictions on the policies that

can be used. We show how to overcome these problems without

compromising performance with the help of new techniques in the

following section. In fact, our schemes perform better than Chen et

al. on almost all metrics of interest. We believe that our ideas can

also be used to improve the efficiency of non-ABE type problems

studied in their work.

Implementation.We implement our CP-ABE and KP-ABE schemes

in the Charm framework [7] along with the most prominent and

state-of-the-art schemes in literature. We rigorously compare their

performance on various parameters and test cases. Our analysis

highlights the trade-offs between newer schemes like our own and

Chen et al. [19] (for which no implementation was available), and

older ones like Bethencourt et al. [16] and Goyal et al. [28]. In

particular, our CP-ABE achieves faster encryption and key gen-

eration times than any previous fully secure scheme—even faster

than Bethencourt et al. which is secure only in the generic group

model but has been used in a number of implementations. It also

has significantly faster decryption times than all of the selectively

secure schemes. See Figures 5.1 and 5.2 in §5 for the performance

of the algorithms of each scheme under various test cases.

Concretely, our CP-ABE scheme always takes only 0.10s to be

set-up, 0.24s to generate a key for 10 attributes, and 0.16s to encrypt

data under a policy that requires all 10 attributes for decryption,

on an ordinary laptop. More importantly, the time required for

decryption is a mere 0.06s even if as many as 100 attributes are

involved because we always use only 6 pairing operations. In con-

trast, number of pairings required by Bethencourt et al. and (the

fastest version of) Waters [57] scales linearly with the number of

attributes. Their decryption time is more than 1s and 2s for 100

attributes, respectively.

See Table 1.2 for a qualitative comparison of various ABE schemes

in terms of the running time of different algorithms.

We also analyze why one scheme performs better than the other

by breaking down the algorithms of the schemes into the number

of different types of group operations they need and looking at

the amount of time each one of them takes. This provides a very

2

Scheme Unrestricted policies Arbitrary attributes Type-III pairings Full security Standard assumption

Our CP-ABE (Fame) ✓ ✓ ✓ ✓ ✓

Chen et al. [20, Appendix B.2] ✓ ✗ ✓ ✓ ✓

Waters [57, Section 3] ✓ ✗ ✗ ✗ ✗

Bethencourt et al. [16, Section 4.2] ✓ ✓ ✗ ✓ ✗

Our KP-ABE ✓ ✓ ✓ ✓ ✓

Chen et al. [20, Appendix B.1] ✗ ✗ ✓ ✓ ✓

Goyal et al. [29, Appendix A.1] ✓ ✗ ✗ ✗ ✓

Table 1.1: A property-wise comparison of the various ABE schemes we consider. The upper and lower parts of the table list

the CP-ABE and KP-ABE schemes respectively. Please see the relevant parts of the introduction for a discussion of why each

of the properties are important.

Scheme Set-up Key generation Encryption Decryption

Our CP-ABE (Fame) G
Chen et al. [20, Appendix B.2] (SXDH) G
Chen et al. [20, Appendix B.2] (DLIN)
Waters [57, Section 3]
Bethencourt et al. [16, Section 4.2]

Our KP-ABE
Chen et al. [20, Appendix B.1] (SXDH) G
Chen et al. [20, Appendix B.1] (DLIN)
Goyal et al. [29, Appendix A.1] G

Table 1.2: A qualitative comparison of the various ABE schemes we consider in terms of the running time of different algo-

rithms. More the number of circles, the better the efficiency (lower running time). The upper and lower parts of the table list

the CP-ABE and KP-ABE schemes respectively. Please see §5 for a concrete and thorough analysis. Note that we have imple-

mented two versions of Chen et al.’s ABE schemes, one secure under the symmetric Diffie-Hellman assumption (SXDH) and
the other under the decisional linear (DLIN) assumption. Our schemes are secure under (a variant of) the latter assumption.

fine-grained view of how the various schemes compare with each

other. See Tables 5.1, 5.3, 5.2 and 5.4 in §5.

Lastly, our schemes have shorter ciphertexts and keys than most

of the schemes compared with. There is 25% savings in ciphertext-

and key-size w.r.t. Bethencourt et al. and 50% savings in key-size

w.r.t. the fastest version of Chen et al. (Table 5.5).

The implementation code is available on GitHub [2].

Organization. Our primary focus will be on designing and analyz-

ing a CP-ABE scheme called Fame because, traditionally, it has been

harder to build than KP-ABE
3

and seems to have more practical ap-

plications. In the remainder of this section we discuss the intuition

behind this construction. In §2 we describe our notation and define

attribute-based encryption formally. In §3 we present Fame in full

detail and then, in §4, we prove its security under the decisional

linear assumption. We analyze the performance of Fame vis-à-vis

several other prominent CP-ABE schemes in §5. Some more related

work is surveyed in §6.

We provide a formal description of our KP-ABE scheme in Ap-

pendix B but skip a proof of security since it is similar to that of

Fame. In §5 we briefly discuss the performance of this scheme with

respect to two other schemes we implemented.

3
The first proposal of KP-ABE in 2006 [28] was already under a standard assumption,

but until the work of Waters in 2011 [57], there was no such scheme for CP-ABE. In an

earlier paper [27], a generic method for converting KP-ABE to CP-ABE was proposed

but it leads to a significant blow-up in encryption and decryption time.

1.1 Designing our ABE schemes

Monotone span programs. In order to study the type of access

policies used in practice, Boolean formulas provide a very good

representation. However, a more general class called monotone

span programs (MSPs) is better suited to the design of encryption

schemes. Indeed, barring a few original proposals for ABE [16, 28,

48], the majority of later work has used MSPs. (A Boolean formula

with AND and OR gates can be easily converted into an MSP—see

§2 for a formal discussion).

An MSP is given by a matrix M and a function π that maps each

row of M to an attribute. (M,π) also act as a linear secret-sharing

scheme. A secret value can be split into shares via M, with one

share for every row. If a set of attributes S satisfies (M,π), then one

can linearly combine the shares of the rows mapping to attributes

in S to recover the secret.

High-level design of CP-ABEs.At a high level, a CP-ABE scheme

supporting MSPs works as follows. A key has some component

sky for each attribute y in S , which generally consists of one or

more elements from a group H. These components must be tied

together properly in order to prevent parties from combining two or

more keys to decrypt a ciphertext that none of them is individually

supposed to. Likewise, a ciphertext has a component cti made up

of elements from a group G for the ith row of M. This component

masks the ith row’s share with some special value, which must be

present in the skπ (i) component of the key in some form, so that

3

a user with attribute π (i) is able to recover the ith share during

decryption. The public parameters generated during system set-

up provide such values for ciphertexts and keys. Intuitively, we

need some unique group elements for each attribute in the system,

otherwise a single key component may be able to reveal multiple

shares in a ciphertext.

CGW scheme. The recent work of Chen, Gay, and Wee [19], re-

ferred to as CGW hereafter, builds compact ABE schemes using

Type-III pairings. Their first step is to pick matrices A and B over

integers modulo a prime which embed the k-linear assumption

[54]. Suppose a⊥ and b⊥ are vectors orthogonal to A and B re-

spectively. A simple basis given by ([A]1, [b⊥]1) and ([B]2, [a⊥]2)
is chosen for ciphertexts and keys respectively, where the sub-

script 1, for instance, denotes a mapping to group G. Then, for

each attribute x in the universe, they define a new pair of bases

([WT
xA]1, [WT

xb⊥]1) and ([WxB]2, [Wx a⊥]2) by choosing a ran-

dom matrix Wx . If matching components of a ciphertext and key

are paired, i.e., those generated w.r.t. [WT
xA]1, [A]1 and [WxB]2,

[B]2 respectively, then observe that this leads to cancellation in the

sense that

(WT
xA)

T
B = AT(WxB), (1.1)

but pairing with [WyB]2, [B]2 for y , x does not. CGW calls this

the associativity property.

Challenges. While CGW’s work advances the state-of-the-art for

ABE, it has some notable drawbacks. First, their schemes are small

universe: one needs to know the total number ℓ of different at-

tributes that will ever be needed in advance, so that the matri-

ces [WT
1
A]1, . . . , [WT

ℓ
A]1 can be placed inside the public-key. Sec-

ond, their KP-ABE scheme can only support MSPs with an a-priori

bounded number of columns, which roughly translates to Boolean

formulas with a limited number of AND gates. Set-up time and size

of parameters both scale linearly with this bound (and with ℓ).

How do we support arbitrary attributes – any number of them,

and allow any access policy to be used without blowing up the size

of public parameters out of proportion? Let us focus on the former

problem for now. A simple idea that comes to mind is to use a hash

functionH to generate [WT
xA]1 in ciphertexts and [WxB]2 in keys

for an attribute x . There are several problems with this approach:

• G and H have a very different structure since we are in the

Type-III setting [25]. Hashing any string into them would

produce completely unrelated values.

• The discrete logs of the hashed values should not be revealed,

otherwise it would not be possible to argue security.
4

• Suppose [WT
xA]1 is generated through H during the en-

cryption process. How can the key issuer generate [WxB]2
without explicit knowledge of Wx ?

Such types of problems arise in many other schemes too. Take

for instance the small universe KP-ABE scheme of Goyal et al. [28].

It uses дtx in the ciphertext and д1/tx
in the key for an attribute x ,

where дtx is provided as part of the public key. Without knowledge

of tx , д1/tx
cannot be generated, so the master secret key must

contain it. But what if дtx is derived directly from a hash function,

4
In particular, the straightforward approach of generating an integer and mapping to

a group element (via a generator) does not work. Instead, one should directly map the

attributes to group elements.

so that tx is not available at all? As another example, the schemes

of Okamoto and Takashima [46, 47] use a vector of group elements

for each attribute to form a ciphertext and an orthogonal vector

to form the key. If the former vector is generated through a hash

function, it is completely unclear how to generate the latter to use

in the key.

Note that both Goyal et al.’s and Okamoto and Takashima’s

schemes are built upon symmetric groups, whereas CGW’s schemes

are designed in the asymmetric setting, which only makes solving

the problems discussed above harder.

Approach. Associativity property (1.1) can help us find a way

around the issue of asymmetry. Observe that a basis of type [WT
xA]1

is not paired with [WyB]2 for any y. Thus it is conceivable to have

them in the same group, while keeping A,B (with which WT
xA,

WxB are actually paired) in the other.

Even if WT
xA, WxB are in the same group, we still need to find

a way to generate them through H . Suppose one can generate

[WT
xA]1 with the help of H somehow, how would she produce

[WxB]1 without explicit knowledge of Wx ? We take a different

approach here: we discover a way to generate keys with the help

of [WT
xA]1 and B only! As a result, the structure of our keys is

very different from that of CGW. While their keys are in the basis

[WxB]2, our keys end up having an additional random component

in the direction of a⊥, the vector orthogonal to A. Removing this

extra noise necessitates a more sophisticated analysis than CGW.

Indeed, we use an extra layer of hybrids on top of theirs to get rid

of the extra component.

Fame’s ciphertexts and keys have elements from both groups G

andH because, recall that, WT
xA and A as well as WyB and B reside

in different groups. Thus we do not know how to prove security

of Fame from the symmetric external Diffie-Hellman (SXDH or 1-

linear) assumption, which generally leads to most compact schemes.

Instead, we use a variant of the decisional linear assumption (DLIN
or 2-linear) on asymmetric groups (similar to [45], for example),

which is generically no stronger than the same assumption on

symmetric groups [17]—see §2.4 for details. Nonetheless, our CP-

and KP-ABE schemes perform better than even the SXDH variant of

CGW’s schemes on almost all parameters of interest by operating

primarily in the smaller and faster group G.

2 PRELIMINARIES

We first define some notation that will be used throughout the

paper. For a prime p, let Zp denote the set {0, 1, 2, . . . ,p − 1} where

addition and multiplication are done modulo p. The set Z∗p is same

as Zp but with 0 removed.

Let λ denote the security parameter. negl(λ) denotes a negligible

function, i.e., a function which is smaller than the inverse of any

polynomial, for all large enough values of λ. A randomized algo-

rithm is called PPT (probabilistic polynomial time) if its running

time is bounded by some polynomial in the length of its input.

We use bold letters to denote vectors and matrices, with the

former in lowercase and the latter in uppercase. By default, a vector

must be treated as a column vector. (v)k denotes the kth element

of a vector v. (M)i and (M)i, j denote the ith row and the (i, j)th

element of a matrix M, respectively. We use MT
for the transpose of

4

M. Also, ⟨a, b⟩ denotes the inner-product of vectors a = (a1, . . . ,an)
and b = (b1, . . . ,bn), i.e., ⟨a, b⟩ =

∑n
i=1

aibi .
For any finite set S , we use x ←R S to denote that x is chosen

uniformly at random from elements in S . Further, Sn denotes the

set {(a1, . . . ,an)
T | ai ∈ S for i = 1, . . . ,n} and, similarly, Sn×m

denotes the set of matrices with n rows and m columns, each of

whose elements lie in S .

Finally, y ← Alg(x) denotes that y is the output of running

algorithm Alg on input x with uniformly random bits.

2.1 Access structures

An access structure or policy specifies the set of attributes required

to gain access to some secret. More formally,

Definition 2.1 (Access structure). If U denotes the universe of

attributes, then an access structure A is a collection of non-empty

subsets ofU, i.e., A ⊆ 2
U \ {0}. It is called monotone if for every

B,C ⊆ U such that B ⊆ C , B ∈ A⇒ C ∈ A.

Monotonicity captures the natural idea that if an authorized user

acquires more attributes, he/she cannot lose her privileges because

of that.

A natural way to think about access control is in terms of (mono-

tone) Boolean formulae with AND and OR gates, where each

input is associated with an attribute inU. A set of attributes S ⊆ U
satisfies a formula if it evaluates to true on setting all inputs that

map to some attribute in S to true, and the rest to false.
Boolean formulae fall into a more general class of functions

called monotone span programs (MSPs) (or linear secret sharing

schemes [50]). An MSP is given by a matrix M of size n1 × n2 over

Zp and a mapping π : {1, . . . ,n1} → U. In [44], Lewko and Waters

describe a simple and efficient method to convert any (monotone)

Boolean formula F into an MSP (M,π) such that every row of M
corresponds to an input in F and the number of columns is same

as the number of AND gates in F . Furthermore, each entry in M is

either a 0, 1 or −1.
5

Let S be a set of attributes and I = {i | i ∈ {1, . . . ,n1},π (i)
∈ S} be the set of rows in M that belong to S . We say that (M,π)
accepts S if there exists a linear combination of rows in I that gives

(1, 0, . . . , 0). More formally, there should exist coefficients {γi }i ∈I
such that ∑

i ∈I
γi (M)i = (1, 0, . . . , 0), (2.1)

where (M)i is the ith row ofM. It is worth nothing that if Lewko and

Water’s method is applied on Boolean formulas, then it is always

possible to pick coefficients that are either 0 or 1 for the resulting

MSPs, irrespective of the set S .

Finally we state a lemma that will be useful in the security anal-

ysis of our ABE schemes. (See [13, Claim 2] for a proof.)

Lemma 2.2. If an MSP (M,π) is not satisfied by a set of attributes

S , then there exists a vector w whose first entry is non-zero and ∀ i
such that π (i) ∈ S , ⟨w, (M)i ⟩ = 0.

5
If a formula has general k -out-of-n threshold gates, then M’s entries may have a

larger range. (A threshold gate evaluates to true if any of the k out of n inputs are

true. Hence, OR is a 1-out-of-2 gate and AND is a 2-out-of-2 gate.)

2.2 Ciphertext-policy ABE

A ciphertext-policy ABE scheme over a message spaceM is given

by four algorithms that behave as follows:

• Setup(1λ). Given the security parameter λ as input, it outputs

a public key pk and a master secret key msk.

• Encrypt(pk,A,msg). On input the public key pk, an access

structure A (in the form of a Boolean formula, MSP, etc.),

and a message msg ∈ M, it outputs a ciphertext ct.
• KeyGen(msk, S). On input the master secret key msk and a

set of attributes S , it outputs a secret key sk.

• Decrypt(pk, ct, sk). On input the public key pk, a ciphertext

ct, and a secret key sk, it outputs a message msg∗ ∈ M or a

special symbol ⊥.

Even though not explicitly stated, every algorithm above receives

λ as input, and must run in poly(λ) time. They must also satisfy

the following correctness condition: For all messages msg ∈ M,

access structures A, and set of attributes S that lie in A, and for

all (pk,msk) ← Setup(λ), Pr[Decrypt(pk, ct, sk) , msg] ≤ negl(λ),
where ct← Encrypt(pk,A,msg) and sk← KeyGen(msk, S). (Decrypt
is assumed to be deterministic w.l.o.g.)

We assume that ciphertexts and keys also contain a description

of the access structure and set of attributes, respectively, that they

encode. But since in practice the description size will be much

smaller compared to the cryptographic part, we do not consider it

any further.

2.3 IND-CPA security

Intuitively, an ABE scheme is secure against chosen plaintext at-

tacks (CPA) if no group of colluding users can distinguish between

encryption of m0 and m1 under an access structure A⋆ of their

choice as long as no member of the group is authorized to decrypt

on his/her own. Such attacks could occur any time after the deploy-

ment of ABE scheme. Thus the choice of A⋆ is influenced by the

public parameters and the keys in possession of the colluding users.

When this is taken into account, one gets adaptive or full security.

On the other hand, a weaker notion called selective security only

prevents CPA attacks when A⋆ is chosen even before the system is

deployed, which is unlikely to happen in practice.

Adaptive security for an ABE scheme Π is formally defined with

the help of a game ExptΠ,A (λ,b) between a challenger Chal and

an adversary A, where Chal gets both 1
λ

and b, and A gets 1
λ
.

• (setup.) Chal runs Setup(1λ) of Π to obtain pk and msk, and

gives pk to A.

• (key query.) A sends a set of attributes S . Chal then runs

KeyGen(msk, S) to obtain a key, which is returned toA. This

step is repeated as many times as A desires.

• (challenge.) A submits two messages msg
0
,msg

1
and an

access structure A⋆. Chal then runs Encrypt(pk,A⋆,msgb)
to get a ciphertext, which is returned to A.

• (key query.) This phase is same as the second one.

A outputs a bit at the end of the game, which is defined to be the

game’s output. It is required that for every S queried byA, S < A⋆

(otherwise, b can be trivially guessed).

5

Definition 2.3. A CP-ABE scheme Π is called fully or adaptively

secure if for all PPT adversaries A,

AdvAΠ (λ) :=
��Pr[ExptΠ,A (λ, 0) = 1] − Pr[ExptΠ,A (λ, 1) = 1]

��
is negligible in λ.

2.4 Bi-linear maps and assumption

A map or pairing f from two source groups X and Y to a target

group T, all three of them multiplicative and of size ℓ, is called

bi-linear if for all a,b ∈ Z, x ∈ X, y ∈ Y, it holds that f (xa ,yb) =

f (x ,y)ab . Further, f is non-degenerate if f (x ,y) = 1 implies that

either x = 1 or y = 1. A pairing is asymmetric or Type-III if

no efficiently computable homomorphism exists between the two

source groups [25].

Let GroupGen be an asymmetric pairing group generator that

on input 1
λ
, outputs description of three groups G, H, GT of prime

order p = Θ(λ) equipped with a non-degenerate efficiently com-

putable bi-linear map e : G ×H→ GT . It also outputs generators д
and h for G and H, respectively.

Definition 2.4 (Decisional linear assumption). An asymmetric

pairing group generator GroupGen satisfies the decisional linear

assumption (DLIN) if for all PPT adversaries A,

AdvADLIN(λ) :=

���Pr[A(1λ , par,D,T0) = 1]−

Pr[A(1λ , par,D,T1) = 1]

���
is negligible in λ, where par := (p,G,H,GT , e,д,h) ← GroupGen(1λ);
a1,a2 ←R Z

∗
p ; s1, s2, s ←R Z; D := (дa1 ,дa2 ,ha1 ,ha2 ,дa1s1 ,дa2s2 ,

ha1s1 ,ha2s2); T0 := (дs1+s2 ,hs1+s2); T1 := (дs ,hs).

We point out that there are different versions of DLIN on asym-

metric groups. In sDLIN, an adversary is given half of the terms

from above: either all from G or from H [26]. Sometimes a mix

of terms from the two groups is used [30]. Our version is most

similar to the one in Libert et al. [45, Appendix I]. We need such an

assumption because our ciphertexts and keys have elements from

both the groups, which is why SXDH does not work. Note that it is

generically no stronger than the DLIN assumption on symmetric

groups [17].

One can also define a variant of the k-linear family of assump-

tions [54] in a manner similar to Definition 2.4. Our ABE schemes

can in fact be generalized to work for any k ≥ 2 and the security

would then follow from the corresponding assumption. However,

the schemes’ complexity would roughly increase linearly with k .

We have implemented the general version of the scheme [2] but

consider only the most efficient one here (for k = 2).

2.5 Representing group elements

Following [19, 22], we use [x]1, [y]2 and [z]T to denote дx , hy and

e(д,h)z , respectively, for д ∈ G and h ∈ H which will be clear from

context. If v is a vector given by (v1,v2, . . . ,vn)
T

then [v]1 means

(дv1 ,дv2 , . . . ,дvn)T. [M]1 for a matrix M is defined similarly. These

operations are defined in the groups H and GT in an analogous

manner. Finally, e([A]1, [B]2) for two matrices A, B is defined as

[ATB]T .

Observe that given [U]1 for a matrix U of size a ×b, it is straight-

forward to compute [UV]1 for any matrix V of size b × c by doing

abc exponentiations and ac(b − 1) multiplications in the worst case.

If we define A, s and s′ to be
a1 0

0 a2

1 1

 ,
[
s1
s2

]
, and

s1
s2
s

 ,
respectively, then using the notation just described, we can state

the DLIN assumption succinctly as

([A]1, [A]2, [As]1, [As]2) ≈ ([A]1, [A]2, [s′]1, [s′]2),

where ≈ denotes computational indistinguishability. (It is implicit

that an adversary also gets par as an input.) We use this succinct

version in the rest of the paper.

3 FAME: OUR CP-ABE SCHEME

In this section, we give a formal description of our ciphertext-policy

ABE scheme Fame. The scheme uses a hash functionH which maps

arbitrary binary strings to elements of the group G. In the security

proof,H will be modeled as a random oracle.

Please note that the description of Fame is not intended to make

the connections to CGW [19] explicit. In fact, we refrain from using

the shorthand for group representation (widely used in CGW and

described in Section 2.5) at this point so that the reader can quickly

estimate the complexity of the scheme in terms of the size of each

component, number of operations required to compute them, etc.

When we set out to prove security of Fame afterwards (Section 4),

we will present an alternate formulation of its algorithms along the

lines of CGW by re-interpreting the outputs of random oracle.

In Fame, two types of inputs will be given toH : inputs of the

form (x , ℓ, t) or that of the form (j, ℓ, t), where x is an arbitrary

string, j is a positive integer, ℓ ∈ {1, 2, 3} and t ∈ {1, 2}. For sim-

plicity, we represent these two inputs as xℓt and 0jℓt , respectively,

appending 0 at the beginning of the second one so that it is not

confused with the first. We assume that the inputs are appropriately

encoded so that no two different tuples collide. Figure 3.1 describes

the scheme.

There are several points to note about Fame. First, every cipher-

text and key has elements from both G and H. (As far as we know,

this feature is unique to our scheme.) In particular, ct0 has 3 ele-

ments from H, ct1, . . . , ctn1
have 3 elements each from G, and ct′

has one element from GT . (Though the time taken to generate a

ciphertext depends on the number of columns n2 in M, the size of

the ciphertext does not.) Also, sk0 has 3 elements from H and sky ,

sk′ have 3 elements each from G, for all y ∈ S . Thus, our scheme

is mainly comprised of elements from G and the time taken to

generate ciphertexts and keys is determined by the cost of group

operations in G.

Also observe that the decryption procedure is doing only 6 pair-

ing operations, but a large number of exponentiations in the source

groups. Fortunately, all these exponentiations are in the faster group

G, thus bringing down the decryption time considerably. Moreover,

if we use Lewko-Waters’ approach to convert Boolean formulae

into MSPs (as discussed in §2.1) then the reconstruction coefficients

γi are either 0 or 1. As a result, there will be no exponentiations at

all during decryption—just multiplications in G.

6

• Setup(1λ) Run GroupGen(1λ) to obtain (p,G,H,GT , e,д,h). Pick a1,a2 ←R Z
∗
p and d1,d2,d3 ←R Zp . Output

(h,H1 := ha1 ,H2 := ha2 ,T1 := e(д,h)d1a1+d3 ,T2 := e(д,h)d2a2+d3)

as the public key pk. Also, pick b1,b2 ←R Z
∗
p and output

(д,h,a1,a2,b1,b2,д
d1 ,дd2 ,дd3)

as the master secret key msk.

• KeyGen(msk, S) Pick r1, r2 ←R Zp and compute

sk0 := (hb1r1 ,hb2r2 ,hr1+r2)

using h,b1,b2 from msk. For all y ∈ S and t = 1, 2, compute

sky,t := H(y1t)
b

1
r
1

at · H(y2t)
b

2
r
2

at · H(y3t)
r
1
+r

2

at · д
σy
at ,

where σy ←R Zp . Set sky := (sky,1, sky,2,д−σy). Also, compute

sk′t := дdt · H(011t)
b

1
r
1

at · H(012t)
b

2
r
2

at · H(013t)
r
1
+r

2

at · д
σ ′
at

for t = 1, 2, where σ ′ ←R Zp . Set sk′ = (sk′
1
, sk′

2
,дd3 · д−σ

′

). Output (sk0, {sky }y∈S , sk′) as the key.

• Encrypt(pk, (M,π),msg) Pick s1, s2 ←R Zp . Compute

ct0 := (H s1

1
,H s2

2
,hs1+s2)

using pk. Suppose M has n1 rows and n2 columns. Then, for i = 1, . . . ,n1 and ℓ = 1, 2, 3, compute

cti, ℓ := H(π (i)ℓ1)s1 · H(π (i)ℓ2)s2 ·

n2∏
j=1

[
H(0jℓ1)s1 · H(0jℓ2)s2

] (M)i, j ,
where, recall that, (M)i, j denotes the (i, j)th element of M. Set cti := (cti,1, cti,2, cti,3). Also, compute

ct′ := T s1

1
·T s2

2
·msg.

Output (ct0, ct1, . . . , ctn1
, ct′) as the ciphertext.

• Decrypt(pk, ct, sk) Recall that if the set of attributes S in sk satisfies the MSP (M,π) in ct, then there exists constants {γi }i ∈I that

satisfy (2.1). Now, compute

num := ct′ · e

(∏
i ∈I

ctγii,1, sk0,1

)
· e

(∏
i ∈I

ctγii,2, sk0,2

)
· e

(∏
i ∈I

ctγii,3, sk0,3

)
,

den := e

(
sk′

1
·
∏
i ∈I

skγiπ (i),1, ct0,1

)
· e

(
sk′

2
·
∏
i ∈I

skγiπ (i),2, ct0,2

)
· e

(
sk′

3
·
∏
i ∈I

skγiπ (i),3, ct0,3

)
,

and output num/den. Here sk0,1, sk0,2, sk0,3 denote the first, second and third elements of sk0; the same for ct0.

Figure 3.1: Fame: ciphertext-policy attribute-based encryption.

Please see Appendix A for the correctness of Fame. We now

discuss some issues pertinent to the use of ABE schemes.

Encrypting large messages. As the reader may have noticed, the

plaintext data given to the encryption algorithm in Fame is an

element of the target group. In practice this data would be too

large to be encoded as a single element of GT , and it would be

very expensive to break it into small pieces and ABE encrypt each

piece separately. The standard method is to use a key encapsula-

tion mechanism (KEM) wherein a random element of GT is ABE

encrypted and hashed to derive a session key. This key is then used

to encrypt the plaintext data through a fast symmetric key scheme

like AES. Thus, the overhead of encrypting any amount of data via

an ABE scheme is reduced to the cost of just one application of ABE

encrypt. An even more efficient variant would simply hash T s1

1
T s2

2

and use the result as the symmetric key—a very similar proof to

the one for Fame would show that this is a secure ABE-KEM.

One-use restriction. As is true for all known fully secure schemes

secure under standard assumptions, our scheme requires the map-

ping π in an MSP to be an injective function, i.e., no two rows

should be mapped to the same attribute. This is commonly referred

to as the one-use restriction.
6

A common way of getting around

this problem, as suggested in many papers like [42, 57], is to have

k copies of each attribute in the universe for some fixed k chosen

at set-up. For example, ‘Title:Prof’ will be replaced by ‘Title:Prof:1’,
‘Title:Prof:2’, . . . , ‘Title:Prof:k’. The downside of this transformation

is that the size of keys grows by a factor of k ; but note that the

encryption and decryption time is not affected.
7

6
Kowalczyk and Lewko KP-ABE schemes [40] also have one-use restriction. The public

parameters in their scheme grow logarithmically rather than linearly in the bound

on attribute re-use, but ciphertexts still grow linearly. Their prime-order construction

was broken and has been removed from the full version.

7
We could modify Fame to prevent a multiplicative increase in key-size by borrowing

ideas from the unbounded attribute re-use scheme in [5], but the security assumption

7

Non-monotonicity. Though monotonicity is a very natural prop-

erty for access structures (Section 2.1), non-monotonic policies can

also be useful. For example, a CS department may want to make a

certain set of files accessible to everybody except graduate students.

Fame can be made to support such policies by introducing new

attributes like ‘Title:Not-Grad’, but the problem is that a professor

in the department, for instance, must now get all attributes of the

type ‘Title:Not-*’, which could result in much larger keys. There are

only a handful of schemes in literature that support non-monotonic

access structures directly, with Ostrovsky et al. [48] KP-ABE being

the most popular one. Though these schemes are able to avoid the

‘Title:Not-*’ problem, they also fix the number of attributes any

ciphertext must have and require that the entire ciphertext be used

in every decryption (so that a user cannot pretend not to have a

certain attribute), thus resulting in larger ciphertexts and slower

decryption.

4 SECURITY OF FAME

The security proof proceeds via a series of hybrids. A hybrid de-

scribes how the challenger Chal interacts with an adversary A.

The zeroth hybrid, Hyb
0
, is of course the one where Chal andA in-

teract according to ExptΠ,A (1
λ ,b) (§2.3) with Π being our scheme

Fame. The only difference is that the hash functionH is assumed

to behave like a random oracle.

The first step in the security analysis is to rewrite Fame in a

compact form by interpreting the outputs of random oracle appro-

priately and using the notation defined in §2.4 to represent group

elements. This compact form will be the first hybrid, Hyb
1
. Here

one can see the connections to CGW more clearly.

The compact form also simplifies rest of the proof presentation.

So we discuss Hyb
1

at length first and give a high-level overview

of the proof after that.

4.1 Compact representation

Let Samp be an algorithm that on input a prime p, outputs

Z :=

u1 0

0 u2

1 1

 , z⊥ :=

u1

−1

u2

−1

−1

 , (4.1)

where u1,u2 ←R Z
∗
p . Appendix C.2 discusses some interesting

properties of this algorithm.

We define a modified version of the IND-CPA game Expt
Fame,A

(1λ ,b), called Hyb
1
, in this section. To begin with, the challenger

Chal sets up the ABE scheme as follows:

Setup. Run GroupGen(1λ) to obtain (p,G,H,GT , e,д,h) as be-

fore. Pick (A, a⊥), (B, b⊥) ← Samp(p) and d1,d2,d3 ←R Zp . Let

d denote the column vector (d1,d2,d3)
T
. Set pk := ([A]2, [dTA]T),

msk := (д,h,A,B, [d]1).
In order to simulate the random oracle, Chal maintains two lists

L and Q . The list L has entries of the form (x ,Wx) or (j,Uj) where

x is an arbitrary binary string, j is a positive integer, and Wx ,Uj
are 3 × 3 matrices over Zp .

8
The list Q has entries of the form (q, r)

would have to be parameterized by the degree d of attribute reuse, and the number of

pairings required for decryption would also increase by a factor of d .

8
Assume that the x and j are appropriately encoded so that they don’t collide.

where q is either xℓt or 0jℓt (for ℓ ∈ {1, 2, 3} and t ∈ {1, 2}) or

something else, and r is an element of G.

Adversary A can make one of three types of oracle queries:

(1) xℓt : Chal checks if (xℓt , r) ∈ Q for some r or not. If such

an entry is found then it returns r , otherwise it checks if

(x ,Wx) ∈ L for some Wx or not. If such an entry is found

then r := [(WT
xA)ℓ,t]1 is computed, (xℓt , r) is added to Q ,

and r is returned. Else, it picks Wx ←R Z
3×3

p , adds (x ,Wx)

to L, computes r := [(WT
xA)ℓ,t]1, adds (xℓt , r) to Q , and

returns r .
(2) 0jℓt : Chal checks if (0jℓt , r) ∈ Q for some r or not. If such

an entry is found then it returns r , otherwise it checks if

(j,Uj) ∈ L for some Uj or not. If such an entry is found then

r := [(UT
j A)ℓ,t]1 is computed, (0jℓt , r) is added to Q , and

r is returned. Else, it picks Uj ←R Z
3×3

p , adds (x ,Uj) to L,

computes r := [(UT
j A)ℓ,t]1, adds (0jℓt , r) to Q , and returns

r .
(3) Anything else, say q: Chal checks if (q, r) ∈ Q for some r or

not. If such an entry is found then it returns r , otherwise a

random element from G, say r ′, is picked, (q, r ′) is added to

Q , and r ′ is returned.

Key generation. When A makes a key query S , Chal retrieves

Wy for every y ∈ S and U1 from the list L. (If one of them is not

available then a random 3 × 3 matrix is generated like above. The

list L is also updated accordingly.) Now pick r1, r2,σ
′ ←R Zp as

well as σy ←R Zp for y ∈ S . Let r = (r1, r2)T and compute

sk0 := [Br]2, sky := [WyBr + σya⊥]1,

sk′ := [d + U1Br + σ ′a⊥]1

for all y ∈ S . Then return (sk0, {sky }y∈S , sk′) as the key.

Encryption. When A sends messages msg
0
,msg

1
and a policy

(M,π), Chal retrieves [(WT
π (i)A)ℓ,t]1 and [(UT

j A)ℓ,t]1 for all i =

1, . . . ,n1, j = 1, . . . ,n2, ℓ, t from the list Q . (If a π (i)ℓt or 0jℓt is

not found in Q , then it follows the same process as in (1) or (2)

above, respectively.) Now pick s1, s2 ←R Zp , set s to be (s1, s2), and

compute

ct0 := [As]2, cti :=

WT
π (i)As +

n2∑
j=1

(M)i, jUT
j As

1

ct′ := [dTAs]T ·msgb ,

for i = 1, . . . ,n1. Return ciphertext (ct0, ct1, . . . , ctn1
, ct′).

4.2 High-level overview

Even though Hyb
0
, with the algorithms of Fame, looks very differ-

ent from Hyb
1
, they are in fact identical from the point of view of

any adversary. At a high level, the Wx , Uj matrices have enough

entropy to make (WT
xA)ℓ,t , (UT

j A)ℓ,t look random for every ℓ, t .

Further, when the hashed values in the ciphertexts/keys of Fame

are interpreted in the way the challenger simulates them, one can

then carefully manipulate them to show that they match with those

in Hyb
1
.

The structure of ciphertexts and keys in Hyb
1

appears similar

to that of CGW’s CP-ABE scheme [19, Appendix B.2]. One clear

8

and important difference is that while our ciphertexts and keys

have only the first component in group H, theirs are composed

entirely of elements from G and H, respectively. From a security

perspective, we have an additional a⊥ component in our keys that

is not present in theirs. We define a sequence of hybrids, called

Group-I hybrids, to get rid of this component. These hybrids are

specific to our proof.

Group-I has 3Q hybrids from Hyb
2,1,1 to Hyb

2,3,Q , where Q
is the number of key queries an adversary makes. These hybrids

modify the key components one by one. First, DLIN is used to

replace Br by Br+ r̂a⊥ (Definition 2.4, §2.5) for a random r̂ because

the linear independence of a⊥ from B (Lemma C.1) makes Br+ r̂a⊥

a random vector. Second, the Wx matrices have one unit of residual

entropy even given WT
xA and WxB (same with Uj), which can

be exploited to absorb the extra a⊥ component without affecting

the challenge ciphertext and other parts of the keys. This type of

information-theoretic step is usually called parameter-hiding in

dual-system encryption based proofs [19, 56]. Lastly, DLIN is used

to revert back to Br.
We then define another set of hybrids, called Group-II hybrids,

to show that the encryption of any message is indistinguishable

from the encryption of a random message. Group-II has 3Q + 2

hybrids: Hyb
3
, Hyb

4,1,1, . . ., Hyb
4,3,Q , and Hyb

5
. The first among

them, Hyb
3
, uses DLIN to replace As by As + ŝb⊥ in the challenge

ciphertext, possible again due to linear independence. The new

form of ciphertext is called semi-functional, a term first used by

Waters [56]. The sequence from Hyb
4,1,1 to Hyb

4,3,Q is somewhat

similar to Hyb
2,1,1 to Hyb

2,3,Q in terms of the changes made to

key components. The residual entropy in Wx , Uj is used towards a

different purpose now: to introduce some structured randomness

into the key.

Moving from Hyb
4,1,1 to Hyb

4,3,Q requires more care because

the ciphertext is semi-functional. We must make sure that while the

keys are being transformed, the ciphertext can still be generated

given just a DLIN tuple. Furthermore, the parameter-hiding step

affects not only the keys but the ciphertext too. At this stage, we use

the fact that none of the keys issued to the adversary can decrypt

the challenge ciphertext.

Hyb
4,3,Q is almost the same as Hyb

2,3,Q , the last of the Group-I

hybrids, except that the ciphertext is semi-functional and the keys

have some extra randomness. The last step, which leads to Hyb
5
,

moves this randomness to the ciphertext, so that it is indistinguish-

able from the encryption of a random message.

4.3 Main theorem

We now formally state the security property of Fame.

Theorem 4.1. Fame, defined in Figure 3.1, is fully secure (Def 2.3)

under the DLIN assumption on asymmetric pairing groups (Def 2.4)

in the random oracle model. Concretely, for any PPT adversary A

making Q key queries in the IND-CPA security game, there exists a

PPT adversary B such that

AdvA
Fame
(λ) ≤ (8Q + 2)AdvBDLIN(λ) + (16Q + 6)/p,

where p = Θ(λ) is the order of the pairing group.

A proof of the above theorem can be found in Appendix C. There,

we first formally describe the hybrids that will be used in the proof,

and how we go from one hybrid to the next (C.1). Then we show

why a hybrid in the sequence is indistinguishable from the next

one (C.3). And finally we prove the theorem with the help of these

indistinguishable hybrids (C.4).

5 IMPLEMENTATION & EVALUATION

We implement ABE schemes in Python 2.7.10 using the Charm 0.43

framework [7]. We use MNT224 curve for pairings because it is the

best Type-III curve in PBC, the default pairing library in Charm. It

provides 96-bit security level [59]. All running times below were

measured on a Macbook Pro laptop with a 2.7 GHz Intel Core i5

processor and 8GB RAM. The implementation code is available on

GitHub [2].

Table 5.1 lists the average time taken by various operations on

MNT224 in milliseconds. One can see that operations on group

H are significantly more expensive than on G, from 7 times for

multiplication to as much as 775 times for hashing. Pairing is a very

expensive operation too: if we put exponentiation and hashing inH
aside then pairing is at least thrice as costly as any other operation.

It is also important to note that the size of an element in H is 3

times that of G.
9

Groups Multiplication Exponentiation Hash

G .009 1.266 .099

H .065 14.412 76.767

GT .020 3.356 -

Pairing 10.243

Table 5.1: Average time taken by various operations on the

MNT224 curve. Pairing operation is listed separately. All

times are measured inmilliseconds correct to three decimal

places.

We use access policies of type ‘Attr1 AND Attr2 AND ... AND
AttrN’ as in Green et al. [31] because all the N attributes are then

required for decryption. We say that such a policy is of size N .

We test all the schemes against policies and attribute sets of size

10, 20, . . . , 100. As argued by Green et al., large policy sizes are

quite likely in typical use cases (e.g., a restriction window involving

a Unix time value). We first convert the policies into a Boolean

formula and then to an MSP using Lewko-Waters’ method, the

advantage being that the matrix generated has only 0, 1 or −1

entries and the reconstruction coefficients are always just 0 or 1

(see §2.1 for a detailed discussion.)

CP-ABE. Besides Fame, we implement Bethencourt et al.’s (BSW)

[16, Section 4.2], Waters’ [57, Section 3] and CGW’s [20, Appendix

B.2] CP-ABE schemes under the same setting. There are other im-

plementations of the first two schemes but, as far we know, CGW’s

schemes have not been implemented before, nor have any other

fully secure schemes. Below, we compare with both the SXDH
(1-linear) and DLIN (2-linear) instantiations of CGW, the two as-

sumptions under which it gives the best performance. They are

referred to as CGW-1 and CGW-2, respectively, for brevity.

9
Though the numbers here are specifically for the MNT224 curve, other Type-III curves

like Bareto-Naehrig have similar disparity between groups G and H [33].

9

(a) Key generation (b) Encryption (c) Decryption

Figure 5.1: Ciphertext-policy attribute-based encryption.

(a) Key generation (b) Encryption (c) Decryption

Figure 5.2: Key-policy attribute-based encryption.

We chose BSW because it was the first scheme proposed for CP-

ABE, and it is quite popular in the community for its simplicity and

efficiency, but proved secure only under the generic group model

(GGM). Waters’ scheme was the first to be proved in the standard

model, albeit only selectively. CGW is an obvious choice since it is

the most efficient fully secure scheme (in the standard model) for a

bounded universe of attributes.

It is worth noting that both BSW’s and Waters’ schemes were

built using symmetric bilinear maps, which have serious security

issues [24, 37]. We implement them in the asymmetric setting using

the MNT224 curve (see Appendix D and E). In this process, the

number of elements in ciphertexts or keys, and the number of group

operations used in any of the algorithms is not affected. We believe

that the modified version of Waters’ scheme can be proved secure

under a variant of the assumption he uses. Modifying BSW required

more care because it uses a hash function. However, since BSW

is proven secure in the generic group model, the security of the

modified scheme is obvious (in the same model).
10

Figure 5.3 (left) shows the time it takes to run the set-up al-

gorithms of the CP-ABE schemes we implemented. For bounded

10
Please note that there are various ways to convert a Type-I scheme to Type-III, and

this process is already quite challenging for identity-based encryption [3, 6, 8]. We

try to balance the total work fairly between encryption and key-generation (see Table

5.2), and avoid the use of expensive operations like hashing in H (see Table 5.1).

Scheme Uni size Time

Our - 0.11s

CGW-1 100 2.23s

CGW-2 100 5.13s

Waters 100 0.64s

BSW - 0.08s

Scheme Uni size Time

Our - 0.11s

CGW-1 100 4.08s

CGW-2 100 9.33s

GPSW 100 0.64s

Figure 5.3: Set-up times for CP-ABE (left) and KP-ABE

(right).

universe schemes, we used the smallest bound possible, i.e., 100.

The advantage of using an unbounded universe scheme is clear

from this table: our scheme takes a mere one-tenth of a second to be

set-up no matter how many attributes need to be supported. This

is only slightly worse than BSW, another unbounded scheme only

known to be secure in the generic group model, and substantially

better than the best known fully secure scheme, even for a universe

of size 100.

Figure 5.1 compares the running time of key generation, en-

cryption and decryption algorithms for the CP-ABE schemes we

10

Key generation Encryption

G H G H
Schemes Mul Exp Hash Mul Exp Hash Mul Exp Hash Mul Exp Hash

Our 8T + 9 9T + 9 6(T + 1) - 3 - 12n1n2 + 6n1 6n1 6(n1 + n2) - 3 -

CGW-1 - - - - 2(T + 2) - ∼ 4n1n2 2n1 + 4n2 - - - -

CGW-2 - - - - 3(T + 2) - ∼ 6n1n2 6n1 + 9n2 - - - -

Waters 1 T + 1 - - 1 - n1 2n1 - - n1 + 1 -

BSW T + 1 T + 2 T - T - - n1 n1 - n1 + 1 -

Table 5.2: The number of various operations inG andH for key-generation and encryption in the implementations of CP-ABE

schemes we consider. HereT denotes the number of attributes input to KeyGen; and n1, n2 are the dimensions of the MSP input

to Encrypt. The exact number for CGW-1 and CGW-2 multiplications in G are 2(n1 + 2n2 + 2n1n2 − 1) and 3(2n1 + 3n2 + 2n1n2 − 1),

respectively.

Decryption

Multiplication Pairing

Schemes G H GT
Our 6I + 3 - 6 6

CGW-1 2I 2I 4 4

CGW-2 3I 3I 6 6

Waters I - 3 I + 2

BSW - - 2I + 1 2I + 1

Figure 5.4: The number of various operations inG,H and

GT for decryption in the implementations of CP-ABE

schemes we consider. Here I is the number of attributes

used in decryption.

Key size Ciphertext size

Schemes G H G H

Our 3(T + 1) 3 3n1 3

CGW-1 - 2(T + 2) 2(n1 + 1) -

CGW-2 - 3(T + 2) 3(n1 + 1) -

Waters T + 1 1 n1 n1 + 1

BSW T + 1 T n1 n1 + 1

Figure 5.5: The size of ciphertexts and keys in the CP-

ABE schemeswe consider. ‘G’ and ‘H’ columns denote the

number of elements in groups G and H, respectively. T
denotes the number of attributes input to KeyGen; and n1,

n2 are the dimensions of the MSP input to Encrypt. Note
that the size of an element of H is 3 times that of G in the

MNT224 curve.

consider. Tables 5.2, 5.4 list the number of various group operations

involved in the implementations of these algorithms.
11 12

Even though our scheme is based on the DLIN version of CGW,

it outperforms even the SXDH version for key generation: when

the number of attributes is 100, it takes roughly half the time of

CGW SXDH. Only Waters’ scheme does better but at the cost of

much weaker security guarantees (selective security under a q-type

assumption).

To understand why the schemes compare in this way, it is useful

to study the key-generation column of Table 5.2. We can focus on

the number of exponentiations because it is a lot more expensive

than multiplication and hashing, see Table 5.1. (Hashing in H is

most expensive but it is never used.) Our scheme has a total of

about 4.5 times more exponentiations than CGW-1 and BSW but

still performs better than both because we have found a way to

do almost all the operations in the faster group G. Waters’ scheme

does not have any operation in H (except one) and 9 times less

exponentiations in G, therefore it does better.

In terms of encryption time, we do better than all the other

schemes: it takes just about a second to encrypt a policy of size 100!

It is clear from Table 5.2 why Waters and BSW are worse: exponen-

tiation in H is about 11 times slower than in G. What is less clear is

11
An ABE ciphertext has a few target group elements that hide the message. The

number of operations required to generate them have not been included in this table.

12
If an entry of the MSP matrix is used in the exponent of an exponentiation operation,

then we count the operation as a multiplication. Recall that the entries are either 0, 1

or −1 (§2.1), so even in the worst case there will be an inversion operation, which is

faster than multiplication.

our better performance with respect to CGW, specifically CGW-1.

This is because the randomness complexity of their encryption

scheme is unusually high. As many as 4n2 random numbers need to

be sampled for every encryption, and sampling needs much more

time than hashing or multiplication (for the MNT224 curve in the

Charm framework).

Perhaps the most striking aspect of our scheme is the decryp-

tion time. While it increases almost linearly for BSW and Waters’

schemes with the number of attributes required to decrypt, both

CGW’s and our schemes always need just about 0.06 seconds! This

is due to the fact that only a constant number of pairing operations

are required. (The number of multiplication operations does grow

linearly in all schemes according to Table 5.4 but that has no sig-

nificant effect because even multiplication in H is about 150 times

slower than pairing.)

Finally, we would like to draw the attention of the reader to

Table 5.5 which lists the size of ciphertexts and keys in terms of the

number of elements from G and H.
13

A cursory look may give the

impression that ciphertexts/keys of our scheme are not smaller than

anyone else. However, recall that an element ofH is 3 times as large

as that of G. So our key size is much smaller than all the schemes

except Waters’; and ciphertext size is comparable to CGW-2 and

smaller than both Waters and BSW.

KP-ABE.We briefly discuss the performance of our KP-ABE scheme

(Appendix B). For comparison, we also implemented CGW’s (SXDH

13
An ABE ciphertext has a few target group elements that hide the message. They

have not been included in this table.

11

and DLIN) [20, Appendix B.1] and Goyal et al.’s (GPSW) KP-ABE

schemes [29, Appendix A.1]. Figure 5.3 (right) lists the set-up time

and Figure 5.2 plots the time taken by other operations. Also see

Appendix F for the asymmetric version of GPSW that we imple-

mented.

Once again the set-up time is a very small constant, the decryp-

tion time is only about 0.06s, and key generation is better than

CGW-1 (only about a second for a policy size of 40). Encryption

time, though larger than other schemes, is no more than 0.9s for as

many as 100 attributes.

Further improvements. There are a number of ways to further

optimize the performance of our schemes. A natural idea is to

use C/C++ instead of Python and interface directly with a pairing

library (instead of using Charm’s wrappers). The Charm framework,

however, does have several benefits like pre-computation tables that

significantly speed up exponentiations, which we have not exploited

here. One could also take advantage of multi-exponentiation and

products of pairings.

Another option would be to use a different curve for pairings,

like the Bareto-Naehrig (BN) curves. Please note that there are

attacks known on certain parameters for both MNT and BN curves

[34, 39]. Hence one must choose a curve carefully for a real world

application.

6 RELATEDWORK

We discuss some related work in this section that has not been

referred to or discussed in detail in the introduction.

A number of methods have been devised to translate schemes

based on composite-order groups to the prime-order setting [23,

35, 41] but they are not general purpose. Moreover, the resulting

schemes usually have a factor more group elements in the cipher-

texts/keys than the original scheme.

Some sophisticated tools have been developed to automate the

translation of Type-I to Type-III pairings [3, 6, 8] but they have

been applied to (hierarchical) identity-based encryption, broadcast

encryption and signature schemes only. It is not clear if the tools

can handle more advanced encryption primitives like ABE.

Okamoto and Takashima have developed fully secure schemes

under the DLIN assumption on symmetric maps which support a

large number of attributes [47], but theirs is not a large-universe

construction in the standard sense. They consider (attribute, value)

pairs where each attribute takes a value from an exponential-sized

space, instead of being present or not present. Their security proof re-

quires a polynomial sized set of all possible attributes to be known in

advance. Moreover, 14 group elements are needed in ciphertext/key

for every attribute, and decryption is similarly slow. On the other

hand, their approach makes it easy to handle non-monotonic poli-

cies where one could have conditions like an attribute should not

have a particular value.

Attrapadung has recently proposed some large universe con-

structions on asymmetric maps [11] under q-type assumptions. Our

use of random oracle not only eliminates such non-standard as-

sumptions but also gives much more efficient constructions. For

example, Attrapadung’s unbounded KP-ABE scheme has cipher-

texts with 6 group elements per attribute, keys with 9 elements

per matrix row, and requires 9 pairings per attribute to decrypt,

whereas our KP-ABE scheme (Figure B.1) does much better.

REFERENCES

[1] Zeutro LLC - Encryption and Data Security. http://www.zeutro.com/.

[2] Attribute-based Encryption. https://github.com/sagrawal87/ABE, 2017.

[3] M. Abe, J. Groth, M. Ohkubo, and T. Tango. Converting cryptographic schemes

from symmetric to asymmetric bilinear groups. In J. A. Garay and R. Gennaro,

editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 241–260. Springer,

Heidelberg, Aug. 2014.

[4] S. Agrawal and M. Chase. A study of pair encodings: Predicate encryption in

prime order groups. In E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part II,

volume 9563 of LNCS, pages 259–288. Springer, Heidelberg, Jan. 2016.

[5] S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate

encryption schemes. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017,

Part I, volume 10210 of LNCS, pages 627–656. Springer, Heidelberg, May 2017.

[6] J. A. Akinyele, C. Garman, and S. Hohenberger. Automating fast and secure trans-

lations from type-I to type-III pairing schemes. In I. Ray, N. Li, and C. Kruegel:,

editors, ACM CCS 15, pages 1370–1381. ACM Press, Oct. 2015.

[7] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and

A. D. Rubin. Charm: a framework for rapidly prototyping cryptosystems. Journal

of Cryptographic Engineering, pages 111–128, 2013.

[8] J. A. Akinyele, M. Green, and S. Hohenberger. Using SMT solvers to automate

design tasks for encryption and signature schemes. In A.-R. Sadeghi, V. D. Gligor,

and M. Yung, editors, ACM CCS 13, pages 399–410. ACM Press, Nov. 2013.

[9] J. A. Akinyele, M. W. Pagano, M. D. Green, C. U. Lehmann, Z. N. J. Peterson, and

A. D. Rubin. Securing electronic medical records using attribute-based encryption

on mobile devices. In SPSM ’11, pages 75–86, 2011.

[10] N. Attrapadung. Dual system encryption via doubly selective security: Frame-

work, fully secure functional encryption for regular languages, and more. In P. Q.

Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages

557–577. Springer, Heidelberg, May 2014.

[11] N. Attrapadung. Dual system encryption framework in prime-order groups

via computational pair encodings. In J. H. Cheon and T. Takagi, editors, ASI-

ACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623. Springer, Heidelberg,

Dec. 2016.

[12] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin. Persona: an

online social network with user-defined privacy. In ACM SIGCOMM 2009, pages

135–146, 2009.

[13] A. Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology, pages

11–46. 2011.

[14] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-

signing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM

Press, Nov. 1993.

[15] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis,

editor, EUROCRYPT’94, volume 950 of LNCS, pages 92–111. Springer, Heidelberg,

May 1995.

[16] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-

cryption. In 2007 IEEE Symposium on Security and Privacy, pages 321–334. IEEE

Computer Society Press, May 2007.

[17] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,

editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg,

Aug. 2004.

[18] J. Camenisch, M. Dubovitskaya, R. R. Enderlein, and G. Neven. Oblivious transfer

with hidden access control from attribute-based encryption. In I. Visconti and

R. D. Prisco, editors, SCN 12, volume 7485 of LNCS, pages 559–579. Springer,

Heidelberg, Sept. 2012.

[19] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups

via predicate encodings. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,

Part II, volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, Apr. 2015.

[20] J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups

via predicate encodings. Cryptology ePrint Archive, Report 2015/409, 2015.

http://eprint.iacr.org/2015/409.

[21] J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups.

In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,

pages 435–460. Springer, Heidelberg, Aug. 2013.

[22] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for

Diffie-Hellman assumptions. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,

Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, Aug. 2013.

[23] D. M. Freeman. Converting pairing-based cryptosystems from composite-order

groups to prime-order groups. In H. Gilbert, editor, EUROCRYPT 2010, volume

6110 of LNCS, pages 44–61. Springer, Heidelberg, May 2010.

[24] S. Galbraith. New discrete logarithm records, and the death of

type 1 pairings. https://ellipticnews.wordpress.com/2014/02/01/

new-discrete-logarithm-records-and-the-death-of-type-1-pairings/, 2014.

12

http://www.zeutro.com/
https://github.com/sagrawal87/ABE
http://eprint.iacr.org/2015/409
https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/
https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/

[25] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.

Discrete Applied Mathematics, pages 3113 – 3121, 2008.

[26] E. Ghadafi, N. P. Smart, and B. Warinschi. Groth-Sahai proofs revisited. In

P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages

177–192. Springer, Heidelberg, May 2010.

[27] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute

based encryption. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,

A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of

LNCS, pages 579–591. Springer, Heidelberg, July 2008.

[28] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. In A. Juels, R. N. Wright, and

S. Vimercati, editors, ACM CCS 06, pages 89–98. ACM Press, Oct. / Nov. 2006.

Available as Cryptology ePrint Archive Report 2006/309.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for

fine-grained access control of encrypted data. Cryptology ePrint Archive, Report

2006/309, 2006. http://eprint.iacr.org/2006/309.

[30] M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer.

In J. Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 179–197.

Springer, Heidelberg, Dec. 2008.

[31] M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of abe

ciphertexts. In USENIX Security Symposium 2011, pages 34–34, 2011.

[32] M. D. Green and I. Miers. Forward secure asynchronous messaging from punc-

turable encryption. In 2015 IEEE Symposium on Security and Privacy, pages

305–320. IEEE Computer Society Press, May 2015.

[33] A. Guillevic. Comparing the pairing efficiency over composite-order and prime-

order elliptic curves. In M. J. Jacobson Jr., M. E. Locasto, P. Mohassel, and

R. Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages 357–372. Springer,

Heidelberg, June 2013.

[34] A. Guillevic, F. Morain, and E. Thomé. Solving discrete logarithms on a 170-bit

MNT curve by pairing reduction. Cryptology ePrint Archive, Report 2016/507,

2016. http://eprint.iacr.org/2016/507.

[35] G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, and A. Rupp. Polynomial spaces: A

new framework for composite-to-prime-order transformations. In J. A. Garay and

R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 261–279.

Springer, Heidelberg, Aug. 2014.

[36] S. Hohenberger and B. Waters. Attribute-based encryption with fast decryption.

In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages

162–179. Springer, Heidelberg, Feb. / Mar. 2013.

[37] A. Joux. SAC 2013, chapter A New Index Calculus Algorithm with Complexity

$$L(1/4+o(1))$$ in Small Characteristic, pages 355–379. 2014.

[38] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunc-

tions, polynomial equations, and inner products. In N. P. Smart, editor, EU-

ROCRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Heidelberg, Apr.

2008.

[39] T. Kim and R. Barbulescu. Extended tower number field sieve: A new complexity

for the medium prime case. In M. Robshaw and J. Katz, editors, CRYPTO 2016,

Part I, volume 9814 of LNCS, pages 543–571. Springer, Heidelberg, Aug. 2016.

[40] L. Kowalczyk and A. B. Lewko. Bilinear entropy expansion from the decisional

linear assumption. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015,

Part II, volume 9216 of LNCS, pages 524–541. Springer, Heidelberg, Aug. 2015.

[41] A. B. Lewko. Tools for simulating features of composite order bilinear groups

in the prime order setting. In D. Pointcheval and T. Johansson, editors, EURO-

CRYPT 2012, volume 7237 of LNCS, pages 318–335. Springer, Heidelberg, Apr.

2012.

[42] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure

functional encryption: Attribute-based encryption and (hierarchical) inner prod-

uct encryption. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,

pages 62–91. Springer, Heidelberg, May 2010.

[43] A. B. Lewko, A. Sahai, and B. Waters. Revocation systems with very small private

keys. In 2010 IEEE Symposium on Security and Privacy, pages 273–285. IEEE

Computer Society Press, May 2010.

[44] A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In

K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 547–567.

Springer, Heidelberg, May 2011.

[45] B. Libert, T. Peters, M. Joye, and M. Yung. Compactly hiding linear spans - tightly

secure constant-size simulation-sound QA-NIZK proofs and applications. In

T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS,

pages 681–707. Springer, Heidelberg, Nov. / Dec. 2015.

[46] T. Okamoto and K. Takashima. Fully secure functional encryption with general

relations from the decisional linear assumption. In T. Rabin, editor, CRYPTO 2010,

volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, Aug. 2010.

[47] T. Okamoto and K. Takashima. Fully secure unbounded inner-product and

attribute-based encryption. In X. Wang and K. Sako, editors, ASIACRYPT 2012,

volume 7658 of LNCS, pages 349–366. Springer, Heidelberg, Dec. 2012.

[48] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-

monotonic access structures. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson,

editors, ACM CCS 07, pages 195–203. ACM Press, Oct. 2007.

[49] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in

public: Verifiable computation from attribute-based encryption. In R. Cramer,

editor, TCC 2012, volume 7194 of LNCS, pages 422–439. Springer, Heidelberg, Mar.

2012.

[50] Y. Rouselakis and B. Waters. Practical constructions and new proof methods for

large universe attribute-based encryption. In A.-R. Sadeghi, V. D. Gligor, and

M. Yung, editors, ACM CCS 13, pages 463–474. ACM Press, Nov. 2013.

[51] Y. Rouselakis and B. Waters. Efficient statically-secure large-universe multi-

authority attribute-based encryption. In R. Böhme and T. Okamoto, editors, FC

2015, volume 8975 of LNCS, pages 315–332. Springer, Heidelberg, Jan. 2015.

[52] A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor,

EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg,

May 2005.

[53] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed data: A new

abstraction for building trusted cloud services. In USENIX Security Symposium

2012, pages 175–188, 2012.

[54] H. Shacham. A cramer-shoup encryption scheme from the linear assumption and

from progressively weaker linear variants. Cryptology ePrint Archive, Report

2007/074, 2007. http://eprint.iacr.org/2007/074.

[55] P. Traynor, K. R. B. Butler, W. Enck, and P. McDaniel. Realizing massive-scale

conditional access systems through attribute-based cryptosystems. In NDSS 2008.

The Internet Society, Feb. 2008.

[56] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under

simple assumptions. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,

pages 619–636. Springer, Heidelberg, Aug. 2009.

[57] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. In D. Catalano, N. Fazio, R. Gennaro, and

A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 53–70. Springer,

Heidelberg, Mar. 2011.

[58] H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor,

TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg, Feb. 2014.

[59] B. Yang, K. Yang, Y. Qin, Z. Zhang, and D. Feng. DAA-TZ: An Efficient DAA Scheme

for Mobile Devices Using ARM TrustZone, pages 209–227. Springer International

Publishing, Cham, 2015.

A CP-ABE CORRECTNESS

We show that when S satisfies (M,π), decryption recovers the

correct message with probability 1. For ℓ = 1, 2, 3,∏
i ∈I

ctγii, ℓ =
∏
i ∈I

(
H(π (i)ℓ1)γi s1 · H(π (i)ℓ2)γi s2 ·

n2∏
j=1

[
H(0jℓ1)s1 · H(0jℓ2)s2

]γi (M)i, j)
=

©«
n2∏
j=1

[
H(0jℓ1)s1 · H(0jℓ2)s2

]∑
i∈I γi (M)i, j ª®¬ ·(∏

i ∈I
H(π (i)ℓ1)γi s1 · H(π (i)ℓ2)γi s2

)
= H(01ℓ1)s1 · H(01ℓ2)s2 ·∏

i ∈I
H(π (i)ℓ1)γi s1 · H(π (i)ℓ2)γi s2 ,

where the third equality follows from (2.1).

Now, the product of all but the first term in num is given by∏
t ∈{1,2}

[
e(H(011t),h)b1r1st · e(H(012t),h)b2r2st

· e(H(013t),h)(r1+r2)st ·
∏
i ∈I

(
e(H(π (i)1t)γi ,h)b1r1st

· e(H(π (i)2t)γi ,h)b2r2st · e(H(π (i)3t)γi ,h)(r1+r2)st
)]

13

http://eprint.iacr.org/2006/309
http://eprint.iacr.org/2016/507
http://eprint.iacr.org/2007/074

When the above product is divided by dem, it is easy to see that we

are only left with the inverse of (rest of the terms cancel out)

©«
∏

t ∈{1,2}

e

(
дdt · д

σ ′
at ·

∏
i ∈I

д
γi σπ (i)

at ,hat st

)ª®¬ ·
e

(
дd3 · д−σ

′

·
∏
i ∈I

д−γiσπ (i) ,hs1+s2

)
,

which is just equal to e(д,h)d1a1s1+d2a2s2+d3(s1+s2)
. Hence, msg is

successfully recovered.

B KP-ABE SCHEME

The scheme is formally described in Figure B.1. Correctness and

security of this scheme can be proved in a manner very similar

to that of Fame. Note that unlike CGW’s KP-ABE scheme [20,

Appendix B.1], our scheme does not put an a-priori bound on the

number of columns in the MSP.

C PROOF OF MAIN THEOREM

C.1 Description of hybrids

Hyb
1

has already been discussed at length in §4.1. We now provide

a formal description of the rest of the hybrids, and then prove the

security of Fame. Before that, it would be useful to give names to

the various forms of ciphertext and keys that will be used. A key

can be in one of the following forms:

• Normal: Generated in Hyb
1
.

• P-normal: Br replaced by Br + r̂a⊥ in a Normal key, where

r̂ ←R Zp .

• P-normal⋆: σya⊥ for all y ∈ S and σ ′a⊥ removed from a

P-normal key.

• Normal⋆: Br + r̂a⊥ replaced by Br in a P-normal⋆ key.

• P-SF⋆:αa⊥ added to the last component (sk′) of a P-normal⋆

key, where α ←R Zp .

• SF⋆: Br + r̂a⊥ replaced by Br in a P-SF⋆ key.

A ciphertext can be either:

• Normal⋆: Generated in Hyb
1
.

• SF⋆:As replaced byAs+ŝb⊥ in aNormal⋆ ciphertext, where

ŝ ←R Zp .

• Rnd⋆: msgb replaced by msg⋆, where msg⋆ ←R GT .

P and SF stand for pseudo and semi-functional, respectively, fol-

lowing the terminology in previous work [19, 21, 42, 56].

The first objective of our proof is to remove the extra σya⊥ and

σ ′a⊥ components from all the keys. To do this, we change the

form of the very first key from Normal to P-normal in Hyb
2,1,1,

then change it to P-normal⋆ in Hyb
2,2,1, and finally to Normal⋆

in Hyb
2,3,1. We then carry out the same steps for the second key,

third key, and so on, until all the keys are of type Normal⋆. Thus,

we define the following hybrids for q = 1, . . . ,Q , where Q is the

total number of key queries A makes.

• Hyb
2,1,q : Same as Hyb

1
except first i − 1 keys are Normal⋆,

ith key is P-normal, and rest are Normal.
• Hyb

2,2,q : Same as Hyb
2,1,q except ith key is P-normal⋆.

• Hyb
2,3,q : Same as Hyb

2,2,q except ith key is Normal⋆.

The next objective is to show that the challenge ciphertext is

able to hide the message encrypted if none of the keys issued can

decrypt it individually. Here we first change the form of ciphertext

from Normal⋆ to SF⋆ in Hyb
3
. Then one by one we change all the

keys from Normal⋆ to P-normal⋆, then to P-SF⋆, and finally to

SF⋆. The extra component αa⊥ now present in all the keys helps

us to then make the ciphertext Rnd⋆. Thus, the hybrids are

• Hyb
3
: Same as Hyb

2,3,Q except ciphertext is SF⋆.

• Hyb
4,1,q : Same as Hyb

3
except first i − 1 keys are SF⋆, ith

key is P-normal⋆, and rest are Normal⋆.

• Hyb
4,2,q : Same as Hyb

4,1,q except ith key is P-SF⋆.

• Hyb
4,3,q : Same as Hyb

4,2,q except ith key is SF⋆.

• Hyb
5
: Same as Hyb

4,3,Q except ciphertext is Rnd⋆.

Note that in all the hybrids, the random oracle is simulated in

the same way as in Hyb
1
. Also, two additional hybrids Hyb

2,3,0 and

Hyb
4,3,0 are defined to be same as Hyb

1
and Hyb

3
, respectively.

C.2 Sampling algorithm

On input a prime p, recall that Samp outputs

Z :=

u1 0

0 u2

1 1

 , z⊥ :=

u1

−1

u2

−1

−1

 , (C.1)

where u1,u2 ←R Z
∗
p . If [X| |Y] is used to denote the column-wise

join of two matrices X and Y, then note that [Z| |z⊥] is a full-rank

matrix. Also, observe that the matrix Z here has exactly the same

distribution as A from the DLIN assumption, and that ZTz⊥ = 0.

We will need the following basis lemma from [19].

Lemma C.1 (Basis lemma). Let (Z1, z⊥
1
) and (Z2, z⊥

2
) be two inde-

pendent samples drawn from Samp(p). Then with probability 1− 1/p,
it holds that [Z1 | |z⊥

2
] and [Z2 | |z⊥

1
] are full-rank matrices as well as

⟨z⊥
1
, z⊥

2
⟩ , 0.

C.3 Indistinguishability of hybrids

In the following,AdvAi, j (λ) denotes the advantage of an adversaryA

in distinguishing Hybi from Hybj when the security parameter is

λ. Although the indistinguishability of every pair of hybrids below

holds irrespective of the value of bit b given to the challenger, we

do not put this explicitly into the theorem statements.

Lemma C.2. For any adversary A, AdvA
0,1(λ) = 0.

Proof. First of all, it is easy to see that the master public and

secret keys are generated identically in both the hybrids because

the first output of Samp has exactly the same distribution as A
from the DLIN assumption (§2.5). Further, the response of Chal
on an oracle query of the form xℓt in Hyb

1
is [(WT

xA)ℓ,t]1, whose

exponent is at (Wx)t, ℓ + (Wx)3, ℓ , for randomly chosen (Wx)t, ℓ
and (Wx)3, ℓ . Hence, [(WT

xA)ℓ,t]1 is independently and uniformly

distributed for every x , ℓ, t . In the same way, we can argue that

the response to queries of the form 0jℓt are also independent and

uniform over G. Thus, Chal perfectly simulates a random oracle.

If we implicitly set the responses of random oracle in Hyb
0

to

be the ones generated by Chal in Hyb
1
, then the cti, ℓ component

14

• Setup(1λ) Same Setup as that of Fame.

• KeyGen(msk, (M,π)) Pick r1, r2 ←R Zp and compute

sk0 := (hb1r1 ,hb2r2 ,hr1+r2)

using h,b1,b2 from msk. Pick σ ′
2
, . . . ,σ ′n2

←R Zp . For all i = 1, . . . ,n1 and t = 1, 2, compute

ski,t := H(π (i)1t)
b

1
r
1

at · H(π (i)2t)
b

2
r
2

at · H(π (i)3t)
r
1
+r

2

at · д
σi
at ·

(
дdt

)(M)i,1
·

n2∏
j=2

[
H(0j1t)

b
1
r
1

at · H(0j2t)
b

2
r
2

at · H(0j3t)
r
1
+r

2

at · д
σ ′j
at

] (M)i, j
,

ski,3 := д−σi ·
(
дd3

)(M)i,1
·

n2∏
j=2

(
д−σ

′
j
)(M)i, j

,

where σi ←R Zp . Set ski := (ski,1, ski,2, ski,3). Output (sk0, sk1, . . . , skn1
) as the key.

• Encrypt(pk, S,msg) Pick s1, s2 ←R Zp and compute

ct0 := (H s1

1
,H s2

2
,hs1+s2).

using pk. For all y ∈ S and ℓ = 1, 2, 3, compute

cty, ℓ := H(yℓ1)s1 · H(yℓ2)s2 .

Set cty := (cty,1, cty,2, cty,3). Also, compute

ct′ := T s1

1
·T s2

2
·msg.

Output (ct0, {cty }y∈S , ct′) as the ciphertext.

• Decrypt(pk, ct, sk) Same as the decryption algorithm of Fame except that for any i ∈ I , ctπ (i) is used to compute num and ski to

compute dec. Also, note that there is no sk′ component in the key.

Figure B.1: Key-policy attribute-based encryption.

of the challenge ciphertext in Hyb
0

is set to

[
(WT

π (i)A)ℓ,1s1 + (W
T
π (i)A)ℓ,2s2+∑
j

{
(UT

j A)ℓ,1s1 + (U
T
j A)ℓ,2s2

}
(M)i, j

]
1

for ℓ ∈ {1, 2, 3}. Therefore, cti is equal to

[WT
π (i)As + (M)i,1U

T
1
As + . . . + (M)i,n2

UT
n2

As]1,

if s is defined to be (s1, s2)
T
. We can also rewrite ct0 and ct′ as [As]2

and [dTAs]T · msgb , respectively. Thus, we obtain a ciphertext

identical to the one in Hyb
1
.

Let us now turn to the key component sky,t , which is implicitly

set to

[
(WT

yA)1,t
b1r1
at
+ (WT

yA)2,t
b2r2
at
+

(WT
yA)3,t

r1 + r2
at

+
σy

at

]
1

for t ∈ {1, 2}. If we denote the (i, j)th element of Wy by wi, j , then

the exponent of д in sky,t can be expanded as:

(atwt,1 +w3,1)
b1r1
at
+ (atwt,2 +w3,2)

b2r2
at
+

(atwt,3 +w3,3)
r1 + r2
at

+
σy

at
= (wt,1b1 +wt,3)r1 + (wt,2b2 +wt,3)r2+

1

at

[
(w3,1b1 +w3,3)r1 + (w3,2b2 +w3,3)r2+

σy
]

= (WyBr)t + a−1

t
[
(WyBr)3 + σy

]
,

where r := (r1, r2)
T
. The third part of sky is д−σy , whose exponent

can be written as (WyBr)3 −
[
(WyBr)3 + σy

]
. Now note that if

σy is uniformly random, then so is (WyBr)3 + σy . Hence, sky is

identically distributed to [WyBr + σya⊥]1.
In the same way, we can show that sk′ is identically distributed

to [d + U1Br + σ ′a⊥]1 for a randomly chosen σ ′. Finally, sk0 can

be described succinctly as [Br]2. Thus, we obtain a key identical to

the one output in Hyb
1
. □

Lemma C.3. For all q = 1, . . . ,Q and PPT adversaries A, there

exists a PPT adversary B such that

AdvA
(2,3,q−1),(2,1,q)(λ) ≤ AdvBDLIN(λ) + 1/p.

Proof. The only difference between Hyb
2,3,q−1

and Hyb
2,1,q is

in the form of the ith key issued by the challenger. In the former case,

15

this key is Normal while in the latter, it is P-normal. We design an

adversary B that converts any advantage A has in distinguishing

the two hybrids into an (almost) equal advantage in breaking the

DLIN assumption.

B gets ([B]1, [B]2, [Br∗]1, [Br∗]2) or ([B]1, [B]2, [r′]1, [r′]2) as

the DLIN challenge, and simulates the challenger in the IND-CPA

security game that it plays withA. It draws (A, a⊥) from Samp and

d←R Z
3

p , and gives ([A]2, [dTA]T) toA as the public key. Further,

it simulates the random oracle in the same way as the challenger

does in Hyb
2,3,q−1

or Hyb
2,1,q .

Since [B| |a⊥] is a full-rank matrix (except with probability 1/p,

see Lem C.1), we can say that B receives ([B]1, [B]2, [Br∗ + r̂a⊥]1,
[Br∗+r̂a⊥]2) as theDLIN tuple, where r̂ is either zero or a randomly

chosen value from Zp .

It is straightforward for B to generate the challenge ciphertext.

To generate any of the first i−1 keys, B picks r←R Z
2

p and outputs

([Br]2, {[WyBr]1}y∈S , [d+U1Br]1) 14
; only [B]1, [B]2 are required

for this. The other keys, except the ith, are also easily generated

since B knows a⊥.

Now, in order to generate the ith key, B picks σy ←R Zp for

y ∈ S and σ ′ ←R Zp , and outputs

([Br∗ + r̂a⊥]2, {[Wy (Br∗ + r̂a⊥) + σya⊥]1}y∈S ,

[d + U1(Br∗ + r̂a⊥) + σ ′a⊥]1).

It is easy to see that if r̂ = 0, the view of A is identical to that in

Hyb
2,3,q−1

; otherwise, the view is identical to Hyb
2,1,q . □

Lemma C.4. For all q = 1, . . . ,Q and adversaries A,

AdvA
(2,1,q),(2,2,q)(λ) ≤ 2/p.

Proof. We want to prove that the view of any adversary (even

unbounded) in Hyb
2,1,q is identically distributed to its view in

Hyb
2,2,q (except with negligible probability). Towards this, let V

be a matrix defined by the product of a⊥ with the transpose of b⊥.

Note that VTA = VB = 0 and Va⊥ = (a⊥b⊥T)a⊥ = a⊥(b⊥Ta⊥) =
(a⊥Tb⊥)a⊥ since b⊥Ta⊥ is nothing but the inner product of a⊥ and

b⊥. Let β denote this inner product, which is non-zero except with

probability 1/p (see Lem C.1).

Consider the hybrid Hyb
2,1,q . Suppose Wx is implicitly set to

W∗x := Wx − σx (βr̂)
−1V and Uj to U∗j := Uj − σ

′(βr̂)−1V, where

σx ,σ
′, r̂ ←R Zp (r̂ , 0 with probability 1 − 1/p). This does not

affect the distribution of these matrices because they are chosen

at random. The ciphertext is not affected either since (W∗π (i))
TA =

WT
π (i)A and, similarly, (U∗j)

TA = UT
j A. Analogously, the form of all

the keys except the ith one remains unchanged. In the case of ith
key, we have

W∗y (Br + r̂a
⊥) + σya⊥

= (Wy − σy (βr̂)
−1V)(Br + r̂a⊥) + σya⊥

=WyBr − σy (βr̂)−1r̂Va⊥ +Wy r̂a⊥ + σya⊥

=Wy (Br + r̂a⊥) − σyβ−1βa⊥ + σya⊥

=Wy (Br + r̂a⊥)

14
A separate r is used for each key.

and, similarly, d+U∗
1
(Br+ r̂a⊥)+σ ′a⊥ = d+U1(Br+ r̂a⊥), which is

how the ith key of Hyb
2,2,q is distributed. (Recall that the hybrids

under consideration in this proof only differed on the ith key.) □

Lemma C.5. For all PPT adversaries A, there exists a PPT adver-

sary B such that

AdvA
(2,3,Q),3(λ) ≤ AdvBDLIN(λ) + 1/p.

Proof. The only difference betweenHyb
2,3,Q andHyb

3
is in the

form of the challenge ciphertext; all the keys are Normal⋆ in both

the cases.B gets ([A]1, [A]2, [As]1, [As]2) or ([A]1, [A]2, [s′]1, [s′]2)
as the DLIN challenge. It draws (B, b⊥) from Samp and d←R Z

3

p ,

and gives ([A]2, [dTA]T) to A as the public key. Using B, it can

easily generate keys for any set of attributes.

Since [A| |b⊥] is a full-rank matrix, we can say that B receives

([A]1, [A]2, [As + ŝb⊥]1, [As + ŝb⊥]2) as the DLIN tuple, where ŝ is

either zero or a randomly chosen value from Zp . Now, when A

sends msg
0
,msg

1
and a policy (M,π), B outputs

ct0 := [As + ŝb⊥]2

cti := [WT
π (i)(As + ŝb

⊥) +

n2∑
j=1

(M)i, jUT
j (As + ŝb

⊥)]1

ct′ := [dT(As + ŝb⊥)]T ·msgb ,

for i = 1, . . . ,n1. It is easy to see that if ŝ = 0, then the view of

A is identical to that in Hyb
2,3,Q ; otherwise, the view is identical

to that in Hyb
3
. (Note that [A]1 is needed to simulate the random

oracle.) □

Lemma C.6. For all q = 1, . . . ,Q and PPT adversaries A, there

exists a PPT adversary B such that

AdvA
(4,3,q−1),(4,1,q)(λ) ≤ AdvBDLIN(λ) + 1/p.

Proof. B draws (A, a⊥) from Samp and d ←R Z
3

p , and gives

([A]2, [dTA]T) to A as the public key. It also uses A to simulate

the random oracle queries. As in Lem C.3, we can assume that B

receives ([B]1, [B]2, [Br∗ + r̂a⊥]1, [Br∗ + r̂a⊥]2) as the DLIN tuple,

where r̂ is either zero or a randomly chosen value from Zp .

It is not immediately clear how B will generate the challenge

ciphertext since it does not know b⊥. However, observe that when

s←R Z
2

p and ŝ ←R Zp , As + ŝb⊥ is a uniformly distributed vector

over Z3

p . Thus, B just picks a random vector s′ from Z3

p and outputs

([s′]2,
{
[WT

π (i)s
′ +

∑
j (M)i, jUT

j s
′]1

}
i ∈{1, ...,n1 }

, [dTs′]T ·msgb) as

the ciphertext.

To generate a SF⋆ key, B picks r ←R Z
2

p and outputs ([Br]2,
{[WyBr]1}y∈S , [d+αa⊥+U1Br]1), where α ←R Zp . The Normal⋆

keys are also generated in a similar way, with the only difference

being that they don’t have any a⊥ component. Finally, B outputs

([Br∗+ r̂a⊥]2, {[Wy (Br∗+ r̂a⊥)]1}y∈S , [d+U1(Br∗+ r̂a⊥)]1) as the

ith key, using the last two terms from the assumption. It is clear

that if r̂ = 0, then this key is Normal⋆; else it is P-normal⋆. □

Lemma C.7. For all q = 1, . . . ,Q and adversaries A,

AdvA
(4,1,q),(4,2,q)(λ) ≤ 2/p.

16

Proof. The only difference between Hyb
4,1,q and Hyb

4,2,q is

in the form of the ith key. This key is P-normal⋆ in the former case

but P-SF⋆ in the latter. The challenge ciphertext is SF⋆ in both the

cases, the first i − 1 keys are SF⋆ and the last q − i are keys are

Normal⋆.

First of all, like Lem C.4, let V be the matrix a⊥b⊥T, and recall

that VTA = VB = 0. Also, if β := ⟨a⊥, b⊥⟩, then Va⊥ = βa⊥

and VTb⊥ = βb⊥. We will also exploit the fact that none of the

keys A requests can decrypt the challenge ciphertext. So let w =
(w1, . . . ,wn2

) be the vector guaranteed by Lem 2.2 in this case.

Consider the hybrid Hyb
4,1,q and implicitly set Wx to Wx +

µx β
−1V and Uj to Uj + αw jβ

−1V, where µx ,α ←R Zp . The expo-

nent of cti then becomes

(Wπ (i) + µπ (i)β
−1V)T(As + ŝb⊥)+
n2∑
j=1

(M)i, j (Uj + αw jβ
−1V)T(As + ŝb⊥)

=WT
π (i)(As + ŝb

⊥) + µπ (i)ŝb
⊥ +

∑
j
(M)i, jUT

j (As + ŝb
⊥)

+
©«α ŝ

∑
j
(M)i, jw j

ª®¬ b⊥
=WT

π (i)(As + ŝb
⊥) +

∑
j
(M)i, jUT

j (As + ŝb
⊥)

+
©«µπ (i) + α

∑
j
(M)i, jw j

ª®¬ ŝb⊥. (C.2)

The exponent of sky in the ith key is now given by

(Wy + µyβ
−1V)(Br + r̂a⊥) =Wy (Br + r̂a⊥) + µy r̂a⊥,

and that of sk′ is given by

d + (U1 + αw1β
−1V)(Br + r̂a⊥)

= d + U1(Br + r̂a⊥) + αw1r̂a⊥.

We do not need to look at other components of the ciphertext or

the ith key because they do have any term involving Wx or Uj .

Further, any other key is not affected since the terms added to Wx
and Uj are orthogonal to B.

For an i ∈ {1, . . . ,n1}, we have two possibilities. If π (i) ∈ S , then

we know that

∑
(M)i, jw j = 0. Else, none of the key components

have µπ (i), or cti is the only place where µπ (i) appears
15

. So for

every i , we can replace µπ (i)+α
∑
(M)i, jw j by µπ (i) in (C.2). Further,

αw1r̂a⊥ in sk′ could be replaced by αa⊥ without affecting the

distribution as it is the only term in the adversary’s view that

depends on α now and w1r̂ , 0 (provided r̂ , 0, which occurs with

probability 1 − 1/p).

15
This is where we need π to be an injective function. If two or more rows map to the

same attribute, then the argument breaks down.

After making the changes described above, we have

cti = [WT
π (i)(As + ŝb

⊥) + µπ (i)ŝb
⊥+∑

j
(M)i, jUT

j (As + ŝb
⊥)]1

sky = [Wy (Br + r̂a⊥) + µy r̂a⊥]1

sk′ = [d + U1(Br + r̂a⊥) + αa⊥]1.

It is now easy to show that if we just replaceWx withWx −µx β
−1V,

then the challenge ciphertext becomes SF⋆ once again, the ith key

becomes P-SF⋆ as desired, and rest of the keys are not affected like

before. □

Lemma C.8. For all adversaries A, AdvA
(4,3,Q),5(λ) ≤ 2/p.

Proof. The only difference between Hyb
4,3,Q and Hyb

5
is that

the ciphertext in Hyb
4,3,Q is an encryption of msgb , while it is an

encryption of a random message in Hyb
5
. So suppose we implicitly

set d chosen during the set-up process of Hyb
4,3,Q to d − δa⊥, for

δ ←R Zp . There are only three places where d appears in the view

of an adversary: in the public key, the last component of all the keys,

and the last component of challenge ciphertext. Among them, the

public key is clearly not affected since (d − δa⊥)TA = dTA. All the

SF⋆ keys are not affected either because (d− δa⊥)+U1Br+αa⊥ =
d+U1Br+(δ+α)a⊥, which is identically distributed to d+U1Br+αa⊥

since α is a random value.

Lastly, we have [dT(As + ŝb⊥)]T · msgb as the last component

of the ciphertext in Hyb
4,3,Q , which now becomes

[(d − δa⊥)T(As + ŝb⊥)]T ·msgb

= [dT(As + ŝb⊥) + δ ŝ ⟨a⊥, b⊥⟩]T ·msgb

= [dT(As + ŝb⊥)]T · e(д,h)δ ŝ ⟨a
⊥,b⊥ ⟩ ·msgb .

Note that δ does not appear in any other part of the ciphertext, or

in any of the keys or the master public key. Also recall that with

probability 1 − 1/p, the inner-product of a⊥ and b⊥ is not zero (see

Lem C.1). Hence, if ŝ , 0, which happens with probability 1 − 1/p,

δ ŝ ⟨a⊥, b⊥⟩ is uniformly distributed over Zp . Thus, the ciphertext

is now an encryption of a random message. □

C.4 Proof of Theorem 4.1

We have shown that Hyb
0
≡ Hyb

1
in Lem C.2, Hyb

2,3,q−1
≈

Hyb
2,1,q in Lem C.3, Hyb

2,1,q ≡ Hyb
2,2,q in Lem C.4, Hyb

2,3,Q ≈

Hyb
3

in Lem C.5, Hyb
4,3,q−1

≈ Hyb
4,1,q in Lem C.6, Hyb

4,1,q ≡

Hyb
4,2,q in Lem C.7, and Hyb

4,3,Q ≡ Hyb
5

in Lem C.8, for all

q = 1, . . . ,Q , where ≡ and ≈ denote statistical and computational

indistinguishability, respectively, from the point of view of an ad-

versary. (Hyb
2,3,0 and Hyb

4,3,0 are defined to be same as Hyb
1

and

Hyb
3
, respectively.) We omit a proof for the indistinguishability of

Hyb
2,2,q and Hyb

2,3,q because it is completely analogous to that of

Hyb
2,3,q−1

and Hyb
2,1,q . Also, Hyb

4,2,q ≈ Hyb
4,3,q can be proved

in a manner similar to Hyb
4,3,q−1

≈ Hyb
4,1,q .

In fact, the hybrids are indistinguishable irrespective of the bit

b given to the challenger. In other words, none of the proofs have

anything to do with the value of b. Thus, Hyb
0

(main scheme) is

17

indistinguishable from Hyb
5

whether we start from b = 0 or b = 1,

proving the theorem.

D BSW CP-ABE SCHEME

Below is the version of Bethencourt et al.’s CP-ABE scheme [16]

that we implemented in asymmetric groups.

• Setup(1λ) Run GroupGen(1λ) to obtain (p,G,H,GT , e,д,h).

Pick α , β ←R Zp . Output (д,h,H := hβ , e(д,h)α) as the

public key pk and (β,дα) as the master secret key msk.
16

• KeyGen(msk, S) Pick r , ry ←R Zp for every y ∈ S . Then

output

D := д(α+r)/β ,

∀y ∈ S : Dy := дr · H(y)ry , D ′y := hry

as the key.

• Encrypt(pk, (M,π),msg) SupposeM hasn1 rows andn2 columns.

Pick s,v2, . . . ,vn2
←R Zp and let v = (s,v2, . . . ,vn2

). Let

µi = ⟨(M)i , v⟩ for i = 1, . . . ,n1, where (M)i denotes the ith
row of M. Then output

C̃ := e(д,h)αs ·msg, C := H s ,

∀i = 1, . . . ,n1 : Ci := hµi , C ′i = H(π (i))
µi

as the ciphertext.

• Decrypt(pk, ct, sk) Let {γi }i ∈I be a set of constants that exist

when the set of attributes S in sk satisfies the MSP (M,π) in
ct. Compute

prod :=
∏
i ∈I

[
e(Dπ (i),Ci)

e(C ′i ,D
′
π (i))

]γi
and output (C̃ · prod)/e(D,C).

E WATERS CP-ABE SCHEME

Below is the version of Waters’ CP-ABE scheme [57, Section 3] that

we implemented in asymmetric groups. LetU = {1, 2, . . . ,U } be

the universe of attributes.

• Setup(1λ) Run GroupGen(1λ) to obtain (p,G,H,GT , e,д,h).

Pick α ,a ←R Zp and G1, . . . ,GU ←R G. Output (д,h,дa ,
e(д,h)α ,G1, . . . ,GU) as the public key pk and дα as the mas-

ter secret key msk.

• KeyGen(msk, S) Here S is a subset of U. Pick t ←R Zp .

Then output

K := дα · дat , L := ht , ∀y ∈ S : Ky := Gt
y

as the key.

• Encrypt(pk, (M,π),msg) SupposeM hasn1 rows andn2 columns.

Pick s,v2, . . . ,vn2
←R Zp and let v = (s,v2, . . . ,vn2

). Let

µi = ⟨(M)i , v⟩ for i = 1, . . . ,n1. Also pick r1, . . . , rn1
←R Zp .

Then output

C := e(д,h)αs ·msg, C ′ := hs ,

∀i = 1, . . . ,n1 : Ci := дaµiG−riπ (i), Di := hri

as the ciphertext.

16
The group element f in their set-up algorithm is used only for delegation.

• Decrypt(pk, ct, sk) Let {γi }i ∈I be a set of constants that exist

when the set of attributes S in sk satisfies the MSP (M,π) in
ct. Output

C · e
(∏

i ∈I C
γi
i ,L

)
·

∏
i ∈I e(Kπ (i),D

γi
i)

e(K ,C ′)
.

We have reorganized the terms slightly to improve decryp-

tion time: instead of 2 pairings and an exponentiation in the

target group per attribute, we now have 1 pairing and one

exponentiation each in the two source groups.

F GPSW KP-ABE SCHEME

Below is the version of GPSW’s KP-ABE scheme [29, Appendix A.1]

that we implemented in asymmetric groups. LetU = {1, 2, . . . ,U }
be the universe of attributes.

• Setup(1λ) Run GroupGen(1λ) to obtain (p,G,H,GT , e,д,h).

Pickα , t1, . . . , tU ∈ Zp . Output (T1 := дt1 , . . . ,TU := дtU ,Y :=

e(д,h)α) as the public key pk and (h, t1, . . . , tU ,α) as the

master secret key msk.

• KeyGen(msk, (M,π)) SupposeM hasn1 rows andn2 columns.

Pick v2, . . . ,vn2
←R Zp and let v = (α ,v2, . . . ,vn2

). Let

µi = ⟨(M)i , v⟩ for i = 1, . . . ,n1. Then output

∀i = 1, . . . ,n1 : Di := h
µi

tπ (i)

as the key.

• Encrypt(pk, S,msg) Pick s ←R Zp and output

E ′ := Y s ·msg, ∀y ∈ S : Ey := T sy

as the ciphertext.

• Decrypt(pk, ct, sk) Let {γi }i ∈I be a set of constants that exist

when the set of attributes S in sk satisfies the MSP (M,π) in
ct. Output

E ′∏
i ∈I e(Eπ (i),Di)γi

.

18

	Abstract
	1 Introduction
	1.1 Designing our ABE schemes

	2 Preliminaries
	2.1 Access structures
	2.2 Ciphertext-policy ABE
	2.3 IND-CPA security
	2.4 Bi-linear maps and assumption
	2.5 Representing group elements

	3 Fame: Our CP-ABE Scheme
	4 Security of Fame
	4.1 Compact representation
	4.2 High-level overview
	4.3 Main theorem

	5 Implementation & Evaluation
	6 Related work
	References
	A CP-ABE correctness
	B KP-ABE Scheme
	C Proof of Main Theorem
	C.1 Description of hybrids
	C.2 Sampling algorithm
	C.3 Indistinguishability of hybrids
	C.4 Proof of Theorem 4.1

	D BSW CP-ABE scheme
	E Waters CP-ABE scheme
	F GPSW KP-ABE scheme

