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ABSTRACT
Estimating how long a task will take to complete (i.e., the task dura-
tion) is important for many applications, including calendaring and
project management. Population-scale calendar data contains distri-
butional information about time allocated by individuals for tasks
that may be useful to build computational models for task duration
estimation. This study analyzes anonymized large-scale calendar
appointment data from hundreds of thousands of individuals and
millions of tasks to understand expected task durations and the lon-
gitudinal evolution in these durations. Machine-learned models are
trained using the appointment data to estimate task duration. Study
findings show that task attributes, including content (anonymized
appointment subjects), context, and history, are correlatedwith time
allocated for tasks. We also show that machine-learned models can
be trained to estimate task duration, with multiclass classification
accuracies of almost 80%. The findings have implications for un-
derstanding time estimation in populations, and in the design of
support in digital assistants and calendaring applications to find
time for tasks and to help people, especially those who are new to
a task, block sufficient time for task completion.
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1 INTRODUCTION
Tasks (i.e., pieces of work to be performed) permeate all aspects
of our lives. Determining how much time to allocate for tasks is
an important aspect of effective time management that is often
performed manually. Time estimates impact how much time people
set aside for tasks during planning and when they perform tasks
based on estimates of how long they need. The activity of time
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Digital Assistant

Digital Assistant

Find time to file travel expenses

Your calendar is open on
Tuesday afternoon. Do you
want me to reserve 30 minutes
at 2:00pm for this task?

Yes, please

Done!

User

User

Figure 1: Example of dialog between a user and a digital as-
sistant that is equipped with the ability to accurately esti-
mate task duration and schedule time for completion.

estimation can be challenging for users, especially for new tasks,
when people may lack the experience or expertise to make accurate
time estimates [17, 41]. Time estimates can also be affected by
known biases, such as optimism and overconfidence [22, 30].

Despite the importance of task duration estimation in our daily
lives (every meeting or appointment we schedule requires us to
make this decision), there has been little research on helping users
perform duration estimation. Previous work has focused on sup-
port for scheduling appointments of known duration given a user’s
calendar and (optionally) others’ constraints [6, 13]. Work on time
estimation has largely focused on how people perceive task dura-
tion [5] or have only discussed using distributional data about how
much time others have taken for the same task, but have not imple-
mented any technical solutions [9]. The availability of anonymized
population-scale calendar data creates opportunities to understand
and learn task duration, both at scale and individually over time.

In this paper, we study methods for estimating task duration,
i.e., we train machine-learned models that, given a task, provide
an estimate of how long that task will take to complete. Making
this determination automatically, even if it is only used to suggest
a task duration as part of task or appointment creation, may ease
some burden on users. Figure 1 presents an example of how this
technology could be applied in a dialog with a digital assistant.
In the example, the assistant uses the task duration estimate to
suggest an appointment length for the task (30 minutes to file
travel expenses in this case) and find a suitable timeslot based on
available time on the user’s calendar (Tuesday at 2:00pm in this
case). For users attempting a task for the first time, suggestions
such as these—generated based on distributional (historic) data
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and reflecting the amount of time others have allocated for similar
tasks—may be especially helpful in estimating the time required
for task completion.

We make the following contributions with this research:

• Introduce task duration estimation as a new data mining and
machine-learning challenge, with a range of applications.

• Analyze millions of anonymized calendar events (tasks), each
with a user-defined task duration. We find correlations between
task attributes / task recurrence over time and task duration.

• Train machine-learned models to accurately predict task duration
from task attributes. We also experiment with different model
architectures (logistic regression and neural networks) and dif-
ferent features (content, context, history).

• Present implications for digital assistants, to-do applications, and
calendaring systems from being able to estimate task duration,
as well as future directions for research in this area.

The remainder of this paper is structured as follows. Section 2
describes related work in areas such as time management and time
estimation. Section 3 describes the anonymized appointment data
used in our study. In Section 4, we present an analysis of task dura-
tion, focused on the relationship between task attributes (including
task recurrence) and task duration. Section 5 presents methods
for automatically estimating task duration and the results of their
evaluation are presented in Section 6. We discuss our findings and
their implications in Section 7 and conclude in Section 8.

2 RELATEDWORK
Tasks have received significant attention in research areas such
as information seeking and retrieval [10, 28]. Focusing specifically
on the challenge of estimating task duration, there are several key
areas of related previous work. In this section, we target two areas
in particular: personal time management and time estimation.

2.1 Time Management
Research has shown that those who perceive themselves as good
time managers are most accurate at the estimating duration of a
future task [14]. Of those who do not perceive themselves as good
time managers, some people grossly overestimate, and many people
underestimate, the time required. Prior work on personal time
management has focused on best practices to help people manage
their time more effectively [1] and on developing tools to better
support this activity [3, 31]. Intelligent scheduling systems can
help individuals [18, 34] and groups [6, 13] find time for tasks and
meetings, coordinating schedules between attendees as needed in
the group setting. The focus of these systems is on finding calendar
slots that satisfy constraints about meeting times and locations.
Digital assistants such as Amazon Alexa, Google Assistant, and
Microsoft Cortana provide timers to help people track short time
durations and enable users to create reminders to remember to
perform future tasks [15], even if the specific task timeframe is
imprecise [36]. Support for micro-tasking [11] helps people utilize
small amounts of time, even if just a few minutes, to tackle quick
to-dos or to make progress on larger (macro) tasks.

2.2 Time Estimation
Time estimation has been well studied [9, 14], including biases
such as anchoring that may impact the accuracy of time estimates
[20, 23]. The planning fallacy [8, 22], where people underestimate
the time taken to complete their own tasks (days/weeks) [7] is often
based on “singular information” (not distributional information as
we have access to in this study) related to the specific task and an
optimism bias (or wishful thinking [33] or overconfidence [30]),
and irrespective of how long previous similar tasks have taken to
perform [7, 25, 26]. When tasks are easy (minutes), people have
been shown to overestimate duration [4, 14]. Time perceptions
have also been studied before the task (expected), during the task
(prospective), and after the task (retrospective) [5, 38], including
the effects of experience [41], expertise [17], and motivation [40] on
task duration estimates. The important role of attentional demand
in time estimation has also been demonstrated [44].

Distributional information (e.g., base-rate data on previous task
performance) is important in forecasting task duration [9, 22]. Peo-
ple often ignore or lack access to distributional data [21], leading
to the planning fallacy described earlier. Other research has shown
that people may use distributional information in time estimation,
but inaccurately recall it when making time predictions [39]. People
may focus too much on the task at hand and too little on the time
they spend on previous similar tasks [7]. That said, focusing too
much on prior tasks may also introduce biases that are difficult to
ignore [24, 37, 42]. A significant strength of this study is that we
have data on actual time allocated to tasks by large populations of
users. We use that data to train models to more objectively gener-
ate time estimates that are unaffected by shortcomings in human
memory and time perceptions.

2.3 Contributions Over Previous Work
There are several key differences between our research and previous
work. First, support for time management has mostly focused on
ways to find time or make effective use of time, whereas we focus
on helping to determine how much time is needed. Second, while
work on human time estimation has targeted biases and subjective
perceptions in task duration, we focus on objective estimates of how
much time will be needed to complete a task. We use the creation of
a calendar appointment as the provision of a task, with a description
and task duration estimate. Studying these events over hundreds of
thousands of individuals and millions of anonymized calendar ap-
pointments enables population-scale analysis and machine learning
of task duration. Data were collected from a natural setting, from
users of a popular digital assistant deciding how they would like to
allocate their own time for work and life activities. Finally, prior
work on automatically estimating duration has only discussed the
use of distributional (historic) data about time spent or allocated
by others on similar tasks. In contrast, we train machine-learned
models from anonymized large-scale data; those models utilize a
broad range of content, context, and history signals, in addition to
historic time distributions, for automatic duration estimation.

3 TASKS DATASET
The study uses anonymized calendar data collected from consent-
ing users of the Cortana digital assistant over a period of 18 months,
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Figure 2: Distribution of discretized task durations (d) for
tasks in our tasks dataset (D) (n=2,748,285).

from December 2016 to May 2018 (inclusive). A random sample of
millions of calendar events were available in the data, including cal-
endar appointments added by users explicitly (where they are the
only attendee), events added automatically by the digital assistant
or other applications, and meetings involving the user and other in-
dividuals. All data (including the text of the appointment subjects)
were anonymized as part of an initial data processing step. For
consistency, all appointments were filtered to US English using a
language classifier applied to the subject during initial data process-
ing.1 A separate classifier was required because language and locale
information were unavailable in the original appointment dataset.
To preserve privacy, text tokens in appointment subjects were re-
placed with one-way hashes near the start of the data processing
pipeline. Prior to anonymizing the text, we extracted attributes
such as whether an entity was present and frequency counts for
each part of speech (POS) tag.2

Appointments where the user is the only attendee and the cor-
responding time allocated for the task were used as the primary
data source for analysis and learning. To obtain these events, the
appointments dataset was filtered to calendar events that were
intentionally placed on the calendar by users and met all of the
following criteria: (1) organized by one user; (2) accepted by the
user (not canceled, declined, or tentative); (3) the user is the only
attendee (not meetings with others); (4) not flagged as an all-day
appointment unless the user manually blocks that time;3 (5) not
created as a recurring appointment (although the same appoint-
ment could still be scheduled multiple times (discussed more in
Section 4.2)); (6) not holidays, birthdays, travel, hotel reservations,
out of office, or any automatic inferences (e.g., commute) identified
using whitelist lookup – all of which were reminders rather than
time reservations; and (7) had a time span of 86,400 seconds (one
day) or less. Appointments running longer than one day are typ-
ically blocked in one-day increments, which we deemed was not
sufficiently granular for our initial analysis of task duration.

1https://www.nuget.org/packages/NTextCat
2Part-of-speech tags were added using RDRPOSTagger [32].
3Many appointments with an “all day” flag appeared to be reminders to do a task at
some time on that day and did not contain realistic user-defined task durations.

Table 1: Pearson correlations between task attribute and
task duration (d), filtered to attributes with abs(r ) ≥ 0.05.

Attribute r
Mean duration (per user-task) +0.41487
Median duration (per user-task) +0.41056
Mean duration (per task) +0.35767
Median duration (per task) +0.35035
Mean duration (per user) +0.32666
Median duration (per user) +0.30167
Has location † +0.23894
Std deviation duration (per user-task) +0.14959
Std deviation duration (per user) +0.14557
Maximum token length † +0.05715
Has country † +0.05117
Has address † +0.05024
Minimum token length † -0.05258
Start minute -0.05719
Has phone number † -0.06061
Fraction text stop words (a, the, etc.) † -0.07673
Total number of stop words in text † -0.08378
Number of unique stop words in text † -0.08741
Task popularity (across all users) -0.13104
Number of action verbs † -0.14705

† Non-(time/duration/history) attributes are based on task description

We believe that meeting all of these constraints qualifies each
of the filtered appointments as a user task, with the appointment
subject as the task description. Examples of popular task descrip-
tions that emerged from these pre-processing steps included “file
expenses,” “call insurance broker,” and “read chapter 2.” These ap-
pointments made up the dataset D, contain 2.75M task descriptions
and associated durations from 596K users. The average number of
tokens in the task descriptions was 4.64 (standard deviation=5.11,
median=4). The average time span from first to last task per user
in D was 22.03 days (standard deviation=135.69 days, median=0
days (most users have only one task in D)). Analyzing all appoint-
ments in D reveals an overall average task duration (d) of 7,321
seconds (2.03 hours) and a standard deviation of 11,380 seconds
(3.16 hours). The median d was 3,600 seconds (one hour) and 60.5%
of appointments lasted between 30 and 60 minutes, inclusive. Fig-
ure 2 presents the distribution of d , discretized into four buckets
(classes). These specific buckets align with our intended application
of duration estimation (intelligent scheduling, illustrated in Figure 1
and discussed more later in the paper). Figure 2 shows that there is
a fair spread in amount of time allocated for tasks, especially in the
30 minute-plus time range.

4 ANALYZING TASK DURATION
We now present some analysis of the task durations in D. Specifi-
cally, we analyze two aspects of d : (1) the relationship between task
attributes and d , and (2) the relationship between task recurrence
over time and d .

4.1 Task Attributes
To understand the relationship between attributes of the task itself
and the allocated task duration, we computed the Pearson corre-
lation (r ). Several attributes of the task could be computed based
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on the text content of the task description (appointment subject),
the context (time and location), and history (prior individual and
population task duration statistics). Table 1 reports the results of
this analysis for attributes with an absolute correlation value of
0.05 or above (to focus on the most salient correlations). Findings
show that historic task attributes, generated from the time before
the start of the current task, including the time that the current
user spent on this same task historically, are most correlated with
d . Task effects are strong, and time on task (“per user-task,” specific
to the current user and task and “per task,” specific only to the
current task, but across many users) is more strongly correlated
with d than the time that a user historically spends on all of their
tasks (“per user”). Physical location attributes, such as whether
the task (appointment) has a location, country, or address are also
positively correlated with d (0.05 < r < 0.24). The frequent need
to allow time for travel may mean that these tasks take longer. In
contrast, in the last eight rows of Table 1, there are task attributes
that are associated with shorter task duration. Attributes that are
negatively correlated with d often contain telephone numbers, are
frequently occurring, contain verbs, and use more basic language
(shorter tokens, more stop words). Common sense suggests that
tasks with these attributes are clearer and/or simpler, and hence
might require less time to complete. These attributes and others
are used as features in the task duration estimation models and
associated experiments presented later in the paper.

4.2 Task Recurrence
The importance of history as a task attribute prompted us to an-
alyze changes in duration estimates for the same task repeated
multiple times (i.e., task occurrence (i) of i ≥ 2). To measure this in
retrospective analysis, appointments in D created by the same user
with the same subject were regarded as recurrences of the same
task. This heuristic is used rather than the recurring appointment
flag from many calendaring systems because appointments that
are flagged as recurring also have the same duration; offering no
opportunity to study how people change their duration estimates.

In D, there were 767K appointments (28% of total) with i ≥ 2.
The average duration was computed for tasks at each i , in this case
in the range [1,10] for tasks occurring ≥ 10 times (n=9,956). Figure 3
shows the average task duration and the variance in the estimation
(standard error) as we sweep i from 1-10. To avoid skew from a
single user with many tasks, we first average for each ⟨user, i⟩
pair and again for each i . To make the comparison with the overall
average more interpretable, we normalize task duration using the
z-score and include a line-of-best-fit using a linear regression.

There are two noteworthy trends in Figure 3. First, durations
for tasks that recur are generally higher than the overall average
(i.e., all z-scores exceed 0). Recurring tasks have a higher average
d (7,496 seconds) than the overall average d across all tasks (7,321
seconds). Second, task duration tends to increase from i=1 (first
occurrence of the task) to i=10 (tenth occurrence) (R2=0.7052, p-val
< 0.05). There are many explanations for this increase, including
planning fallacies [22] where people may be updating their task
duration estimates over time following prior underestimates. The
increase may also reveal characteristics of the tasks where people
frequently block time on their calendars, i.e., not easy tasks, for
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Figure 3: Average duration of appointments per the occur-
rence number (i). Error bars denote the standard error of the
mean (±SEM). Dotted line is line of best fit, showing an up-
ward trend in task duration alongside occurrence number.

which they often overestimate duration [4, 14], as evidenced by the
small number of tasks with d < 30 minutes in D (1% per Figure 2).

The clear trends and patterns from this analysis are promising for
automatically estimating duration from task attributes (including
task recurrence). We investigate that in detail in the next section.

5 ESTIMATING TASK DURATION
In this section, we discuss methods for training machine-learned
models to accurately estimate task duration from task attributes.
We begin by formally defining our estimation task and we then
introduce the task attributes we can use for estimation. Finally, we
describe two methods for training a task duration estimator: one
using logistic regression and the other using neural networks.

5.1 Problem Definition
As discussed earlier, we study the problem of task duration esti-
mation and we hypothesize that we can assist users by estimating
the time needed to complete tasks based on several task attributes.
Given a task, our objective is to estimate how much time would
be needed to accomplish the task. Note that this problem could be
posed either as a regression problem (estimating time needed for
each task given task attributes) or a classification problem (assign a
discrete duration category to each task). We chose to formulate the
problem as a classification problem because of (1) 87.4% of durations
in our dataset are multiples of 30 minutes and (2) task duration
estimation is intended to enable applications in digital assistants
and calendaring applications where an agent assists the user by
automatically blocking time on his or her calendar to perform a
pending task. If we were to pose the problem as a regression prob-
lem, we would still need to postprocess the model output to assign
it to discrete categories. As such, to better align the problem defi-
nition with our main application (scheduling, as in Figure 1), we



decided to treat duration estimation as a multiclass classification
problem. We use the four classes in Figure 2 as our target labels: <
30 minutes, 30 minutes, 1 hour, and > 1 hour. There are several task
attributes available for featurization. We now describe the features
used to represent tasks and our duration estimation models.

5.2 Task Features
Our data contains three main categories of attributes about each
task that we can leverage for the estimation task. The attributes are
listed in Table 2 and we describe each category of attributes below:

Content attributes focus on the description of the task entered
by the user when the task was created. As discussed in Section
3, text tokens were replaced with hashes. The hashed version of
the text description was available as an attribute for the machine
learning models. Additionally, several other content features were
computed prior to hashing all tokens. That included counting the
number of tokens, the number of stop words, etc. Additionally,
we flagged entities such as locations and organizations, as well as
first names and phone numbers. We also flagged action verbs and
depth words (that capture thoroughness such as “deep,” “detailed,”
“careful,” “thorough,” “overview,” “lightweight,” “light,” “end to end,”
“e2e”) and recorded their occurrence frequency. We also counted
each POS tag. Finally, we generated a 300-dimensional vector repre-
senting a sentence embedding for the text attribute using the model
in [19]. We hypothesize that content information derived from the
task description could help us estimate task duration. Content in-
formation is by far the most important source of information since
other sources such as context and history information may not be
always available (e.g., new users with little or no history).

Context attributes characterize contextual information related
to the task. Context information could be related to the time or the
location of the task. To represent task time, we use several attributes
such as day of the week, time of the day, etc. the task was scheduled
to start. To characterize the location, we identify whether the task
description contains information about a location, address, or a
mention of a country name. Note that the information we have
about the location is rather limited and we try to infer location
information from the text rather than using the actual user location
when the task was created or accomplished. We leave collecting
and leveraging such information to future work. We hypothesize
that time and location information may be useful for describing the
context at which the task is performed and hence can benefit task
duration estimation.

History information for each task includes information before
the start of the task. We describe the popularity and duration of
tasks using the number of tasks, average duration, median duration,
and standard deviation duration. We compute these statistics per
task, per user, and per user-task pair. We hypothesize that historic
information could help in estimating task duration, and that making
it available to the model could allow the model to learn specific
patterns from task history to improve its estimates.

5.3 Duration Estimation Models
The attributes described above could be used as features in a tradi-
tional classification model, such as logistic regression. All features
in Table 2 are numerical except for the text description of the task.

Table 2: Task attributes as features for duration estimation.

Name Description
Content Features
Text Hashed tokens in the task description
NumTokens Number of tokens (words)
MaxTokenLength Num. chars. of the longest token
MinTokenLength Num. chars. of the shortest token
AvgTokenLength Average num. characters per token
NumStopwords Number of stop words
FractionStopwords Fraction of text that are stop words
NumEntities Number of entities
NumNames Number of person names
HasPhoneNumber Whether text has a phone number
NumActionWords Number of action words
NumDepthWords Number of depth words
NumPOSTags Frequency count for each POS tag
SentVec A 300-d sentence embedding vector
Context Features
StartDayOfWeek Day of the week
StartMonth Month of the year
StartDayOfYear Day of the year
StartHour Start hour
StartMinute Start minute
HasLocation Whether description contains location
HassAddress Whether description contains address
HasCountry Whether description contains country
History Features
Num_Task Task frequency (per task)
AvgDur_Task Mean duration (per task)
MedDur_Task Median duration (per task)
StdDur_Task Std. deviation duration (per task)
Num_User Task frequency (per user)
AvgDur_User Mean duration (per user)
MedDur_User Median duration (per user)
StdDur_User Std. deviation duration (per user)
Num_UserTask Task frequency (per user-task) †

AvgDur_UserTask Mean duration (per user-task)
MedDur_UserTask Median duration (per user-task)
StdDur_UserTask Std. deviation duration (per user-task)
† Note this is equivalent to task occurrence index (i) (Section 4.2)

Numerical features can be fed directly to the model post normaliza-
tion. We generate n-grams (up to 3-grams) from the text description
of the task and use n-gram TF-IDF values as features.

As we discussed earlier, we believe that content information is
extremely important for the challenge of task duration estimation.
This could be attributed, in part, to the fact that other sources of
information may not be available in a cold-start scenario where
history information is unavailable. Motivated by the recent ad-
vances in applying neural network methods to natural language
understanding tasks, we propose an approach for modeling the task
description with a recurrent neural network architecture.

Given an appointment subject S with a list of wordswi , i ∈ 1..n,
we aim to embed S into a fixed size representation vector. For each
wordwi in the subject, we first transform them into dense vectors
through a word embedding matrixW ∈ Rdim×|V | . Here, |V | is



the size of vocabulary, and dim is the dimensionality of the word
embedding. Typically, we could use pre-trained word embeddings
such as word2vec [29]. However, in our case this is not possible
since in this study we can only operate on the anonymized (token
hashed) version of the text descriptions for tasks. As such, we train
our own word embedding vectors using a skip-gram hierarchical
SoftMax model [29] using Gensim [35].

The embedding vector ew for awordw is obtained bymultiplying
the one-hot vector representation of the wordw with the embed-
ding matrix. After placing words with their embedding vectors, we
apply a bi-directional RNN with GRU cells to the anonymized ap-
pointment subject S . The bi-directional RNN contains two RNNs, a
forward RNN that scans the text from the beginning to the end and
a backward RNN that scans the text in the opposite direction. We
obtain the hidden state hi for each wordwi in the appointment sub-
ject S by concatenating the forward hidden state and the backward
hidden state. Bi-directional RNNs scan the subject from both sides,
and hence allow each word hidden state to encode information
about the text before and after the corresponding word.

To generate a single vector representing the whole subject S ,
we could use aggregation functions such as max-pooling or aver-
aging over the hidden state of each word in S . Alternatively, we
could allow the model to learn the optimal way to combine the
word representations into a sentence representation while taking
account of words or phrases that are more important than others
for estimating the task duration. To accomplish this, we leverage
the attention mechanism [2] and use the weighted average of the
hidden states to represent S . The attention mechanism takes all
hidden states H as input, and outputs a weight vector α as:

α = so f tmax(vs tanh(WsH
T )) (1)

where H = [h1,h2, . . . ,hn ], and vs andWs are learned attention
parameters. The representation of S(es ) is obtained as follows:

es = HαT (2)
Finally, we pass the sentence representation to a SoftMax (a

multiclass logistic regression) to generate the final estimation. In
the cases where we would like to include additional numerical
features (other than text), we concatenate the feature vector with
the sentence representation and pass them to the SoftMax classifier.

6 EXPERIMENTS
In this section, we describe the experimental setup and the results
of the estimation experiments. We also include a detailed analysis
of the performance of the feature categories and learning methods.

6.1 Content-Only Models
We start by describing the experiments for task duration estimation
using only content features. This setting is particularly important
because it does not require any history information and hence can
be applied to all users, regardless of their activity level. We compare
the results of four different machine-learned models:
• LR-TextOnly: A logistic regression model using n-gram (up to
3 grams) TF-IDF features from the hashed text description.

• LR-Content: The same as LR-TextOnly but also uses the rest of
the precomputed content features described in Table 2.

• DL-TextOnly: The bidirectional RNN model with the GRU cells
and attention mechanism described in Section 5.3. The input to
the model is the text description only.

• DL-Content: The same as DL-TextOnly but a numerical feature
vector representing the precomputed content feature is concate-
nated with the sentence representation before passing it to the
SoftMax classifier.

In addition to comparing the four models, we also vary the training
set size from 25K instances to 2.75M instances and observe the
performance of each model. We split the dataset such that we have
a validation set of 20K instances and a test set of 20K instances.
We used the validation set to tune all hyperparameters (L1 and L2
weights for logistic regression and batch size, learning rate, dropout
rate, and GRU hidden unit size for deep learning).

The results are shown in Figure 4. The top portion of the figure
shows the performance in micro-accuracy and the lower portion
shows the performance in macro-accuracy. We report both metrics
for completeness. Micro-accuracy treats all test cases equally (and
may be preferable if there is class imbalance, as Figure 2 suggests),
whereas macro-accuracy treats each of the four classes equally. Ad-
ditionally, we report the per class F1 measure, as well as the average
and weighted average F1 for all classes, in Table 3. LR-TextOnly per-
forms the worst, achieving a micro-accuracy and a macro-accuracy
of 67% and 57.4% respectively when the full dataset is used. Adding
other precomputed content features (see Table 2) to the logistic
regression model (LR-Content) considerably improves the perfor-
mance, increasing the micro-accuracy and macro-accuracy to 70.5%
and 62.7% respectively when the full dataset is used. For both lo-
gistic regression models, we also observe that the performance im-
proves as the training dataset size increases, but the growth slows
significantly as we add more data beyond 800K training examples.

Nowwe turn our attention to the deep learning models described
in Section 5.3. Using the text only (DL-TextOnly) outperforms LR-
TextOnly at all training dataset sizes. It does not perform as well
as LR-Content when the training dataset size is small (100K or less)
but it performs better as the training dataset size increases, achiev-
ing a micro-accuracy and a macro-accuracy of 71.4% and 65.5%
respectively when the full dataset is used. Adding the other content
features to the deep learning model has a similar effect to adding
them to the logistic regression model and DL-Content outperforms
all other variants for all training dataset sizes and achieves a micro-
accuracy and a macro-accuracy of 75.6% and 69.2% respectively,
when the full dataset is used. Additionally, the deep learning models
(DL-TextOnly, DL-Content) appear to benefit considerably from the
increase in the training set size and the performance continues
to increase as more data is added. In summary, all content-based
models appear to be able to estimate task duration with reasonable
accuracy, with the deep learning models achieving the best perfor-
mance. This is an important result, since it shows that we could
reliably estimate task duration relying only on the text description
of the task and in the absence of any context or history signals.

To better understand the type of errors the model makes, we
examine all incorrect predictions made byDL-Content when trained
on the full training set. For each class, we compute the percentage
of instances of this class incorrectly assigned to each other class.
The results are shown in Table 4. For each row in the table, we
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Figure 4: Performance in terms of micro-accuracy (top) and
macro-accuracy (bottom) of various content-based models
with various training set sizes. *-TextOnly models use the
normalized text only, while *-Content models use additional
content-based features covered in Section 5. Recall that
“Full” has 2.75M tasks. Error bars denote ±SEM.

show the percentage of incorrectly classified instances for this
class with respect to all other classes. The table shows that most
mistakes assign instances to adjacent classes, suggesting that errors
are typically not too egregious. For example, 66.6% of errors for
the < 30 minutes class were assigned to the 30 minutes class and
66.1% of the errors for the 30 minutes class are assigned to the 1
hour class. The errors for the 1 hour class are almost evenly split
between the 30 minutes and the > 1 hour class. Similarly, 76.2%
of errors in the > 1 hour class were assigned to the 1 hour class
instead. The fact that most errors happen between adjacent classes
further supports our choice of treating task duration estimation
as a multiclass classification problem as opposed to a regression
problem.

Table 3: Per class F1 measure for different models using the
full dataset for training. The average and weighted average
(wAvg) F1 measure for each model across all classes are re-
ported on the right of the table.

Model
Class

Avg wAvg
< 30 mins30 mins 1 hour > 1 hour

LR-TextOnly 49.3% 51.7% 69.3% 72.4% 60.7% 67.1%
LR-Content 68.4% 54.9% 71.4% 75.0% 67.4% 69.8%
DL-TextOnly 69.9% 56.4% 72.1% 75.7% 68.5% 70.6%
DL-Content 68.8% 66.4% 75.1% 78.6% 72.2% 74.8%

Table 4: Distribution of errors across classes. Each row rep-
resents all prediction errors for instances belonging to one
class. The percentages show how often each other class is
incorrectly predicted for the given (true) class.

Predicted
< 30 mins 30 mins 1 hour > 1 hour

T
ru

th

< 30 mins 0.0% 66.6% 16.7% 16.7%
30 mins 3.6% 0.0% 66.1% 30.3%

1 hour 1.1% 44.1% 0.0% 54.8%
> 1 hour 0.7% 23.1% 76.2% 0.0%

The focus thus far was on four-class classification. Alternatives
might make this simpler and result in improved classification per-
formance, e.g., accuracy at three-class duration estimation d ∈ {≤
30 minutes, 1 hour, > 1 hour } using the DL-Content model and the
full training dataset was 75.1% and 77.1% for micro- and macro-
accuracies respectively (vs. 75.6% and 69.2% for four-class estima-
tion). Note that micro-accuracy did not improve due to the small
size of the < 30 minutes class (1% per Figure 2). Future work could
also subdivide the > 1 hour class into smaller classes to provide
more duration alternatives (e.g., two hours, half-day, full-day).

6.2 Effect of History and Context
So far, we have focused on leveraging content only features for
task duration estimation. However, for a subset of users we may
have additional information such as task context and history in-
formation (see Table 2 for details). We ran several experiments to
estimate the impact of adding these features to the best performing
content-based model (DL-Content). We concatenate the numerical
feature vectors generated from context and history information
to the representation of the task description generated by the en-
coding described in Section 5.3 and pass the vector to the SoftMax
(multiclass logistic regression) classifier. We also experimented with
using the task context and history features alone by passing them
to a multiclass logistic regression classifier directly.

Since history information is not available for all users. We use
a subset of users that had three or more tasks in our dataset. This
excluded almost half of the dataset leaving us with 1.4M instances.
We generated a new temporal train/test split with 85% of the data
used for training and 15% held out for testing. The temporal split
ensures that the classifier only has access to information from the
past and is evaluated on future tasks. This mimics the scenario
where such a model could be used in practice.
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Figure 5: Performance in micro-accuracy (top) and macro-
accuracy (bottom) of various models leveraging Content in-
formation, Context information, History information, and
various combinations of the three categories.

The results of this experiment are shown in Figure 5. To mea-
sure statistical significance, we used two-tailed t-tests with boot-
strap sampling. The first three bars in the figure compare content,
history, and context information. Context information seems to
perform poorly, while history information seems to yield better
performance. Compared to context and history information, con-
tent information clearly results in the best performance (p-val ≪
0.05). Adding context information to the content model results in
limited but still statistically-significant accuracy gains (p-val > 0.05).
Conversely, adding history information to content models results
in a much larger improvement (6.7 and 6.6 points in micro- and
macro-accuracy respectively) (p-val ≪ 0.05). Adding both history
and context information to the content models does not seem to
yield meaningful improvements over adding only history informa-
tion (p-val > 0.05). This suggests that history information, when
available, could yield significant gains in the accuracy of task dura-
tion estimation models. Conversely, context information does not
appear to add value in addition to content and history information.

Note that our context information represented both the time and
the location of performing the task. The latter was rather limited
since location context had to be obtained by detecting location
mentions (e.g., city, state) in the task description. Additional work
may be needed to find better features to represent the task context.

7 DISCUSSION AND IMPLICATIONS
The evidence from this study suggests that by using distributional
signals and user histories, computer systems can learn to estimate
task duration, bringing us closer to methods to work alongside
humans to help them better manage their time. Promisingly, our
findings align with prior work on time estimation, especially on
planning fallacies [22] and the impact of previous task experience
[41]. We extend those studies, which are often small scale and do
not address the challenge of learning to estimate task duration.

The results show that our classification accuracy is well above
the marginal baseline (42.8%) and that deep learning improves over
logistic regression. For completeness, we report both macro- and
micro-averages; but we also need to explore alternative metrics
[16]. Classification performance is strong with content only and
improves as we add user histories and more training data. Histories
may not be available for many tasks, and the need to double train-
ing data to significantly improve accuracy is not scalable. More
sophisticated learning algorithms and richer features are required
to realize additional gains. For example, prior work found a rela-
tionship between lead time and time estimation accuracy [27, 43].
We experimented with using lead time and other context signals
and saw only limited accuracy gains; although as noted earlier,
our representations of context were also quite limited. If duration
estimators were applied for other applications, such as estimating
the duration of tasks inferred from email communications (e.g.,
commitments or requests [12]) then additional information about
the sender, recipient, the task, etc. may be available from email
metadata and content, and could be used for duration estimation.

In our analysis, we assumed that appointment duration is the
actual time spent on task. We need to validate that assumption and
explore ways to obtain data at scale on actual time spent. Some
of the biases outlined earlier in the paper (e.g., [22]) may affect
our duration estimations, especially since updates to appointment
duration after the appointment are likely to occur infrequently.
Figure 3 suggests that the appointment durations are refined over
time and tend to increase across multiple occurrences. Recurring
appointments may contain more reliable time estimates to train and
test duration estimation models. However, these appointments may
also be homogeneous and less representative of the broad range of
tasks for which people allocate their time.

Applications of task duration estimation in digital assistants and
calendaring applications could be useful (e.g., for the scenario in
Figure 1), but also requires further study and refinement. Beyond
single-person appointments, there is an opportunity to expand
these methods to include tasks with multiple people, where there
are additional social and work-task factors that affect task duration.
Combining task duration estimators with other methods, say, to
predict when tasks are most likely to be performed [15] could get
us closer to time management solutions that allocate the required
duration at the best time (not just any suitable block of free time).



8 CONCLUSIONS
Task duration estimation is an important aspect of time manage-
ment. Access to anonymized large-scale data on time allocated
to tasks let us train models to accurately estimate duration. We
showed the impact of different signals (content, context, history)
on model accuracy. Duration estimation is a new machine learning
challenge and our model performance (~80% accuracy) is promising.
This has several implications for scheduling systems and digital
assistants, e.g., suggest time slots with enough time to complete the
current task. Future work will run user studies to understand user
preferences, explore alternative learning strategies, create shareable
datasets to drive further research, and train models using data about
actual time on task in addition to times reserved on calendars.
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