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Abstract

We study a basic private estimation problem: each of n users draws a single i.i.d. sample
from an unknown Gaussian distribution, and the goal is to estimate the mean of this Gaussian
distribution while satisfying local differential privacy for each user. Informally, local differential
privacy requires that each data point is individually and independently privatized before it is
passed to a learning algorithm. Locally private Gaussian estimation is therefore difficult because
the data domain is unbounded : users may draw arbitrarily different inputs, but local differential
privacy nonetheless mandates that different users have (worst-case) similar privatized output
distributions.

We provide both adaptive two-round solutions and nonadaptive one-round solutions for
locally private Gaussian estimation. We then partially match these upper bounds with an
information-theoretic lower bound. This lower bound shows that our accuracy guarantees are
tight up to logarithmic factors for all sequentially interactive (ε, δ)-locally private protocols.

1 Introduction

Differential privacy is a formal algorithmic guarantee that no single input has a large effect on
the output of a computation. Since its introduction [13] over a decade ago, a rich line of work has
made differential privacy a compelling privacy guarantee (see Dwork et al. [14] and Vadhan [26]
for surveys), and deployments of differential privacy now exist at many organizations, including
Apple [3], Google [6, 15], Microsoft [11], Mozilla [4], and the US Census Bureau [1, 22].

Much recent attention, including almost all industrial deployments, has focused on a stronger
variant of differential privacy called local differential privacy [16, 21, 27]. In the local model private
data is distributed across many users, and each user privatizes their data before the data is collected
by an analyst. Thus, as any locally differentially private computation runs on already-privatized
data, data contributors need not worry about compromised data analysts or insecure communica-
tion channels. In contrast, (global) differential privacy assumes that the data analyst has trusted
access to the unprivatized data. As a result, under global differential privacy any violation of this
trust may lead to serious privacy loss for the users contributing the data.
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However, the stronger privacy guarantees of the local model come at a price: for many problems,
“good” solutions under local privacy require far more samples than similarly good solutions under
global privacy [21]. Moreover, many problems remain little-understood under local differential
privacy. In this paper, we study the simple problem of locally private Gaussian estimation: given
n users each holding an i.i.d. draw from an unknown Gaussian distribution N(µ,σ2), can one
accurately estimate the mean µ while guaranteeing local differential privacy for each user?

One challenge of this problem is that, since data is drawn from a Gaussian, there is no a priori
(worst-case) bound on the scale of the observations. Naive applications of standard privatization
methods like Laplace and Gaussian mechanisms that add noise proportional to the worst-case
scale of the data are therefore infeasible. Second, it is desirable to limit the number of rounds of
interaction between users and the data analyst, as protocols requiring many rounds of user-analyst
interaction are difficult to implement.

1.1 Our Contributions

We divide our solution to locally private Gaussian estimation into two cases. In the first case, σ
is known to the analyst, and in the second case σ is unknown but bounded in known σmin ≤ σ ≤ σmax.
For each case, we provide adaptive two-round and nonadaptive one-round sequentially interactive
protocols. Hhere sequential interactivity informally means that no user outputs information more
than once (see Section 2 for details). Informal guarantees for these protocols appear below.

Theorem 1.1. Let x1, . . . , xn ∼iid N(µ,σ2) where µ = O(σ2nε2/ log(n/β)) and σ is known. Then

1. Adaptive two-round protocol KVGausstimate satisfies (ε,0)-local differential privacy for
x1, . . . , xn and, with probability at least 1 − β, outputs µ̂ such that

∣µ̂ − µ∣ = O⎛⎜⎜⎝
σ

ε

¿ÁÁÀ log ( 1
β
)

n

⎞⎟⎟⎠ .

2. Nonadaptive one-round protocol 1RoundKVGausstimate satisfies (ε,0)-local differential
privacy for x1, . . . , xn and, with probability at least 1 − β, outputs µ̂ such that

∣µ̂ − µ∣ = O⎛⎜⎜⎝
σ

ε

¿ÁÁÀ log ( 1
β
)√log(n)
n

⎞⎟⎟⎠ .

Theorem 1.2. Let x1, . . . , xn ∼iid N(µ,σ2) where µ = O ⎛⎝2
nε2

log(n/β)⎞⎠ and σ is unknown but bounded

in known 0 < σmin ≤ σ ≤ σmax where σmax

σmin

= O⎛⎝2
nε2

log(n/β)⎞⎠. Then

1. Adaptive two-round protocol UVGausstimate satisfies (ε,0)-local differential privacy for
x1, . . . , xn and, with probability at least 1 − β, outputs µ̂ such that

∣µ̂ − µ∣ = O⎛⎜⎜⎝
σ

ε

¿ÁÁÀ log ( 1
β
) log(n)
n

⎞⎟⎟⎠ .
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2. Nonadaptive one-round protocol 1RoundUVGausstimate satisfies (ε,0)-local differential
privacy for x1, . . . , xn and, with probability at least 1 − β, outputs µ̂ such that

∣µ̂ − µ∣ = O ⎛⎜⎜⎝
σ

ε

¿ÁÁÀ log (σmax

σmin

+ 1) log ( 1
β
) log3/2(n)

n

⎞⎟⎟⎠ .

Moreover, we show in the following (informal) information-theoretic lower bound that these
upper bounds are tight up to logarithmic factors. Our proof relies on techniques from the strong
data-processing inequality literature [7, 23].

Theorem 1.3. For a given σ, there does not exist a sequentially interactive (ε, δ)-locally private

protocol A such that for any µ = O (σ
ε

√
1
n
), given x1, . . . , xn ∼ N(µ,σ2), A outputs estimate µ̂

satisfying ∣µ̂ − µ∣ ≤ α = O (σ
ε

√
1
n
) with probability ≥ 15/16.

1.2 Related Work

Several works have already studied differentially private versions of various statistical tasks,
especially in the global setting. Both Karwa and Vadhan [20] and Kamath et al. [19] are relevant, as
they consider similar versions of Gaussian estimation under global differential privacy, respectively
in the one-dimensional and high-dimensional cases. For both the known and unknown variance
cases, Karwa and Vadhan [20] offer an

O
⎛
⎝σ
⎡⎢⎢⎢⎢⎣
√

log(1/β)
n

+ poly log(1/β)
εn

⎤⎥⎥⎥⎥⎦
⎞⎠

accuracy upper bound for estimating µ. Our upper and lower bounds thus demonstrate that local
privacy adds a roughly

√
n accuracy cost for estimating µ.

In local differential privacy, several recent works have studied related statistical tasks like iden-
tity and independence testing [2, 17, 24], albeit restricted to discrete distributions. In concurrent
work, Gaboardi et al. [18] also study Gaussian estimation under local differential privacy. They

provide an adaptive two-round protocol in the known variance case and an adaptive O (log ( R
σmin

))-
round protocol in the unknown variance case, where R upper bounds both µ and σmax and both

protocols are approximately locally private. In our case, R may be as large as Ω̃(2nε2), leading to

Ω(nε2) round complexity for their unknown variance protocol.
In comparison, we construct adaptive two-round and nonadaptive one-round purely locally pri-

vate protocols improving on these guarantees for both cases: see Figure 1 for a detailed comparison.

Moreover, while Gaboardi et al. [18] prove an Ω(σ
ε

√
log(1/β)

n
) lower bound for nonadaptive one-

round protocols, we prove a logarithmically weaker but also more general Ω(σ
ε

√
1
n
) lower bound

for adaptive sequentially interactive protocols. Gaboardi et al. [18] also offer extensions to quantile
estimation and estimation when σ lacks a known upper bound.

Our lower bounds are structurally similar to existing mutual information-based approaches [5,
12, 25] and build on recent results showing that pure and approximate local differential privacy are
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“equivalent” [8, 10]. Our lower bound also uses tools from the strong data processing inequality
literature [7, 23]; broader application of these techniques to local differential privacy may be of
independent interest.

Gaboardi et al. [18] This Work

Setting Accuracy Rounds Accuracy Rounds

Known σ,
adaptive

O
⎛⎜⎝σε
√

log( 1
β
) log(n

β
) log(1

δ
)

n

⎞⎟⎠ 2 O
⎛⎜⎝σε
√

log( 1
β
)

n

⎞⎟⎠ 2

Known σ,
nonadap-
tive

– – O
⎛⎜⎝σε
√

log( 1
β
)√log(n)
n

⎞⎟⎠ 1

Unknown σ,
adaptive

O
⎛⎜⎝σε
√

log( 1
β
) log(n

β
) log(1

δ
)

n

⎞⎟⎠ O (log ( R
σmin

)) O
⎛⎜⎝σε
√

log( 1
β
) log(n)
n

⎞⎟⎠ 2

Unknown
σ, nonadap-
tive

– – O
⎛⎜⎝σε
√

log(σmax

σmin
+1) log( 1

β
) log3/2(n)

n

⎞⎟⎠ 1

Figure 1: A comparison of upper bounds presented in Gaboardi et al. [18] and our work. In all
cases, Gaboardi et al. [18] use (ε, δ)-locally private algorithms while we use (ε,0). Here, R denotes

an upper bound on both µ and σ. In our setting, R = Õ(2nε2), leading the unknown variance
protocol of Gaboardi et al. [18] to round complexity potentially as large as Õ(nε2).

2 Preliminaries

We consider a setting in which each user i ∈ [n] has private data consisting of a single i.i.d. draw
from an unknown Gaussian distribution, xi ∼ N(µ,σ2). In our communication protocol, users may
exchange messages over public channels with a single (possibly untrusted) central analyst1. The
analyst’s task is to accurately estimate µ while guaranteeing local differential privacy for each user.

We restrict our attention to sequentially interactive protocols, where every user sends at most
a single message to the analyst in the entire protocol. For simplicity, our definition of sequentially
interactive protocols is slightly less general than the one introduced by Duchi et al. [12] (see Section 5
for details). The algorithms we present for our upper bounds all satisfy our more restrictive notion
of sequential interactivity, while our lower bounds apply to the more general notion used by Duchi
et al. [12].

We also study the round complexity of these interactive protocols. Formally, one round of
interaction in a protocol consists of the following two steps: 1) the analyst selects a subset of users
S ⊆ [n], along with a set of randomizers {Qi ∣ i ∈ S}, and 2) each user i in S computes a message
yi = Qi(xi) using the assigned function Qi and sends the message to the analyst.

1The notion of a central analyst is a useful simplification but is not intrinsic to the protocol. Technically, as the
analyst need not be trusted, any user can fulfill the same role.
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2.1 Differential Privacy

Informally, a randomized algorithm is differentially private if arbitrarily changing a single input
does not change the output distribution “too much”. The resulting computation preserves privacy
because the output distribution is insensitive to any change of a single user’s data. More formally:

Definition 2.1 ((Standard) Differential Privacy). A randomized algorithm A∶Xm → R satisfies(ε, δ)-differential privacy if for any two databases D,D′ ∈ Xm that differ by a single observation,
the following holds for any event S ⊆ R,

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ.
Here, we study a stronger privacy guarantee called local differential privacy. In the local model,

each user i computes their message using a local randomizer. A local randomizer is a differentially
private algorithm taking single-element databases as input. More formally, a randomized function
Qi∶X → Y is an (ε, δ)-local randomizer if, for every pair of observations xi, x

′
i ∈ X and any S ⊆ Y ,

Pr[Qi(xi) ∈ S] ≤ eεPr[Qi(x′i) ∈ S] + δ.
A sequentially interactive protocol is locally private if every user computes their message using

a local randomizer.

Definition 2.2. A sequentially interactive protocol A is (ε, δ)-locally private for private user data{x1, . . . , xn} if, for every user i ∈ [n], the message Yi for every user i is computed using an (ε, δ)-
local randomizer Qi. When δ > 0, we say A is approximately locally private. If δ = 0, A is purely
locally private.

3 Known Variance

In this section, we present two solutions for the setting where the variance σ2 is known (short-
handed “KV”). In Section 3.1, we analyze an adaptive protocol KVGausstimate that requires
two rounds of analyst-user interaction. In Section 3.2, we analyze a nonadaptive protocol 1Round-

KVGausstimate achieving a weaker accuracy guarantee in a single round.

3.1 Two-round protocol

We begin with a high-level overview of KVGausstimate before analyzing its components in
detail. In KVGausstimate, the analyst splits the n users into halves U1 and U2, employing users
from U1 to compute an initial estimate of µ and then users from U2 to further refine this estimate.

More concretely, the analyst partitions U1 into L = ⌊n/(2k)⌋ subgroups U1
1 , . . . ,U

L
1 of size

k = Ω( log(n/β)
ε2
), where β is the desired failure probability. The analyst then solicits (a privatized

version of) ⌊xi/2j⌋ mod 4 from each user in subgroup U
j
1 . Each user responds by calling RR1,

and the analyst aggregates these estimates through KVAgg1. By doing so, the analyst effectively
executes a one-round binary search and obtains an initial O(σ)-accurate estimate µ̂1 of µ.

The analyst then passes µ̂1 to users in U2 and solicits user estimates using (a privatized version
of) a de-meaning protocol from the distributed statistical estimation literature [7]. Users in U2

respond by calls toKVRR2, where each user i de-means their point using µ̂1, standardizes it using σ,
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and randomized responds on sgn((xi−µ̂1)/σ). Crucially, this de-meaning relies on knowing an O(σ)-
accurate estimate of µ̂, which necessitates the first estimate µ̂1. The analyst then uses KVAgg2 to
aggregate these responses into an estimate of the CDF of N(µ,σ2), from which the analyst can
finally back out a final estimate µ̂2. Pseudocode for KVGausstimate appears below. Throughout,
we make the following assumptions on our problem parameters, deferring exact constants to the
analysis. For neatness, let Lmin = ⌊log(σ)⌋, Lmax = L +Lmin − 1, and L = {Lmin,Lmin + 1, . . . ,Lmax}.
Assumption 3.1. n = Ω( log(n/β)

ε2
) and 0 ≤ µ = O(σ2nε2/ log(n/β)) 2.

Algorithm 1 KVGausstimate

Input: ε, k,L, n, σ,U1 ,U2

1: for j ∈ L do

2: for user i ∈ U j
1 do

3: User i outputs ỹi ← RR1(ε, i, j)
4: end for

5: end for ⊳ End of round 1
6: Analyst computes Ĥ1 ← KVAgg1(ε, k,L,U1)
7: Analyst computes µ̂1 ← EstMean1(β, ε, Ĥ1, k,L)
8: for user i ∈ U2 do

9: User i outputs ỹi ← KVRR2(ε, i, µ̂1, σ)
10: end for ⊳ End of round 2
11: Analyst computes Ĥ2 ← KVAgg2(ε,n/2,U2)
12: Analyst computes T̂ ←√2 ⋅ erf−1 (2(−Ĥ2(−1)+Ĥ2(1))

n
)

13: Analyst outputs µ̂2 ← σT̂ + µ̂1
Output: Analyst estimate µ̂2 of µ

We start our analysis with a privacy guarantee.

Theorem 3.2. KVGausstimate satisfies (ε,0)-local differential privacy for x1, . . . , xn.

Proof. As KVGausstimate is sequentially interactive, each user only produces one output. It
therefore suffices to show that each randomized response routine used in KVGausstimate is(ε,0)-locally private. In RR1, for any possible inputs x,x′ and output y we have

P [RR1(x) = y]
P [RR1(x′) = y] ≤ e

ε/(eε + 3)
1/(eε + 3) ≤ eε

so RR1 is (ε,0)-locally private. KVRR2 is (ε,0)-locally private by similar logic.

Next, we recall our overall accuracy result for KVGausstimate.

Theorem 3.3. With probability at least 1−β, KVGausstimate outputs an estimate µ̂2 such that

∣µ̂2 − µ∣ = O⎛⎝σε
√

log(1/β)
n

⎞⎠ .
We prove this result by analyzing the execution of KVGausstimate in sequence below.

2While we assume µ is nonnegative, this is largely for convenience – all of our methods extend to negative (but
similarly bounded) µ at the expense of constant factors.
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3.1.1 Round one

We start with KVGausstimate’s first round of interaction. First, each user i in group U j
1 runs

RR1(ε, i, j) to publish an ε-privatized version ỹi of yi = ⌊xi/2j⌋ mod 4. Note that below p ∼U X

denotes a uniform random draw p from set X.

Algorithm 2 RR1

Input: ε, i, j

1: yi ← ⌊xi/2j⌋ mod 4
2: if p ∼U [0,1] ≤ eε

eε+3 then

3: User i publishes ỹi ← yi
4: else

5: User i publishes ỹi ∼u ({0,1,2,3}/{yi})
6: end if

Output: Private user estimate ỹi of µ(j)
Since these randomized responses contain information about users’ local estimates of each bit

of µ, the analyst uses KVAgg1(ε, k,L,U1) to aggregate them into histogram Ĥ1.

Algorithm 3 KVAgg1

Input: ε, k,L,U
1: for j ∈ L do

2: for a ∈ {0,1} do
3: Cj(a) ← ∣{ỹi ∣ i ∈ U j, ỹi = a}∣
4: Ĥj(a)← eε+3

eε−1 ⋅ (Cj(a) − k
eε+3)

5: end for

6: end for

7: Output Ĥ
Output: Aggregated histogram Ĥ of private user responses

Let H1 be the “true” histogram, Hj
1(a) = ∣{yi ∣ i ∈ U j

1 , yi = a}∣ for all a ∈ {0,1,2,3} and j ∈ L.
Since the analyst only has access to Ĥ1, we need to show that Ĥ1 and H1 are similar.

Lemma 3.4. With probability at least 1 − β, for all j ∈ L,
∣∣Ĥj

1 −H
j
1 ∣∣∞ ≤ ( ε+4ε

√
2
) ⋅√k ln(8L/β).

Proof. Choose a ∈ {0,1,2,3} and j ∈ L. E [Cj(a)] = H
j
1
(a)eε

eε+3 +
k−Hj

1
(a)

eε+3 = H
j
1
(a)(eε−1)+k

eε+3 , so by a pair

of Chernoff bounds on the k users in U j
1 , with probability at least 1 − β/4L,

∣Cj(a) − H
j
1
(a)(eε−1)+k

eε+3 ∣ ≤√k ln(8L/β)/2.
Then since Ĥj

1(a) = eε+3
eε−1 ⋅ (Cj(a) − k

eε+3), this implies

∣Ĥj
1(a) −Hj

1(a)∣ ≤ eε + 3eε − 1
⋅

√
k ln(8L/β)/2 < ( ε+4

ε
√
2
) ⋅√k ln(8L/β)
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where the last step uses eε+3
eε−1 < ε+4

ε
. Union bounding over a ∈ {0,1,2,3} and all L groups U j

1

completes the proof.

Next, we show how the analyst uses Ĥ1 to estimate µ through EstMean1. Intuitively, in
subgroup U j

1 when user responses concentrate in a single bin mod 4, this suggests that µ lies in
the corresponding bin. In the other direction, when user responses do not concentrate in a single
bin, users with points near µ must spread out over multiple bins, suggesting that µ lies near the
boundary between bins. We formalize this intuition in EstMean1 and Lemma 3.5.

Algorithm 4 EstMean1

Input: β, ε, Ĥ1, k,L
1: ψ ← ( ε+4

ε
√
2
) ⋅√k ln(8L/β)

2: j ← Lmax

3: Ij ← [0,2Lmax]
4: while j ≥ Lmin and maxa∈{0,1,2,3} Ĥj

1(a) ≥ 0.52k + ψ do

5: Analyst computes integer c such that c2j ∈ Ij and c ≡M1(j) mod 4
6: Analyst computes Ij−1 ← [c2j , (c + 1)2j]
7: j ← j − 1
8: end while

9: j ←max(j,Lmin)
10: Analyst computes M1(j)← argmaxa∈{0,1,2,3} Ĥj

1(a)
11: Analyst computes M2(j)← argmaxa∈{0,1,2,3}−{M1(j)} Ĥj

1(a)
12: Analyst computes c∗ ← maximum integer such that c∗2j ∈ Ij and c∗ ≡M1(j) or M2(j) mod 4
13: Analyst outputs µ̂1 ← c∗2j
Output: Initial estimate µ̂1 of µ

Lemma 3.5. Conditioned on the success of the preceding lemmas, with probability at least 1 − β,∣µ̂1 − µ∣ ≤ 2σ.
Proof. Recall the definitions of ψ, M1(j), and M2(j) from the pseudocode for EstMean1: ψ =( ε+4
ε
√
2
) ⋅√k ln(8L/β), M1(j) = argmaxa∈{0,1,2,3} Ĥj

1(a), and M2(j) = argmaxa∈{0,1,2,3}−{M1(j)} Ĥj
1(a).

We start by proving two useful claims.
Claim 1: With probability at least 1−β/5, for all j ∈ L where 2j > σ, if j′ = Lmax,Lmax−1, . . . , j+1

all have Ĥj′

1 (M1(j)) ≥ 0.52k + ψ, then µ ∈ Ij.
To see why, suppose 2j > σ and let x ∼ N(µ,σ2). Recall the Gaussian CDF F (x) = 1

2
[1 + erf ( x−µ

σ
√
2
)].

Then for any a /≡ ⌊µ/2j⌋ mod 4

P [⌊x/2j⌋ ≡ a mod 4] ≤ P [x /∈ [µ,µ + 3 ⋅ 2j)] < P [x /∈ [µ,µ + 3σ)] < 0.51
where the second inequality uses 2j > σ. Thus by a binomial Chernoff bound, the assumption
k > 5000 ln(5L/β), and Lemma 3.4, with probability ≥ 1 − β/5L, Ĥj

1(a) < 0.52k + ψ. Therefore if

for some a we have Ĥj
1(a) ≥ 0.52k + ψ, a ≡ ⌊µ/2j⌋ mod 4. Moreover, if µ ∈ Ij then letting c be the

(unique) integer such that c ≡M1(j) mod 4 and c2j ∈ Ij (since Ij has endpoints c12j and (c1 + 2)2j
for integer c1) we get µ ∈ [c2j , (c + 1)2j] = Ij. As µ ∈ ILmax

by Assumption 3.1, the claim follows by
induction.
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Claim 2: Let j be the maximum j ∈ L with Ĥj
1(M1(j)) < 0.52k +ψ, and let c∗ be the maximum

integer such that c∗2j ∈ Ij and c∗ ≡M1(j) or M2(j) mod 4. If 2j > σ, then with probability at least
1 − 4β/5, ∣c∗2j − µ∣ ≤ 2σ.

To see why, first note that by Claim 1, µ ∈ Ij . Let [c2j , (c + 1)2j) be the subinterval of Ij
containing µ for integer c. Then as 2j > σ, for x ∼ N(µ,σ2), by another application of the Gaussian
CDF,

P [x ∈ [c2j , (c + 1)2j)] > P [x ∈ [µ,µ + σ)] ≥ 0.34.
Thus by the same method as above, using the assumption k > 5000 ln(5/β), with probability at
least 1 − β/5, Ĥj

1(c mod 4) ≥ 0.33k −ψ. By similar logic, since

P [⌊x/2j⌋ ≡ c + 2 mod 4] < max
λ∈[0,2j]P [x /∈ [µ − 2j − λ,µ + 2 ⋅ 2j − λ]] < P [x /∈ [µ − σ,µ + 2σ)] ≤ 0.19

with probability at least 1 − β/5, Ĥj
1(c + 2 mod 4) ≤ 0.2k + ψ. Next, consider Ĥj

1(c − 1 mod 4). If
µ ≥ (c + 0.75)2j , then

P [x ∈ [(c − 1)2j , c2j)] ≤ P [x /∈ [µ − 3σ/4, µ + 9σ/4]] ≤ 0.24
so with probability at least 1 − β/5

Ĥ
j
1(c − 1 mod 4) ≤ 0.25k +ψ < 0.33k − ψ ≤ Ĥj

1(c mod 4)
where the middle inequality uses k > 625( ε+4

ε
√
2
)2 ln(4L/β). Thus c ≡ M1(j) or M2(j) mod 4; the

µ ≤ (c + 0.25)2j) case is symmetric. If instead µ ∈ ((c + 0.25)2j , (c + 0.75)2j) then by similar logic
with probability at least 1 − β/5

Ĥ
j
1(c mod 4) ≥ 0.36k −ψ.

so by ψ < 0.08k (implied by k > 40( ε+4
ε
√
2
)2 ln(8L/β)) c ≡ M1(j) or M2(j) mod 4. It follows that

with probability at least 1 − 3β/5 in all cases c ≡ M1(j) or M2(j) mod 4. Moreover, by a similar
application of the Gaussian CDF, one of c − 1 mod 4 and c + 1 mod 4 lies in {M1(j),M2(j)} as
well.

Recalling that c∗ is the maximum integer such that c∗2j ∈ Ij and c∗ ≡M1(j) or M2(j) mod 4,
c∗ − 1 mod 4 ∈ {M1(j),M2(j)} as well. Assume ∣c∗2j − µ∣ > 2σ. By above, µ ∈ [c∗2j , (c∗ + 1)2j) or[(c∗ − 1)2j , (c∗2j)). In the first case,

P [⌊x/2j⌋ ≡ c∗ − 1 mod 4] ≤ P [x /∈ [µ − 2σ,µ + 2σ]] ≤ 0.05
so with probability at least 1 − β/5, Ĥj

1(c∗ − 1) ≤ 0.06k + ψ, a contradiction of c∗ − 1 mod 4 ∈{M1(j),M2(j)}. In the second case,

P [⌊x/2j⌋ ≡ c∗ mod 4] ≤ P [x /∈ [µ − 2σ,µ + 2σ]] ≤ 0.05
and with probability at least 1−β/5, Ĥj

1(c∗) ≤ 0.06k +ψ, contradicting c∗ mod 4 ∈ {M1(j),M2(j)}.
Thus ∣c∗2j − µ∣ ≤ 2σ.

We put these facts together in EstMean1 as follows: let j1 be the maximum element of L such
that Ĥj

1(M1(j)) < 0.52k − ψ. If 2j1 > σ, then by Fact 2 setting µ̂1 = c∗2j implies ∣µ̂1 − µ∣ ≤ 2σ. If
instead 2j1 ≤ σ, then any setting of µ̂1 ∈ Ij (including µ̂1 = c∗2j) guarantees ∣µ̂1 − µ∣ ≤ 2j1+1 ≤ 2σ.
Thus in all cases, with probability at least 1 − β, ∣µ̂1 − µ∣ ≤ 2σ.

9



3.1.2 Round two

The results above give the analyst an (initial) estimate µ̂1 such that ∣µ̂1 − µ∣ ≤ 2σ. Now, the
analyst passes this estimate µ̂1 to users i ∈ U2, and each user uses µ̂1 to de-mean their value xi and
randomized respond on the resulting (xi − µ̂1)/σ in KVRR2.

Algorithm 5 KVRR2

Input: ε, i, µ̂1, σ

1: User i computes x′i ← (xi − µ̂1)/σ
2: User i computes yi ← sgn(x′i)
3: User i computes c ∼U [0,1]
4: if c ≤ eε

eε+1 then

5: User i publishes ỹi ← yi
6: else

7: User i publishes ỹi ← −yi
8: end if

Output: Private de-meaned user estimate ỹi

De-meaning thus effectively transforms the problem of estimating µ into the problem of esti-
mating µ when ∣µ∣ is small. This in turn enables us to use techniques for estimating the CDF near
µ (specifically, a private version of Protocol 2 in Braverman et al. [7]).

Algorithm 6 KVAgg2

Input: ε, k,U

1: for a ∈ {−1,1} do
2: C(a)← ∣{ỹi ∣ i ∈ U, ỹi = a}∣
3: Ĥ(a) ← eε+1

eε−1 ⋅ (C(a) − k
eε+1)

4: end for

5: Analyst outputs Ĥ
Output: Aggregated histogram Ĥ of private user responses

We now prove that this de-meaning process results in a more accurate final estimate µ̂2 of µ.

Lemma 3.6. Conditioned on the success of the previous lemmas, with probability at least 1 − β
KVGausstimate outputs µ̂2 such that

∣µ̂2 − µ∣ = O⎛⎝σε
√

log(1/β)
n

⎞⎠ .
Proof. The proof is broadly similar to that of Theorem B.1 in Braverman et al. [7], with some
modifications for privacy. First, by Lemma 3.5 µ − µ̂1 ∈ [−2σ,2σ]. Letting µ̄ = (µ − µ̂1)/σ we get
that x′i ∼ N(µ̄,1). Next, since E [yi] = 2P [x′i ≥ 0] − 1, and in general

Φµ,σ2(x) = 1

2
(1 + erf(x − µ

σ
√
2
))

10



where Φµ,σ2 is the CDF of N(µ,σ2), by Φµ̄,1(0) = P [x′i ≥ 0] we get E [yi] = erf(µ̄/√2) (note that
we are analyzing the unprivatized values yi to start; later, we will use this analysis to prove the
analogous result for the privatized values ỹi).

A Chernoff bound on [−1,1]-bounded random variables then shows that, with probability at
least 1 − β/2, for y = 2

n ∑i∈U2
yi we have

∣y − erf(µ̄/√2)∣ ≤ 2√ln(4/β)/n
and by E [y] = erf(µ̄/√2) we get ∣y −E [y] ∣ ≤ 2√ln(4/β)/n as well.

Since µ − µ̂1 ∈ [−2σ,2σ], ∣erf(µ̄/√2)∣ ≤ erf(√2). Thus ∣E [y] ∣ ≤ erf(√2), so by ∣y − E [y] ∣ ≤
2
√
ln(4/β)/n we get ∣y∣ ≤ erf(√2) + 2√ln(4/β)/n.

Using n > 20000 ln(4/β) we get 2
√
ln(4/β)/n < 0.01 and erf(√2) < 0.96, so ∣y∣ ≤ 0.97 and thus∣y∣ < erf(1.6). Let M be an upper bound on the Lipschitz constant for erf−1 in [−0.97,0.97],

M = max
x∈[−0.97,0.97]

derf−1(x)
dx

= max
x∈[−0.97,0.97]

√
π

2
exp([erf−1(x)]2)

≤
√
π

2
exp([erf−1(0.97)]2) < 10.

Then for any x, y ∈ [−0.97,0.97] we have ∣erf−1(x) − erf−1(y)∣ ≤M ∣x − y∣, so setting T =√2erf−1(y),
∣T − µ̄∣ = ∣√2(erf−1(y) − erf−1(E [y])∣ ≤ 10√2∣y −E [y] ∣

≤ 20√2 ln(4/β)/n
using the bound on ∣y − E [y] ∣ from above.

It remains to analyze the privatized values {ỹi} and bound ∣T − T̂ ∣, recalling that we set

T̂ =√2 ⋅ erf−1 (2(−Ĥ2(−1) + Ĥ2(1))
n

)
in KVAgg1. By a Chernoff bound analogous to that of Lemma 3.4, with probability at least 1−β/2

∣T − T̂ ∣ ≤√2 RRRRRRRRRRRRerf
−1(∣y∣) − erf−1 ⎛⎝∣y∣ + [ε + 2ε ]

√
2 ln(4/β)

n

⎞⎠
RRRRRRRRRRRR .

Using n > 20000( ε+2
ε
)2 ln(4/β) (which implies [ε+2

ε
]√2 ln(4/β)

n
≤ 0.01) and the same derivative trick

as above on [−0.98,0.98], we get

∣T − T̂ ∣ ≤ 14 [ε + 2
ε
]
√

2 ln(4/β)
n

.

Therefore by the triangle inequality

∣T̂ − µ̄∣ ≤ (20 + 14 [ε + 2
ε
])
√

2 ln(4/β)
n
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and by σµ̄ = µ − µ̂1 we get

∣σT̂ − σµ̄∣ = ∣(σT̂ + µ̂1) − µ∣ ≤ σ (20 + 14 [ε + 2
ε
])
√

2 ln(4/β)
n

.

Thus by taking µ̂2 = σT̂ + µ̂1, we get

∣µ̂2 − µ∣ = O⎛⎝σε
√

log(1/β)
n

⎞⎠ .

3.2 One-round protocol

In this section, we provide a nonadaptive version 1RoundKVGausstimate of the protocol
above. Recall from the previous section that KVGausstimate uses its first pool of users U1 to
estimate µ, and then passes this estimate µ̂1 to its second pool of users U2 to compute a more
accurate estimate µ̂2 of µ. At a high level, 1RoundKVGausstimate executes these two rounds
of KVGausstimate simultaneously by parallelization. More concretely, 1RoundKVGaussti-

mate splits its second user pool U2 into Θ(√log(n)) subgroups and has each subgroup run the
second-round protocol from KVGausstimate with different values of µ̂1. Intuitively, as most users
draw points clustered within O(σ√log(n)), it suffices that these clustered users de-mean using a

“good” guess for µ. Doing this naively would require Ω(2Lmax/σ√log(n)) subgroups to ensure that

at least one subgroup de-means using µ̂ that is O(σ√log(n)) close to µ.

However, we can do better by leveraging the aforementioned clustering and using σ
√
log(n) as

a modulus. We do this by associating with each subgroup U
j
2 a set of points S(j) interspersed

O(σ√log(n)) apart on the real line and having user i ∈ U j
2 de-mean using the point in S(j) closest

to theirs. By defining these sets S(j) carefully, we can guarantee that at least one group has most
of its users de-mean using a point near µ.

These two processes come together as folows: at the end of the single round, the analyst
aggregates the responses from users in U1 to compute an estimate µ̂1 of µ. By comparing µ̂1 and
S(j), the analyst then selects the subgroup U j

2 where, with high probability, most users de-meaned
using a value in S(j) close to µ̂1. This mimics the effect of adaptively passing µ̂1 to the users in U2 at
the rough cost of a log1/4(n) factor in accuracy, which results from splitting U2 into approximately√
log(n) groups. Pseudocode for 1RoundKVGausstimate appears below.
We start with the (slightly stronger) assumptions 1RoundKVGausstimate requires.

Assumption 3.7. In addition to the assumptions of Assumption 3.1, we have n = Ω( log(n) log(1/β)
ε2

).
1RoundKVGausstimate’s privacy guarantee follows from the same analysis of randomized

response as in KVGausstimate, so we state the guarantee but omit its proof.

Theorem 3.8. 1RoundKVGausstimate satisfies (ε,0)-local differentially privacy for x1, . . . , xn.

Next, we recall our overall accuracy result for 1RoundKVGausstimate.

12



Theorem 3.9. With probability at least 1 − β, 1RoundKVGausstimate outputs an estimate µ̂2
such that

∣µ̂2 − µ∣ = O ⎛⎜⎝
σ

ε

¿ÁÁÀ log(1/β)√log(n)
n

⎞⎟⎠ .
We define k (here denoted k1), L,U1, and U2 as in KVGausstimate. As 1RoundKVGaussti-

mate’s treatment of users in U1 is identical to that of KVGausstimate, we skip its analysis,
instead recalling its final guarantee:

Lemma 3.10. With probability at least 1 − β, ∣µ̂1 − µ∣ ≤ 2σ.
Algorithm 7 1RoundKVGausstimate

Input: ε, k1, k2,L, n,R,S,σ,U1 ,U2

1: for j ∈ L do

2: for user i ∈ U j
1 do

3: User i outputs ỹi ← RR1(ε, i, j)
4: end for

5: end for

6: for j ∈ R do

7: for user i ∈ U j
2 do

8: User i outputs ỹi ← 1RoundKVRR2(ε, i, S(j))
9: end for

10: end for ⊳ End of round 1
11: Analyst computes Ĥ1 ← KVAgg1(ε, k1,L,U1)
12: Analyst computes µ̂1 ← EstMean1(β, ε, Ĥ1, k1,L, )
13: Analyst computes j∗ ← argminj∈Rmins∈S(j) ∣s − µ̂1∣
14: Analyst computes Ĥ2 ← KVAgg2(ε, k2,U j∗

2 )
15: Analyst computes T̂ ←√2 ⋅ erf−1 (−Ĥ2(−1)+Ĥ2(1)

k2
)

16: Analyst outputs µ̂2 ← σT̂ + argmins∈S(j∗) ∣s − µ̂1∣
Output: Analyst estimate µ̂2 of µ

This brings us to U2, and we define new parameters as follows. For neatness, let ρ = ⌈2√ln(4n)⌉ ≥⌈√2 ln(2√n) + 2.1⌉ for n ≥ 32. We set R = {0.2σ,0.4σ, . . . , ρσ} and split U2 into ∣R∣ = 5ρ groups

indexed by j ∈ R, each of size k2 ≥ ⌊n/2∣R∣⌋ ≥ ⌊ n

20
√
ln(4n)⌋ = Ω(n/√log(n)), where the last inequality

uses n ≥ 25. Finally, for each j ∈ R we define S(j) = {j + bρσ ∣ b ∈ Z}.
With this setup, for each j ∈ R each user i ∈ U j

2 uses 1RoundKVRR2 to execute a group-
specific version of KVRR2: rather than de-meaning by µ̂1 as in KVRR2, user i now de-means by
the nearest point in S(j) (breaking ties arbitrarily).

13



Algorithm 8 1RoundKVRR2

Input: ε, i, S(j)
1: User i computes zi ← argminzi∈S(j) ∣zi − xi∣
2: User i computes yi ← sgn((xi − zi)/σ)
3: User i computes c ∼U [0,1]
4: if c ≤ eε

eε+1 then

5: User i publishes ỹi ← yi
6: else

7: User i publishes ỹi ← −yi
8: end if

Output: Private de-meaned user estimate ỹi

To analyze 1RoundKVRR2, we first prove that users in each group draw points concentrated
around µ.

Lemma 3.11. With probability at least 1−β, for all j ∈ R, group U j
2 contains ≤ 2√k2 users i such

that ∣xi − µ∣ > σ√ln(4n).
Proof. First, by a Gaussian tail bound, for each user i, P [∣xi − µ∣ ≥ σ√ln(4n)] ≤ 1/√n. Let U j

C

denote the users in group U j
2 such that ∣xi − µ∣ > σ√ln(4n). Then by a binomial Chernoff bound

P

⎡⎢⎢⎢⎢⎣∣U
c∣ > k2√

n
+

¿ÁÁÀ3k2 ln(∣R∣/β)√
n

⎤⎥⎥⎥⎥⎦ ≤ β/∣R∣
so using n ≥ 9 ln(∣R∣/β)2 and union bounding over ∣R∣ = Ω(√log(n)) groups, the claim follows.

In particular, this implies that for j∗ = argminj∗∈Rmins∈S(j∗) ∣s − µ̂1∣ (i.e., the group with el-

ement of S(j∗) closest to µ̂1), most users draw points in [µ − σ√ln(4n), µ + σ√ln(4n)]. Let

s∗ = mins∈S(j∗) ∣s − µ̂1∣. Our final accuracy result will rely on two facts. First, most users in U
j∗

2

de-mean using s∗. Second, the randomized responses of users who de-mean with s∗ are “almost as
good” as if they were de-meaned by µ.

Lemma 3.12. Conditioned on the success of the previous lemmas, with probability at least 1 − β,
1RoundKVGausstimate outputs µ̂2 such that

∣µ̂2 − µ∣ = O ⎛⎜⎝
σ

ε

¿ÁÁÀ log(1/β)√log(n)
n

⎞⎟⎠ .
Proof. Because adjacent points in R are 0.2σ apart, ∣s∗ − µ̂1∣ ≤ 0.1σ. Lemma 3.10 and the triangle
inequality then imply that ∣s∗ − µ∣ ≤ 2.1σ. This enables us to mimic the proof of Lemma 3.6,
replacing µ − µ̂1 ∈ [−2σ,2σ] with µ − s∗ ∈ [−2.1σ,2.1σ].

We can decompose users in U
j∗

2 into those with points within σρ of s∗ and those with more
distant points. Denote the first set of users by V and the second set by V c, and recall that the
Gaussian CDF is

Φµ,σ2(x) = 1

2
(1 + erf(x − µ

σ
√
2
)) .
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Then, letting 1 denote the indicator function,

E [yi ⋅ 1(i ∈ V )] = P [yi = 1, i ∈ V ] − P [yi = −1, i ∈ V ]
= Φµ,σ2(s∗ + σρ) +Φµ,σ2(s∗ − σρ) − 2Φµ,σ2(s∗)
= 1

2
[erf(s∗ + σρ − µ

σ
√
2
) + erf(s∗ − σρ − µ

σ
√
2
)] − erf(s∗ − µ

σ
√
2
)

= 1

2
[erf(σρ + s∗ − µ

σ
√
2
) − erf(σρ − (s∗ − µ)

σ
√
2

)] − erf(s∗ − µ
σ
√
2
) .

where the last step uses the fact that erf is an odd function. Since erf(x) = 2√
π ∫ x

0 e
−t2dt and∣s∗ − µ∣ ≤ 2.1σ,

1

2
[erf(σρ + s∗ − µ

σ
√
2
) − erf(σρ − (s∗ − µ)

σ
√
2

)] ≤ 1√
π
∫
(σρ+2.1σ)/σ√2

(σρ−2.1σ)/σ√2
e−t2dt

< 3e−[(ρ−2.1)/√2]2

≤ 3e− ln(4n)/2
where the second inequality relies on e−x being monotone decreasing and the last step uses n > 20,
which implies ρ − 2.1 ≥√ln(4n). Then using n ≥ 3k2 we get 3e− ln(4n)/2 ≤ 1√

k2
, so

∣E [yi ⋅ 1(i ∈ V )] − erf(µ − s∗
σ
√
2
)∣ ≤ 1√

k2
. (1)

Next, as ∣s∗ − µ∣ ≤ 2.1σ, users having points within σ
√
2 ln(2√n) of µ have points within σρ of s∗.

The Gaussian tail bound from Lemma 3.11 then implies P [x ∈ V c] ≤ 1/√n. E [yi] = E [yi ⋅ 1(i ∈ V )]+
E [yi ⋅ 1(i ∈ V c)], and by the above bound on P [x ∈ V c] and ∣yi∣ ≤ 1 we get ∣E [yi ⋅ 1(i ∈ V c)] ∣ ≤ 1/√n.
Thus ∣E [yi ⋅ 1(i ∈ V )] − E [yi]∣ ≤ 1√

n
< 1√

k2
. (2)

A Chernoff bound on {−1,1}-valued random variables then tells us that, for y = 1
k2
∑

i∈Uj∗

2

yi, with

probability at least 1 − β/2 we have

∣y − E [yi]∣ ≤
√

2 ln(4/β)
k2

. (3)

Combining the three numbered equations above with the triangle inequality yields

∣y − erf(µ − s∗
σ
√
2
)∣ < 2 +

√
2 ln(4/β)√
k2

.

Setting µ̄ = (µ− s∗)/σ and using k2 ≥ (100[2+√2 ln(4/β))])2, this rearranges into ∣y∣ ≤ erf(µ̄/√2)+
0.01. Since µ̄ ∈ [−2.1,2.1], we get

∣y∣ < erf(2.1/√2) + 0.01 < 0.98 < erf(1.7).
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Let M be an upper bound on the Lipschitz constant for erf−1 in [−0.98,0.98],
M = max

x∈[−0.98,0.98]
derf−1(x)

dx

= max
x∈[−0.98,0.98]

√
π

2
exp([erf−1(x)]2)

≤
√
π

2
exp([erf−1(0.98)]2) < 14.

Then for any x, y ∈ [−0.98,0.98] we have ∣erf−1(x) − erf−1(y)∣ ≤M ∣x − y∣, so for T =√2erf−1(y),
∣T − µ̄∣ = ∣√2(erf−1(y) − erf−1(erf(µ̄/√2))∣ ≤ 14√2∣y − erf(µ̄/√2)∣

< 28⎛⎝
√
2 +
√
ln(4/β)
k2

⎞⎠ .
It remains to bound ∣T − T̂ ∣, where T is the (unknown) aggregation of unprivatized {yi} while T̂

is the (known) aggregation of privatized {ỹi}. By a Chernoff bound analogous to that of Lemma 3.4,
with probability at least 1 − β/2

∣T − T̂ ∣ ≤√2 RRRRRRRRRRRerf
−1(∣y∣) − erf−1 ⎛⎝∣y∣ + [ε + 2ε ]

√
2 ln(4/β)

k2

⎞⎠
RRRRRRRRRRR .

Using k2 > 20000( ε+2ε )2 ln(4/β) (which implies [ε+2
ε
]√2 ln(4/β)

k2
≤ 0.01) and the same derivative trick

as above on [−0.99,0.99], we get

∣T − T̂ ∣ ≤ 25 [ε + 2
ε
]
√

2 ln(4/β)
k2

.

Therefore by the triangle inequality

∣T̂ − µ̄∣ ≤ 28⎛⎝
√
2 +
√
ln(4/β)
k2

⎞⎠ + 25 [ε + 2ε ]
√

2 ln(4/β)
k2

= O⎛⎝1ε
√

log(1/β)
k2

⎞⎠
and by σµ̄ = µ − s∗ we get

∣σT̂ − σµ̄∣ = ∣(σT̂ + s∗) − µ∣ = O ⎛⎝σε
√

log(1/β)
k2

⎞⎠ .
Thus by taking µ̂2 = σT̂ + s∗ and substituting in k2 = Ω(n/√log(n)) we get

∣µ̂2 − µ∣ = O ⎛⎜⎝
σ

ε

¿ÁÁÀ log(1/β)√log(n)
n

⎞⎟⎠ .
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4 Unknown Variance

In this section, we consider the more general problem where σ is unknown but bounded by some
interval σmin ≤ σ ≤ σmax.

4.1 Two-round protocol

Our adaptive solution, UVGausstimate, uses two rounds. In round one, the analyst solicits
user estimates for σ and µ, and in round two the analyst passes these estimates to another set of
users to refine the estimate of µ. Accordingly, our protocol begins by halving the users into groups
U1 (to obtain O(σ)-accurate estimates of σ and µ in the first round) and U2 (to refine the initial
estimate of µ in the second round).

We start by describing U1, the group of users estimating σ and µ. We split U1 into L1 = ⌊n/(2k1)⌋
subgroups U1

1 , . . . ,U
L
1 of size k1 = Ω( log(n/β)ε2

) (as in Section 3, we defer constants to the analysis).

Let Lmin = ⌊log(σmin)⌋, Lmax = L1 +Lmin − 1 ≥ ⌈log(σmax)⌉, and L1 = {Lmin,Lmin + 1, . . . ,Lmax}.
Next, we leave U2 as n/2 users without subgroups. All users in U2 receive (via the analyst)

estimate σ̂ and µ̂ from U1 and use these estimates to compute a final estimate µ̂2 with Laplace noise.
Roughly, we employ Laplace noise rather than the de-meaning process used in the known variance
case because in the unknown variance case we lack the precise (O(σ/√n)-accurate) estimate of
σ that correctly de-meaning requires. Throughout, we require the following assumption on our
problem parameters.

Assumption 4.1.

n = Ω⎛⎜⎝
log (σmax

σmin

+ 1) log (n
β
)

ε2

⎞⎟⎠ and µ,
σmax

σmin

= O⎛⎝2
nε2

log(n/β)⎞⎠ .

Algorithm 9 UVGausstimate

Input: ε, k1,L1, n, σ,U1,U2

1: for j ∈ L1 do

2: for user i ∈ U j
1 do

3: User i outputs ỹi ← RR1(ε, i, j)
4: end for

5: end for ⊳ End of round 1
6: Analyst computes Ĥ1 ← Agg1(ε,L1,U1)
7: Analyst computes σ̂ ← EstVar(β, ε, Ĥ1, k1,L1)
8: Analyst computes Ĥ2 ← KVAgg1(ε, k1,L1,U1)
9: Analyst computes µ̂1 ← EstMean1(β, ε, Ĥ1, k1,L1)

10: Analyst computes I ← [µ̂1 − σ̂(2 +√ln(4n)), µ̂1 + σ̂(2 +√ln(4n))]
11: for user i ∈ U2 do

12: User i outputs ỹi ← UVRR2(ε, i, I)
13: end for ⊳ End of round 1
14: Analyst outputs µ̂2 ← 2

n ∑i∈U2
ỹi

Output: Analyst estimate µ̂2 of µ

17



We begin our analysis with overall privacy and accuracy guarantees.

Theorem 4.2. UVGausstimate satisfies (ε,0)-local differentially privacy for x1, . . . , xn.

Proof. As we already proved that RR1 is private in Section 3.1, we are left with UVRR2. To prove
that UVRR2 is (ε,0)-locally differentially private as well, we can use a standard Laplace noise
privacy guarantee (see e.g. Theorem 3.6 in Dwork et al. [14]): given function f with 1-sensitivity
∆f , computing f(x) + Lap (∆f/ε) satisfies (ε,0)-differential privacy.
Theorem 4.3. With probability at least 1−β, UVGausstimate outputs an estimate µ̂2 such that

∣µ̂2 − µ∣ = O⎛⎝σε
√

log(1/β) log(n)
n

⎞⎠ .
First, for each j ∈ L1 each user i in group U j

1 runsRR1(ε, i, j) (originally defined in Section 3.1.1)
to publish an ε-privatized version ỹi of yi = ⌊xi/2j⌋ mod 4. Estimating σ relies on similar logic as
estimating µ: when 2j ≫ σ, user responses in group U j

1 appear concentrated, and when 2j ≪ σ then

user responses in group U j
1 appear unconcentrated. Examining this transition from concentrated

to unconcentrated responses yields an estimate for σ. Estimation of µ, since it does not require
knowledge of σ, differs from the subroutine EstMean1 used inKVGausstimate only in the choice
of L1. Here, L1 ranges from Lmin to Lmax ≥ ⌈log(σmax)⌉ to account for uncertainty about σ.

The analyst aggregates responses from users in U1 in two ways. First, the analyst computes
a collection of histograms Ĥ1 using Agg1. Ĥ1 is an estimate of the “true” histogram collection,
Hj(a) = ∣{yi ∣ i ∈ U j

1 , yi ∈ {a, a + 1 mod 4}}∣ for all j ∈ L1. As in Lemma 3.4, we can show that Ĥ1

and H1 are similar. As the proof is nearly identical, we omit it.

Lemma 4.4. With probability at least 1 − β, for all j ∈ L1,
∣∣Ĥj

1 −H
j
1 ∣∣∞ ≤ (1 + 4

ε
)√2k1 ln(8L1/β).

Algorithm 10 Agg1

Input: ε, k,L,U
1: for j ∈ L do

2: for a = 0,1,2,3 do

3: Analyst computes Cj(a)← ∣{i ∣ i ∈ U j, ỹi = a}∣
4: Analyst computes Ĥj(a) ← eε+3

eε−1 ⋅ (Cj(a) − k
eε+3)

5: end for

6: for a = 0,1,2,3 do

7: Analyst computes Ĥj
1(a) ← Ĥj(a) + Ĥj(a + 1 mod 4)

8: end for

9: end for

10: Analyst outputs Ĥ1

Output: Analyst aggregation Ĥ1 of private user estimates

Next, we show how the analyst uses Ĥ1 to estimate σ in subroutine EstVar. Here, for neatness
we shorthand

τ =√2k1 ln(2L1/β) + (1 + 4
ε
)√2k1 ln(8L1/β)
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and use the term concentrated to denote any histogram Ĥ
j
1 such that mina∈{0,1,2,3} Ĥj

1(a) ≤ 0.03k+τ
and the term unconcentrated to denote Ĥj

1 where mina∈{0,1,2,3} Ĥj
1(a) ≥ 0.04k−τ . As we show below

in Lemma 4.5, when 2j ≫ σ, Ĥj
1 is concentrated. Similarly, when 2j ≪ σ, Ĥj

1 is unconcentrated.
This transition enables the analyst to estimate σ.

Algorithm 11 EstVar

Input: β, ε, Ĥ1, k1,L1
1: Analyst computes j ← minimum j such that, for all j′ ≥ j, Ĥj′

1 is concentrated
2: if j = ∅ then

3: Analyst outputs σ̂ ← 2Lmax

4: else

5: Analyst outputs σ̂ ← 2j

6: end if

Output: Analyst estimate σ̂ of σ

Lemma 4.5. Conditioned on the success of the preceding lemmas, with probability at least 1 − β,
EstVar outputs σ̂ ∈ [σ,8σ].
Proof. Choose j ∈ L1. Below, we reason about two (non-exhaustive) possibilities for j.

Case 1: 2j ≥ 4σ. Then there exists a ∈ {0,1,2,3} and interval I of length 2j+1 ≥ 8σ containing[µ − 2σ,µ + 2σ] such that for all x ∈ I, ⌊x/2j⌋ mod 4 ≡ a or a + 1 mod 4. By similar application of
the Gaussian CDF as in Lemma 3.5, with probability at least 1 − β/2L1,

∣{xi ∣ xi ∈ I, i ∈ U j
1}∣ ≥ 0.97k1 −√2k1 ln(2L1/β).

Thus by Lemma 4.4, Ĥj
1(a) ≥ 0.97k1 − τ . It follows that Ĥj

1(a+2) ≤ 0.03k1 + τ . 2j ≥ 4σ thus implies

that histogram Ĥ
j
1 is concentrated.

Case 2: 2j ∈ [σ/2, σ]. Choose a ∈ {0,1,2,3}. Since 2j ∈ [σ/2, σ] there exist at most three
subintervals I1, I2, I3 ⊂ [µ − 2σ,µ + 2σ] such that for all x ∈ I = I1 ∪ I2 ∪ I3, ⌊x/2j⌋ ≡ a mod 4, and∣I ∣ ≥ σ. Let x ∼ N(µ,σ2). Then by a similar application of the Gaussian CDF as in Lemma 3.5,
since

P [x ∈ I] ≥ P [x ∈ [µ − 2σ,µ − σ)] ≥ 0.13
with probability 1 − β/8L1 at least 0.13k −

√
2k1 ln(8L1/β) users from U

j
1 have points in I. Since

this held for arbitrary a, a union bound over all four possibilities of a combined with Lemma 4.4
implies that, with probability at least 1 − β/2L1,

min
a∈{0,1,2,3} Ĥ

j
1(a) ≥ 0.13k1 − τ.

2j ≤ σ ≤ 2j+1 thus implies that histogram Ĥ
j
1 is uniform.

Union bounding both results over j ∈ L1, with k1 > 800(2 + 4
ε
)2 ln(8L1/β), with probability 1−β

we have 0.13k − τ > 0.03k + τ for each j ∈ L1. Therefore for all j ∈ L1 if 2j ≥ 4σ then Ĥ
j
1 will be

concentrated while if 2j+1 ≥ σ ≥ 2j then Ĥj
1 will be unconcentrated.

Let j be the smallest j ∈ L1 such that Ĥj
1 is concentrated and for all j′ > j, Ĥj′

1 is concentrated
as well. If no such j exists, then we know 2Lmax ≥ σ ≥ 2Lmax−2, take σ̂ = 2Lmax , and we get σ̂ ∈ [σ,4σ].
If not, then by Case 1 above we know 2j ≤ 8σ, and by Case 2 we know 2j ≥ σ. Thus taking σ̂ = 2j ,
we get σ̂ ∈ [σ,8σ].
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Next, the analyst uses randomized responses from U1 to compute an initial estimate µ̂1 of µ.
As the process EstMean1 is identical to that used in KVGausstimate up to a different subgroup
range L1, we skip its description and only recall its guarantee:

Lemma 4.6. Conditioned on the success of the preceding lemmas, with probability at least 1 − β,∣µ̂1 − µ∣ ≤ 2σ.
From the results above, the analyst obtains an estimate σ̂ such that σ̂ ∈ [σ,8σ] and an estimate

µ̂1 such that ∣µ̂1 − µ∣ ≤ 2σ. The analyst now uses these to compute interval I = [µ̂1 − σ̂(2 +√
ln(4n)), µ̂1 + σ̂(2 + √ln(4n))], where I is intentionally constructed to (with high probability)

contain the points of Ω(n) users. The analyst then passes I to users in U2. Users in U2 respond
with noisy responses via independent calls to UVRR2. In UVRR2, each user clips their sample
xi to the interval I and reports a private version ỹi using Laplace noise scaled to ∣I ∣.

At a high level, we employ Laplace noise in this way because Laplace noise requires a small
interval I to be a useful privatization method: if I is large, then the Lap (∣I ∣/ε) noise required for
privacy will be large as well. At the same time, I must be large enough to contain the points of
most users. Constructing such an I therefore requires rough estimates of both µ and σ, leading to
the two-round approach used here.

Algorithm 12 UVRR2

Input: ε, i, I

1: User i computes x′i ← argminx∈I ∣x − xi∣
2: User i outputs ỹi ← x′i + Lap (∣I ∣/ε)

Output: Private version of user’s point clipped to I

Informally, since I contains the points of an overwhelming fraction of users, the average of noisy
points clipped to I will be close to the expected average µ. The analyst can therefore average these
user randomized responses to compute a more accurate final estimate of µ.

Lemma 4.7. Conditioned on the success of the previous lemmas, with probability at least 1 − β,

∣µ̂2 − µ∣ = O (σε√ log(1/β) log(n)
n

).
Proof. There are two sources of error in the analyst’s estimate µ̂2 = 2

n ∑i ỹi: error from the unnoised
x′is and error from noise in ỹis. Specifically, recalling that ∣U2∣ = n/2, we can decompose µ̂2 as

µ̂2 = 2

n
∑
i

ỹi = 2

n
∑
i

(x′i + ηi)
where each ηi ∼i.i.d. Lap (∣I ∣/ε) and ∣I ∣ = 2σ̂(2 +√ln(4n)).

First, using n > 4 ln(3/β) by concentration of independent Laplace random variables (see e.g.
Lemma 2.8 in Chan et al. [9]) with probability at least 1 − β/3,

∣ 2
n
∑
i

ηi∣ ≤ 4∣I ∣
ε

√
2 ln(3/β)

n
≤ 8σ̂(2 +√ln(4n))

ε

√
2 ln(3/β)

n
= O⎛⎝ σ̂ε

√
log(1/β) log(n)

n

⎞⎠ .
This bounds the contribution of Laplace noise to overall error.
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It remains to bound ∣ 2
n ∑i x

′
i−µ∣. Let V denote the set of users with xi ∈ I and V c denote the set

of users with xi /∈ I. First, by a Gaussian tail bound, for each user i, P [∣xi − µ∣ ≥ σ√ln(4n)] ≤ 1/√n.
Then by a Chernoff bound

P

⎡⎢⎢⎢⎢⎣∣V
c∣ > ⎛⎝1 +

√
6 ln(3/β)
n3/2

⎞⎠√n
⎤⎥⎥⎥⎥⎦ ≤ β/3

and using n ≥ (6 ln(2/β))2/3 we get
√

6 ln(3/β)
n3/2 ≤ 1, so with probability at least 1 − β/3, ∣V c∣ ≤ 2√n.

Thus
2

n
∑
i∈V c

∣x′i − µ∣ ≤ 2

n
(∣V c∣ ⋅ ∣I ∣) ≤ 6σ̂(2 +√ln(4n))√

n
= O⎛⎝ σ̂

√
log(n)√
n

⎞⎠ .
This bounds the contribution of error from the (unprivatized) data of users in V c. Let V denote
the set of users in U2 with points in I. We bound the error contributed by users in V in a similar
way. Users in V have x′i = xi, so by a Chernoff bound on (shifted) [0, ∣I ∣]-bounded random variables,
with probability at least 1 − β/3
2

n
∑
i∈V c

∣x′i−µ∣ = 2

n
∑
i∈V c

∣xi−µ∣ ≤ ∣I ∣
√

2 ln(6/β)
n

≤ σ̂(2+√ln(4n))
√

2 ln(6/β)
n

= O⎛⎝ σ̂
√
log(1/β) log(n)√

n

⎞⎠ .
Putting these three bounds together, we get

∣ 2
n
∑
i

ỹi − µ∣ ≤ 2

n
∑
i

∣x′i + ηi − µ∣
≤ 2

n
∑
i

∣x′i − µ∣ + 2

n
∑
i

∣ηi∣
= 2

n
∑
i∈V
∣x′i − µ∣ + 2

n
∑
i∈V c

∣x′i − µ∣ + 2

n
∑
i

∣ηi∣
= O ⎛⎝σε

√
log(n) log(1/β)

n

⎞⎠
where the last step uses σ̂ ∈ [σ,8σ] from Lemma 4.5.

4.2 One-round protocol

Here we provide a nonadaptive one-round version of UVGausstimate, 1RoundUVGaussti-

mate. As in 1RoundKVGausstimate, 1RoundUVGausstimate will simulate the second round
of UVGausstimate simultaneously with its first round.

More concretely, UVGausstimate constructed an interval I based on estimates µ̂1 of µ and
σ̂ of σ, passed I to users in U2, and users in U2 responded with noisy versions of their points
clipped to I with Lap (∣I ∣/ε) noise. 1RoundUVGausstimate instead splits U2 into subgroups,
where each subgroup responds using different intervals I. As in 1RoundKVGausstimate, at
the end of the single round the analyst obtains estimates µ̂1 and σ̂ from users in U1, constructs
an interval I from these estimates, and finds a subgroup of U2 where most users employed an
interval I ′ similar to I. This similarity guarantees that the responses from that subgroup get the
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same accuracy as the two-round case up to an O (√log (σmax

σmin

+ 1)√log(n)) factor. Pseudocode

for 1RoundUVGausstimate appears below.
1RoundUVGausstimate’s privacy guarantee follows from the same analysis of randomized

response and Laplace noise as for UVGausstimate, so we omit its proof.

Theorem 4.8. 1RoundUVGausstimate satisfies (ε,0)-local differentially privacy for x1, . . . , xn.

Next, we recall 1RoundUVGausstimate’s accuracy guarantee before proving it below.

Algorithm 13 1RoundUVGausstimate

Input: ε, k1, k2,L1, n,R,σ,U1,U2,

1: Analyst computes ρ← ⌈√2 ln(2√n) + 6⌉
2: for j ∈ L1 do

3: for user i ∈ U j
1 do

4: User i outputs ỹi ← RR1(ε, i, j)
5: end for

6: end for

7: for j1 ∈ L1 do

8: for j2 ∈ Rj1 do

9: for user i ∈ U j1,j2
2 do

10: User i outputs ỹi ← 1RoundUVRR2(ε, i, j1, j2, ρ,S)
11: end for

12: end for

13: end for ⊳ End of round 1
14: Analyst computes Ĥ1 ← Agg1(ε, k1,L1,U1)
15: Analyst computes σ̂ ← EstVar(β, ε, Ĥ1, k1,L)
16: Analyst computes j1 ← log(σ̂)
17: Analyst computes Ĥ2 ← KVAgg1(ε, k1,L1,U1)
18: Analyst computes µ̂1 ← EstMean1(β, ε, Ĥ2, k1,L1)
19: Analyst computes j2 ← argminj∈Rj1

(mins∈S(j1,j) ∣s − µ̂1∣)
20: Analyst computes s∗ ← mins∈S(j1,j2) ∣s − µ̂1∣
21: Analyst outputs µ̂2 ← s∗ + 1

k2
∑

i∈Uj1,j2
2

ỹi

Output: Analyst estimate µ̂2 of µ

Theorem 4.9. Wih probability at least 1 − β, 1RoundUVGausstimate outputs µ̂2 such that

∣µ̂2 − µ∣ = O⎛⎜⎜⎝
σ

ε

¿ÁÁÀ log (σmax

σmin

+ 1) log(1/β) log3/2(n)
n

⎞⎟⎟⎠ .
We define k1,L1, and U1, as in UVGausstimate and skip the analysis of 1RoundUVGaussti-

mate’s treatment of users in U1 as it is identical to that of UVGausstimate. We recall its collected
guarantee:

Lemma 4.10. With probability at least 1 − β, σ̂ ∈ [σ,8σ] and ∣µ̂1 − µ∣ ≤ 2σ.
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We again define R and S for U2, albeit with a few modifications. First, we let ρ = ⌈√ln(4n)+6⌉
for neatness. Then, recalling from Section 4.1 that L1 ranges over possible values of log(σ), for
each ja ∈ L1 we define Rja = {2ja ,2 ⋅ 2ja , . . . , ρ ⋅ 2ja}. Next, for each ja ∈ L1 and jb ∈ Rja , we

define S(ja, jb) = {jb + bρ2ja ∣ b ∈ Z}. Finally, we split U2 into L1 ⋅ ρ subgroups U ja,jb
2 of size

k2 = Ω( n

log(σmax

σmin

+1)√log(n)) for each ja ∈ L1 and jb ∈ Rja. As in 1RoundKVGausstimate, we

parallelize over these subgroups to simulate the second round of UVGausstimate for different
values of (ja, jb). The assumptions required are the same as those of Assumption 4.1.

In each subgroup U
ja,jb
2 , each user i computes the nearest element si ∈ S(ja, jb) to xi, si =

argmins∈S(ja,jb) ∣xi − s∣ and outputs xi − si plus Laplace noise in 1RoundUVRR2. The analyst
then uses estimates j1 = ⌈log(σ̂)⌉ and µ̂1 from U1 to compute j2 = argminj∈Rj1

(minz∈S(j1,j) ∣z − µ̂1∣).
Finally, the analyst aggregates randomized responses from group U j1,µ̂2

2 into an estimate µ̂2.

Algorithm 14 1RoundUVRR2

Input: ε, i, j1, j2, ρ,S

1: User i computes si ←mins∈S(j1,j2) ∣s − xi∣
2: User i computes yi ← xi − si
3: User i outputs ỹi ← yi + Lap (2ρ2j1/ε)

Output: Private version of user’s point xi

As in 1RoundKVGausstimate, we start with a concentration result for each U j1,j2
2 . Since its

proof is similar to that of Lemma 3.11, we omit it.

Lemma 4.11. With probability at least 1 − β, for all j1 ∈ L1 and j2 ∈ Rj1, group U
j1,j2
2 contains

≤ 2√k2 users i such that ∣xi − µ∣ > σ√ln(4n).
In combination with the previous lemmas, this enables us to prove our final accuracy result.

Lemma 4.12. Conditioned on the success of the previous lemmas, with probability at least 1 − β,
1RoundUVGausstimate outputs µ̂2 such that

∣µ̂2 − µ∣ = O⎛⎜⎜⎝
σ

ε

¿ÁÁÀ log (σmax

σmin

+ 1) log(1/β) log3/2(n)
n

⎞⎟⎟⎠ .
Proof. By Lemma 4.10, σ̂ ∈ [σ,8σ] and ∣µ̂1 − µ∣ ≤ 2σ. Since j1 = log(σ̂) ∈ L1 and
j2 = argminj∈Rj1

(mins∈S(j1,j) ∣s − µ̂1∣), by the definition of s∗ ∈ S(j1, j2), ∣s∗ − µ̂1∣ ≤ 0.5σ̂ < 4σ. Thus∣s∗ − µ∣ < 6σ.
Consider group U j1,j2

2 . By Lemma 4.11 at most 2
√
k2 users i ∈ U j1,j2

2 have ∣xi − µ∣ > σ√ln(4n).
Thus by ∣s∗ −µ∣ < 6σ and the fact that any two points in S(j1, j2) are at least σ̂ρ ≥ σ(6 +√ln(4n))
far apart, we get that at least k2 −2

√
k2 users i ∈ U j1,j2

2 set si = s∗ in their run of 1RoundUVRR2.

Denote this subset of users by V , and denote by V c the set of users i ∈ U j1,j2
2 such that si ≠ s∗, and

for each user i ∈ U2 let yi = xi − si.
Let f(x) = 1

σ
√
2π

exp(−(x − µ)2/2σ2), the density for N(µ,σ2). Then
∫
∞
∞ (x − µ)f(x)dx = ∫

s∗−ρσ̂
−∞ (x − µ)f(x)dx +∫ s∗+ρσ̂

s∗−ρσ̂ (x − µ)f(x)dx + ∫
∞

s∗+ρσ̂(x − µ)f(x)dx. (4)
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Let g(x) = − σ√
2π

exp(−(x − µ)2/2σ2), the antiderivative of (x − µ)f(x). Then
∣∫ s∗−ρσ̂
−∞ (x − µ)f(x)dx∣ = ∣g(s∗ − ρσ̂) − lim

b→−∞ g(b)∣
= ∣ σ√

2π
⋅ exp(−(s∗ − ρσ̂ − µ)2

2σ2
)∣

≤ ∣ σ√
2π
⋅ exp(−([6 − ρ]σ)2

2σ2
)∣

≤ ∣ σ√
2π
⋅ exp(−[6 − ρ]2

2
)∣

< σ√
2π
⋅ exp(− ln(2√n))

< σ√
n

where the first inequality uses σ̂ ≥ σ and ∣s∗ − µ∣ < 6σ. Similar logic implies∣∫ ∞s∗+ρσ̂(x − µ)f(x)dx∣ ≤ σ/√n as well. Therefore by Equation 4 and ∫ ∞−∞(x − µ)f(x)dx = 0,
∣∫ s∗+ρσ̂

s∗−ρσ̂ (x − µ)f(x)dx∣ ≤ 2σ/√n
so by E [xi ⋅ 1(i ∈ V )] = ∫ s∗+ρσ̂

s∗−ρσ̂ xf(x)dx, we get

∣E [xi ⋅ 1(i ∈ V )] − µ∫ s∗+ρσ̂
s∗−ρσ̂ f(x)dx∣ ≤ 2σ/√n.

Since E [xi ⋅ 1(i ∈ V )] /P [i ∈ V ] = E [xi ∣ i ∈ V ] and P [i ∈ V ] = ∫ s∗+ρσ̂
s∗−ρσ̂ f(x)dx, this means

∣E [xi ∣ i ∈ V ] − µ∣ ≤ 2σ/√n.
By yi = xi − s∗ for i ∈ V , ∣E [yi ∣ i ∈ V ] − (µ − s∗)∣ ≤ 2σ/√n.
We can therefore decompose

RRRRRRRRRRRRRR
1

k2
∑

i∈Uj1,j2
2

yi − (µ − s∗)
RRRRRRRRRRRRRR
≤ ∣ 1

k2
∑
i∈V
(yi − (µ − s∗))∣ + ∣ 1

k2
∑
i∈V c

(yi − (µ − s∗))∣

≤
⎡⎢⎢⎢⎢⎣
2σ√
n
+ ρσ̂

√
2 log(4/β)

k2

⎤⎥⎥⎥⎥⎦ +
2ρσ̂√
k2

= O⎛⎝σ
√

log(1/β) log(n)
k2

⎞⎠
where the the first inequality uses a (with probability at least 1−β/2) Chernoff bound on {yi ∣ i ∈ V }
concentrating around E [yi ∣ i ∈ V ] as well as ∣V c∣ ≤ 2√k2, and the last step uses σ̂ ∈ [σ,8σ].
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Next, since we can decompose

1

k2
∑

i∈Uj1,j2
2

ỹi = 1

k2
∑

i∈Uj1,j2
2

yi +
1

k2
∑

i∈Uj1,j2
2

ηi

where each ηi ∼ Lap (ρσ̂/ε), the same concentration of Laplace noise from Lemma 4.7 says that with
probability 1 − β/2,

∣ 1
k2

k2

∑
i=1

ηi∣ = O⎛⎝ρσ̂ε
√

log(1/β)
k2

⎞⎠ = O⎛⎝σε
√

log(1/β) log(n)
k2

⎞⎠ .
Combining with the bound above and substituting in k2 = Ω( n

log(σmax

σmin
+1)√log(n)),

RRRRRRRRRRRRRR
1

k2
∑

i∈U
j1,j2
2

ỹi − (µ − s∗)
RRRRRRRRRRRRRR
= O ⎛⎜⎜⎝

σ

ε

¿ÁÁÀ log (σmax

σmin

) log(1/β) log3/2(n)
n

⎞⎟⎟⎠ .
The claim then follows from µ̂2 = s∗ + 1

k2
∑

i∈U
j1,j2
2

ỹi.

5 Lower Bound

In this section we prove that the upper bounds proven in Sections 3 and 4 are tight up to
log factors for sequentially interactive protocols. Our argument proceeds in three steps: first, in
Section 5.1 we show that any protocol achieving good performance on our estimation problem
achieves good performance on a more easily analyzed testing problem. Second, in Section 5.2 we
prove a lower bound for (ε,0)-locally private protocols on these testing problems. Finally, we use
recent work demonstrating that noninteractive pure and approximate local privacy are “equivalent”
for sequentially interactive protocols [8, 10] to generalize our lower bound to protocols satisfying(ε, δ)-local privacy.

For completeness, we start with the more general notion of sequential interactivity used by Duchi
et al. [12], which requires that the set of messages {Yi} sent by the users satisfies the following
conditional independence structure:

{Xi, Y1, . . . , Yi−1}→ Yi and, Yi ⊥Xj ∣ {Xi, Y1, . . . , Yi−1} for j ≠ i.
5.1 From Estimation to Testing

We begin by defining a way to transform an instance of Estimate into a (formally) easier testing
problem Test. We start by defining an instance Estimate (n,M,σ). Here, a protocol receives n
samples from a N(µ,σ2) distribution where σ is known, µ ∈ [0,M], and the goal is to estimate µ.
Next, define V ∼U {0,1}. Consider the following testing problem: for V = v, if v = 0, then each user
i draws a sample xi ∼iid N(0, σ2), while if v = 1 then each user i draws a sample xi ∼iid N(M,σ2).
The testing problem Test (n,M,σ) is to recover v from x1, . . . , xn with high probability.

We will say that a protocol A (α,β)-estimates Estimate (n,M,σ) if, with probability at least
1 − β, A(Estimate (n,M,σ)) = µ̂ such that ∣µ̂ − µ∣ < α. Similarly, we will say that an algorithm A
β-solves Test (n,M,σ) if, with probability at least 1 − β, A(Test (n,M,σ)) = v. We now show that
Test (n,M,σ) is formally no harder than Estimate (n,M,σ).
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Lemma 5.1. If there exists a sequentially interactive and (ε, δ)-locally private protocol A that(M/2, β)-estimates Estimate (n,M,σ), then there exists a sequentially interactive and (ε, δ)-locally
private protocol A′ that β-solves Test (n,M,σ).
Proof. Let x1, . . . , xn be the samples from an instance of Test (n,M,σ). We define A′ to runA(x1, . . . , xn) and then output argminµ̂∈{0,M} ∣A(x1, . . . , xn) − µ̂∣. Since A (M/2, β)-estimates
Estimate (n,M,σ), with probability at least 1 − β, ∣A(x1, . . . , xn) − µ∣ < M/2. Thus with proba-
bility at least 1 − β, A′(x1, . . . , xn) = v. Thus A′ β-solves Test (n,M,σ). As A′ interacted with
x1, . . . , xn only through (ε, δ)-locally private A, by preservation of differential privacy under post-
processing, A′ is (ε, δ)-locally private as well. Similar logic implies that A′ is also sequentially
interactive.

5.2 Lower Bounds for Test

Next, we show that Test is hard for (ε,0)-locally private protocols. As our result uses some tools
from information theory, a brief overview of information theory basics appears in the Appendix.

Lemma 5.2. Suppose M ≤ σ/[4(eε−1)√2nc],where c is an absolute constant. For any sequentially
interactive and (ε,0)-locally private protocol A that β-solves Test (n,M,σ), β ≥ 1/4.
Proof. We may express any sequentially interactive (ε,0)-locally private protocol A that β-solves
Test (n,M,σ) as a Markov chain V → X → Y → Z, where V is the random variable selecting v,
X = (x1, . . . , xn) is the random variable for users’ i.i.d. samples, Y = (y1, . . . , yn) is the random
variable for users’ (ε,0)-privatized responses, and Z = A(Test (n,M,σ)). As V → X → Y → Z is
a Markov chain (i.e., any two random variables in the chain are conditionally independent given
a random variable between them). Thus by a strong data processing inequality for two Gaussians
(see e.g. Section 4.1 in Braverman et al. [7] or, for a broader treatment of strong data processing
inequalities, Raginsky [23]), there exists absolute constant c such that for each user i, I(V ;Yi) ≤
cM2

σ2 I(Xi;Yi), where I(A;B) denotes the mutual information between random variables A and B.
Next, since our protocol is (ε,0)-locally private, by Corollary 1 from Duchi et al. [12], for each user
i, I(Xi;Yi) ≤ 4(eε − 1)2. With the equation above, we get

I(V ;Yi) ≤ 4cM2(eε−1)2
σ2 . (5)

Without loss of generality, suppose Z is a deterministic function of Y 3. From Markov chain

3This is without loss of generality because if Z is a random function of Y then it decomposes into a convex
combination of deterministic functions of Y .
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V →X → Y → Z and the (generic) data processing inequality we get

I(V ;Z) ≤ I(V ;Y1, . . . , Yn)
= n

∑
i=1

I(V ;Yi ∣ Yi−1, . . . Y1)
≤ n

∑
i=1

I(V,Yi−1, . . . , Y1;Yi)
= n

∑
i=1

[I(V ;Yi) + I(Yi−1, . . . , Y1;Yi∣V )]
= n

∑
i=1

I(V ;Yi)
where the last step follows from the independence of Yi and Y1, . . . , Yi−1 given V . Substituting in

Equation 5, I(V ;Z) ≤ 4ncM2(eε−1)2
σ2 . Therefore by M ≤ σ/4(eε − 1)√2nc we get I(V ;Z) ≤ 1/8.

Define P to be the distribution of Z (over the randomness of V , X, and Y ), and let P0 and P1

be the distributions for Z ∣V = 0 and Z ∣V = 1 respectively. Then as V is uniform, P = (P0 + P1)/2,
so ∣∣P − P0∣∣1 = ∣∣P − P1∣∣1 = 1

2
∣∣P0 −P1∣∣1.

Moreover, by

P [Z = V ] = P [Z = 0, V = 0] + P [Z = 1, V = 1]
= 1

2
(P0(0) + [1 − P1(0)])

≤ 1

2
(1 + ∣P0(0) −P1(0)∣)

= 1

2
+
1

4
∣∣P0 − P1∣∣1

we get P [Z = V ] ≤ 1
2
+

1
4
∣∣P0 −P1∣∣1. Thus
∣∣P0 −P1∣∣21

8
= 1

4
(∣∣P0 − P ∣∣21 + ∣∣P1 − P ∣∣21)

≤ 1

2
(DKL(P0∣∣P ) +DKL(P1∣∣P ))

= I(Z;V ) ≤ 1/8
where the second-to-last inequality uses Pinsker’s inequality. It follows that ∣∣P0 −P1∣∣1 ≤ 1. Substi-
tuting this into P [Z = V ] ≤ 1

2
+

1
4
∣∣P0 −P1∣∣1, we get P [Z = V ] ≤ 3

4
.

It remains to show that Test is hard for (ε, δ)-locally private protocols. Our result follows
almost immediately from existing work [8, 10] showing, roughly, that any sequentially interactive(ε, δ)-locally private protocol A may be transformed into a sequentially interactive (O(ε),0)-locally
private protocol A′ with similar behavior4.

4While both of these results are stated for noninteractive protocols, it is straightforward to see that their techniques
carry over to sequentially interactive protocols. Specifically, both results rely on transforming a single user call to
an (ε, δ)-local randomizer into calls to an (O(ε),0)-local randomizer. Thus, since users in sequentially interactive
protocols still only make a single call to a local randomizer, we can apply the same transformations to each single
user call and obtain an (O(ε),0)-locally private sequentially interactive protocol.
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Lemma 5.3. Let ε > 0 and δ < min ( ǫβ
48n ln(2n/β) , β

16n ln(n/β)e7ε ), and suppose that A is a sequen-

tially interactive and (ε, δ)-locally private protocol. If A β-solves Test (n,M,σ), then there exists a
sequentially interactive (10ε,0)-locally private A′ that 4β-solves Test (n,M,σ).
Proof. Our analysis splits into two cases depending on ǫ.

Case 1: ε ≤ 1/4. In this case, we use a result from Bun et al. [8], included here for completeness.

Lemma 5.4 (Theorem 6.1 in Bun et al. [8] (restated)). Given ε ≤ 1/4 and δ < ǫβ/48n ln(2n/β),
there exists a (10ε,0)-locally private algorithm A′ such that for every database U = {x1, . . . , xn},
dTV (A(U),A′(U)) ≤ β, where dTV denotes total variation distance.

Thus, denoting by EA the event where A recovers the correct v on Test (n,M,σ) and EA′

the event where A′ recovers the correct v on Test (n,M,σ), ∣P [EA] − P [EA′] ∣ ≤ β, where the
probabilities are respectively over A and A′. Thus since A β-solves Test (n,M,σ), it follows thatA′ 2β-solves (and thus also 4β-solves) Test (n,M,σ).

Case 2: ε > 1/4. In this case we use a result from Cheu et al. [10]5

Lemma 5.5 (Theorem A.1 in Cheu et al. [10] (restated)). Given ε > 1/4 and δ < β
16n ln(n/β)e7ε ,

there exists an (8ε,0)-locally private protocol A′ such that A′ 4β-solves Test (n,M,σ).
Our result follows.

5.3 Lower Bound for Estimate

We combine the preceding results to prove a general lower bound for Estimate as follows: for
appropriate ε and δ, by Lemma 5.1 any sequentially interactive and ( ε

10
, δ)-locally private protocol

A that (M/2, β
4
)-estimates Estimate (n,M,σ) implies the existence of a sequentially interactive and( ε

10
, δ)-locally private protocol A′ that β

4
-solves Test (n,M,σ). Then, Lemma 5.3 implies the exis-

tence of a sequentially interactive and (ε,0)-locally private protocol A′′ that β-solves Test (n,M,σ).
By Lemma 5.2 any such A′ that β-solves Test (n,M,σ) has β ≥ 1/4. We condense this reasoning
into the following theorem.

Theorem 5.6. Let ε > 0 and δ < min ( ǫβ
60n ln(5n/2β) , β

16n ln(n/β)e7ε ), and let A be a sequentially

interactive (ε, δ)-locally private (α,β)-estimator for Estimate (n,M,σ) where M = σ/4(eε − 1)√2nc
and β < 1/16. Then

α ≥M/2 = Ω⎛⎝σε
√

1

n

⎞⎠ .
In particular, this implies that the upper bounds of Sections 3 and 4 are tight up to logarithmic

factors for any sequentially interactive and (ε, δ)-locally private protocol with sufficiently small δ.
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A Information Theory

We briefly review some standard facts and definitions from information theory, starting with
entropy.

Definition A.1. The entropy H(X) of a random variable X is

H(X) =∑
x

P [X = x] ln ( 1
P[X=x]) ,

and the conditional entropy H(X ∣Y ) of random variable X conditioned on random variable Y is

H(X ∣Y ) = Ey[H(X ∣Y = y)].
Next, we can use entropy to define the mutual information between two random variables. Mu-

tual information between random variables X and Y is roughly the amount by which conditioning
on Y reduces the entropy of X (and vice-versa).

Definition A.2. The mutual information I(X;Y ) between two random variables X and Y is

I(X;Y ) =H(X) −H(X ∣Y ) =H(Y ) −H(Y ∣X),
and the conditional mutual information I(X;Y ∣Z) between X and Y given Z is

I(X;Y ∣Z) =H(X ∣Z) −H(X ∣Y,Z) =H(Y ∣Z) −H(Y ∣X,Z).
We also define the related notion of KL-divergence.

Definition A.3. The Kullback-Leibler divergence DKL(X ∣∣Y ) between two random variables X
and Y is

DKL(X ∣∣Y ) =∑
x

P [X = x] ln(P [X = x]
P [Y = x] ) ,

where we often abuse notation and let X and Y denote the distributions associated with X and Y .

KL divergence connects to mutual information as follows.

Fact A.4. For random variables X, Y , and Z,

I(X;Y ∣Z) = Ex,z [DKL ((Y ∣X = x,Z = z)∥(Y ∣Z = z))] .
Finally, we will also use the following connection between KL divergence and ∣∣ ⋅ ∣∣1 distance.

Lemma A.5 (Pinsker’s inequality). For random variables X and Y ,

∣∣X − Y ∣∣1 ≤√2DKL(X ∣∣Y ).
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