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Abstract

State-of-the-art object detectors and trackers are developing
fast. Trackers are in general more efficient than detectors but
bear the risk of drifting. A question is hence raised – how to
improve the accuracy of video object detection/tracking by
utilizing the existing detectors and trackers within a given
time budget? A baseline is frame skipping – detecting ev-
ery N -th frames and tracking for the frames in between.
This baseline, however, is suboptimal since the detection fre-
quency should depend on the tracking quality. To this end, we
propose a scheduler network, which determines to detect or
track at a certain frame, as a generalization of Siamese track-
ers. Although being light-weight and simple in structure, the
scheduler network is more effective than the frame skipping
baselines and flow-based approaches, as validated on Ima-
geNet VID dataset in video object detection/tracking.

Introduction
Convolutional neural network (CNN)-based methods have
achieved significant progress in computer vision tasks such
as object detection (Ren et al. 2015; Liu et al. 2016; Dai
et al. 2016; Tang et al. 2018b) and tracking (Held, Thrun,
and Savarese 2016; Bertinetto et al. 2016; Nam and Han
2016; Bhat et al. 2018). Following the tracking-by-detection
paradigm, most state-of-the-art trackers can be viewed as a
local detector of a specified object. Consequently, trackers
are generally more efficient than detectors and can obtain
precise bounding boxes in subsequent frames if the specified
bounding box is accurate. However, as evaluated commonly
on benchmark datasets such as OTB (Wu, Lim, and Yang
2015) and VOT (Kristan et al. 2017), trackers are encour-
aged to track as long as possible. It is non-trivial for trackers
to be stopped once they are not confident, although heuris-
tics, such as a threshold of the maximum response value, can
be applied. Therefore, trackers bear the risk of drifting.

Besides object detection and tracking, there have been re-
cently a series of studies on video object detection (Kang et
al. 2016; 2017; Feichtenhofer, Pinz, and Zisserman 2017;
Zhu et al. 2017b; 2017a; 2018; Chen et al. 2018). Be-
yond the baseline to detect each frame individually, state-
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of-the-art approaches consider the temporal consistency of
the detection results via tubelet proposals (Kang et al. 2016;
2017), optical flow (Zhu et al. 2017b; 2017a; 2018) and
regression-based trackers (Feichtenhofer, Pinz, and Zisser-
man 2017). These approaches, however, are optimized for
the detection accuracy of each individual frame. They either
do not associate the presence of an object in different frames
as a tracklet, or associate after performing object detection
on each frame, which is time-consuming.

This paper is motivated by the constraints from practical
video analytics scenarios such as autonomous driving and
video surveillance. We argue that algorithms applied to these
scenarios should be:
• capable of associating an object appearing in different

frames, such that the trajectory or velocity of the object
can be further inferred.

• in realtime (e.g., over 30 fps) and as fast as possible, such
that the deployment cost can be further reduced.

• with low latency, which means to produce results once a
frame in a video stream has been processed.
Considering these constraints, we focus in this paper on

the task of video object detection/tracking (Russakovsky et
al. 2017). The task is to detect objects in each frame (similar
to the goal of video object detection), with an additional goal
of associating an object appearing in different frames.

In order to handle this task under the realtime and low la-
tency constraint, we propose a detect or track (DorT) frame-
work. In this framework, object detection/tracking of a video
sequence is formulated as a sequential decision problem – a
scheduler network makes a detection/tracking decision for
every incoming frame, and then these frames are processed
with the detector/tracker accordingly. The architecture is il-
lustrated in Figure 1.

The scheduler network is the most unique part of our
framework. It should be light-weight but be able to deter-
mine to detect or track. Rather than using heuristic rules
(e.g., thresholds of tracking confidence values), we formu-
late the scheduler as a small CNN by assessing the tracking
quality. It is shown to be a generalization of Siamese trackers
and a special case of reinforcement learning (RL).

The contributions are summarized as follows:
• We propose the DorT framework, in which the object de-

tection/tracking of a video sequence is formulated as a
sequential decision problem, while being in realtime and
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Figure 1: Detect or track (DorT) framework. The scheduler network compares the current frame t + τ with the keyframe t by
evaluating the tracking quality, and determines to detect or track frame t + τ : either frame t + τ is detected by a single-frame
detector, or bounding boxes are tracked to frame t + τ from the keyframe t. If detect is chosen, frame t + τ is assigned as the
new keyframe, and the boxes in frame t + τ and frame t + τ − 1 are associated by the widely-used Hungarian algorithm (not
shown in the figure for conciseness).

with low latency.
• We propose a light-weight but effective scheduler net-

work, which is shown to be a generalization of Siamese
trackers and a special case of RL.

• The proposed DorT framework is more effective than the
frame skipping baselines and flow-based approaches, as
validated on ImageNet VID dataset (Russakovsky et al.
2015) in video object detection/tracking.

Related Work
To our knowledge, we are the first to formulate video ob-
ject detection/tracking as a sequential decision problem and
there is no existing similar work to directly compare with.
However, it is related to existing work in multiple aspects.

Video Object Detection/Tracking
Video object detection/tracking is a task in ILSVRC 2017
(Russakovsky et al. 2017), where the winning entries are op-
timized for accuracy rather than speed. (Deng et al. 2017)
adopts flow aggregation (Zhu et al. 2017a) to improve
the detection accuracy. (Wei et al. 2017) combines flow-
based (Ilg et al. 2017) and object tracking-based (Nam and
Han 2016) tubelet generation (Kang et al. 2017). THU-
CAS (Russakovsky et al. 2017) considers flow-based track-
ing (Kang et al. 2016), object tracking (Held, Thrun, and
Savarese 2016) and data association (Yu et al. 2016).

Nevertheless, these methods combine multiple cues (e.g.,
flow aggregation in detection, and flow-based and object
tracking-based tubelet generation) which are complemen-
tary but time-consuming. Moreover, they apply global post-
processing such as seq-NMS (Han et al. 2016) and tubelet
NMS (Tang et al. 2018a) which greatly improve the accu-
racy but are not suitable for a realtime and low latency sce-
nario.

Video Object Detection
Approaches to video object detection have been developed
rapidly since the introduction of the ImageNet VID dataset
(Russakovsky et al. 2015). (Kang et al. 2016; 2017) pro-
pose a framework that consists of per-frame proposal gen-
eration, bounding box tracking and tubelet re-scoring. (Zhu

et al. 2017b) proposes to detect frames sparsely and prop-
agates features with optical flow. (Zhu et al. 2017a) pro-
poses to aggregate features in nearby frames along the mo-
tion path to improve the feature quality. Futhermore, (Zhu et
al. 2018) proposes a high-performance approach by consid-
ering feature aggregation, partial feature updating and adap-
tive keyframe scheduling based on optical flow. Besides,
(Feichtenhofer, Pinz, and Zisserman 2017) proposes to learn
detection and tracking using a single network with a multi-
task objective. (Chen et al. 2018) proposes to propagate the
sparsely detected results through a space-time lattice. All
the methods above focus on the accuracy of each individual
frame. They either do not associate the presence of an object
in different frames as a tracklet, or associate after performing
object detection on each frame, which is time-consuming.

Multiple Object Tracking
Multiple object tracking (MOT) focuses on data association:
finding the set of trajectories that best explains the given
detections (Leal-Taixé et al. 2014). Existing approaches to
MOT fall into two categories: batch and online mode. Batch
mode approaches pose data association as a global optimiza-
tion problem, which can be a min-cost max-flow problem
(Zhang, Li, and Nevatia 2008; Pirsiavash, Ramanan, and
Fowlkes 2011), a continuous energy minimization problem
(Milan, Roth, and Schindler 2014) or a graph cut problem
(Tang et al. 2016; 2017). Contrarily, online mode approaches
are only allowed to solve the data association problem with
the present and past frames. (Xiang, Alahi, and Savarese
2015) formulates data association as a Markov decision pro-
cess. (Milan et al. 2017; Sadeghian, Alahi, and Savarese
2017) employs recurrent neural networks (RNNs) for fea-
ture representation and data association.

State-of-the-art MOT approaches aim to improve the data
association performance given publicly-available detections
since the introduction of the MOT challenge (Leal-Taixé
et al. 2015). However, we focus on the sequential decision
problem of detection or tracking. Although the widely-used
Hungarian algorithm is adopted for simplicity and fairness
in the experiments, we believe the incorporation of existing
MOT approaches can further enhance the accuracy.



Keyframe Scheduler
Researchers have proposed approaches to adaptive keyframe
scheduling beyond regular frame skipping in video analyt-
ics. (Zhu et al. 2018) proposes to estimate the quality of op-
tical flow, which relies on the time-consuming flow network.
(Chen et al. 2018) proposes an easiness measure to consider
the size and motion of small objects, which is hand-crafted
and more importantly, it is a detect-then-schedule paradigm
but cannot determine to detect or track. (Li, Shi, and Lin
2018; Xu et al. 2018) learn to predict the discrepancy be-
tween the segmentation map of the current frame and the
keyframe, which are only applicable to segmentation tasks.

All the methods above, however, solve an auxiliary task
(e.g., flow quality, or discrepancy of segmentation maps) but
do not answer the question directly in a classification per-
spective – is the current frame a keyframe or not? In contrast,
we pose video object detection/tracking as a sequential deci-
sion problem, and learn directly whether the current frame is
a keyframe by assessing the tracking quality. Our formula-
tion is further shown as a generalization of Siamese trackers
and a special case of RL.

The DorT Framework
Video object detection/tracking is formulated as follows.
Given a sequence of video frames F = {f1, f2, . . . , fN},
the aim is to obtain bounding boxes B = {b1, b2, . . . , bM},
where bi = {recti, fidi, scorei, idi}, recti denotes the 4-
dim bounding box coordinates and fidi, scorei and idi are
scalars denoting respectively the frame ID, the confidence
score and the object ID.

Considering the realtime and low latency constraint, we
formulate video object detection/tracking as a sequential
decision problem, which consists of four modules: single-
frame detector, multi-box tracker, scheduler network and
data association. An algorithm summary follows the intro-
duction of the four modules.

Single-Frame Detector
We adopt R-FCN (Dai et al. 2016) as the detector following
deep feature flow (DFF) (Zhu et al. 2017b). Our framework,
however, is compatible with all single-frame detectors.

Efficient Multi-Box Tracker via RoI Convolution
The SiamFC tracker (Bertinetto et al. 2016) is adopted in our
framework. It learns a deep feature extractor during training
such that an object is similar to its deformations but different
from the background. During testing, the nearby patch with
the highest confidence is selected as the tracking result. The
tracker is reported to run at 86 fps in the original paper.

Despite its efficiency, there are usually 30 to 50 detected
boxes in a frame outputted by R-FCN. It is a natural idea to
track only the high-confidence ones and ignore the rest. Such
an approach, however, results in a drastic decrease in mAP
since R-FCN detection is not perfect and many true positives
with low confidence scores are discarded. We therefore need
to track all the detected boxes.

It is time-consuming to track 50 boxes without optimiza-
tion (about 3 fps). In order to speed up the tracking process,
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Figure 2: RoI convolution. Given targets in keyframe t
and search regions in frame t + τ , the corresponding RoIs
are cropped from the feature maps and convolved to ob-
tain the response maps. Solid boxes denote detected objects
in keyframe t and dashed boxes denote the corresponding
search region in frame t + τ . A star ? denotes the center of
its corresponding bounding box. The center of a dashed box
is copied from the tracking result in frame t+ τ − 1.

we propose to share the feature extraction network of multi-
ple boxes and propose an RoI convolution layer in place of
the original cross-correlation layer in SiamFC. Figure 2 is an
illustration. Through cropping and convolving on the feature
maps, the proposed tracker is over 10x faster than the time-
consuming baseline while obtaining comparable accuracy.

Notably, there is no learnable parameter in the RoI convo-
lution layer, and thus we can train the SiamFC tracker fol-
lowing the original settings in (Bertinetto et al. 2016).

Scheduler Network
The scheduler network is the core of DorT, as our task is
formulated as a sequential decision problem. It takes as input
the current frame ft+τ and its keyframe ft, and determines
to detect or track, denoted as Scheduler(ft, ft+τ ). We will
elaborate this module in the next section.

Data Association
Once the scheduler network determines to detect the cur-
rent frame, there is a need to associate the previous tracked
boxes and the current detected boxes. Hence, a data asso-
ciation algorithm is required. For simplicity and fairness in
the paper, the widely-used Hungarian algorithm is adopted.
Although it is possible to improve the accuracy by incor-
porating more advanced data association techniques (Xiang,
Alahi, and Savarese 2015; Sadeghian, Alahi, and Savarese
2017), it is not the focus in the paper. The overall architec-
ture of the DorT framework is shown in Figure 1. More de-
tails are summarized in Algorithm 1.

The Scheduler Network in DorT
The scheduler network in DorT aims to determine to detect
or track given a new frame by estimating the quality of the
tracked boxes. It should be efficient itself. Rather than train-
ing a network from scratch, we propose to reuse part of the
tracking network. Firstly, the l-th layer convolutional feature
map of frame t and frame t + τ , denoted respectively as xtl
and xt+τl , are fed into a correlation layer which performs
point-wise feature comparison

xt,t+τcorr (i, j, p, q) =
〈
xtl(i, j), x

t+τ
l (i+ p, j + q)

〉
(1)



Algorithm 1 The Detect or Track (DorT) Framework
Input: A sequence of video frames F = {f1, f2, . . . , fN}.
Output: Bounding boxes B = {b1, b2, . . . , bM} with ID, where

bi = {recti, fidi, scorei, idi}.
1: B ← {}
2: t← 1 . t is the index of keyframe
3: Detect f1 with the single-frame detector.
4: Assign new ID to the detected boxes.
5: Add the detected boxes in f1 to B.
6: for i← 2 to N do
7: d← Scheduler(ft, fi) . decision of scheduler
8: if d = detect then
9: Detect fi with single-frame detector.

10: Match boxes in fi and fi−1 using Hungarian.
11: Assign new ID to unmatched boxes in fi.
12: Assign corresponding ID to matched boxes in fi.
13: t← i . update keyframe
14: else . the decision is to track
15: Track boxes from ft to fi.
16: Assign corresponding ID to tracked boxes in fi.
17: Assign corresponding detection score to tracked boxes

in fi.
18: end if
19: Add the bounding boxes in fi to B.
20: end for

BNConv relu FcCorr BNConv relu

Feature
map t+�

Feature
map t

Decision
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Figure 3: Scheduler network. The output feature map of the
correlation layer is followed by two convolutional layers and
a fully-connected layer with a 2-way softmax. As discussed
later, this structure is a generalization of the SiamFC tracker.

where −d ≤ p ≤ d and −d ≤ q ≤ d are offsets to com-
pare features in a neighbourhood around the locations (i, j)
in the feature map, defined by the maximum displacement d.
Hence, the output of the correlation layer is a feature map of
size xcorr ∈ RHl×Wl×(2d+1)2 , where Hl and Wl denote re-
spectively the height and width of the l-th layer feature map.
The correlation feature map xcorr is then passed through
two convolutional layers and a fully-connected layer with
a 2-way softmax. The final output of the network is a classi-
fication score indicating the probability to detect the current
frame. Figure 3 is an illustration of the scheduler network.

Training Data Preparation
Existing groundtruth in the ImageNet VID dataset (Rus-
sakovsky et al. 2015) does not contain an indicator of the
tracking quality. In this paper, we simulate the tracking pro-
cess between two sampled frames and label it as detect (0)
or track (1) in a strict protocol.

As we have sampled frame t and frame t+τ from the same
sequence, we track all the groundtruth bounding boxes using
SiamFC from frame t to frame t + τ . If all the groundtruth
boxes in frame t + τ are matched with the tracked boxes
(e.g., IOU over 0.8), the frame is labeled as track; otherwise,

it is labeled as detect. Any emerging or disappearing objects
indicates a detect. Several examples are shown in Figure 4.

We have also tried to learn a scheduler for each tracker,
but found it difficult to handle high-confidence false detec-
tions and non-trivial to merge the decisions of all the track-
ers. In contrast, the proposed approach to learning a single
scheduler is an elegant solution which directly learns the de-
cision rather than an auxiliary target such as the fraction of
pixels at which the semantic segmentation labels differ (Li,
Shi, and Lin 2018), or the fraction of low-quality flow esti-
mation (Zhu et al. 2018).

Relation to the SiamFC Tracker
The proposed scheduler network can be seen as a general-
ization of the original SiamFC (Bertinetto et al. 2016). In the
correlation layer of SiamFC, the target feature (6×6×128) is
convolved with the search region feature (22×22×128) and
obtains the response map (17× 17× 1, which can be equiv-
alently written as 1 × 1 × 172). Similarly, we can view the
correlation layer of the proposed scheduler network (see Eq.
1) as convolutions between multiple target features in the
keyframe and their respective nearby search regions in the
current frame. The size of a target equals the receptive field
of the input feature map of our scheduler. Figure 5 shows
several examples of targets. Actually, however, targets in-
clude all possible patches in a sliding window manner.

In this sense, the output feature map of the correlation
layer xcorr ∈ RHl×Wl×(2d+1)2 can be regarded as a set of
Hl×Wl SiamFC tracking tasks, where the response map of
each is 1×1×(2d+1)2. The correlation feature map is then
fed into a small CNN consisting of two convolutional layers
and a fully-connected layer.

In summary, the generalization of the proposed scheduler
network over SiamFC lies in two fold:
• SiamFC correlates a target feature with its nearby search

region, while our scheduler extends the number of tasks
from one to many.

• SiamFC directly picks the highest value in the correlation
feature map as the result, whereas the proposed scheduler
fuses the multiple response maps with a CNN.
The validity of the proposed scheduler network is hence

clear – it first convolves patches in frame t (examples shown
in Figure 5) with their respective nearby regions in frame
t+τ , and then fuses the response maps with a CNN, in order
to measure the difference between the two frames, and more
importantly, to assess the tracking quality. The scheduler is
also resistant to small perturbations by inheriting SiamFC’s
robustness to object deformation.

Relation to Reinforcement Learning
The sequential decision problem can also be formulated in a
RL framework, where the action, state, state transition func-
tion and reward need to be defined.

Action. The action space A contains two types of actions:
{detect, track}. If the decision is detect, object detector is
applied to the current frame; otherwise, boxes tracked from
the keyframe are taken as the results.
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Figure 4: Examples of labeled data for training the scheduler network. Red and green boxes denote groundtruth and tracked
results, respectively. (a) Positive examples, where the IOU of each groundtruth box and its corresponding tracked box is over a
threshold; (b) Negative examples, where at least one such IOU is below a threshold or there are emerging/disappearing objects.

Figure 5: Examples of targets on keyframes. The size of a
target equals the receptive field of the input feature map of
the scheduler. As shown, a target patch might be an object,
a part of an object, or totally background. The “tracking”
results of these targets will be fused later. It should be noted
that targets include all possible patches in a sliding window
manner, but not just the three boxes shown above.

State. The state st,τ is defined as a tuple (xtl , x
t+τ
l ), where

xtl and xt+τl denote the l-th layer convolutional feature map
of frame t and frame t + τ , respectively. Frame t is the
keyframe on which object detector is applied, and frame t+τ
is the current frame on which actions are to be determined.

State transition function. After the decision of action
at,τ in state st,τ . The next state is obtained upon the action:
• detect. The next state is st+τ,1 = (xt+τl , xt+τ+1

l ). Frame
t + τ is fed to the object detector and is set as the new
keyframe.

• track. The next state is st,τ+1 = (xtl , x
t+τ+1
l ). Bounding

boxes tracked from the keyframe are taken as the results
in frame t+ τ . The keyframe t remains unchanged.
As shown above, no matter whether the keyframe is t or

t + τ , the task in the next state is to determine the action in
frame t+ τ + 1.

Reward. The reward function is defined as r(s, a) since
it is determined by both the state s and the action a. As il-
lustrated in Figure 4, a labeling mechanism is proposed to
obtain the groundtruth label of the tracking quality between
two frames (i.e., a certain state s). We denote the groundtruth
label as GT (s), which is either detect or track. Hence, the
reward function can be defined as follows:

r(s, a) =

{
1, GT (s) = a

0, GT (s) 6= a
(2)

which is based on the consistency between the groundtruth
label and the action taken.

After defining all the above, the RL problem can be solved
via a deep Q network (DQN) (Mnih et al. 2015) with a dis-
count factor γ, penalizing the reward from future time steps.
However, training stability is always an issue in RL algo-
rithms (Anschel, Baram, and Shimkin 2017). In this paper,
we set γ = 0 such that the agent only cares about the re-
ward from the next time step. Therefore, the DQN becomes
a regression network – pushing the predicted action to be
the same as the GT action, and the scheduler network is a
special case of RL. We empirically observe that the training
procedure becomes easier and more stable by setting γ = 0.

Experiments
The DorT framework is evaluated on the ImageNet VID
dataset (Russakovsky et al. 2015) in the task of video object
detection/tracking. For completeness, we also report results
in video object detection.

Experimental Setup
Dataset description. All experiments are conducted on
the ImageNet VID dataset (Russakovsky et al. 2015). Im-
ageNet VID is split into a training set of 3862 videos and
a test set of 555 videos. There are per-frame bounding box
annotations for each video. Furthermore, the presences of a
certain target across different frames in a video are assigned
with the same ID.

Evaluation metric. The evaluation metric for video ob-
ject detection is the extensively used mean average precision
(mAP), which is based on a sorted list of bounding boxes in
descending order of their scores. A predicted bounding box
is considered correct if its IOU with a groundtruth box is
over a threshold (e.g., 0.5).

In contrast to the standard mAP which is based on bound-
ing boxes, the mAP for video object detection/tracking is
based on a sorted list of tracklets (Russakovsky et al. 2017).
A tracklet is a set of bounding boxes with the same ID.
Similarly, a tracklet is considered correct if its IOU with a
groundtruth tracklet is over a threshold. Typical choices of



IOU thresholds for tracklet matching and per-frame bound-
ing box matching are both 0.5. The score of a tracklet is the
average score of all its bounding boxes.

Implementation details. Following the settings in (Zhu et
al. 2017b), R-FCN (Dai et al. 2016) is trained with a ResNet-
101 backbone (He et al. 2016) on the training set.

SiamFC is trained following the original paper (Bertinetto
et al. 2016). Instead of training from scratch, however, we
initialize the first four convolutional layers with the pre-
trained parameters from AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) and change Conv5 from 3 × 3 to 1 × 1
with the Xavier initializer. Parameters of the first four con-
volutional layers are fixed during training (He et al. 2018).
We only search for one scale and discard the upsampling
step in the original SiamFC for efficiency. All images being
fed into SiamFC are resized to 300 × 500. Moreover, the
confidence score of a tracked box (for evaluation) is equal to
its corresponding detected box in the keyframe.

The scheduler network takes as input the Conv5 feature
of our trained SiamFC. The SGD optimizer is adopted with
a learning rate 1e-2, momentum 0.9 and weight decay 5e-
4. The batch size is set to 32. During testing, we raise the
decision threshold of track to δ = 0.97 (i.e., the scheduler
outputs track if the predicted confidence of track is over δ) to
ensure conservativeness of the scheduler. Furthermore, since
nearby frames look similar, the scheduler is applied every σ
frames (where σ is a tunable parameter) to reduce unneces-
sary computation.

All experiments are conducted on a workstation with an
Intel Core i7-4790k CPU and a Titan X GPU. We em-
pirically observe that the detection network and the track-
ing/scheduler network run at 8.33 fps and 100fps, respec-
tively. This is because the ResNet-101 backbone is much
heavier than AlexNet. Moreover, the speed of the Hungarian
algorithm is as high as 667 fps.

Video Object Detection/Tracking
To our knowledge, the most closely related work to ours
is (Lan et al. 2016), which handles cost-effective face de-
tection/tracking. Since face is much easier to track and is
with less deformation, the paper achieves success by utiliz-
ing non-deep learning-based detectors and trackers. How-
ever, we aim at general object detection/tracking in video,
which is much more challenging. We demonstrate the ef-
fectiveness of the proposed DorT framework against several
strong baselines.

Effectiveness of scheduler. The scheduler network is a
core component of our DorT framework. Since SiamFC
tracking is more efficient than R-FCN detection, the sched-
uler should predict track when it is safe for the trackers and
be conservative enough to predict detect when there is suffi-
cient change to avoid track drift.

We compare our DorT framework with a frame skip-
ping baseline, namely a “fixed scheduler” – R-FCN is per-
formed every σ frames and SiamFC is adopted to track for
the frames in between. As aforementioned, our scheduler
can also be applied every σ frames to improve efficiency.
Moreover, there could be an oracle scheduler – predicting
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Figure 7: Confusion matrix of the scheduler network. The
horizontal axis is the groundtruth and the vertical axis is the
predicted label. The scheduler is applied every σ frames.

the groundtruth label (detect or track) as shown in Figure
4 during testing. The oracle scheduler is a 100% accurate
scheduler in our setting. The results are shown in Figure 6.

We can observe that the frame rate and mAP vary as σ
changes. Interestingly, the curves are not monotonic – as
the frame rate decreases, the accuracy in mAP is not neces-
sarily higher. In particular, detectors are applied frequently
when σ = 1 (the leftmost point of each curve). Associat-
ing boxes using the Hungarian algorithm is generally less
reliable (given missed detections and false detections) than
tracking boxes between two frames. It is also a benefit of
the scheduler network – applying tracking only when confi-
dent, and thus most boxes are reliably associated. Hence, the
curve of the scheduler network is on the upper-right side of
that of the fixed scheduler as shown in Figure 6.

However, it can be also observed that there is certain dis-
tance between the curve of the scheduler network and that
of the oracle scheduler. Given that the oracle scheduler is a
100% accurate classifier, we analyze the classification accu-
racy of the scheduler network in Figure 7. Let us take the
σ = 10 case as an example. Although the classification ac-
curacy is only 32.3%, the false positive rate (i.e., misclas-
sifying a detect case as track) is as low as 1.9%. Because
we empirically find that the mAP drops drastically if the
scheduler mistakenly predicts track, our scheduler network
is made conservative – track only when confident and detect
if unsure. Figure 8 shows some qualitative results.



iou: 0.899

iou: 0.915

iou: 0.886

iou: 0.843

iou: 0.712

iou: 0.490

Figure 8: Qualitative results of the scheduler network. Red,
blue and green boxes denote groundtruth, detected boxes
and tracked boxes, respectively. The first row: R-FCN is ap-
plied in the keyframe. The second row: the scheduler de-
termines to track since it is confident. The third row: the
scheduler predicts to track in the first image although the
red panda moves; however, the scheduler determines to de-
tect in the second image as the cat moves significantly and
is unable to be tracked.

Effectiveness of RoI convolution. Trackers are optimized
for the crop-and-resize case (Bertinetto et al. 2016) – the
target and search region are cropped and resized to a fixed
size before matching. It is a nice choice since the tracking
algorithm is not affected by the original size of the target.
It is, however, slow in multi-box case and we propose RoI
convolution as an efficient approximation. As shown in Fig-
ure 6, crop-and-resize SiamFC is even slower than detec-
tion – the overall running time is 3 fps. Notably, its mAP is
56.5%, which is roughly the same as that of our DorT frame-
work empowered with RoI convolution. Our DorT frame-
work, however, runs at 54 fps when σ = 10. RoI convolution
obtains over 10x speed boost while retaining mAP.

Comparison with existing methods. Deep feature flow
(Zhu et al. 2017b) focuses on video object detection without
tracking. We can, however, associate its predicted bounding
boxes with per frame data association using the Hungarian
algorithm. The results are shown in Figure 6. It can be ob-
served that our framework performs significantly better than
deep feature flow in video object detection/tracking.

Concurrent works that deal with video object detec-
tion/tracking are the submitted entries in ILSVRC 2017
(Deng et al. 2017; Wei et al. 2017; Russakovsky et al. 2017).
As discussed in the Related Work section, these methods aim
only to improve the mAP by adopting complicated methods
and post processing, leading to inefficient solutions with-
out guaranteeing low latency. Their reported results on the
test set ranges from 51% to 65% mAP. Our proposed DorT,
notably, achieves 57% mAP on the validation set, which
is comparable to the existing methods in magnitude, but is
much more principled and efficient.
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Figure 9: Comparison between different methods in video
object detection in terms of mAP. Results of D&T, High per-
formance VOD and ST-Lattice are copied from the original
papers. The detector (for deep feature flow) or the scheduler
(for scheduler network) can be applied every σ frames to
obtain different results.

Video Object Detection
We also evaluate our DorT framework in video object detec-
tion for completeness, by removing the predicted object ID.
Our DorT framework is compared against deep feature flow
(Zhu et al. 2017b), D&T (Feichtenhofer, Pinz, and Zisser-
man 2017), high performance video object detection (VOD)
(Zhu et al. 2018) and ST-Lattice (Chen et al. 2018). The re-
sults are shown in Figure 9. It can be observed that D&T and
high performance VOD manage to achieve a speed-accuracy
balance. They obtain higher results but cannot fit into re-
altime (over 30 fps) scenarios. ST-Lattice, although being
fast and accurate, adopts detection results in future frames
and is thus not suitable in a low latency scenario. As com-
pared with deep feature flow, our DorT framework performs
significantly faster with comparable performance (no more
than 1% mAP loss). Although our aim is not the video ob-
ject detection task, the results in Figure 9 demonstrate the
effectiveness of our approach.

Conclusion and Future Work
We propose a DorT framework for cost-effective video ob-
ject detection/tracking, which is in realtime and with low
latency. Object detection/tracking of a video sequence is for-
mulated as a sequential decision problem in the framework.
Notably, a light-weight but effective scheduler network is
proposed, which is shown to be a generalization of Siamese
trackers and a special case of RL. The DorT framework turns
out to be effective and strikes a good balance between speed
and accuracy.

The framework can still be improved in several aspects.
The SiamFC tracker can search for multiple scales to im-
prove performance as in the original paper. More advanced
data association methods can be applied by resorting to the
state-of-the-art MOT algorithms. Furthermore, there is room
to improve the training of the scheduler network to approach
the oracle scheduler. These are left as future work.
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