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Abstract
We present the design, implementation, and evaluation of IN-
STalytics a co-designed stack of a cluster file system and the
compute layer, for efficient big data analytics in large-scale
data centers. INSTalytics amplifies the well-known benefits of
data partitioning in analytics systems; instead of traditional
partitioning on one dimension, INSTalytics enables data to be
simultaneously partitioned on four different dimensions at the
same storage cost, enabling a larger fraction of queries to ben-
efit from partition filtering and joins without network shuffle.

To achieve this, INSTalytics uses compute-awareness to cus-
tomize the 3-way replication that the cluster file system em-
ploys for availability. A new heterogeneous replication lay-
out enables INSTalytics to preserve the same recovery cost
and availability as traditional replication. INSTalytics also
uses compute-awareness to expose a new sliced-read API that
improves performance of joins by enabling multiple compute
nodes to read slices of a data block efficiently via co-ordinated
request scheduling and selective caching at the storage nodes.

We have built a prototype implementation of INSTalytics
in a production analytics stack, and show that recovery per-
formance and availability is similar to physical replication,
while providing significant improvements in query perfor-
mance, suggesting a new approach to designing cloud-scale
big-data analytics systems.

1 Introduction

All the powers in the universe are already ours. It is we who put our
hands before our eyes and cry that it is dark.

- Swami Vivekananda

Large-scale cluster file systems [10, 22, 17] are designed to
deal with server and disk failures as a common case. To en-
sure high availability despite failures in the data center, they
employ redundancy to recover data of a failed node from data
in other available nodes [11]. One common redundancy mech-
anism that cluster file systems use for compute-intensive work-
loads is to keep multiple (typically three) copies of the data on

∗Jayashree and Piyus worked on this while at Microsoft Research

different servers. While redundancy improves availability, it
comes with significant storage and write amplification over-
heads, typically viewed as the cost to be paid for availability.

An increasingly important workload in such large-scale
cluster file systems is big data analytics processing [6, 31, 2].
Unlike a transaction processing workload, analytics queries
are typically scan-intensive, as they are interested in millions
or even billions of records. A popular technique employed by
analytics systems for efficient query execution, is partitioning
of data [31] where the input files are sorted or partitioned on
a particular column, such that records with a specific range of
column values are physically clustered within the file. With
partitioned layout, a query that is only interested in a particu-
lar range of column values (say 1%) can use metadata to only
scan the relevant partitions of the file, instead of scanning the
entire file (potentially tens or hundreds of terabytes). Simi-
larly, with partitioned layout, join queries can avoid the cost of
expensive network shuffle [29].

However, as partitioning is tied to the physical layout of
bytes within a file, data is partitioned only on a single dimen-
sion; as a result, it only benefits queries that perform a filter or
join on the column of partitioning, while other queries are still
forced to incur the full cost of a scan or network shuffle.

In this paper, we present INSTalytics (INtelligent STore
powered Analytics), a system that drives significant efficiency
improvements in performing large-scale big data analytics, by
amplifying the well-known benefits of partitioning. In partic-
ular, INSTalytics allows data to be partitioned simultaneously
along four different dimensions, instead of a single dimension
today, thus allowing a large fraction of queries to achieve the
benefit of efficient partition filtering and efficient joins without
network shuffle. The key approach that enables such improve-
ments in INSTalytics is making the distributed file system
compute-aware; by customizing the 3-way replication that the
file system already does for availability, INSTalytics achieves
such heterogeneous partitioning without incurring additional
storage or write amplification cost.

The obvious challenge with such logical replication is en-
suring the same availability and recovery performance as phys-
ical replication; a naive layout would require scanning the en-
tire file in the other partitioning order, to recover a single failed
block. INSTalytics uses a novel layout technique based on
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super-extents and intra-extent circular buckets to achieve re-
covery that is as efficient as physical replication. It also en-
sures the same availability and fault isolation guarantees as
physical replication under realistic failure scenarios. The lay-
out techniques in INSTalytics also enable an additional fourth
partitioning dimension, in addition to the three logical copies.

The file system in INSTalytics also enables efficient execu-
tion of join queries, by supporting a new sliced-read API that
uses compute-awareness to co-ordinate scheduling of requests
across multiple compute nodes accessing the same storage ex-
tent, and selectively caches only the slices of the extent that are
expected to be accessed, instead of caching the entire extent.

We have implemented INSTalytics in a production dis-
tributed file system stack, and evaluate it on a cluster of
500 machines with suitable modifications to the compute lay-
ers. We demonstrate that the cost of maintaining multiple
partitioning dimensions at the storage nodes is negligible in
terms of recovery performance and availability, while signifi-
cantly benefiting query performance. We show through micro-
benchmarks and real-world queries from a production work-
load that INSTalytics enables significant improvements upto an
order of magnitude, in the efficiency of analytics processing.

The key contributions of the paper are as follows.
• We propose and evaluate novel layout techniques for en-

abling four simultaneous partitioning/sorting dimensions
of the same file without additional cost, while preserving
the availability and recovery properties of the present 3-
way storage replication;

• We characterize a real-world analytics workload in a pro-
duction cluster to evaluate the benefit of having multiple
partitioning strategies;

• We demonstrate with a prototype implementation that
storage co-design with compute can be implemented
practically in a real distributed file system with minimal
changes to the stack, illustrating the pragmatism of the
approach for a data center;

• We show that compute-awareness with heterogenous lay-
out and co-ordinated scheduling at the file system signifi-
cantly improves the performance of filter and join queries.

The rest of the paper is structured as follows. In § 2, we
provide a background of big data analytics processing. In § 3,
we characterizate a production analytics workload. We present
logical replication in § 4, discuss its availability implications
in § 5, and describe optimizations for joins in § 6. We present
the implementation of INSTalytics in § 7, and evaluate it in § 8.
We present related work in § 9, and conclude in § 10.

2 Background
In this section, we describe the general architecture of analyt-
ics frameworks, and the costs of big data query processing.
Cluster architecture: Big data analytics infrastructure typ-
ically comprises of a compute layer such as MapReduce [6]

or Spark [28], and a distributed file system such as GFS [10]
or HDFS [22]. Both these components run on several thou-
sands of machines, and are designed to tolerate machine fail-
ures given the large scale. The distributed file system is typ-
ically a decentralized architecture [14, 26, 10], where a cen-
tralized “master” manages metadata while thousands of stor-
age nodes manage the actual blocks of data, also referred to
as chunks or extents (we use the term “extent’ in the rest of
the paper). An extent is typically between 64MB and 256MB
in size. For availability under machine failures, each storage
extent is replicated multiple times (typically thrice). The com-
pute layer can run either on the same machines as the storage
nodes (i.e., co-located), or a different set of machines (i.e., dis-
aggregated). In the co-located model, the compute layer has
the option of scheduling computation for locality between the
data and compute, say at a rack-level, for better aggregate data
bandwidth.
Cost of analytics queries: Analytics queries often process
millions or billions of records, as they perform aggregation or
filtering on hundreds of terabytes. As a result, they are scan-
intensive on the disks - using index lookups would result in
random disk reads on millions of records. Hence disk I/O is a
key cost of query processing given the large data sizes.

An important ingredient of most big data workloads is joins
of multiple files on a common field. To perform a join, all
records that have the same join key value from both files need
to be brought to one machine, thus requiring a shuffle of data
across thousands of servers; each server sends a partition of
the key space to a designated worker responsible for that par-
tition. Such all-to-all network shuffle typically involves an ad-
ditional disk write of the shuffled data to an intermediate file
and subsequent disk read. Further, it places load on the data
center switch hierarchy across multiple racks.
Optimizations: There are two common optimizations that re-
duce the cost of analytics processing: partitioning, and co-
location. With partitioning, the data file stored on disk is sorted
or partitioned by a particular dimension or column. If a query
filters on that same column, it can avoid the cost of a full scan
by performing partition elimination. With co-location, joins
can execute without incurring network shuffle. If two files A
and B are likely to be joined, they can both be partitioned on
the join column/dimension in a consistent manner, so that their
partition boundaries align. In addition, if the respective parti-
tions are also placed in a rack-affinitized manner, the join can
avoid cross-rack network shuffle, as it would be a per-partition
join. Further, the partitioned join also avoids the intermediate
I/O, because the respective partitions can perform the join of
small buckets in memory.

3 Workload Analysis

We analyzed one week’s worth of queries on a production clus-
ter at Microsoft consisting of tens of thousands of servers. We
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Figure 1: Data filtering in production queries

Figure 2: Number of partition dimensions needed.

share below our key findings.

3.1 Query Characteristics
Data filtering: The amount of data read in the first stage of
the query execution vis-a-vis the amount of data written back
at the end of the first stage indicates the degree of filtering
that happens on the input. In Figure 1, we show a CDF of
the data read and data written by unique query scripts (ag-
gregating across repetitions) along the X-axis, sorted by the
most expensive jobs. As the graph shows, on average, there
is a 7x reduction in data sizes past the first stage. This reduc-
tion is due to both column-level and row-level filtering; while
column-stores [15] help with the former, we primarily focus
on row-level filtering which is complementary.
Importance of join queries: Besides filtering, joins of mul-
tiple files are an important part of big data analytics. In our
production workload, we find that 37% of all queries contain a
join, and 85% of those perform a join at the start of the query.

3.2 Number of dimensions needed
Today’s systems limit the benefit of partitioning to just one
dimension. To understand what fraction of queries would ben-
efit from a higher number of dimensions, we analyzed each in-
put file referenced in any job during a week, and we extracted
all columns/dimensions that were ever used in a filter or join
clause in any query that accessed the file. We plot a CDF of
the fraction of files that were only accessed on K columns (K
varying along X axis). As Figure 2 shows, with one partition-
ing dimension, we cover only about 33% of files, which illus-

trates the limited utility of today’s partitioning. However, with
4 partitioning dimensions, the coverage grows significantly to
about 83%. Thus, for most files, having them partitioned in 4
dimensions would enable efficient execution for all queries on
that file, as they would benefit from partitioning or co-location.
Supporting multiple dimensions: Today, the user can par-
tition data across multiple dimensions by storing multiple
copies. However this comes with a storage cost: to support 4
dimensions, the user incurs a 4x space overhead, and worse, a
4x cost in write bandwidth to keep the copies up to date. Inter-
estingly, in our discussions with teams that perform big-data
analytics within Microsoft, we found examples where large
product groups actually maintain multiple (usually 2) copies
(partitioned on different columns) just to reduce query latency,
despite the excessive cost of storing multiple copies. Many
teams stated that more partition dimensions would enable new
kinds of analytics, but the cost of supporting more dimensions
today is too high.

4 Logical Replication

The key functionality in INSTalytics is to enable a much larger
fraction of analytics queries to benefit from partitioning and
co-location, but without paying additional storage or write
cost. It achieves this by co-designing the storage layer with the
analytics engine, and changing the physical replication (usu-
ally three copies that are byte-wise identical) that distributed
file systems employ for availability, into logical replication,
where each copy is partitioned along a different column. Log-
ical replication provides the benefit of three simultaneous par-
titioning columns at the same storage and write cost, thus im-
proving query coverage significantly, as shown in Section 3.
As we describe later, our layout actually enables four different
partitioning columns at the same cost.

The principle of logical replication is straight-forward, but
the challenge lies in the details of the layout. There are
two conflicting requirements: first, the layout should help
query performance by enabling partition filtering and collo-
cated joins in multiple dimensions; second, recovery perfor-
mance and availability should not be affected.

In the rest of the section we describe several variants of logi-
cal replication, building towards a more complete solution that
ensures good query performance at a recovery cost and avail-
ability similar to physical replication. For each variant, we
describe its recovery cost and potential query benefits. We use
the term dimension to refer to a column used for partitioning;
each logical replica would pertain to a different dimension. We
use the term intra-extent bucketing to refer to partitioning of
rows within an extent; and we use the term extent-aligned par-
titioning to refer to partitioning of rows across multiple extents
where partition boundaries are aligned with extent boundaries.
When the context is clear, we simply use the terms bucketing
and partitioning respectively for the above.

USENIX Association 17th USENIX Conference on File and Storage Technologies    237



Figure 3: Naive logical replication. The figure shows the physical layout of the input file and the layout with naive logical
replication. The file has 4 extents each consisting of 6 rows, 3 columns per row. Each logical replica is range partitioned on
a different column. The first replica is partitioned on the first column (e.g., E1 has values from 0-99, E2 from 100-199 and so
on). Recovering E1 from replica 2 requires reading all extents from replica 1.

4.1 Naive layouts for logical replication

There are two simple layouts for logical replication, neither
meeting the above constraints. The first approach is to perform
logical replication at a file-granularity. In this layout the three
copies of the file are each partitioned by a different dimension,
and stored seperately in the file system with replication turned
off. This layout is ideal for query performance as it is identi-
cal to keeping three different copies of the file. Unfortunately
this layout is a non-starter in terms of recovery; as Figure 3
shows, there is inter-dimensional diffusion of information; the
records in a particular storage extent in one dimension will be
diffused across nearly all extents of the file in the other dimen-
sion. Thus, recovering a 200MB extent would require reading
an entire say 10TB file in another dimension, whereas with
physical replication, only 200MB is read from another replica.

The second sub-optimal approach is to perform logical
replication at an intra-extent level. Here, one would simply use
intra-extent bucketing to partition the records within a storage
extent along different dimensions in each replica. This simpli-
fies recovery as there is a one-to-one correspondence with the

other replicas of the extent. This approach helps partly with
filter queries as the file system can use metadata to read only
the relevant buckets within an extent, but is not as efficient
as the previous layout as clients would touch all extents in-
stead of a subset of extents. The bigger problem though is that
joins or aggregation queries cannot benefit at all, because co-
location/local shuffle is impossible. We discuss more about the
shortcomings of this approach in handling joins in Section 6.

4.2 Super-Extents

INSTalytics bridges the conflicting requirements of query per-
formance and recovery cost, by introducing the notion of a
super-extent. A super-extent is a fixed number (typically 100)
of contiguous extents in the file in the original order the file
was written (see Figure 4). Partitioning of records happens
only within the confines of a super-extent and happens in an
extent aligned manner. As shown in the figure this ensures that
the inter-dimensional diffusion is now limited to only within
a super-extent; all records in an extent in one dimension are
hence guaranteed to be present somewhere within the corre-
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Figure 4: Super-extents and intra extent bucketing. The file to be replicated is divided into super extents and logical
replication is performed within super-extents. Any extent (like E1 of replica 2 as highlighted) can be recovered by only reading
extents of the same super extent in another replica (E1 and E2 from replica 1). Figure on the right shows a more detailed view
of a super-extent (with 4 extents per super-extent instead of 2 for clarity). Data within an extent is partitioned on a different
column and this helps reduce recovery cost further as recovering an extent only involves reading one bucket from each extent
of the other replica. Recovering E4 of replica 2 requires only reading slices from replica 1 whose C2 boxes are red.

sponding super-extent (i.e., 100 extents) of the other partition-
ing dimension. All 3 copies of the super-extent have exactly
the same information, just arranged differently. The number of
extents within a super-extent is configurable; in that sense, the
super-extent layout can be treated as striking a tunable balance
between the two extremes i.e., global partitioning and intra-
extent partitioning.

Super-extents reduce recovery cost because in order to re-
cover a 200MB extent, the store has to read “only” 100 extents
of that super-extent from another dimension. This is better
than reading the entire say 10TB file with the naive apporoach,
but the cost of recovery is still significantly higher (100x) than
physical replication. We improve on this below. From a query
perspective, the super-extent based layout limits the granular-
ity of partitioning to the number of extents per super extent.
This limits the potential savings for filtering and co-location.
For example, consider a very selective filter query that matches
only 1/1000th of the records. With the super extent layout, the
query would still have to read one extent in each super-extent.
Hence the maximum speedup because of partition elimination
(with 100 extents per super-extent) is 100x, whereas the file-
level global partitioning could support 1000 partitions and pro-
vide a larger benefit. However, the 100x speed up is significant
enough that the tradeoff is a net win. Conceptually, the super
extent based layout does a partial partitioning of the file, as ev-
ery key in the partition dimension could be present in multiple
extents, one per super extent. The globally partitioned layout
would have keys more densely packed within fewer extents.

Fourth partition dimension. Finally, super-extents benefit
query execution in a way that file-level global partitioning does
not. As we do not alter the native ordering of file extents across
super-extent boundaries, we get a fourth dimension. If the user
already partitioned the file on a particular column, say times-
tamp, we preserve the coarse partitions by timestamp across
super-extents, so a query filtering on timestamp can eliminate
entire super-extents. Thus, we get 4 partition dimensions for
no additional storage cost compared to today1.

4.3 Intra-extent Chained Buckets

While super-extents reduce recovery cost to 100 extents in-
stead of the whole file, the 100x cost is still a non-starter. Re-
covery needs to be low-latency to avoid losing multiple copies,
and needs to be low on resource usage so that the cluster can
manage recovery load during massive failures such as rack
failures. Intra-extent chained buckets is the mechanism we use
to make logical recovery as efficient as physical recovery.

The key idea behind intra-extent chained buckets, is to use
bucketing within an extent for recovery instead of query per-
formance. The records within an extent are bucketed on a di-
mension that is different from the partition dimension used
within the super-extent. Let us assume that C1, C2, and C3

are the three columns/dimensions chosen for logical replica-

1This fourth dimension is not equally powerful as the first three because
while it provides partition elimintation for filters, it does not provide coloca-
tion for joins
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tion. Given 100 extents per super-extent, the key-space of C1

would be partitioned into 100 ranges, so the ith extent in every
super-extent of dimension C1 would contain records whose
value for column C1 fall in the ith range.

Figure 4 (right) illustrates how intra-extent chained buckets
work. Let us focus on the first extent E1 of a super-extent in
dimension C1. The records within that extent are further buck-
eted by dimension C2. So the 200MB extent is now comprised
of 100 buckets each roughly of size 2MB. The first intra-extent
bucket of E1 contains only records whose value of column C2

falls in the first partition of dimension C2, and so on. Similarly
the extents of dimension C2 have an intra-extent bucketing by
column C3, and the extents of dimension C3 are intra-extent
bucketed by column C1.

With the above layout, recovery of an extent does not re-
quire reading the entire super-extent from another dimension.
In Figure 4, to recover the last extent of replica 2, the store
needs to read only the last bucket from extents E1 to E4 of
replica 1, instead of reading the full content of those 4 extents.

Thus, in a superextent of 100 extents, instead of reading 100
x 200MB to recover a 200MB extent, we now only read 2MB
each from 100 other extents, i.e., read 200MB to recover a
200MB extent, essentially the same cost as physical replica-
tion. By reading 100 chunks of size 2MB each, we potentially
increase the number of disk seeks in the cluster. However,
given the 2MB size, the seek cost gets amortized with transfer
time, so the cost is similar especially since physical recovery
also does the read in chunks. As we show in Section 8, the ag-
gregate disk load is very similar to physical replication. From a
networking perspective, the bandwidth usage is similar except
we have a parallel and more distributed load on the network.

Thus, with super-extents and intra-extent chained buckets,
we achieve our twin goals of getting the benefit of partitioning
and co-location for more queries, while simultaneously keep-
ing recovery cost the same as physical replication.

4.4 Making storage record-aware

In order to perform logical replication, the file system needs to
rearrange records across extents. However, the interface to the
file system is only in terms of opaque blocks. Clients perform
a read block or write block on the store, and the internal layout
of the block is only known to the client. For example, the file
could be an unstructured log file or a structured file with inter-
nal metadata. One could bridge this semantic gap by changing
the storage API to be record-level, but it is impractical as it
invovles changes to the entire software stack , and curtails the
freedom of higher layers to use diverse formats.

To bridge this tension, we introduce the notion of format
adapters in INSTalytics. The adapter is simply an encoder and
decoder that translates back and forth between an opaque ex-
tent, and records within that extent. Each format would have
its own adapter registered with the store, and only registered
formats are supported for logical replication. This is pragmatic

in cloud-scale data centers where the same entity controls both
the compute stack and the storage stack and hence there is co-
ordination when formats evolve.

A key challenge with the adapter framework is dealing
with formats that disperse metadata. For example, in one of
our widely-used internal formats, there are multiple levels of
pointers across the entire file.there is a footer at the end of the
file that points to multiple chunks of data, which in turn point
to pages. For a storage node that needs to decode a single
extent for logical replication, interpreting that extent requires
information from several other extents (likely on other storage
nodes), making the adapter inefficient. We therefore require
that each extent is self-describing in terms of metadata. For
the above format, we made small changes to the writer to ter-
minate chunks at extent boundaries and duplicate the footer
information within a chunk. Given the large size of the extent,
the additional metadata cost is negligible (less than 0.1%).

4.5 Creating logical replicas
Logical replication requires application hints on the dimen-
sions to use for logical replication, the file format, etc.. Also,
not all files benefit from logical replication, as it is a func-
tion of the query workload, and the read/write ratio. Hence,
files start off being physically replicated, and an explicit API
from the compute layer converts the file to being logically
replicated. Logical replication happens at the granularity of
super-extents; the file system picks 100 extents, shuffles the
data within those 100 (3-way replicated) extents and writes
out 300 new extents, 100 in each dimension. The work done
during logical replication is a disk read and a disk write.
Failure-handling during logical replication is straight-forward:
reads use the 3-way replicated copies for failover, and writes
failover to a different available storage node that meets the
fault-isolation constraints. The logical replication is not in-
place. Until logical replication for a super-extent completes,
the physically replicated copies are available, which simpli-
fies failure retry. As the application that generates data knows
whether to logically replicate, it could place those files on
SSD, so that the extra write and read are much cheaper; be-
cause it’s a transient state until logical replication, the SSD
space required is quite small.

4.6 Handling Data Skew
To benefit from partitioning, the different partitions along a
given dimension must be roughly balanced. However, in prac-
tice, because of data skew along some dimensions [4], some
partitions may have more data than others. To handle this,
INSTalytics allows for variable sized extents within a super-
extent, so that data skew is only a performance issue, not a
correctness issue. Given the broader implications of data skew
for query performance, users already pre-process the data to

240    17th USENIX Conference on File and Storage Technologies USENIX Association



ensure that the partitioning dimensions are roughly balanced
(by using techniques such as prefixing popular keys with ran-
dom salt values, calibrating range boundaries based on a dis-
tribution analysis on the data, etc.). As the user specifies the
dimensions for logical replication, as well as the range bound-
aries, INSTalytics benefits from such techniques as well. In fu-
ture, we would like to build custom support for skew handling
within INSTalytics as a more generic fallback, by performing
the distribution analysis as part of creating logical replicas, to
re-calibrate partition boundaries when the user-data is skewed.

5 Availability with logical replication
While the super-extent based layout ensures the same recov-
ery cost as physical replication, it incurs a hit in availability.
With physical replication, for an extent to become unavail-
able, all three machines holding the three copies of the extent
must be unavailable. If p is the independent probability that
a specific machine in the cluster goes down within say a 5-
minute window, the probability of unavailability in physical
replication for a given extent is p3. But with logical replica-
tion, an extent becomes unavailable if the machine with that
extent is down, and additionally any one of the 100 machines
in each of the other two dimensions containing replicas of the
super-extent, are down, making the probability of unavailabil-
ity p × 100p × 100p = 104.p3. In this reasoning, we only
consider independent machine failures, as correlated failures
are handled below with fault-isolated placement.

5.1 Parity extents

To handle this gap in availability, we introduce an additional
level of reduduncy in the layout. Within a super-extent replica
which comprises of 100 extents, we add parity extents with
simple XOR parity for every group of 10 extents, i.e., a total
of 10 parity extents per super-extent replica. Now, each parity
group can tolerate one failure, which means for unavailability,
there has to be a double failure in the extent’s parity group, and
in addition, at least one parity group in each of the other two
dimensions must have a double failure. The probability thus
becomes p.10p × 10.

(
11
2

)
.p2 × 10.

(
11
2

)
.p2 = 3.02 × 106.p6.

Solving this for p, as long as (p < 0.7%), the availability
would be better than physical replication.2. . In rare cases of
clusters where the probability is higher, we could use double-
parity [5] in a larger group of 20 extents, so that each group
of 20 extents can tolerate two failures. The probability of un-
availability now becomes p.

(
21
2

)
.p2 × 5.

(
22
3

)
.p3 × 5.

(
22
3

)
.p3

= 12.45 × 109.p9, so the cut-off point becomes p < 2.1%.

2This formula is an approximation (for ease of understanding) that works
for small values of p. The accurate (and more complex) formula is p.(1 −
(1 − p)10)(1 − (1 − p)100(1 + 10p)10)2 which would be greater than p3

(physical replication) as long as p < 0.725%

Note that another knob to control availability is the size of a
super-extent: with super-extents comprising 10 extents instead
of 100, the single parity itself can handle a significant failure
probability of p < 3.2%.

The machine failure probability p above refers to the failure
probability within a small time window, i.e., the time it takes
to recover a failed extent. This is much lower than the average
% of machines that are offline in a cluster at any given time,
because the latter includes long dead machines, whose data
would have been recovered on other machines anyway. As we
show in Section 8, this failure probability of random indepen-
dent machines (excluding correlated failures) in large clusters
is less than 0.2%, so single parity is often sufficient, and hence
this is what we have currently implemented.

Recovering a parity extent requires 10x disk and network
I/O compared to a regular extent, because it has to perform an
XOR of 10 corresponding blocks. As 10% of logically repli-
cated extents are parity extents, this would double the cost of
recovery (10% x 10x). We therefore store two physically repli-
cated copies of each parity block, so that during recovery, most
of the failed parity blocks can be recovered with a raw copy,
and we incur the 10x disk cost only for a tiny fraction. This
is a knob for the cluster administrator - whether to incur the
additional 10% space cost, or the 2x performance cost during
recovery; in our experience, recovery cost is more critical and
hence the default is 2-way replication of parity blocks.

5.2 Fault-isolated placement

Replication is aimed at ensuring availability during machine
failures. As failures can be correlated, e.g., a rack power
switch can take down all machines in that rack, file systems
perform fault-isolated placement. For example, the placement
would ensure that the 3 replicas of an extent are placed in 3
different failure domains, to aovid simultaneously losing mul-
tiple copies of the block. With logical replication, each extent
does not have a corresponding replica, thus requiring a differ-
ent strategy for fault-isolation. The way INSTalytics performs
this fault isolation is to reason at the super-extent level, be-
cause all replicas of a given super-extent contain exactly the
same information. We thus place each replica of the super-
extent in a disjoint set of failure domains relative to any other
replica of the same super-extent, thus ensuring the same fault-
isolation properties as physical replication.

6 Efficient Processing of Join Queries
The multi-dimensional partitioning in INSTalytics is designed
to improve performance of join queries in addition to filter
queries. In this section, we first describe the localized shuffle
that is enabled when files are joined on one of the dimensions
of logical replication. We then introduce a new compute-aware
API that the file system provides, to further optimize joins by
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completely eliminating network shuffle.

6.1 Localized Shuffle
Joins on a logically replicated dimension can perform local-
ized shuffle: partition i of the first file only needs to be joined
with partition i of the second file, instead of a global shuf-
fle across all partitions. Localized shuffle has two benefits.
First, it significantly lowers (by 100x) the fan-in of the “re-
duce” phase, eliminating additional intermediate “aggrega-
tion” stages that big-data processing systems introduce just to
reduce the fan-in factor for avoiding small disk I/Os and for
fault-tolerance [29]. Elimination of intermediate aggregation
reduces the number of passes of writes and reads of the data
from disk. Second, it enables network-affinitized shuffle. If all
extents for a partition are placed within a single rack of ma-
chines, local shuffle avoids the shared aggregate switches in
the data center, and can thus be significantly more efficient.

The placement by the file system ensures that extents per-
taining to the same partition across all super-extents in a given
dimension are placed within a single rack of machines. The
file system supports an interface to specify during logical repli-
cation the logical replica of another file to co-affinitize with.

6.2 Sliced Reads
Localized shuffle avoids additional aggregation phases, but
still requires one write and read of intermediate data. If the
individual partitions were small enough, the join of each in-
dividual partition can happen in parallel in memory, avoiding
this disk cost. However, as super-extents limit the number of
partitions to 100, joins of large files (e.g., 10 TB) will be lim-
ited by parallelism and memory needs at compute nodes.

To address this limitation, INSTalytics introduces a new file
system API called a sliced-read, which allows a client to read
a small semantic-slice of an extent that belongs to a sub-range
of a partition, further sub-dividing the partition into 100 (slice-
factor) buckets. For instance, if say the first (out of 100) parti-
tion represents the range 0-10k, a sliced-read can ask for only
records in the range 9k-9.1k, thus providing the equivalent
benefit of having 10,000 partitions on the original file while
the super-extent remains at 100 partitions. Each compute node
would now read one bucket from each super-extent. The abil-
ity to perform per-partition joins enables efficient sliced reads,
as it allows join execution to happen in stages, few partitions
at a time (e.g., 1-10 out of 100). We have modified the job
scheduler to schedule compute nodes in stages.

However, with intra-extent bucketing (§ 4.3), the bucketing
within an extent is by a different dimension, whereas sliced-
read reqiures the bucketing within an extent to be on the same
dimension. Hence, in order to return slices, the storage node
must locally re-order the records within the extent. As multiple
compute nodes will read different slices of the same extent, a
naive implementation that reads the entire extent, repartitions
it and returns only the relevant slice, would result in excessive

disk I/O (e.g., 100x more disk reads for a slice-factor of 100).
In-memory caching of the re-ordered extent data at the storage
nodes can help, but incurs a memory cost proportional to the
working set (the number of extents being actively processed).

To bridge this gap, the storage node performs co-ordinated
lazy request scheduling, as it is aware of the pattern of re-
quests during a join through a sliced-read. In particular, it
knows that slice-factor compute nodes would be reading from
the same extent, so it queues requests until a threshold number
of requests (e.g., 90%) for a particular extent arrives. It then
reads the extent from disk, re-arranges the records by the right
dimension and services the requests, and caches the chunks
pertaining to the stragglers, i.e., the remaining 10%. The
cache usage reduces further by a factor of 10-100 with staging
(above), i.e., to less than 0.1%-1% of the input size. Thus, by
exploiting compute-awareness to perform co-ordinated request
scheduling and selective caching, sliced-read enables join ex-
ecution without incurring any intermediate write to disk.
Discussion: Both localized shuffle and sliced reads for ef-
ficient joins require the cross-extent partitioning that super-
extents provide, and do not work with a naive approach of
simply bucketing within an extent, as all extents will have data
from all partitions in that model. The small fan-in that super-
extent partitioning enables, is crucial to the feasibility of co-
ordinated scheduling.

7 Implementation
We have implemented INSTalytics in the codebase of a produc-
tion analytics stack that handles exabytes of data. A key con-
straint is that to be practically deployable, the changes needed
to be surgical and isolated without changing existing reason-
ing about recovery and failures. We describe in this section
key aspects of the implementation.

7.1 System architecture
The file system in our analytics stack comprises of a Paxos-
replicated Master that holds the metadata in memory, and Stor-
age Nodes that store extents identified by GUIDs. The master
maintains a mapping from a file ID to a list of extents in the
file, and an offset-to-extent map. The master also tracks ex-
tent metadata, tracking their size, the list of replicas, i.e., the
storage nodes on which those instances are placed, etc.. A key
constraint is to avoid increase in the in-memory metadata.

7.2 Changes to Filesystem Master
With logical replication, the extent is no longer a homogenous
entity. For example, the sizes of the replicas in each dimen-
sion may be different due to skews in data distribution. To
handle this, we hide the actual sizes of the extent instances
from the master; the master continues to track extents and
offsets in the physical space. The extent table at the master
continues to track three instances per extent; we map them
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to the same bucket index across the three logical dimensions
(e.g., instances of extent 0 of the stream would track the 0th

bucket of the three dimensions for first super-extent). We add
a super-extent table to the stream metadata, tracking extent in-
dexes that delimit super-extents; the total increase in metadata
is < 1%.

The extent placement logic is changed to handle super-
extent aware fault isolation, and the recovery path is also
changed minimally. Instead of asking a new storage node to
copy extent data from a single source, the master sends a list
of 300 sources for entire super-extent; the storage node talks
to them to perform recovery.

7.3 Changes to Storage Nodes
The storage nodes handle most of the work for creation and
recovery of logical extents. For each super-extent, the master
sends a logically replicate request to an orchestrator
storage node, specifying the 300 physically replicated source
instances, and 300 new destination storage nodes. The orches-
trator sends a create logical extent request to each
destination, on receipt of which the destination sends read re-
quests to 100 source nodes to read one bucket’s worth of data
from each. It then assembles all that data into one extent by
invoking the encoder of the format-specific adapter. The stor-
age nodes that receive the bucketed read request invoke the
decoder of the format-specific adapter to convert the extent
into records, apply bucketing on the column values to return
just the bucket the destination node is interested in; a decoded
cache helps reuse this work across destinations. To amortize
this cost across queries, logical replication is performed only
on files that have a high read-write ratio. The storage nodes
also track logical-extent-specific metadata in SSD that contain
pointers to intra-extent sub-buckets, and additional rowID in-
formation to reconstruct data exactly as they were originally
written. The recovery flow works similar to creating a logical
extent, and handles parity recovery as well.

7.4 Changes to Compute Layers
Because of the adapter-based design at the storage nodes and
the store’s ability to reconstruct data with byte-level fidelity,
compute layers continue to access storage through a block in-
terface. The changes mostly have to deal with how the mul-
tiple dimensions are exposed to layers such as the query opti-
mizer; the QO treats them as multiple clustered indexes. With
our changes, the query optimizer can handle simple filters and
joins by automatically picking the correct partition dimension;
full integration into the query optimizer to handle complex
queries is beyond the scope of this paper. The store provides
a filtered read API which returns only the subset of ex-
tents that match a given filter condition. Also, the store pro-
vides direct access to a specific dimension or specific bucket
with file-name mangling (e.g., filename[0]), for ease of inte-
gration. The client library of the store initiates recovery-on-
demand; instead of trying a different replica for failover, it

Figure 5: Cluster network load during recovery

Figure 6: Cluster disk load during recovery

triggers an online recovery. As described in Section 4, this
cost is identical to reading from another physical replica.

8 Evaluation
We evaluate INSTalytics in a cluster of 500 servers (20 racks of
25 servers each). Each server is a 2.4 GHz Xeon with 24 cores
and 128 GB of RAM, 4 HDDs and 4 SSDs. 450 out of the 500
servers are configured as storage (and compute) nodes, and 5
as store master. We answer three questions in the evaluation:
• What is the recovery cost of the INSTalytics layout?
• What are the availability characteristics of INSTalytics?
• How much do benchmarks and real queries benefit ?
For our evaluation, unless otherwise stated, we use a config-

uration with 100 extents per superextent with an average extent
size of 256MB.
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Figure 7: Storage availability during rack failures

8.1 Recovery performance

For this experiment, we take down an entire (random) rack
of machines out of the 20 racks, thus triggering recovery of
the extent replicas on those 25 machines. We then measure
the load caused by recovery on the rest of the machines in the
cluster. For a fair comparison, we turn off all throttling of
recovery traffic in both physical and logical replication. Dur-
ing the physical/logical replication experiment, we ensure that
all extents recovered belong to physically/logically replicated
files respectively. The number of extents recovered is similar
in the two experiments, about 7500 extents (1̃.5TB). We mea-
sure the network and disk utilization of all the live machines
in the cluster, and plot average and 90th percentiles. Although
the physical and logical recovery are separate experiments, we
overlay them in the same graph with offset timelines.

Figure 5 shows the outbound network traffic on all servers
in the cluster during recovery. The logical recovery is more
bursty because of its ability to read sub-buckets from 100 other
extents. The more interesting graph is Figure 6 that shows
the disk utilization of all other servers; because each server
has 4 disks, the maximum disk utilization is 400%. As can
be seen, the width of the two spikes are similar, which shows
that recovery in both physical and logical complete with sim-
ilar latency. The metric of disk utilization, together with the
overall time for recovery, captures the actual work done by the
disks; for instance, any variance in disk queue lengths caused
by extra load on the disks due to logical recovery, would have
manifested in a higher width of the spike in the graph. The
spike in the physical experiment is slightly higher in the 90th

percentile, likely because it copies the entire extent from one
source while logical replication is able to even out the load
across several source extents. The key takeaway from the
disk utilization graph is that the disk load caused by reading
intra-extent chained buckets from 100 storage nodes, is as ef-
ficient as copying the entire extent from a single node with
physical replication. The logical graph has a second smaller
spike in utilization corresponding to the lag between reads and

Figure 8: Storage availability during machine failures

writes (all sub-buckets need to be read and assembled before
the write can happen). For both disk and network, we summed
up the aggregate across all servers during recovery and they
are within 10% of physical recovery.

8.2 Availability

In this section, we compare the availability of logical and
physical replication under two failure scenarios: isolated ma-
chine failures and co-ordinated rack-level failures. Because
the size of our test cluster is too small to run these tests, we
ran a simulation of a 10K machine cluster with our layout pol-
icy. Because of fault-isolated placement of buckets across di-
mensions, we tolerate up to 5 rack failures without losing any
data (with parity, unavailability needs two failures in each di-
mension). Figure 7 shows the availability during pod failures.
As can be seen, there is a crossover point until which logical
replication with parity provides better availability than phys-
ical replication, and it gets worse after that. The cross-over
point for isolated machine failures is shown in Figure 8 and
occurs at 80 machines, i.e., 0.8%. We also ran a simulation
of double-parity layout; the cross-over points for isolated and
correlated failures occur at 265 and 375 failures respectively.

To calibrate what realistic failure scenarios occur in prac-
tice, we analyzed the storage logs of a large cluster of tens
of thousands of machines over a year to identify dynamic fail-
ures; failures which caused the master to trigger recovery (thus
omitting long-dead machines etc.). We found that isolated ma-
chine failures are rare, typically affecting less than 0.2% of
machines. There were 55 spikes of failures affecting more
machines, but in all but 2 of those spikes, they were concen-
trated on one top-level failure domain, i.e., a set of racks that
share an aggregator switch. INSTalytics places the three di-
mensions of a file across multiple top-level failure domains, so
is immune to these correlated failures, as it affects only one of
three dimensions. The remaining 2 spikes had random failures
of 0.8%, excluding failures from the dominant failure domain.
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Figure 9: Resource cost of AMP queries.

8.3 Query performance

We evaluate the query performance benefits of INSTalytics on
the AMP big-data benchmark [1, 16] and on a slice of queries
from a production big data workload. We use two metrics:
the query latency, and the “resource cost”, i.e., the number of
machine hours spent on the query. All sliced-read joins use
a request threshold of 90% and 10 stages. The baseline is a
production analytics stack handling exabytes of data.

8.3.1 AMP Benchmark

The AMP benchmark has 4 query types: scan, aggregation,
join, and external script query; we omit the last query, as our
runtime does not have python support. As the emphasis is
on large-scale workloads, we use a scale factor of 500 dur-
ing data generation. We logically replicate the uservisits
file (12TB) on 3 dimensons: url, visitDate, and IP and the
rankings file (600GB) on 2: url and pagerank. Figures 9
and 10 show the benefit from INSTalytics in terms of cost and
latency respectively. Queries 1A, 1B which perform heavy
filtering on pagerank column of rankings benefit signifi-
cantly from partitioning; the latency benefit is lower than the
cost benefit because of the fixed startup latency. Query 3
does a join of the two files on the url column, after filtering
uservisits on visitDate. Since both files are partitioned
on url, 3C gets significant benefits while performing the join
using sliced reads. 3A, 3B perform heavly filtering before the
join and hence benefit from partitioning on the visitDate col-
umn. Queries 2A to 2C perform a group-by on a prefix of IP
in uservisits, and get benefits of better local aggregation
enabled by partitioning on IP. In summary, today one can pick
one column out of three and get wins for a subset of queries,
but lose benefits for other queries; INSTalytics simultaneously
benefits all queries by supporting multiple dimensions.

Table 1 focuses on just the join within Q3 (excluding the
aggregation that happens after the join). As can be seen, even
the simple localized shuffle without sliced reads provides rea-
sonable benefits. Further, we find that it reduces the amount

Figure 10: Latency of AMP queries.

Configuration Cost (hrs) Latency (mins)
Baseline 125 11.8
Localized Shuffle 85 8.4
Sliced Reads (10% cache) 40.5 3.8
Sliced Reads (5% cache) 43 4.1

Table 1: Performance of the join in Q3 of AMP benchmark

of cross-rack network traffic by 93.4% compared to baseline.
Sliced reads add to the benefit, providing nearly a 3x win
for the join. To explore sensitivity to co-ordinated request
scheduling, we show two configurations. In the “10% cache”
configuration, the storage nodes wait for 90% of requests to ar-
rive before serving the request; for the remaining 10% slices,
the storage node caches the data. The “5%” configuration
waits for 95% of requests. There is a tradeoff between cache
usage and query performance; while the 5% configuration uses
half the cache, it has a slightly higher query cost.

8.3.2 Production queries

We also evaluate INSTalytics on a set of production queries
from a slice of a telemetry analytics workload. The workload
has 6 queries, all operating on an input file of size about 34
TB, sometimes joining with other files that are smaller. Ta-
ble 2 shows the relative performance of INSTalytics on these
queries. INSTalytics benefit queries Q1-Q4. Q5 and Q6 fil-
ter away very little data (<1%) and do not perform joins, so
there are no gains to be had. Q1 and Q2 benefit from our join

Description Q1 Q2 Q3 Q4 Q5 Q6
Baselinecost 251 414 22 20 398 242
INSTalyticscost 59 206 0.3 1.1 403 239
Baselinelatency 39 66 23 4 50 20
INSTalyticslatency 7 21 1.4 2.3 51 20

Table 2: Performance of production queries. Cost numbers
are in compute hours, latency numbers are in minutes.
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improvements, they both join on one of the dimensions. Q1
performs a simple 2 way join followed by a group-by. We
see a huge (>4x) improvement in both cost and latency as the
join dominates the query performance (the output of the join
is just a few GB). Q2 is more complex, it performs a 3 way
join followed by multiple aggregations and produces multiple
large outputs (3TB+). INSTalytics improves the join by about
3x and does as well as the baseline in the rest of the query. Q3
& Q4 benefit heavily from filters on the other two dimensions
processing 34TB of data at interactive latencies.

As seen from our evaluation, simultaneous partitioning on
multiple dimensions enables significant improvements in both
cost and latency. As discussed in §3, 83% of large files in
our production workload require only 4 partition dimensions
for full query coverage, and hence can benefit from INSTalyt-
ics. The workload shown in §3 pertains to a shared cluster
that runs a wide variety of queries from several diverse prod-
uct groups across Microsoft so we believe the above finding
applies broadly. As we saw in Figure 2, some files need more
than 4 dimensions. Simply creating two different copies of the
file would cover 8 dimensions, as each copy can use logical
replication on a different set of 4 dimensions.

9 Related Work

Co-design The philosophy of cross-layer systems design for
improved efficiency has been explored in data center net-
works [13], operating systems [3] and disk systems [23]. Like
[13], INSTalytics exploits the scale and economics of cloud
data centers to perform cross-layer co-design of big data ana-
lytics and distributed storage.
Logical replication The broad concept of logical redundancy
has also been explored; the Pilot file system [20] employed
logical redundancy of metadata to manage file system consis-
tency, by making file pages self-describing. The technique that
INSTalytics uses to make extents self-describing for format
adapters is similar to the self-describing pages in Pilot. Frac-
tured mirrors [18] leverages the two disks in a RAID-1 mirror
to store one copy in row-major and the other in column-major
order to improve query performance, but it does not handle
recovery of one copy from the other. Another system that ex-
ploits the idea of logical replication to speed-up big-data ana-
lytics is HAIL [8]; HAIL is perhaps the closest related system
to INSTalytics; it employs a simpler form of logical replication
where they only reorder records within a single storage block;
as detailed in Sections 4 and 6, such a layout provides only a
fraction of the benefits that the super-extents based layout in
INSTalytics provides (some benefit to filters but no benefit to
joins). As we demonstrate in this paper INSTalytics achieves
benefits for a wide class of queries without compromising on
availability or recovery cost. Replex [25] is a multi-key value
store for the OLTP scenario that piggybacks on replication to
support multiple indexes for point reads with lower additional

storage cost. The recovery cost problem is dealt with by intro-
ducing additional hybrid replicas. INSTalytics instead capital-
izes on the bulk read nature of analytics queries and exploits
intra-extent data layout to enable more efficient recovery, with-
out the need for additional replicas. Further the authors do
not discuss the availability implications of logical replication,
which we comprehensively address in this paper. Erasure cod-
ing [19, 12] is a popular approach to achieve fault-tolerance
with low storage-cost. However, the recovery cost with era-
sure coding is much higher than 3-way replication; the layout
in INSTalytics achieves similar recovery cost as physical repli-
cation. Many performance sensitive analytics clusters includ-
ing ours use 3-way replication.
Data layout In the big-data setting, the benefits of partition-
ing [30, 27, 24, 21] and co-location [7, 9] are well understood.
INSTalytics enables partitioning and co-location on multiple
dimensions without incurring a prohibitive cost. The tech-
niques in INSTalytics are complementary to column-level par-
titioning techniques such as column stores [15]; in large data
sets, one needs both column group-level filtering and row-level
partitioning. Logical replication in INSTalytics can actually
amplify the benefit of column groups by using different (het-
erogeneous) chocies of column groups in each logical replica
within an intra-extent bucket, a focus of ongoing work.

10 Conclusion
The scale and cost of big data analytics, with exabytes of
data on the cloud, makes it important from a systems view-
point. A common approach to speed up big data analytics is
to throw parallelism or use expensive hardware (e.g., keep all
data in RAM). INSTalytics provides a way to simultaneously
both speed up analytics and drive down its cost significantly.
INSTalytics is able to achieve these twin benefits by funda-
mentally reducing the actual work done to process queries, by
adopting techniques such as logical replication and compute-
aware co-ordinated request scheduling. The key enabler for
these techniques is the co-design between the storage layer and
the analytics engine. The tension in co-design is doing so in
a way that only involves surgical changes to the interface, so
that the system is pragmatic to build and maintain; with a real
implementation in a production stack, we have shown its feasi-
bility. We believe that a similar vertically-integrated approach
can benefit other large-scale cloud applications.
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