
PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Today was a Good Day:
The Daily Life of Software Developers

André N. Meyer, Earl T. Barr, Christian Bird, Member, IEEE, and Thomas Zimmermann, Member, IEEE

Abstract—What is a good workday for a software developer? What is a typical workday? We seek to answer these two questions to learn
how to make good days typical. Concretely, answering these questions will help to optimize development processes and select tools that
increase job satisfaction and productivity. Our work adds to a large body of research on how software developers spend their time. We
report the results from 5971 responses of professional developers at Microsoft, who reflected about what made their workdays good and
typical, and self-reported about how they spent their time on various activities at work. We developed conceptual frameworks to help
define and characterize developer workdays from two new perspectives: good and typical. Our analysis confirms some findings in
previous work, including the fact that developers actually spend little time on development and developers’ aversion for meetings and
interruptions. It also discovered new findings, such as that only 1.7% of survey responses mentioned emails as a reason for a bad
workday, and that meetings and interruptions are only unproductive during development phases; during phases of planning, specification
and release, they are common and constructive. One key finding is the importance of agency, developers’ control over their workday and
whether it goes as planned or is disrupted by external factors. We present actionable recommendations for researchers and managers to
prioritize process and tool improvements that make good workdays typical. For instance, in light of our finding on the importance of
agency, we recommend that, where possible, managers empower developers to choose their tools and tasks.

Index Terms—Software Developer Workdays, Productivity, Job Satisfaction, Good Workdays, Typical Workdays, Quantified Workplace.

F

1 INTRODUCTION

Satisfied developers are more productive and write better
code [1], [2], [3], [4]. Good workdays increase developer
job satisfaction [5]. Understanding what differentiates good
workdays from other days, especially atypical days, will
help us make good days typical. This work seeks just this
understanding. Understanding typical and atypical work-
days will enable us to establish a baseline for comparison
with other developer workdays and make more informed
decisions about process improvements.

Development is a multistage process with complicated
interactions across the stages. These interactions mean that
we cannot consider each stage in isolation, but need consider
the process as a whole. We need a holistic understanding of
how software developers spend their time at work. Without
a holistic understanding, one might think that developers,
because they “develop”, spend most of their time writing
code. However, developers spend surprisingly little time
with coding, 9% to 61% depending on the study [6], [7], [8],
[9], [10], [11], [12]. Instead, they spend most of their time
collecting the information they need to fulfill development
tasks through meetings, reading documentation or web
searches, helping co-workers, and fulfilling administrative
duties. The conventional wisdom is that email is a big
source of distraction and frustration. We show that, to the
contrary, email activity has little effect on a workday’s
perceived goodness (Section 5.1). Hence, focusing just on
one development activity can miss important opportunities
for productivity improvements.

• A.N. Meyer is with the Department of Informatics, University of Zurich.
E-mail: ameyer@ifi.uzh.ch.

• E. Barr is with the University College London. E-mail: e.barr@ucl.ac.uk.
• C. Bird and T. Zimmermann are with Microsoft Research. E-mail:

christian.bird@microsoft.com, tzimmer@microsoft.com.

Manuscript submitted August 8, 2018. Revised February 11, 2019. Accepted
March 8, 2019.

We have therefore set out to better understand how to
make good days typical to increase developer job satisfaction
and productivity. Since a review of existing research revealed
no work that attempted to define or quantify what a good
and typical developer workday is, we studied developers’
workdays from these two new perspectives 1. We conducted
a large-scale survey at Microsoft and asked professional
software developers whether they consider their previous
workday to be good and typical, and related their answers
and reflections to their self-reports of the time spent on
different activities at work. From now on, when we describe
good and typical developer workdays, we refer to developers’
self-reports; we discuss the validity of this method in
Section 4.3. We received 5971 responses from professional
software developers across a four month period. From these
responses, we developed two conceptual frameworks to
characterize developers’ good and typical workdays. When
we quantitatively analyzed the collected data, we found that
two main activities compete for developers’ attention and
time at work: their main coding tasks and collaborative
activities. On workdays that developers consider good
(60.6%) and typical (64.2%), they manage to find a balance
between these two activities. This highlights the importance
of agency, one of our key findings that describes developers’
ability to control their workdays, and how much they are
randomized by external factors such as unplanned bugs,
inefficient meetings, infrastructure issues.

Our work provides researchers and practitioners with
a holistic perspective on factors that influence developers’
workdays, job satisfaction and productivity. In the paper,
we discuss five main recommendations for managers to
make good workdays typical. Overall, it is important to

1. We intentionally do not list our own definitions of good and typical
workdays since one aim of this work is to understand the characteristics
of these workdays, and how developers assess and define them.



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

remove and reduce obstacles that block developers from
creating value and making progress. Our findings confirm
and extend recent related work (e.g. [9], [13], [14]), including
that the most important impediments that require attention
are inefficient meetings, constant interruptions, unstable
and slow systems and tools, and administrative workloads.
Conversely, some factors believed anecdotally to be a prob-
lem, such as email, in fact have little effect on how good
or typical a workday is perceived to be. Since we found
evidence that meetings and interruptions are not bad overall
as their impact depends on the project phase, we conclude
that they do not have to be minimized at all times. For
instance, we can better support the scheduling of meetings
and help find more optimal slots depending on the project
phase or current workday type. Also, improving developers’
perceptions of the importance and value of collaborative
work can reduce their aversion against activities that take
time away from coding. For example, managers can include
developers’ contributions to other teams or (open-source)
projects when they evaluate them in performance reviews.
Finally, giving developers enough control over how they
manage their work time is important to foster job satisfaction
at work. This can, for instance, be achieved by allowing
flexibility in selecting appropriate work hours, locations of
work, and tasks to work on.

The main contributions of this paper are:
• Two conceptual frameworks that characterize develop-

ers’ workdays from two new perspectives: what makes
developers consider workdays good and typical.

• Results from 5971 self-reports from professional software
developers about how they spend their time at work. The
number of responses is an order of magnitude bigger
than previous work and allows us to replicate results
from previous work at scale, and to uncover nuances and
misconceptions in developers’ work.

• Quantitative evidence identifying factors that impact
good and typical workdays for software developers and
the relationships between these factors, workday types,
and time per activity.

• Recommendations that help researchers and practitioners
to prioritize process and tool improvements that make
good workdays typical.

2 RESEARCH QUESTIONS

Our research is guided by the following main research
question: What is a good and typical workday for devel-
opers? We formulated subquestions to approach the main
research question from different perspectives. First, we want
to find out qualitatively what factors impact what developers
consider as good and typical in a workday:

[RQ1] What factors influence good and typical developer
workdays and how do they interrelate?

While much related work has looked into how much
time developers spend on various work activities (Section 3),
we want to investigate how developers spend their time
differently on days they consider good and typical:

[RQ2] How do developers spend their time on a good
and typical workday?

The large dataset of 5971 survey responses allows us to
compare the time a developer spends on different activities

with other developers. We want to group developers with
similar workdays together and use other responses from the
survey to describe and characterize these groups as workday
types:

[RQ3] What are the different types of workdays and
which ones are more often good and typical?

As described in the related work section, developers
spend a lot of time at work in development unrelated
activities, such as meetings and interruptions. We want to
further investigate the impact of these collaborative aspects
on good and typical workdays.

[RQ4] How does collaboration impact good and typical
workdays?

3 RELATED WORK

Guaranteeing software is written on time, with high quality
and within the budget is challenging [15]. Hence, researchers
and practitioners are working both on improving the way
code is written, e.g. by improving tools and programming
languages, but also on how people write the software, e.g.
their motivation, skills, and work environments. The work
we discuss below gives insights into how developers spend
their time at work, factors that influence their work, and
how different work habits correlate to job satisfaction and
productivity.

3.1 Developer Workdays
Recent work on how developers spend their time has focused
on what developers do in the IDE, their execution of test
cases, usage of refactoring features, and time spent on un-
derstanding code versus actually editing code [16], [17], [18],
[19]. Other work has investigated developer workdays more
holistically, looking at how they spend their time overall on
different activities, and through various means: observations
and interviews [6], [7], [8], [9], [10], [11], self-reporting
diaries [6], and tracking computer usage [10], [12]. These
studies commonly found that developers spend surprisingly
little time working on their main coding tasks, and that the
times reported on development and other activities varies
greatly. For example, in 1994, Perry and colleagues found that
developers spend about 50% of their time writing code [6]
while, in 2011, Goncalves et al. found that it is only about 9%,
with the rest being spent collaborating (45%) and information
seeking (32%) [7]. Recently, Astromskis et al. reported the
highest fraction of time spent coding (61%) compared to
other activities [12].

There could be many reasons for these differing results.
One reason could be differences in how the studied compa-
nies and teams organize their work, in how their products
are built and in the type and complexity of software they
develop. The shift to agile development might further explain
why newer studies report higher time spent in collaborative
activities. The exact definition of what accounts a coding
activity and the method of capturing the data is another
possible explanation. Observation and diary studies are
typically shorter, as they require more time from study
participants and have a higher risk of influencing them [20].
Or, the timing of the study captured a time when developers
were extraordinarily busy (e.g. before a deadline), wrapping
up a project, or for some other reason.



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

In our work, we further explore this challenging space of
understanding developers’ workdays using self-reporting at
scale and by including two new perspectives of workdays:
whether they are good and typical. A number of findings
from previous work (e.g. very little coding time, costly
interruptions, inefficiency of emails) rest on small samples,
usually on the order of 10-20 participants, from observational,
diary and tracking studies. We validate and replicate these
findings at scale, transmuting them into solid findings. The
scale of our dataset also provides the resolution to enable
uncovering nuances and misconceptions in what makes
developers’ workdays positive and productive.

3.2 Factors that Impact Workdays

A vast body of research exists on factors that influence de-
velopers’ workdays and what effect they have on developer
productivity (e.g. efficiency at work, output, quality) and well-
being (e.g. anxiety, stress level). For example, interruptions,
one of the most prominent factors influencing developers’
work, have been shown to lead to a higher error rate,
slower task resumption, higher anxiety and overall lower
task performance [14], [21], [22], [23]. Emails were shown to
extend workdays [24] and be a source of stress, especially
with higher amounts of emails received [25] and longer time
spent with emails [26].

What is often left out from research about factors influ-
encing workdays are human aspects, such as developers’
job satisfaction and happiness. Job satisfaction is a devel-
oper’s attitude towards the general fulfillment of his/her
expectations, wishes and needs from the work that he/she
is performing. One important factor that influences job
satisfaction is the sum of good and bad workdays, which
we define as the degree to which a developer is happy about
his/her immediate work situation on the granularity of a
single day. The developer’s affective states, such as sub-
jective well-being, feelings, emotions and mood, all impact
the assessment of a good or bad workday. Positive affective
states are proxies of happiness and were previously shown to
have a positive effect on developers’ problem solving skills
and productivity [1], [2], [4], [27]. Similarly, aspects of the job
that motivate developers or tasks that bring them enjoyment
were also shown to lead to higher job satisfaction and produc-
tivity [28], [29]. Self-reported satisfaction levels of knowledge
workers [30], and more specifically, self-reported affective
states of software developers [3], have further been shown
to be strongly correlated with productivity and efficiency.
Similarly, developers’ moods have been shown to influence
developers’ performance on performing programming tasks,
such as debugging [31]. However, it is unclear how these and
other factors influencing developers’ workdays affect their
assessment of whether a workday is good or bad. Ideally, we
would use this knowledge to increase the number of good,
positive workdays and reduce the negative ones.

Previous psychological research connected positive emo-
tions with good workdays [4] and satisfaction [32]. When
studying the relationship between positive emotions and
well-being, hope was found to be a mediator [33], [34].
Positive emotions at work were further shown to increase
workers’ openness to new experiences [35], to broaden their
attention and thinking [34], [36], and to increase their level of
vigor and dedication [34], yielding higher work engagement

and better outcomes. Sheldon et al. have further shown
that on good days, students feel they have higher levels
of autonomy and competence, which also results in better
outcomes [5].

One goal of the reported study is to learn how developers
assess good workdays and what factors influence their
assessment. Amongst other results, we found that on good
workdays, developers succeed at balancing development
and collaborative work, and feel having spent their time
efficiently and worked on something of value (Section 5.1).

There is also research indicating that good and typical
workdays are related. For example, knowledge workers
were shown to be more satisfied when performing routine
work [37], [38]. Contrarily, a literature review on what
motivates developers at work, conducted by Beecham et al.,
found that the variety of work (differences in skills needed
and tasks to work on) are an important source of motivation
at work [28]. Similarly, recent work by Graziotin et al. found
that one of the main sources of unhappiness are repetitive
and mundane tasks [13]. In this paper, we also investigate
the factors that make developers perceive their workdays as
typical (Section 5.2), and explore the relationship between
good and typical workdays (Section 6).

4 STUDY DESIGN

To answer our research questions, we studied professional
software developers at Microsoft. Microsoft employs over
thirty thousand developers around the globe with more than
a dozen development centers worldwide. The teams follow
a broad variety of software development processes, develop
software for several platforms, develop both applications
and services, and target private consumers and enterprise
customers.

4.1 Survey Development Using Preliminary Interviews
To study developer workdays in a subsequent survey, we
needed a taxonomy of activities they pursue. We started
with the taxonomy of activities by LaToza et al. [16] in their
study of developer work habits. To validate and potentially
enrich this taxonomy, we contacted a random sample of
developers at various levels of seniority across many teams
and scheduled half an hour to interview them about their
activities at work, conducting ten interviews in total. In each
interview, we first asked the developer to self-report and
describe all of the activities that they engaged in during the
previous workday, including the type of activity, the reasons
for the activity, the time spent in the activity, and what time of
day the activity occurred. We encouraged them to use email,
calendars, diaries etc. as these act as “cues” [39] and have
been shown to reduce interview and survey measurement
error [40], [41], [42], [43], [44]. We then asked interview
participants to list additional activities that they engage in,
regardless of frequency or duration.

After gaining the approval of Microsoft’s internal privacy
and ethics board, we conducted interviews with developers
until the data saturation point was reached [45]. That is, once
new interviews yield no additional information, further
interviews will yield only marginal (if any) value [46].
The set of activities saturated after seven interviews, but
we conducted ten to increase our confidence that we had
captured all relevant activities. Once we had collected all of



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

the activities, two of the authors grouped them into activity
categories using a card sorting approach [47].

4.2 Final Survey Design and Participants
To increase our understanding of developers’ workdays and
what makes them good and typical, we broadly deployed a
survey to developers at Microsoft. We followed Kitchenham
and Pfleeger’s guidelines for surveys in software engineer-
ing [48] and based the questions on our insights from the
interviews. Our survey comprised four main sections: (1) We
first asked about demographics, including team, seniority, and
development experience. (2) Next we presented respondents
a list of activities (those we developed in the interviews)
and asked them to indicate how much time they spent in each
activity on their previous workday. We allowed respondents
to write in additional activities if they had an activity that
was not covered by our taxonomy. (3) Third, we asked if
the previous workday was a typical day or not and if they
considered it to be a good day. In both cases, we asked them
to explain why as an open response. (4) Finally, we asked a
number of additional questions about their day, including
how many times they were interrupted, and how many
impromptu meetings occurred. In an effort to minimize the
time required to complete the survey and avoid participant
fatigue, only a random subset of the questions in the fourth
category were shown to each respondent. In total, each
question in the fourth category was answered by a random
10% subset of respondents. Our goal for the survey was to
take only five to ten minutes to complete. After the study was
completed, the online survey tool indicated that the median
time to complete the survey was just over seven minutes.

First, Microsoft’s ethics and privacy board reviewed
our survey. To pilot the survey and identify any potential
problems, we then sent the survey to 800 developers over the
course of one week with an additional question asking if any
aspect of the survey was difficult or confusing and soliciting
general feedback. After examining the responses, we made
small wording changes for clarity and also confirmed that
our activity list was complete. Since the changes were very
minor, we also included the pilot responses in our analysis.
In an effort to make our study replicable, we provide the full
survey in the supplementary material 2.

We then sent out 37,792 invitations to complete the
survey by sending approximately 500 invitations on a daily
basis over the course of roughly 4 months. Developers
were selected randomly with replacement, meaning that it
was possible that a developer would receive the survey
multiple times over the course of the study (though never
more than once on a given day). Each developer received
a personalized invitation via email that explained who
we were and the purpose of the survey. To encourage
honest responses and improve participation rate, survey
responses were anonymous. In the invitation email and
survey description, we explicitly stated that participation is
voluntary, the survey is completely anonymous, all questions
are optional, and that only aggregated and no individual data
will be shared with collaborators at Microsoft. Participants
could also contact us in case they had any questions or
concerns. Even though the survey was anonymous, 43.8%
of respondents choose to reveal their identity. Among them,

2. Supplementary material: https://doi.org/10.5281/zenodo.1319812

only 6.6% responded twice and none repeated more than
once. In Section 8, we discuss potential threats of this study
design choice. We analyzed the responses in the unit of a
workday, not a developer.

We used a one sample continuous outcome confidence
interval power analysis to determine our required sample
size [49]. To achieve a confidence level of 95% for a 5%
confidence interval, the power analysis indicated that we
needed 385 responses. Since we were not sure ahead of time
the exact ways that we would be partitioning and comparing
the responses, we aimed for ten times that amount. In
total, we sent 37,792 survey invitations and received 5,971
responses. This is a response rate of 15.5%, which is in line
with response rates reported by other surveys in software
engineering literature [50]. From the 5,971 responses we
collected in the survey, 59.1% of the developers stated they
are junior and 40.5% senior developers. 0.4% or 26 did not
specify their seniority level. Respondents reported an average
of 10.0 years (±7.48, ranging from 0.5 to 44) of experience
working in software development.

4.3 The Validity of Self-Reported Data

Collecting time-use data can be achieved through various
methods, including observations, automated tracking, and
self-reporting. We decided to ask developers for self-reports,
for the following reasons: self-reports (1) scale better than
observations to have a representative sample, (2) they collect
a more holistic view compared to using time tracking
software that misses time away from the computer (which
was shown to be on average about half of a workday for
developers [10]), and (3) since we investigate developers’
individual perceptions of good and typical workdays, it
makes sense to compare those perceptions with their own
estimations of how they spend time. Further, self-reported
data is also common in large-scale time-use surveys, such as
the American Time Use Survey [51]. However, self-reports
on behaviors and time spent are profoundly influenced by
the question wording, format and context, and can, thus,
be unreliable [44]. To overcome these risks, we carefully de-
signed the self-report questions based on recommendations
from related work, especially Schwarz et al. [44], [52], and
we test-run our questions first with ten interviewees before
running the actual survey study.

We intentionally asked respondents to self-report about
the activities of the previous workday instead of asking
more generally. This was a conscious methodological design
decision based on the following reasons. First, the previous
day is recent, thereby increasing recollection accuracy. This
holds true even if the self-report is about the Friday the
week before in case respondents answer on a Monday.
According to Tourangeau et al., by far the best-attested fact
about autobiographical memory is that the longer the interval
between the time of the event and the time of the interview
or survey, the less likely that a person will remember it [39].
Second, a day is a short period of time to recall, and a large
body of research on surveying and recollection has found
that when the reference period is long, respondents tend
to use heuristics and estimation of frequencies rather than
concrete occurrences [44], [52], [53], [54]. This can decrease
validity, as Menon found that “to the extent that behavioral
frequencies are reported based on inferential heuristics, they

https://doi.org/10.5281/zenodo.1319812


PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

are judgements and are subjective” [52]. Being asked how
many times one went out to eat last week, most people
will likely count concrete instances, whereas if the reference
period is last year, they will almost certainly estimate based
on heuristics. Lastly, even if a respondent does recount
concrete events, larger reference periods can fall prey to
a phenomenon known as “telescoping” whereby a notable
event is remembered as occurring more recently than it
actually did [55], [56]. By using the period of a single day,
events are less likely to cross a “night boundary” and be
attributed to the wrong day [54].

We encouraged participants in the interviews and survey
to use their email clients, calendars, task lists, diaries etc. as
“cues” [39] to improve their recall of their previous workday
and reduce measurement errors [40], [41], [42], [43], [44].
Finally, we asked respondents to self-report the times spent
in minutes rather than hours so that they were forced to recall
the events in more detail, as the unit of time in response has
shown to have an impact on recollection accuracy [44], [57].

5 CONCEPTUAL FRAMEWORKS

In this section, we answer RQ1 and present the results from
investigating survey respondents’ self-reports of what made
their previous workday good and typical. We organized
the factors influencing developers’ workdays as conceptual
frameworks and describe them using representative quotes
and examples.

5.1 Developers’ Good Workdays
To identify factors that influence what a good workday is to
developers, how they relate to each other, and how important
each factor is, we asked survey respondents the following
question: “Would you consider yesterday a good day? Why
or why not?”.

5.1.1 Data Analysis
We coded the responses to the question to a binary rating
of either good or not good. Due to the formulation of the
question, not good workdays could either refer to an average
or a bad workday. From now on, we describe not good
workdays as bad for better readibility. 5013 participants
answered the question; 60.6% (N=3039) stated their previous
workday was good and 39.4% (N=1974) stated it was bad.

We qualitatively analyzed the cleaned responses from
participants who provided an explanation for what made
their workdays good or bad (21.1% did not provide an
explanation). We developed a coding strategy, applying
Open Coding, Axial Coding, and Selective Coding as defined
by Corbin and Strauss’ Grounded Theory, as follows [58] 3.
The first author Open Coded the entire set of 4005 responses
on what made participants’ previous workday good or bad,
using a quote-by-quote strategy where multiple categories
could be assigned to each quote. Responses that could not
distinctively be mapped to a category were discussed with
the other authors. Before starting the first Axial and Selective
Coding iteration, the authors familiarized themselves with

3. Since we applied all components of Straussian’s Grounded Theory
approach in our analysis but the outcome of this analysis was a
conceptual framework instead of a theory, the most accurate description
of our analysis is that we used Grounded Theory as a “methodological
rationale” [59] or “à la carte” [60].

the categories that resulted from the Open Coding step, by
looking at 10-30 representative responses (i.e. quotes) per
category and the number of responses that the first author
Open Coded to each category. We then discussed the rela-
tionships between these categories in the team (usually with
three or all four authors present). This included drawing out
the factors and their relationships on a whiteboard, which we
collected as memos. During that process, we heavily relied
on the quotes and regularly consulted them for additional
context and details about the identified relationships. The
process was iterative, meaning that whenever the Axial and
Selective Coding steps resulted in updates to the Open
Coding categories, the first author re-coded participants’
responses, and we did another iteration of Axial and Selective
coding. After five iterations, we used the memos, factors that
resulted from the Axial Coding and high-level factors (that
resulted from the Selective Coding) to create a conceptual
framework to characterize developers’ good workdays.

5.1.2 Conceptual Framework

From applying our coding strategy, we identified 11 factors
impacting developers’ assessment of a good workday. We
organized these factors into three high-level factors, (1) value
creation, (2) efficient use of time, and (3) sentiment. The first
two high-level factors were fairly obvious since respondents
usually described good workdays when they considered
their work as meaningful and/or did not waste their time
on meaningless activities. A few important factors, however,
did not fit into these two high-level factors. They are related
to respondents’ personal feelings and perceptions of their
overall work, which we grouped as the third high-level
factor. Initially, we thought that quality is another important
factor, since some respondents described good workdays as
days they improved the quality of the software or did not
break something. However, we realized that these statements
on quality were very rare (0.3% of responses) and that
respondents described them as one form of working on
something of value.

In Figure 1, we visualize the conceptual framework for
good workdays. Each of the 11 factors (light gray) influences
one of the three high-level factors (dark gray), and they
in turn influence whether developers perceive a workday
as good. The numbers in parentheses are counts for the
number of responses that we categorized into each high-level
factor (total N=4005). Since the identified factors are based
on responses to an open question, the reported numbers
and percentages in this section should only serve to give a
feeling about how prevalent each factor is in respondents’
assessment of good workdays, rather than exact measures
(reality might be higher).

Now, we provide representative examples and quotes
to describe the factors and explain how we derived the
conceptual framework based on survey responses.

VALUE CREATION. To decide whether their workday was
good, respondents most often evaluated if they were effective
and if they created something of value (68.0%, N=2725 of
the 4005 responses to the question). Creating value, however,
means different things to developers. In 35.6% (N=1425) of
the responses, developers considered their workday good
when they managed to produce some form of outcome or
accomplishment. Participants typically described a good



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

Value Creation
(2725)

Perception
(372)

Efficient Use of Time
(2164)

Making 

Progress

Learning 

New 

Things

Helping 

Others

Constructive 

Discussions

Meaningful 

Work

Working 

in Code Ability 

to Work 

Focused

Meeting 

Expect-

ations

Time 

Pressure 

& Stress
Productivity Overtime

Good or Bad 

Workday

Fig. 1. Conceptual framework for good workdays. The 3 high-level factors
are visualized as square layers; outer layers influence the inner layers.

workday being one when they make a lot of progress on or
complete their main tasks (similar to previous work [4]):

“Made some good progress, [the] project is coming together, checked
in some tests.” - S105 [good]

Many responses (13.8%, N=553) mentioned that devel-
opers feel good about their workday when they can spend
parts of it working in code, rather than on other activities,
such as meetings, interruptions, or administrative tasks. For
6.4% of all responses (N=257), creating value was described
as working on something developers deem important and
meaningful enough to spend their time on. This could be
tasks that let the project progress, process improvements that
make the team more efficient, improving the quality of the
product, or a feature that they consider valuable for end
users:

“I was able to help influence a decision that I thought was
important.” - S1658 [good]

While meetings were often not considered a good use
of their time (as discussed in more detail in Section 5.1.2),
189 responses (4.7%) described a good workday to be when
developers participated in good, constructive discussions,
when important decisions on the project were made, or when
connections could be made that are valuable in the future:

“Meetings were productive, and we made some new connections
with partners that seem promising. I also had a good chat with a
former manager/mentor.” - S483 [good]

Workdays where developers learned something new
or that increased their understanding of the project or
codebase were also considered good, as 4.7% (N=188) of
the responses described learning a valuable investment into
the developers’ or project’s future. Similarly, days when
developers could help a co-worker to learn something new
or unblock someone from a problem they are stuck with was
generally considered positive and rewarding (4.7%, N=188).
However, spending too much time helping others reduces
the time they can spend on making progress on their own
tasks:

“I spent too much time helping team members and not enough on
my scheduled tasks.” - S1880 [bad]

EFFICIENT USE OF TIME. A second high-level factor for
considering what a good workday is, is how efficiently
developers manage to spend their time (54.0%, N=2164).
A developer’s workday can be organized in various ways,
and there are numerous external and personal aspects that
compete with each other for the developer’s attention and
time. This impacts whether a workday goes as expected

and influences the developer’s ability to focus on the main
coding tasks. Respondents mentioned that changes to their
planned work or deviations from their usual workday are
often negatively perceived. Especially, unexpected, urgent
issues in a deployed system puts pressure on developers to
resolve them quickly (11.6%, N=464):

“Started off with a live-site issue (still unresolved), then went to
a [different] live-site issue (still unresolved), then I actually got a
few minutes to work on the [main] task.” - S3158 [bad]

Interruptions from co-workers and distractions such as
background noise in open-plan offices were described in
13.8% (N=552) of the responses to negatively influence
developers’ ability to focus or work as planned:

“Too many interruptions/context switches. I need a continuous
block of time to be really productive as a coder, but I find I get
distracted/interrupted more than I’d like.” - S1066 [bad]

Similarly, long meetings or meetings spreading over the
whole day, with very little time in-between to work focused,
were another regularly mentioned reason (12.2%, N=491).

10.3% (N=411) of the remaining responses mentioned
further reasons for bad workdays that were not numerous
enough to be coded into a new category. This includes time
lost due to infrastructure issues, outdated documentation,
spending too much time to figure out how something works
and being blocked or waiting for others (similar to [13]).
Unlike what one might expect from previous work [24], [25],
[26], emails were surprisingly only rarely mentioned as a
reason for not being a good workday (1.7%, N=69).

PERCEPTION. 9.3% (N=372) of all responses about good
workdays were related to developers’ positive or negative
perceptions of their overall work; their productivity, time
pressure, and working hours. For example, in 4.7% (N=187)
of the responses developers mentioned that they felt pro-
ductive or unproductive on a particular workday, and not
specifying what factors contributed to their feeling.

“Yes, I was productive and felt good about what I’d done.” - S322
[good]

In 102 (2.5%) responses, developers considered workdays
to be better when they had a good balance of handling
stress. This includes not trying to meet a tight deadline and
not having a too high time pressure:

“Considering we are not [on] a tight deadline, working in a relaxed
fashion and coding were quite enjoyable.” - S1654 [good]

Time pressure was recently also shown as a major cause of
unhappiness of developers [13]. 2.2% (N=87) of the responses
described workdays requiring to work overtime as bad.
Reasons for what causes overtime work are tight deadlines
and having full task lists.

In Section 7, we make recommendations about how to
leverage these results to make good workdays typical.

5.2 Developers’ Typical Workdays

To learn how different factors impact developers’ assessment
of typical workdays, we asked survey respondents the
following question: “Was yesterday typical?”. To answer
the question, they could either select yes or no. Respondents
who picked no were asked to provide a reason for their
assessment in a free-form textbox.



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

5.2.1 Data Analysis

5876 participants responded to the question; 64.2% (N=3770)
considered their workday as typical and 35.8% (N=2106)
as atypical. 2008 of these 2106 participants (95.3%) then ex-
plained what made their workdays atypical. To qualitatively
analyze these factors and their relationships, we used the
same coding strategy that we described in Section 5.1.1 to
characterize good workdays.

5.2.2 Conceptual Framework

Here, we describe how we developed the conceptual frame-
work that characterizes typical workdays. As respondents
were very vocal about meetings and interruptions to describe
main reasons for atypical workdays, we initially thought that
a key component for the assessment is whether the developer
has control over the factor. However, from our discussions
and after coding all responses, we realized that the key
component is the match between a developer’s expectation
of how a workday will be and how it actually was in reality.
Externally influenced factors are just one factor to influence
this match. If the mismatch is large, developers consider the
workday atypical. Also, we initially thought that the resulting
7 high-level factors that we identified through our Axial
and Selective Coding all directly influence the assessment
of typical workdays. However, we noticed that they also
influence each other: The current project phase impacts the
distribution over the different workday types. The workday
type and subsequent factors (external, tasks, location and
personal) in turn influence the developer’s expectation of
how much time is spent in activities. We noticed that it was
usually not the activity itself that impacted the assessment,
but whether the developer spent more, less or about the same
amount of time on it than usual and what the developer
expects. The relationships between the layers (i.e. factors)
were discovered through extensive discussions in the whole
team during the Axial Coding steps, where we discussed the
categories that resulted from the Open Coding process in
relation with the representative quotes from each category.

In Figure 2 we visualize the conceptual framework,
including the 7 high-level factors as gray layers. The different
gray shades show how each layer influences the inner
layers above. The counts in parentheses denote the number
of participants whose response we coded into the factor
(total N=2008). We explain the conceptual framework, by
providing representative examples and quotes to describe
the factors.

PROJECT PHASE. In 28.6% (N=575) of the responses,
developers assessed their previous workday as atypical,
providing the current project phase as the reason. In agile
software development, an iteration usually starts with a plan-
ning and specification phase, is followed by a development
or quality/stabilization phase, and then finalized with the
release phase. Respondents, however, often perceived their
workdays as atypical when the phase was not development
(22.3%, N=448). Since non-development phases occur less
frequently, are usually shorter, and often let developers code
less than in development phases, they are perceived atypical:

“We are in the planning phase now and each day is different: There
is a lot more focus on evaluations, specs, meetings during this
phase. This would significantly differ from our workday during
coding milestones.” - S2243

Project Phase (575)

Type of Workday (83)

Main Work Tasks (145) Personal (43)

Location (116)External (678)

Time Spent on Activities (1040)

≈
Typical or Atypical 

Workday

Expectation

Reality

Fig. 2. Conceptual framework characterizing typical workdays. The main
factors are visualized as layers; the outer layers influence all inner layers.

These non-development phases are perceived as “slower”,
which is why developers spend more time on activities
that usually fall short during development phases, such
as training, evaluating frameworks, writing documentation,
or working on low-priority tasks.

Since developers often describe meetings and interrup-
tions as unproductive, prior work concluded that they are
bad overall [9], [14], [21], [22], [23], [61]. We are refining these
earlier findings with our results that suggest the impact of
meetings and interruptions on productivity depends on the
project phase. Respondents described that during phases of
specification, planning and releases, they are common, but
constructive:

“In planning stage, not development stage. Spent way more time
in meetings than normal, but they were productive meetings.” -
S1762

As some teams at the studied organization do not employ
separate teams dedicated to operations, developers also have
to take part in a servicing phase, usually for about one week
every couple of weeks. During that week, they are on-call
for urgent and unexpected issues, which respondents often
also regarded as atypical:

“I am currently on-call as [an] incident manager. It was typical
for on-call rotation, but that happens only once every 12 weeks.” -
S2447

While many respondents described the current phase to
be atypical, few mentioned that the amount of time they
spent on certain activities was unusual for the phase they are
currently in. For example, spending an unusual high amount
of time with coding during a planning phase felt atypical.

TYPE OF WORKDAY. The workday type is another factor
that influences whether a developer considers a workday as
typical. While this factor is not as prominent as the project
phase that influences it, the workday type was emphasized
in 4.1% (N=83) of the responses. Certain teams or individuals
organize their work into days where they mainly focus
on a single activity, such as coding, bug-fixing, planning
or training. During these days, developers avoid pursuing
activities that distract them from their main activity, such as
emails or meetings. Specific days where the team would not
schedule any meetings were mentioned most prominently:



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

“We’re not allowed to schedule meetings on Thursdays.” - S419
“On Mondays I have a late night coding night.” - S159

These well-appreciated “no-meeting days” were often
scheduled during development phases to allow developers
to focus primarily on making progress on their coding tasks.

EXTERNAL. In 33.8% (N=678) of the responses, devel-
opers mentioned external factors they have little control
over to contribute to an atypical workday, as they often
divert developers from making progress on their main tasks
towards other responsibilities. Among these, meetings were
most often mentioned (20.5%, N=411), especially when they
are unplanned, very long or concerning an unusual topic:

“I had literally no meetings and spent the entire day refactoring
legacy code. That is unusual.” - S2394

Lack of knowledge, e.g. when having to work on a task in
an unfamiliar codebase or with a new framework, is another
factor that can make workdays atypical (3.9%, N=78), as
developers have to stop working on their tasks and spend
time learning or attending trainings about a topic:

“I was working in a very unfamiliar system; so I spent a lot of time
struggling with how to do basic things like building. Normally, I
work in a system that I’m familiar with.” - S1490

Fixing infrastructure problems or performing mainte-
nance (e.g. internet issues, installing updates) were described
as the reason for an atypical workday by 3.9% (N=78) of the
responses:

“Hardware maintenance/setup is not part of my typical responsi-
bilities. I don’t think that I am typically randomized to this extent.”
- S1306

Similar to our finding on what makes a good workday,
emails were only rarely mentioned as a reason for an atypical
workday (1.4%, N=28). Finally, respondents mentioned other
factors that make their work more fragmented and divert
them away from their main work tasks, including long
or topic unrelated interruptions (3.6%, N=72), and being
blocked on a task and having to wait for others (0.5%, N=11).

LOCATION. As developers typically work at the organi-
zation’s location on-campus, any other location they work
on is often considered atypical (5.8%, N=116):

“I worked from home and was able to make much better progress
than normal.” - S4679

When developers are not working in their usual location,
they either work from home, at a client’s or partner’s office,
or they are traveling to their team’s remote location in case it
is distributed. Working from home was uniformly described
as a well-appreciated opportunity to get tasks done with
minimal interruptions, as it is one way to regain some control
over the external factors that can randomize a workday.

MAIN WORK TASKS. 7.2% (N=145) of responses men-
tioned the task itself impacts whether they consider work-
days typical. This is the case for unusual tasks, such as
preparing for a demo or presentation, very easy tasks, such
as routine work, or very challenging tasks:

“I am not normally prepping for a presentation.” - S1554

As most development teams at the studied organization
plan work by assigning work items in Scrum meetings,
unplanned and urgent tasks are another reason for side-
tracking developers:

“No, there was a high priority issue. Normally I would try to spend
a little bit more time coding.” - S5057

These unplanned tasks impact developers’ workload and
can make it harder to meet deadlines, which often results in
longer than usual workdays:

“16 hour work days are insane, a big chunk of time was spent
troubleshooting a sideways deployment to [product].” - S5309

PERSONAL. Few of the responses (2.1%, N=43) used
personal factors to explain what made a workday atypical.
The only personal reasons that were mentioned are health
related, e.g. feeling sick or having a doctor’s appointment.
After identifying the importance of personal factors for the
framework about good workdays, we more closely inspected
responses describing typical and atyipcal workdays from
that perspective. No respondent described personal factors
such as mood, sleep quality or the ability to focus as factors
that impact typical workdays.

This surprised us, since previous work identified that
these more personal factors can impact the workday orga-
nization, focus and productivity of knowledge workers [1],
[13], [23], [62], and thus, presumably, also their assessment
of a typical or atypical workday. As respondents did re-
veal personal factors when characterizing good and bad
workdays, and as we ensured respondents anonymity (see
Section 4.2), reasons for the lack of personal details in this
question might be that the survey setting did not prompt
them explicitly enough to reflect about personal factors or
the other identified factors are more prevalent and have a
bigger influence on their assessment of a typical workday.

TIME SPENT ON ACTIVITIES. Finally, the high-level
factors described above influence how much time developers
spend on different activities. For example, during the devel-
opment phase, developers typically spend more time writing
code, days with many unplanned meetings reduce the time
spent on main coding tasks, and unplanned urgent tasks
could force a developer to work overtime. We categorized
all cases where 51.8% (N=1040) of the responses contained
descriptions of spending more or less time than usual on
a certain activity and visualized the top 5 in Table 1. On
atypical workdays, respondents mostly reported spending
more than usual time in meetings and debugging or fixing
bugs.

5.3 Interrelationship Between Good and Typical Days

In our analysis of related work, we found an interconnection
between job satisfaction, goodness, routine, typicality and
productivity. First, we developed conceptual frameworks to
better understand these factors in isolation. Now, we describe
our main qualitative observations on the interrelationship be-
tween good and typical workdays, and present quantitative
results in Section 6.

One key finding is the importance of control, i.e. develop-
ers’ ability to control their workday and whether it goes as
planned/expected or is disrupted by external factors, such as
unplanned bugs, inefficient meetings, or infrastructure issues.
While our findings replicate some results from previous
work, they help to better understand nuances in developers’
work and sort out misconceptions. For example, when we
looked more closely at why developers are very vocal
about meetings and interruptions being one of the main



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 1
Top 5 activities where respondents reported spending more or less than
usual time in on atypical workdays. Percentages are based on all 2008

responses to the question.

Activity Category More than Usual Less than Usual
Meetings 10.2% (N=205) 5.8% (N=116)
Debugging/Fixing Bugs 6.5% (N=131) 1.3% (N=27)
Coding 3.9% (N=78) 5.1% (N=102)
Planning/Specification 1.6% (N=33) 0.2% (N=5)
Learning/Tutoring 1.5% (N=30) 0.1% (N=3)

detriments to unproductive work, we found that during non-
development phases, they are better accepted and more
productive. Another insight from studying factors that
influence good and typical workdays was that the time
spent on email (as opposed to email content) are rarely
the reason for bad or atypical workdays. Finally, developers
described personal factors only very rarely as reasons for
their assessment. This might suggest that developers are
not very aware of how their private lives, health and mood
impact their work, or they chose not disclose these factors
since they are too personal.

6 QUANTITATIVE ANALYSIS

We provide a quantitative analysis of the relationship be-
tween good and typical workdays, by comparing them with
the time spent in activities (RQ2), with workday types (RQ3),
and with collaborative activities (RQ4). Each analysis reuses
the same binary ratings for good and typical workdays that
were used to develop the conceptual frameworks.

6.1 Correlation Between Typical and Good Workdays
First, we created a contingency table (see Table 3) to inves-
tigate the correlation between good and typical workdays.
A Fisher’s exact test shows strong statistical significance
(p=0.00001324, 95% confidence interval). This means that
although typical and atypical workdays are both more likely
to be considered good than bad, the percentage of typical
workdays that were considered good (62.9%, good typical
days over all typical days) is higher than the percentage
of atypical workdays that were considered good (56.7%,
good atypical days over all atypical days) to a statistically
significant degree. Similarly, from studying emotions devel-
opers express when writing and commenting issue reports,
Murgia et al. found that surprise, which could be more
often experienced on atypical workdays, is associated with
negative events [63].

6.2 Time Spent on Activities at Work
Previous research on how developers spend their time
at work did not consider whether developers think they
were good and typical, or whether they were an unusual
representation of work [6], [7], [8], [9], [10]. Hence, optimizing
processes and tools without this knowledge is risky, since
we might draw wrong conclusions and optimize for bad or
atypical workdays. For example, from previous studies we
could get the impression that reducing the email workload
of developers is of very high importance. However, our
study showed that while developers spend time with emails,
they do not consider them an important factor that makes
workdays bad or atypical. Hence, to answer RQ2 we asked
participants to self-report the time they spent on various

activities at work and related them to their assessments of
good and typical workdays.

Data Analysis. In the survey, respondents filled out a
table with the minutes spent in predefined activity categories.
They also had the option to add other activity categories in
case they were missing. For the quantitative analysis, we
only used responses where the total time spent was greater
than zero and smaller than 24 hours. We then calculated
the mean and relative time spent per activity category for
all respondents, for respondents who reported they had a
typical or atypical workday, and respondents who reported
they had a good or bad workday.

Results. In Table 2, we visualize the mean number of
minutes and relative time (in percent) participants reported
having spent on each activity on their previous workday.
Column 2 lists an average over all participants, while
Columns 3 and 4 consider typical and atypical workdays,
and Column 5 and 6 consider good and bad workdays. In
total, developers spent on average slightly more than 9 hours
at work on their previous workday. While this includes an
average of 44 minutes non-work time spent at lunch and
with bio breaks, the time spent at work is nonetheless higher
than the often considered 8 hours for a regular workday
(e.g. [64]). Since developers at the studied organization can
freely organize their work hours, this might be an indication
of developers working overtime, an observation that was
previously made for German and Finnish workers who had
autonomy over their working time and worked overtime [65],
[66]. Overall, the self-reported 9 hours spent at work is in line
with our previous work, where we found that developers’
work activities span across 8.5 hours on average, identified
through computer interaction time tracking [10].

Activities are grouped into Development-heavy,
Collaboration-heavy and Other activities. A few activities could
be grouped into multiple groups, e.g. pair programming and
code reviewing. Hence, we define a development-heavy
activity as an activity usually performed by the developer
alone, and a collaboration-heavy as an activity that usually
involves multiple people. Activities categorized as Other are
usually not directly related to development tasks or working
with other people.

Most of the time is spent with development-heavy
activities, such as reading or writing code (15%, 84 mins),
debugging or fixing bugs (14%, 74 mins) and testing (8%, 41
mins). Developers also spent time collaborating with other,
including meetings (15%, 85 mins), emails (10%, 53 mins),
and helping or mentoring others (5%, 26 mins).

Comparing quantitative self-reports on time spent on
activities across good and typical workdays confirms the
previously established qualitative characteristics of good and
typical workdays (see Sections 5.1 and 5.2). Both, on good
and typical workdays, developers spend considerably
more time with development related activities. For example,
the time spent with reading and writing code is 22 minutes
higher on typical (compared to atypical) workdays and 30
minutes higher on good (compared to bad) workdays. On
typical workdays, developers also spend slightly less time in
meetings, with planning or working on requirements, and
with learning or in trainings. And on good workdays, they
spend about half an hour less in collaborative activities, than
on bad workdays.



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 2
Mean and relative time spent on activities on developers’ previous workdays (WD). The left number in a cell indicates the average relative time spent

(in percent) and the right number in a cell the absolute average time spent (in minutes).

Activity Category
All Typical WD Atypical WD Good WD Bad WD

100% (N=5928) 64% (N=3750) 36% (N=2099) 61% (N=3028) 39% (N=1970)
pct min pct min pct min pct min pct min

Development-Heavy Activities
Coding (reading or writing code and tests) 15% 84 17% 92 13% 70 18% 96 11% 66
Bugfixing (debugging or fixing bugs) 14% 74 14% 77 12% 68 14% 75 13% 72
Testing (running tests, performance/smoke testing) 8% 41 8% 44 7% 36 8% 43 7% 38
Specification (working on/with requirements) 4% 20 3% 17 4% 25 4% 20 4% 20
Reviewing code 5% 25 5% 26 4% 23 4% 24 5% 26
Documentation 2% 9 1% 8 2% 10 2% 9 2% 8
Collaboration-Heavy Activities
Meetings (planned and unplanned) 15% 85 15% 82 17% 90 14% 79 18% 95
Email 10% 53 10% 54 10% 54 9% 52 10% 57
Interruptions (impromptu sync-up meetings) 4% 24 4% 25 4% 22 4% 22 5% 28
Helping (helping, managing or mentoring people) 5% 26 5% 27 5% 25 5% 26 5% 28
Networking (maintaining relationships) 2% 10 2% 9 2% 12 2% 11 2% 10
Other Activities
Learning (honing skills, continuous learning, trainings) 3% 17 3% 14 4% 22 3% 19 3% 16
Administrative tasks 2% 12 2% 11 3% 14 2% 11 3% 15
Breaks (bio break, lunch break) 8% 44 8% 44 8% 45 8% 44 8% 45
Various (e.g. traveling, planning, infrastructure set-up) 3% 21 3% 17 5% 27 3% 19 4% 25
Total 9.08 hours 9.12 hours 9.05 hours 9.17 hours 9.15 hours

TABLE 3
Contingency table for the relationship between good and typical

workdays (WD). The left number in a cell indicates the percentage and
the right number in a cell the total number of responses.

Typical WD Atypical WD Total
Good WD 39.8% 1989 20.8% 1037 60.6% 3026
Bad WD 23.5% 1175 15.9% 796 39.4% 1971
Total 63.3% 3164 36.7% 1833 100% 4997

6.3 Workday Types

Looking at average relative time spent in activities for all
responses results in the impression that good/bad and
typical/atypical workdays are very similar overall. However,
respondents described that not all workdays look the same,
e.g. when they have no-meeting days, and that this type of
workday often influences whether they consider a workday
as typical or atypical. Since we did not prompt them to
discuss workday types, only 4.1% (N=83) of respondents
mentioned it. To evaluate similarities and trends in develop-
ers’ workdays and to answer RQ3, we reused our dataset (see
Section 6.2) to group responses together where respondents
reported spending their time at work with similar activities.
We then used responses to other questions to characterize
these groups as workday types.

Data Analysis. To identify groups of developers with
similar workdays, we run a cluster analysis following steps:

1) For the clustering, we used respondents’ self-reports
of the relative time spent in each activity category.
The data cleaning process is the same as described
before in Section 6.2. To group the respondents, we
used the Partitioning Around Medoids (PAM) clustering
algorithm [67] in the pamk implementation from the fpc
package4 in R. We varied the number of clusters (k)
from one to twenty. The pamk function is a wrapper
that computes a clustering for each k in the specified
range and then returns the clustering with the optimum
average silhouette. In our case, the optimal number of
clusters was k = 6.

2) To describe the inferred six clusters, we used responses
to other questions from the survey, including develop-

4. https://cran.r-project.org/web/packages/fpc

ers’ assessments of good and typical workdays, their
experience (senior versus junior developer (as defined
by the organization position) and number of years of
development experience) and their office environment
(private versus open-plan office).

3) Finally, we used the cluster descriptions to develop
workday types.

Results. In Table 4, we present the resulting six clusters,
the amount of time developers in each cluster spend on
different activities, and additional factors to describe the
clusters. Clusters 1 to 3 (C1-C3) are development heavy
workdays, while clusters 4 and 5 (C4-C5) include more
collaborative aspects. In the following, we describe the
clusters as workday types and characterize them considering
the factors mentioned above. We also name each workday
type to make referencing them easier in the paper.

On a “Testing Day” (C1), developers overall spend
considerably more time with testing compared to the other
days. As testing often requires to also debug and fix code,
they also spend more time with coding and debugging
compared to other not development heavy days (C4-C6). On
“Testing Days”, developers spend more time learning new
things than the other days. The majority of the developers
in this cluster (in our sample, 71%) are junior developers,
with 66% considering it a typical workday and 63% a good
workday respectively. On a “Bugfixing Day” (C2) developers
spend significantly more time debugging or fixing bugs
(almost 3 hours on average). Similar to the “Testing Day”,
mostly junior developers are experiencing this workday type
(69%), and the developers in this cluster generally thought
it was fairly typical (65%) and good (60%). A “Coding Day”
(C3) is a workday where developers spend a lot of their
time reading and writing code, on average about 2.3 hours,
and is perceived as good by more developers than the other
workdays (74%). This workday type has a higher chance to
be perceived as typical, with 72% considering their previous
coding day as typical. 65% of the developers in this cluster
are juniors and most of the developers in this cluster do
not sit in private offices (60%). The “Collaborating Day”
(C4) entails spending more time on collaborative activities,

https://cran.r-project.org/web/packages/fpc


PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 4
The six workday type clusters. Each column corresponds to a cluster and each row either to the time spent in activities or factors considered to

describe the clusters. The left number in a cell indicates the average relative time spent and the right number in a cell the average absolute time spent.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Testing Day Bugfixing Day Coding Day Collaborating Day Meeting Day Various Day

24% (N=1451) 23% (N=1344) 22% (N=1319) 21% (N=1216) 8% (N=504) 2% (N=94)
pct min pct min pct min pct min pct min pct min

Time Spent in Activities
Development-Heavy Activities
Coding 11% 63 11% 61 37% 137 7% 37 6% 32 6% 35
Bugfixing 11% 59 32% 170 10% 56 6% 31 4% 20 6% 36
Testing 16% 87 7% 36 6% 35 2% 13 2% 11 4% 25
Specification 4% 19 1% 6 2% 10 9% 47 3% 18 1% 4
Reviewing code 5% 25 4% 23 4% 23 6% 33 3% 14 3% 19
Documentation 3% 16 1% 4 1% 6 2% 9 1% 8 1% 3
Collaboration-Heavy Activities
Meetings 12% 65 9% 50 9% 50 22% 121 46% 248 7% 41
Email 8% 45 10% 52 8% 42 13% 73 12% 66 8% 44
Interruptions 4% 24 4% 21 4% 19 6% 33 3% 19 3% 20
Helping 4% 24 4% 21 4% 20 8% 44 5% 26 2% 14
Networking 3% 14 1% 8 1% 7 2% 12 2% 12 1% 7
Other Activities
Learning 7% 36 2% 10 2% 13 2% 11 2% 10 2% 9
Administrative tasks 2% 12 2% 10 1% 7 4% 22 2% 11 2% 8
Breaks 8% 44 9% 50 8% 43 8% 44 7% 37 7% 40
Various 2% 19 3% 14 3% 14 3% 20 2% 15 47% 262
Factors Describing the Clusters
Workday was good 63% 60% 74% 50% 48% 40%
Workday was typical 66% 65% 72% 61% 50% 40%
Works in a private office 46% 47% 40% 60% 57% 75%
Is a junior developer 71% 69% 65% 41% 29% 56%
Years of Experience 8.9 8.8 9.4 12.0 13.0 12.0
Total time spent (in hrs) 9.2 8.9 9.0 9.1 9.0 9.4

especially in meetings, with emails and helping others, than
on development heavy days (C1-C3). Meetings, however,
account only for about half the time than on a ‘Meeting
Day”. This workday was only perceived as good by half the
respondents (50%) and is experienced more often by senior
(59%) than junior (41%) developers. On a “Meeting Day”
(C5), developers spend on average more than 4 hours or 46%
of their workday in meetings. The majority of developers in
this cluster are senior developers (71%). Also, time spent with
emails is higher than on workdays with a bigger focus on
development (C1-C3). Overall, developers who experience
a meeting workday, spend on average just about one and a
half hours in development related activities. Only 50% of the
developers in this cluster perceived their previous “Meeting
Day” as typical. As only 8.5% of the respondents (N=504)
belong to this cluster, developers are less likely to experience
a meeting day. Finally, on a “Various Day” (C6), developers
spend more than 4 hours with activities mapped to the
category Various. This includes setting up the infrastructure,
working in support, and on a deployment. With only 1.6%
(N=94) respondents belonging into the cluster it is the rarest
workday type, the longest workday, and the workday that
was most often considered as atypical and bad.

We make the following observations based on the results:

• The number of good workdays in each cluster confirms
again that many developers feel more positive on work-
days they can work alone and focus most of their time on
development related activities.

• What developers consider a good workday also varies
with their seniority. Similarly, senior developers experience
more atypical days than junior developers.

• Developers experience development heavy workdays (C1-
C3) as more typical than the other workdays.

• Senior developers have more days that include collabora-

tion, such as meetings, planning and specification and are
less likely to have development-heavy workdays (C1-C3).

• Overall, average workday lengths are very similar, differ-
ing only up to half an hour.

• On average, respondents who experienced a development
heavy workday (C1-C3) have about 3 years less develop-
ment experience.

6.4 Collaboration
Previous work has described interruptions as one of the
biggest impediments to productive work [22], [23]. Also,
meetings have been shown to account for a big chunk of a
developer’s workday, but their usefulness and value is often
questioned [9]. Since most of the time developers spend in
development-unrelated activities is of a collaborative nature,
we wanted to better understand how the two most frequent
collaborative aspects, meetings and interruptions, impact
good and typical workdays (RQ4). Note that we did not
include the project phase in this analysis, as respondents
were not specificly asked to report it in the survey.

Data Analysis. To study how collaboration impacts
developers assessments of good and typical workdays, we
selected 8 aspects related to interruptions and meetings. For
each aspect, we asked a random 10% subset of respondents
to self-report the time needed, total number, or percentage.
After cleaning the data and removing a few outliers (<1%
per aspect), we correlated the aspect with respondents’
assessments of good and typical workdays. To test whether
there is a significant statistical difference between each, good
and typical workdays, and the aspect, we use non-parametric
Wilcoxon signed-rank tests (95% confidence interval). We
corrected all p-values for multiple hypothesis testing, using
the Benjamini-Hochberg correction [68]. In the results that
follow, we describe the relationship as significant if the p-



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

value is less than 0.05. In these cases, we include the p-value
of the Wilcoxon test inline.

Results. The mean values for each aspect, presented for
good, typical and combined workdays, are shown in Table 5.
We present some key observations:

(5a) Overall, developers had on average 4.66 interrup-
tions on their past workday. Surprisingly, on typical work-
days, the number of interruptions are significantly higher
than on atypical workdays (p < 0.001). There is also strong
evidence (i.e. a significance correlation) that interruptions
are lower on good workdays (p < 0.001). Developers who
perceived their workday as good experienced about one
interruption less than developers on a bad workday.

(5b) Previous work has found that developers typically
take around 15 minutes to resume after an interruption [69].
In our survey, respondents self-reported it took them on
average less than ten minutes. Overall, the time needed to
resume an interruption is similar, independent of whether it
is perceived as good and typical.

(5c) The longest period developers could work on code
without an interruption was 47.3 minutes, on average.
On good (p < 0.001) and typical (p = 0.002) workdays,
developers get significantly longer chunks of uninterrupted
coding time. On atypical and bad workdays, it is on average
around 40 minutes.

(5d) Developers see meetings often as an inefficient
use of time. While the results presented above indicate
developers are preferring coding over meetings, they still
consider the majority of meetings as useful, independently
of whether it was a good and typical day. The percentage of
useful meetings has a significant impact on if a workday is
considered good (p = 0.035), but not on if it was typical. On
atypical workdays, meetings are generally seen as a bit more
valuable, probably because they are more irregular and less
routine meetings.

(5e) Impromptu sync-up meetings are short interrup-
tions from co-workers in the developers’ office to answer a
question. Respondents experienced on average about two
impromptu sync-up meetings on their previous workday.

(5f) Unplanned meetings are more formal and less ad-
hoc than impromptu sync-ups, but are not stored as calendar
appointments like planned meetings. Developers rarely have
unplanned meetings, overall less than one a day. On good
workdays, the number of unplanned meetings is significantly
lower than on bad days (p = 0.002).

(5g) When they do happen, unplanned meetings account
for slightly more than a quarter hour on good and almost
half an hour on bad workdays. On these bad workdays,
unplanned meetings take significantly more time (p = 0.001).

(5h) Of the total time spent at work, developers spent
around 20% in (and preparing) meetings. On good and
typical workdays, the percentage of time spent in meetings
is slightly lower (only significant for good workdays, p =
0.002). The highest percentage of time spent in meetings is on
days developers perceive as good and atypical, suggesting
that the unusual meetings (those that happen on atypical
days) are often considered as constructive and valuable (see
Section 5.1.2).

7 MAKING GOOD DAYS TYPICAL

Our findings contribute new knowledge about factors that
impact good and typical workdays and how developers’

TABLE 5
How meetings and interruptions influence good and typical workdays.

Significant relationships between the aspect and good or typical
workdays are visualized in bold (α<0.05).

Aspect Typ-
ical

Atyp-
ical

Good Bad Total

a) Number of Interruptions 4.80 4.43 4.30 5.24 4.66
b) Minutes needed to resume work
after an interruption (in mins)

8.55 8.81 8.19 9.29 8.64

c) Longest period of uninterrupted
coding time (in mins)

50.3 42.4 52.9 39.3 47.3

d) Percentage of useful meetings 56.6% 61.7% 61.2% 54.8% 58.5%
e) Number of impromptu sync-ups 2.15 2.30 2.15 2.50 2.20
f) Number of unplanned meetings 0.61 0.63 0.51 0.84 0.62
g) Total time spent in unplanned
meetings (in mins)

21.1 22.1 16.6 28.8 21.5

h) Percentage of total time spent in
meetings

17.7% 22.7% 18.4% 21.4% 19.5%

work differs on these days. In this section, we discuss how
researchers and managers can apply them to make good
days typical and to improve developers’ productivity and
job satisfaction in the workplace.

7.1 Optimizing Developer Workdays
Our results provide insights into factors that impact how
developers’ good and typical workdays are perceived and
how they define them. This allows individuals, team leads
and managers to prioritize and target actions that improve
processes and tools, and ultimately productivity. For ex-
ample, many developers are unhappy when they work on
mundane or repetitive tasks [13]. On the contrary, time
pressure and deadlines were found to be major causes for
stress [37], [38] and unhappiness [13]. Our results suggest
ways to reduce these bad days and make good days typical
(i.e. more routine). Generally, it is advisable to minimize
administrative tasks and infrastructure issues, and reduce
interruptions and meetings. Developers gain back time they
can spend on their coding tasks and increase their job satisfac-
tion. This is especially important for junior developers, who
tend to spend most of their time with development-heavy
activities such as coding, testing and bugfixing. During these
tasks, they need to be able to focus for long chunks of time,
without interruptions. Uninterrupted work might be easier to
achieve in smaller offices shared with only a few colleagues,
rather than the currently omnipresent open-plan offices.
During phases or days that require a lot of collaboration,
coordination and many meetings (e.g. planning, specification
and release phase), the team could move to an open-plan
office. To accommodate these changing needs for office space,
teams could switch with another team that is working with
reversed phases.

Our results further suggest ways to make atypical days
good, e.g. by working from home on tasks that require a
lot of attention and focus, by scheduling no-meeting days,
by planning to do little coding during planning phases,
or by using slow times (e.g. project wrap-up) for side-
projects. Working from home was previously shown to
increase knowledge worker job satisfaction, since it increases
flexibility of working at one’s own pace, allows planning
active working hours at times of higher focus and motivation,
and in quieter work environments [70], [71], [72]. Days
on which meetings are grouped together allow teams to
collaborate, discuss and plan intensively, and days when no
meetings are scheduled allow teams to work more focused,



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

reducing context-switching and interruptions [73], [74].
Common in these examples is that individuals and teams
organize their work to be atypical on purpose, which made
these days more positive and productive. In our analysis
of workday types (see Section 6.3), we found that senior
developers experience more atypical workdays than junior
developers. This is likely the case because they experience
more “collaborating days” and “meeting days”, making it
more difficult to plan out and control one’s workday. Besides
the beforementioned approaches on making meetings more
efficient, other research focused on approaches that reduce
the amount of time senior developers need to spend with
randomization and helping out, leaving more time to work
on their main coding tasks. This includes expert-finding
systems to interrupt fewer people with inquiries (e.g. [75],
[76]), more efficiently exchanging knowledge and learnings
(e.g. [77], [78]), increasing team awareness (e.g. [79], [80],
[81]), and more efficiently dealing with emails (e.g. [82],
[83]). Finally, spending more quality time on activities most
described as good days (e.g. coding and learning) could
further make senior developers’ often randomized, atypical
workdays good.

From our work, it remains unclear how much consistency
over days developers expect and how often they appreciate
non-routine atypical workdays. We could imagine that
occasionally breaking the routine will also avoid boredom
and will make work more exciting overall. However, the
ever-changing project phases and various activities pursued
at work might already be sufficient to avoid routine. Having
now a better understanding of the factors that influence
developers’ assessments of good and typical workdays,
future work could explore how the company culture, devel-
opment processes, developers’ gender (e.g. GenderMag [84])
and personas (e.g. Developers’ Productivity Perception Per-
sonas [85]) influence how pronounced these factors are.
For example, standardized questionnaires from psychology
could be leveraged to include perspectives on developers’
personality (e.g. BFI-2 [86]), impulsivity (e.g. UPPS [87])
or ability to self-control (Cognitive Absorption Scale [88]).
Getting more insights into the distinctness of these factors
could help individuals, teams and managers to prioritize
improvements at the workplace better.

7.2 Agency: Manage Competition for Attention & Time

Our results highlight that developers face a constant com-
petition for attention and time between their main coding
tasks (i.e. individual productivity) and collaborating with
their team (i.e. team productivity). While they generally
understand the importance of team collaboration, not every
developer perceived it as an efficient and productive use
of their time. Developers’ workdays are often disrupted
by activities they have little control and autonomy over
(e.g. meetings scattered over the day, interruptions from
co-workers asking for help). These disruptions fragment
developers’ workdays, allowing them to only spend little
time focused on their coding tasks before switching to
the next topic [10], [61]. This increases frustration and
tensions in the team. Thus, being able to freely control
how to best organize one’s workday and whether it goes
as planned/expected or is disrupted by external factors
is important. For example, allowing developers to “veto”

meeting requests can help avoid scattering meetings across
the workday that leave very little time to make progres
in-between them. In Sociology, this notion is known as
agency, and describes “the capacity of individuals to act
independently and to make their own free choices” [89]. The
finding of the importance of agency is in line with previous
work in psychology, in which increased autonomy in a high-
variety task led to increased satisfaction [90]. Similarly, a
study with students showed that higher levels of autonomy
are related to higher well-being and better outcomes [5].
Agency is related to the concept of daily job crafting, the self-
induced changes that employees make in their job demands
and resources to meet and/or optimize their work goals [91].
These changes can have positive impacts on motivation [92]
and performance [91].

Previous work has suggested a plurality of approaches
that allow knowledge workers to better manage their own
workdays and improve collaboration. This includes avoiding
interruptions from co-workers at inopportune moments [93],
reducing distractions from communication channels [94], [95],
having flexible work hours [96], improving the scheduling
of meetings between timezones [97], [98], and making
distributed meetings more efficient [99], [100]. Since these
examples are founded in other knowledge work settings,
future work could study how to adapt them to the software
engineering domain and allow developers to better control
and optimize their time.

Our work refines previous work that found developers
consider most meetings and interruptions as unproductive.
We found that during non-development phases, they are
common and (usually) productive. We should actively
work on reducing interruptions and meetings during the
development phase (and on development-heavy days), and
encourage them at times when collaboration is most crucial,
such as phases of planning/specification, testing and release.
Finally, we learnt that senior developers appreciate collab-
oration generally more than junior developers, suggesting
the value of collaboration changes with experience. This
finding is in line with recent work that found motivation and
job satisfaction at work is changing as individuals age [72].

7.3 Evaluation of Contributions at Work

The competing interests between individual productivity
and team productivity also highlight potential issues in how
we evaluate success and measure productivity at work.
Our findings indicate that developers who reflect about
successful work mostly consider the produced output, and
value collaborative work much lower. This is why on good
and typical days, the majority of developers reported making
a lot of progress on their coding tasks and producing a
lot of output (49.4%), rather than focussing on contribut-
ing something meaningful (6.4%), learning something new
(4.7%), or helping a team-mate to make progress (4.7%).
Initial discussions with a few project managers at the
corporation confirmed this interpretation. According to them,
many teams are starting to consider developers’ support to
other team-members, and contributions to other teams and
even external (open-source) projects when evaluating the
performance in job reviews and salary discussions. This is
similar to reports from industry, where developers are not
only evaluated by their managers but also their peers, or



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

where developers can recommend a small monetary bonus
to another developer for great work done [101].

While our study with software developers showed that
learning something new was rarely (4.7%) mentioned as
a reason for a successful day, a study focusing on Ko-
rean knowledge workers found that career satisfaction is
predicted by an organization’s learning culture and goal
orientation [102]. According to Hofestede’s dimension of
masculinity/femininity, masculine cultures focus more on
competition and success, while more feminine ones on doing
what one likes [103]. These examples suggest that reflecting
about (successful) work needs to be considered as a separate
variable in future work, to better understand how differences
in company culture, job profile, goal orientation and gender
could impact how developers reflect about their work.

8 THREATS TO VALIDITY

8.1 External Validity
The main threat to the generalizability and validity of
our results is the external validity. Since our survey was
conducted at only one large organization, it is unclear how
representative our results are of the views of all software
developers, especially from smaller companies or open-
source projects. Microsoft employs over thirty thousand
developers, who are working on various projects targeting
private and commercial users, and at different stages of
their projects. Survey respondents work in teams of different
sizes, at various locations, using varying technology and
processes. Many teams in the organization have come from
acquisitions of smaller companies or startups, and their
development processes and tools have remained largely
untouched. According to Microsoft’s yearly diversity report 5,
the distribution of developers in the United States (US) was
the following in 2018: 50.9% Caucasian, 39.2% Asian, 4.5%
Hispanic, 2.8% African-American, and 2.6% other. 19.9%
identify as female, 80% male, and 0.1% as other. At the time
of taking our survey, all participants resided in the greater
Seattle area in Washington state, US. Thus, while all of the
developers we studied are part of a single organization,
we are confident to achieve some level of external validity
and generalizability, based on the variation in paricipants’
context, environment, culture, and experience, as well as
the large sample size. Finally, single-case empirical studies
have been shown to contribute to scientific discovery [104].
Nonetheless, future work could consider additional variables,
such as the company culture and size, and developers’
gender, personality, and goal orientation.

8.2 Construct Validity
In Section 5.1.1, we described how we analyzed the survey
responses using methods common in the Grounded Theory
approach by Corbin and Strauss [58]. One potential threat
could be that the Open Coding step was performed by one
author only. To reduce bias, we discussed 10-30 representa-
tive quotes for each coded category as a team, and collectively
mapped all responses that could not distincitvely be mapped
to a category. All subsequent steps, including Axial and
Selective Coding and the development of the conceptual

5. https://www.microsoft.com/en-us/diversity/inside-microsoft/
default.aspx

frameworks, were performed iteratively with three or all
four authors present.

8.3 Internal Validity

Selecting developers randomly with replacement when
sending out the survey invitations via email might pose a
risk to internal validity. Since all responses were anonymous,
we cannot know the exact number of people who took the
survey more than once and how much time was between
the two responses. We, however, expect the number to be
low, since from the 43.8% of participants who voluntarily
revealed their identity, only 6.6% responded twice, and no
one repeated more than once. Since the survey invitations
were sent out over the course of 4 months, we further also
expect the number of responses from the same participant
within subsequent days to be very low. Thus, we believe
that the large amount of participants (N=5971) reporting at
random workdays and varying stages of their projects is a
fairly representative sample of how developer workdays look
like. Future work could consider how developers’ decision
to participate in the survey and more importantly, their
answers are affected by their experiences of the previous
workday and their personality. For example, previous work
showed that well-being on the preceding day can affect
the well-being on the subsequent day [5] and, hence, could
have affected our respondents’ self-reports of how good
their previous workday was. Similarly and with respect to
personality, people who are generally more likely to respond
to surveys are conscientious [105], agreeable [105], [106],
[107] and open to new experiences [106], [107]. Our sample
might not accurately represent developers who do not fit
into these personality groups.

Another limitation of our study could be that we studied
developers’ workdays based on their self-reports and only
on one day (and in a few cases two days) per developer. We
discuss our rationale behind the study design in detail in
Section 4. We are confident of the soundness of our design,
also because our results replicate comparable findings (e.g.
time spent on activities and the high cost of interruptions
and meetings) from previous work that applied differing
methods (e.g. observations, tracking).

The survey structure and formulation might be source
of further risks to internal validity. For example, asking
developers whether they consider their workday as good
and typical after asking them to self-report their time
spent at work might have framed participants. Another
potential framing threat is the positioning of the demographic
questions in the beginning of the survey, which might have
caused a Stereotype Threat [108]. For example, a developer
working in an open-plan office and not liking this might have
been reminded of the fact when answering the survey. Future
work should redress this threat by placing the demographic
questions at the end of the survey [109], [110].

We also acknowledge that typicality and goodness of
workdays are not binary ratings in reality, as several factors
could influence the assessment of a workday to be rather
typical or rather atypical, for example. However, for the sake
of first identifying the factors that influence what contributes
to a good and typical workday, we decided that using a
dichotomous variable makes more sense. Dichotomization
was also described as a standard practice in empirical

http://approjects.co.za/?big=en-us/diversity/inside-microsoft/default.aspx
http://approjects.co.za/?big=en-us/diversity/inside-microsoft/default.aspx


PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

research, to avoid nominal scale violations [111]. In the
interviews, we noticed that there is no consensus between
whether writing code and debugging is the same activity.
Hence, in the survey, we asked developers to distinguish
between writing code and debugging when reporting the
time spent. An additional control question revealed that 58%
distinguish between writing code and debugging, while 42%
do not.

9 CONCLUSION

We extend previous work on understanding developer
workdays by adding two new perspectives: what makes
a workday good and typical. We report on aspects that
characterize what makes developers consider workdays good
and typical, and how managers can leverage them to make
good workdays typical. On good workdays, developers make
progress and create value on projects they consider meaning-
ful, and spend their time efficiently, with little randomization,
administrative work and infrastructure issues. What makes a
workday typical is primarily assessed by the match between
developers’ expectations and the reality. Amongst other
aspects, this match is heavily influenced by the time they
spend on different activities, external factors they have little
control over, and the current development phase. Since
developers often complain meetings and interruptions are
unproductive, prior work concludes that they are bad overall.
Surprisingly, we find that their impact on productivity and
job satisfaction depends on the development phase: during
specification/planning and release phases, they are common,
but constructive. Another key finding is the importance of
agency, control over one’s workday and whether it goes as
planned and expected, or is disrupted by external factors.
Our work provides a holistic perspective on how developers
think these aspects influence their workdays and helps
prioritize process and tool improvements. For example, one
unexpected finding is to de-emphasize email, contrary to
what was suggested by related work.

Our results stem from a large-scale survey with 5971
responses, where professional software developers reflected
about what made their workdays good and typical, and
where they self-reported how they spent their time on the
previous workday. In contrast to related work using pri-
marily automated tracking, by using self-reports we capture
unanticipated events in each developer’s own classification
at scale. Our scale also gives us the resolution to uncover
nuances, e.g. what makes developers happy and satisfied
varies with their seniority.

10 ACKNOWLEDGEMENTS

We thank our study participants for their participation. We
also thank the anonymous reviewers and our editor for their
valuable feedback.

REFERENCES

[1] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software
developers solve problems better: psychological measurements in
empirical software engineering,” PeerJ, vol. 2, p. 289, 2014.

[2] ——, “Software developers, moods, emotions, and performance,”
IEEE Software, vol. 31, no. 4, pp. 24–27, 2014.

[3] ——, “Do feelings matter? on the correlation of affects and the self-
assessed productivity in software engineering,” Journal of Software:
Evolution and Process, vol. 27, no. 7, pp. 467–487, 2015.

[4] T. Amabile and S. Kramer, The progress principle: Using small wins
to ignite joy, engagement, and creativity at work. Harvard Business
Press, 2011.

[5] K. M. Sheldon, R. Ryan, and H. T. Reis, “What makes for a good
day? competence and autonomy in the day and in the person,”
Personality and social psychology bulletin, vol. 22, no. 12, pp. 1270–
1279, 1996.

[6] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People,
organizations, and process improvement,” IEEE Software, vol. 11,
no. 4, pp. 36–45, 1994.

[7] M. K. Gonçalves, L. de Souza, and V. M. González, “Collaboration,
information seeking and communication: An observational study
of software developers’ work practices,” Journal of Universal
Computer Science, vol. 17, no. 14, pp. 1913–1930, 2011.

[8] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An exami-
nation of software engineering work practices,” in CASCON First
Decade High Impact Papers, ser. CASCON ’10. IBM Corporation,
2010, pp. 174–188.

[9] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann,
“Software developers’ perceptions of productivity,” in Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. ACM, 2014, pp. 19–29.

[10] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and
T. Fritz, “The Work Life of Developers: Activities, Switches and
Perceived Productivity,” Transactions of Software Engineering, pp.
1–15, 2017.

[11] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
Program Comprehension: A Large-Scale Field Study with Pro-
fessionals,” IEEE Transactions on Software Engineering, pp. 1–26,
2017.

[12] S. Astromskis, G. Bavota, A. Janes, B. Russo, and M. D. Penta,
“Patterns of developers’ behaviour: A 1000-hour industrial study,”
Journal of Systems and Software, vol. 132, pp. 85–97, 2017.

[13] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On
the Unhappiness of Software Developers,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering. ACM, 2017, pp. 324–333.

[14] G. Mark, D. Gudith, and U. Klocke, “The Cost of Interrupted
Work : More Speed and Stress,” in CHI 2008: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2008,
pp. 107–110.

[15] F. P. Brooks Jr, The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition, 2/E. Pearson Education India,
1995.

[16] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of the
28th international conference on Software engineering. ACM, 2006,
pp. 492–501.

[17] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did
Last Summer – An Investigation of How Developers Spend Their
Time,” Proceedings of ICPC 2015 (23rd IEEE International Conference
on Program Comprehension), pp. 25—-35, 2015.

[18] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in Proceedings of the 23rd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER ’16), 2016.

[19] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer Testing in The IDE: Patterns, Beliefs, and
Behavior,” IEEE Transactions on Software Engineering, vol. 14, no. 8,
pp. 1–23, 2017.

[20] E. Goodman, M. Kuniavsky, and A. Moed, “Observing the
user experience: A practitioner’s guide to user research (second
edition),” IEEE Transactions on Professional Communication, vol. 56,
no. 3, pp. 260–261, 2013.

[21] C. Parnin and S. Rugaber, “Resumption strategies for interrupted
programming tasks,” Software Quality Journal, vol. 19, no. 1, pp.
5–34, 2011.

[22] B. P. Bailey, J. A. Konstan, and J. V. Carlis, “The effects of
interruptions on task performance, annoyance, and anxiety in
the user interface.” in Interact, vol. 1, 2001, pp. 593–601.

[23] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of
task switching and interruptions,” in Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 2004, pp.
175–182.

[24] M. Mazmanian, “Avoiding the trap of constant connectivity: When
congruent frames allow for heterogeneous practices,” Academy of
Management Journal, vol. 56, no. 5, pp. 1225–1250, 2013.

[25] L. A. Dabbish and R. E. Kraut, “Email overload at work: an
analysis of factors associated with email strain,” in Proceedings



PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

of the 2006 20th anniversary conference on Computer supported
cooperative work. ACM, 2006, pp. 431–440.

[26] S. R. Barley, D. E. Meyerson, and S. Grodal, “E-mail as a source
and symbol of stress,” Organization Science, vol. 22, no. 4, pp.
887–906, 2011.

[27] S. C. Müller and T. Fritz, “Stuck and frustrated or in flow
and happy: Sensing developers’ emotions and progress,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 1. IEEE, 2015, pp. 688–699.

[28] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Information and Software Technology, vol. 50, no. 9, pp.
860 – 878, 2008.

[29] Y.-h. Kim and E. K. Choe, “Understanding Personal Productivity:
How Knowledge Workers Define,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems - CHI ’19, no.
May, 2019.

[30] G. Mark, S. T. Iqbal, M. Czerwinski, P. Johns, and A. Sano,
“Neurotics Can’t Focus: An in situ Study of Online Multitasking in
the Workplace,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2016, pp. 1739–1744.

[31] I. A. Khan, W.-P. Brinkman, and R. M. Hierons, “Do moods affect
programmers’ debug performance?” Cognition, Technology & Work,
vol. 13, no. 4, pp. 245–258, 2010.

[32] C. D. Fisher, “Mood and emotions while working: missing pieces
of job satisfaction?” Journal of Organizational Behavior, vol. 21, no. 2,
pp. 185–202, 2000.

[33] B. L. Fredrickson, M. A. Cohn, K. A. Coffey, J. Pek, and S. M.
Finkel, “Open hearts build lives: positive emotions, induced
through loving-kindness meditation, build consequential personal
resources.” Journal of personality and social psychology, vol. 95, no. 5,
p. 1045, 2008.

[34] E. Ouweneel, P. M. Le Blanc, W. B. Schaufeli, and C. I. van Wijhe,
“Good morning, good day: A diary study on positive emotions,
hope, and work engagement,” Human Relations, vol. 65, no. 9, pp.
1129–1154, 2012.

[35] B. E. Kahn and A. M. Isen, “The influence of positive affect
on variety seeking among safe, enjoyable products,” Journal of
Consumer Research, vol. 20, no. 2, pp. 257–270, 1993.

[36] B. L. Fredrickson, “What good are positive emotions?” Review of
general psychology, vol. 2, no. 3, p. 300, 1998.

[37] G. Mark, S. T. Iqbal, M. Czerwinski, and P. Johns, “Bored mondays
and focused afternoons: The rhythm of attention and online
activity in the workplace,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2014, pp. 3025–
3034.

[38] S. Melamed, I. Ben-Avi, J. Luz, and M. S. Green, “Objective and
subjective work monotony: Effects on job satisfaction, psycholog-
ical distress, and absenteeism in blue-collar workers.” Journal of
Applied Psychology, vol. 80, no. 1, p. 29, 1995.

[39] R. Tourangeau, L. J. Rips, and K. Rasinski, The psychology of survey
response. Cambridge University Press, 2000.

[40] N. M. Bradburn, “Recall period in consumer expenditure surveys
program,” 2010.

[41] R. L. Hudson and J. L. Davis, “The effects of intralist cues, extralist
cues, and category names on categorized recall,” Psychonomic
Science, vol. 29, no. 2, pp. 71–75, 1972.

[42] F. S. Bellezza and T. C. Hartwell, “Cuing subjective units,” The
Journal of Psychology, vol. 107, no. 2, pp. 209–218, 1981.

[43] E. Tulving and Z. Pearlstone, “Availability versus accessibility of
information in memory for words,” Journal of Verbal Learning and
Verbal Behavior, vol. 5, no. 4, pp. 381–391, 1966.

[44] N. Schwarz and D. Oyserman, “Asking Questions About Behavior:
Cognition, Communication, and Questionnaire Construction,”
American Journal of Evaluation, vol. 22, no. 2, pp. 127–160, 2001.

[45] E. Babbie, The practice of social research. Nelson Education, 2015.
[46] G. Guest, A. Bunce, and L. Johnson, “How many interviews are

enough? an experiment with data saturation and variability,” Field
methods, vol. 18, no. 1, pp. 59–82, 2006.

[47] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[48] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,”
in Guide to advanced empirical software engineering. Springer, 2008,
pp. 63–92.

[49] W. W. Daniel and C. L. Cross, Biostatistics: a foundation for analysis
in the health sciences. Wiley, 2018.

[50] T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting
on-line surveys in software engineering,” in Empirical Software

Engineering, 2003. ISESE 2003. Proceedings. 2003 International
Symposium on. IEEE, 2003, pp. 80–88.

[51] L. L. Stinson, “Measuring how people spend their time: a time-use
survey design,” Monthly Lab. Rev., vol. 122, p. 12, 1999.

[52] G. Menon, “Judgments of behavioral frequencies: Memory search
and retrieval strategies,” in Autobiographical Memory and the
Validity of Retrospective Reports, N. Schwarz and S. Sudman, Eds.
Springer, 1994, pp. 161–172.

[53] E. Blair and S. Burton, “Cognitive processes used by survey
respondents to answer behavioral frequency questions,” Journal of
consumer research, vol. 14, no. 2, pp. 280–288, 1987.

[54] N. M. Bradburn, L. J. Rips, and S. K. Shevell, “Answering
autobiographical questions: The impact of memory and inference
on surveys,” Science, vol. 236, no. 4798, pp. 157–161, 1987.

[55] S. Sudman and N. M. Bradburn, “Effects of time and memory
factors on response in surveys,” Journal of the American Statistical
Association, vol. 68, no. 344, pp. 805–815, 1973.

[56] J. Neter and J. Waksberg, “A study of response errors in expen-
ditures data from household interviews,” Journal of the American
Statistical Association, vol. 59, no. 305, pp. 18–55, 1964.

[57] R. A. LeBoeuf and E. Shafir, “Anchoring on the” here” and” now”
in time and distance judgments.” Journal of Experimental Psychology:
Learning, Memory, and Cognition, vol. 35, no. 1, p. 81, 2009.

[58] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Sage Publishing,
1998.

[59] K. Charmaz, Constructing grounded theory. Sage, 2014.
[60] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in

software engineering research,” Proceedings of the 38th International
Conference on Software Engineering - ICSE ’16, no. Aug 2015, pp.
120–131, 2016.

[61] V. M. González and G. Mark, “Constant, constant, multi-tasking
craziness: Managing multiple working spheres,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’04. ACM, 2004, pp. 113–120.

[62] T. Althoff, E. Horvitz, R. W. White, and J. Zeitzer, “Harnessing
the web for population-scale physiological sensing: A case study
of sleep and performance,” in Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 113–122.

[63] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers
feel emotions? an exploratory analysis of emotions in software
artifacts,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. ACM, 2014, pp. 262–271.

[64] M. Claes, M. V. Mäntylä, M. Kuutila, and B. Adams, “Do program-
mers work at night or during the weekend?” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 705–715.

[65] Y. Lott and H. Chung, “Gender discrepancies in the outcomes
of schedule control on overtime hours and income in germany,”
European Sociological Review, vol. 32, no. 6, pp. 752–765, 2016.

[66] I. Kandolin, M. Härmä, and M. Toivanen, “Flexible working hours
and well-being in finnland,” Journal of Human Ergology, vol. 30, no.
1-2, pp. 35–40, 2001.

[67] L. Kaufman and P. Rousseeuw, Clustering by means of medoids.
North-Holland, 1987.

[68] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: a practical and powerful approach to multiple testing,”
Journal of the royal statistical society. Series B (Methodological), pp.
289–300, 1995.

[69] R. Van Solingen, E. Berghout, and F. Van Latum, “Interrupts: just
a minute never is,” IEEE software, no. 5, pp. 97–103, 1998.

[70] T. J. Van Der Voordt, “Productivity and employee satisfaction in
flexible workplaces,” Journal of Corporate Real Estate, vol. 6, no. 2,
pp. 133–148, 2004.

[71] J. Ruostela, A. Lönnqvist, M. Palvalin, M. Vuolle, M. Patjas,
and A.-L. Raij, “‘new ways of working’ as a tool for improving
the performance of a knowledge-intensive company,” Knowledge
Management Research & Practice, vol. 13, no. 4, pp. 382–390, 2015.

[72] M. Rožman, S. Treven, and V. Čančer, “Motivation and satisfaction
of employees in the workplace,” Business Systems Research Journal,
vol. 8, 09 2017.

[73] P. G. Lange, “Interruptions and intertasking in distributed knowl-
edge work,” NAPA Bulletin, vol. 30, no. 1, pp. 128–147, 2008.

[74] B. Donohue, “Three-day no-meeting schedule for
engineers,” https://medium.com/@Pinterest Engineering/
three-day-no-meeting-schedule-for-engineers-fca9f857a567, 2019.

[75] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative
approach to identifying expertise,” in Proceedings of the 24th

https://medium.com/@Pinterest_Engineering/three-day-no-meeting-schedule-for-engineers-fca9f857a567
https://medium.com/@Pinterest_Engineering/three-day-no-meeting-schedule-for-engineers-fca9f857a567


PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

International Conference on Software Engineering. ICSE 2002, 2002,
pp. 503–512.

[76] K. Balog, L. Azzopardi, and M. de Rijke, “Formal models
for expert finding in enterprise corpora,” in Proceedings of the
29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’06. ACM, 2006,
pp. 43–50.

[77] T. Fritz and G. C. Murphy, “Using information fragments to
answer the questions developers ask,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, vol. 1. ACM Press, 2010, p. 175.

[78] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation
systems for software engineering,” IEEE Software, vol. 27, no. 4,
pp. 80–86, 2010.

[79] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“Fastdash: A visual dashboard for fostering awareness in software
teams,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’07. ACM, 2007, pp. 1313–1322.

[80] A. Sarma, Z. Noroozi, and A. Van Der Hoek, “Palantı́r: raising
awareness among configuration management workspaces,” in
Software Engineering, 2003. Proceedings. 25th International Conference
on. IEEE, 2003, pp. 444–454.

[81] M. R. Jakobsen, R. Fernandez, M. Czerwinski, K. Inkpen, O. Kulyk,
and G. G. Robertson, “Wipdash: Work item and people dashboard
for software development teams,” in IFIP Conference on Human-
Computer Interaction. Springer, 2009, pp. 791–804.

[82] G. Mark, S. T. Iqbal, M. Czerwinski, P. Johns, and A. Sano, “Email
Duration, Batching and Self-interruption: Patterns of Email Use on
Productivity and Stress,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16), vol. 21, no. 1,
2016, pp. 98–109.

[83] M. Sappelli, G. Pasi, S. Verberne, M. De Boer, and W. Kraaij,
“Assessing e-mail intent and tasks in e-mail messages,” Information
Sciences, vol. 358-359, pp. 1–17, 2016.

[84] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan,
A. Peters, and W. Jernigan, “Gendermag: A method for evaluat-
ing software’s gender inclusiveness,” Interacting with Computers,
vol. 28, no. 6, pp. 760–787, 2016.

[85] A. N. Meyer, T. Zimmermann, and T. Fritz, “Characterizing
Software Developers by Perceptions of Productivity,” in Empirical
Software Engineering and Measurement (ESEM), 2017 International
Symposium on, 2017.

[86] C. J. Soto and O. P. John, “The next big five inventory (bfi-2):
Developing and assessing a hierarchical model with 15 facets to
enhance bandwidth, fidelity, and predictive power.” Journal of
Personality and Social Psychology, vol. 113, no. 1, pp. 117–143, 2017.

[87] S. P. Whiteside and D. R. Lynam, “The five factor model and
impulsivity: Using a structural model of personality to understand
impulsivity,” Personality and Individual Differences, vol. 30, no. 4,
pp. 669–689, 2001.

[88] R. Agarwal and E. Karahanna, “Time Flies When You’re Hav-
ing Fun: Cognitive Absorption and Beliefs about Information
Technology Usage,” MIS Quarterly, vol. 24, no. 4, pp. 665–694,
2000.

[89] C. Barker, Cultural studies: Theory and practice. Sage, 2003.
[90] N. G. Dodd and D. C. Ganster, “The interactive effects of variety,

autonomy, and feedback on attitudes and performance,” Journal
of Organizational Behavior, vol. 17, no. 4, pp. 329–347, 1996.

[91] M. Tims, A. B. Bakker, and D. Derks, “Development and validation
of the job crafting scale,” Journal of Vocational Behavior, vol. 80, no. 1,
pp. 173 – 186, 2012.

[92] P. Petrou, E. Demerouti, M. C. Peeters, W. B. Schaufeli, and
J. Hetland, “Crafting a job on a daily basis: Contextual correlates
and the link to work engagement,” Journal of Organizational
Behavior, vol. 33, no. 8, pp. 1120–1141, 2012.

[93] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz, D. Shepherd,
V. Augustine, P. Francis, N. Kraft, and W. Snipes, “Reducing
Interruptions at Work: A Large-Scale Field Study of FlowLight,”
in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17), 2017, pp. 61–72.

[94] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M.
German, “How social and communication channels shape and
challenge a participatory culture in software development,” IEEE
Transactions on Software Engineering, vol. 43, no. 2, pp. 185–204,
2017.

[95] G. Mark, M. Czerwinski, and S. T. Iqbal, “Effects of Individual
Differences in Blocking Workplace Distractions,” in CHI ’18.
ACM, 2018.

[96] F. Origo and L. Pagani, “Workplace flexibility and job satisfaction:
Some evidence from europe,” International Journal of Manpower,
vol. 29, pp. 539–566, 09 2008.

[97] S. Whittaker and H. Schwarz, “Meetings of the board: The
impact of scheduling medium on long term group coordination
in software development,” Computer Supported Cooperative Work
(CSCW), vol. 8, no. 3, pp. 175–205, 1999.

[98] J. C. Tang, C. Zhao, X. Cao, and K. Inkpen, “Your time zone
or mine?: a study of globally time zone-shifted collaboration,”
in Proceedings of the ACM 2011 conference on Computer supported
cooperative work. ACM, 2011, pp. 235–244.

[99] M. A. Babar, B. Kitchenham, and R. Jeffery, “Comparing dis-
tributed and face-to-face meetings for software architecture eval-
uation: A controlled experiment,” Empirical Software Engineering,
vol. 13, no. 1, pp. 39–62, 2008.

[100] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, “Distributed
scrum: Agile project management with outsourced development
teams,” in System Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on. IEEE, 2007, pp. 274a–274a.

[101] L. Goler, J. Gale, and A. Grant, “Let’s not kill
performance evaluations yet,” https://hbr.org/2016/11/
lets-not-kill-performance-evaluations-yet, 2019.

[102] B. K. B. Joo and S. Park, “Career satisfaction, organizational com-
mitment, and turnover intention: The effects of goal orientation,
organizational learning culture and developmental feedback,”
Leadership & Organization Development Journal, vol. 31, no. 6, pp.
482–500, 2010.

[103] G. H. Hofstede, G. Hofstede, and W. A. Arrindell, Masculinity
and femininity: The taboo dimension of national cultures. Sage, 1998,
vol. 3.

[104] B. Flyvbjerg, “Five misunderstandings about case-study research,”
Qualitative inquiry, vol. 12, no. 2, pp. 219–245, 2006.

[105] S. G Rogelberg, J. Conway, M. E Sederburg, C. Spitzmuller, S. Aziz,
and W. E Knight, “Profiling active and passive nonrespondents to
an organizational survey,” The Journal of applied psychology, vol. 88,
pp. 1104–14, 01 2004.

[106] T. L. Tuten and M. Bosnjak, “Understanding differences in web
usage: The role of need for cognition and the five factor model of
personality,” Social Behavior and Personality: an international journal,
vol. 29, no. 4, pp. 391–398, 2001.

[107] B. Marcus and A. Schütz, “Who are the people reluctant to
participate in research? personality correlates of four different
types of nonresponse as inferred from self- and observer ratings,”
Journal of Personality, vol. 73, no. 4, pp. 959–984, 2005.

[108] C. Steele and J. Aronson, “Stereotype threat and the intellectual
test-performance of african-americans,” Journal of personality and
social psychology, vol. 69, pp. 797–811, 12 1995.

[109] L. J. Stricker and W. C. Ward, “Stereotype threat, inquiring
about test takers’ ethnicity and gender, and standardized test
performance1,” Journal of Applied Social Psychology, vol. 34, no. 4,
pp. 665–693, 2004.

[110] K. Danaher and C. S. Crandall, “Stereotype threat in applied
settings re-examined,” Journal of Applied Social Psychology, vol. 38,
no. 6, pp. 1639–1655, 2008.

[111] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,”
in Guide to advanced empirical software engineering. Springer, 2008,
pp. 63–92.

André N. Meyer is a Ph.D student in Computer
Science at the University of Zurich, Switzerland,
supervised by Prof. Thomas Fritz. His research
interests lie in developers’ productivity and work,
and in creating tools that foster productive work
by using persuasive technologies such as self-
monitoring and goal-setting. He also works in the
information technology industry as an applica-
tion developer and consultant. His homepage is
http://www.andre-meyer.ch.

https://hbr.org/2016/11/lets-not-kill-performance-evaluations-yet
https://hbr.org/2016/11/lets-not-kill-performance-evaluations-yet


PRE-PRINT
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Earl T. Barr Earl Barr is a senior lecturer (asso-
ciate professor) at the University College London.
He received his Ph.D. at UC Davis in 2009.
Earl’s research interests include bimodal software
engineering, testing and analysis, and computer
security. His recent work focuses on automated
software transplantation, applying game theory to
software process, and using machine learning to
solve programming problems. Earl dodges vans
and taxis on his bike commute in London.

Christian Bird Christian Bird is a researcher
in the Empirical Software Engineering group at
Microsoft Research. He focuses on using qualita-
tive and quantitative methods to both understand
and help software teams. Christian received his
Bachelor’s degree from Brigham Young University
and his Ph.D. from the University of California,
Davis. He lives in Redmond, Washington with his
wife and three (very active) children.

Thomas Zimmermann is a Senior Researcher
at Microsoft Research. He received his Ph.D.
degree from Saarland University in Germany.
His research interests include software pro-
ductivity, software analytics, and recommender
systems. He is a member of the IEEE Com-
puter Society. His homepage is http://thomas-
zimmermann.com.


	Introduction
	Research Questions
	Related Work
	Developer Workdays
	Factors that Impact Workdays

	Study Design
	Survey Development Using Preliminary Interviews
	Final Survey Design and Participants
	The Validity of Self-Reported Data

	Conceptual Frameworks
	Developers' Good Workdays
	Data Analysis
	Conceptual Framework

	Developers' Typical Workdays
	Data Analysis
	Conceptual Framework

	Interrelationship Between Good and Typical Days

	Quantitative Analysis
	Correlation Between Typical and Good Workdays
	Time Spent on Activities at Work
	Workday Types
	Collaboration

	Making Good Days Typical
	Optimizing Developer Workdays
	Agency: Manage Competition for Attention & Time
	Evaluation of Contributions at Work

	Threats to Validity
	External Validity
	Construct Validity
	Internal Validity

	Conclusion
	Acknowledgements
	References
	Biographies
	André N. Meyer
	Earl T. Barr
	Christian Bird
	Thomas Zimmermann


