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Abstract– With the rapidly growing volume of data, it
is more attractive than ever to leverage approximations to
answer analytic queries. Sampling is a powerful technique
which has been studied extensively from the point of view
of facilitating approximation. Yet, there has been no large-
scale study of effectiveness of sampling techniques in big
data systems. In this paper, we describe an in-depth study of
the sampling-based approximation techniques that we have
deployed in Microsoft’s big data clusters. We explain the
choices we made to implement approximation, identify the
usage cases, and study detailed data that sheds insight on
the usefulness of doing sampling based approximation.

1. INTRODUCTION
Executing complex data analytics queries on ever increas-

ing datasets costs time and money. For example, breaking
down the latency of Bing searches into amounts that are in-
curred at each of the components involved in answering the
search by joining logs collected at various servers and then
grouping the results on query features, today, requires many
thousands of compute hours for an hour’s worth of searches
at Bing.

Approximate query execution, e.g., running the query on
a sample of the input, can lower the latency and cost of run-
ning complex queries on large datasets. This point is not
lost on the application developers who routinely use approx-
imations ranging from algorithmic techniques to hardware
primitives to execute their query on a smaller instance of the
data. However, despite substantial research [15, 23, 30, 33,
34, 38, 39] going beyond application-level approximations to
supporting approximation as a built-in functionality in data
platforms has proven elusive.

We believe that this is because currently known tech-
niques do not satisfy the following prerequisite: for a large
subset of the queries on a data platform, the approximation
technique should offer sizable savings (cost or latency) with
only a small effect on the answer quality and the technique
should have a user-understandable error model and a small
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Figure 1: Workflow for Query-time Sampling

overhead. See [20] for a detailed reasoning on why currently
known techniques fall short in achieving this prerequisite.
Techniques that use previously computed samples of the in-
put [15, 17, 21, 39] cannot handle complex queries satis-
factorily and have sizable space overheads to store different
kinds of samples [33]. Online aggregation techniques [29,
30, 31] require input to be ordered randomly and require
complex changes to relational operators (e.g., for join, need
ripple join [29] or SMS join [31]).

We have implemented support for query time sampling (see
Figure 1) in production big-data clusters at Microsoft [19];
these clusters consist of tens of thousands of multi-core,
multi-disk servers and are used by developers from many
different businesses including Bing, Azure and Windows. In
total, the clusters store a few exabytes of data and are pri-
marily responsible for all of the batch analytics at Microsoft.
We also have a simplified version available publicly as part
of the Azure Data Lake Analytics [7, 8].

In the query time sampling paradigm, the platform cedes
control of accuracy to the application developer; i.e., we ex-
tend our query languages with sampling operators and the
user expresses query-specific accuracy needs by using appro-
priate samplers in the query expression. Sampling operators
have been discussed for a few decades now [38]; however,
most prior works focus exclusively on uniform samples [18,
26, 25, 27]. In contrast, we find that large query cover-
age requires new sampler operators that can be used below
group-by and join; the uniform sampler is not suitable for
such use because it can miss small groups when used below
group-by and when used on multiple join inputs either re-
duces data reduction or leads to high error. In addition to
the uniform sampler, we support two new sampling opera-
tors, distinct and universe, which can respectively be used
before a group-by and a join [33].

Using these sample operators, queries will see a sizable im-
provement in cost and latency only if substantial work exe-
cutes in the query plan after the samplers; that is, samplers
execute early in the query plan and subsequent operators



SELECT n name,

SUM(l extendedprice*(1-l discount)), COUNT(*)

FROM lineitem
JOIN orders ON l orderkey = o orderkey
JOIN supplier ON l suppkey = s suppkey
JOIN nation ON s nationkey = n nationkey
JOIN region ON n regionkey = r regionkey

WHERE r name=‘:1’ ∧ o orderdate ∈ [‘ : 2′, ‘ : 3′)
GROUP BY n name

(a) Original query

SELECT n name,

SUM(l extendedprice*(1-l discount)*w), SUM(w)
FROM SAMPLE (

SELECT * FROM lineitem
JOIN orders ON l orderkey = o orderkey
JOIN supplier ON l suppkey = s suppkey
JOIN nation ON s nationkey = n nationkey
JOIN region ON n regionkey = r regionkey

WHERE r name=‘:1’ ∧ o orderdate ∈ [‘ : 2′, ‘ : 3′)
) UNIFORM (0.05) WITH WEIGHT AS w
GROUP BY n name

(b) Sampled query
Figure 2: Illustrating the use of samplers for TPC-H query #5; here, the user expresses the intent to compute the group-by
and aggregation over a 5% uniform sample of the joined relation. Our QO pushes sampler down automatically w/o changing
accuracy; see Figure 3.

benefit from working on smaller sampled relations. Hence,
query optimizer transformations which push samplers down
without affecting plan accuracy can improve performance.
Consider the example in Figure 2 which is query #5 from
the TPC-H workload. The actual query is on the left, the
user-specified query is on the right and, the plan executed
after QO transformations is shown in Figure 3; here, the
user indicates that a 5% uniform sampler suffices and the
QO has pushed that sampler past the various key foreign-
key joins onto the lineitem fact table. Doing so speeds-up
the query because the joins execute with a smaller input
while the accuracy remains as requested by the user1.

Figure 3: Plan after sampler pushdown

In this paper, we analyze many tens of thousands of pro-
duction queries that use approximations and describe our
experiences engaging with application developers. We mea-
sure the prevalence of usage of samplers, comment on the
use-cases, breakdown the usage by sampler type and choice
of sampling parameters. We also report micro-benchmarks
on the sampler operators (throughput, memory usage); the
usefulness of the query optimization (how much do sam-
plers get pushed down?); as well as macro results of the
value from using query-time sampling; that is, the cost, la-
tency and output accuracy of sampled plans compared to
the corresponding unsampled query plan. To the best of
our knowledge, this is the first study to present a large-scale

1The query on the right also shows how user’s rewrite their
aggregates; the rewrites shown are unbiased estimators of
the true answer, that is, the expected error over many dif-
ferent query executions is zero. Confidence intervals (based
on variance estimators and the CLT [22]) can be computed
as additional aggregations [33].

and detailed analysis of production queries that use approx-
imations. Our key findings are:

• All three sampler operators are roughly equally used
pointing at the value of supporting all of them.

• Highly efficient sampler implementations with mini-
mal requirements (e.g., sublinear memory footprint,
one pass implementation with no requirements on in-
put partitioning or sorted-ness) is crucial; otherwise,
there would be sharp reduction in gains.

• The use-cases in production are substantially more
complex than the above example; large groups, highly
parallel plans and complex or user-defined aggregates,
selections, projections and joins are common. A siz-
able fraction of the datasets are unstructured lacking
schema information such as keys etc. QO pushdown
rules for samplers had to be carefully constructed to
work well on complex queries.

• In addition to using approximations to speed-up ag-
gregation queries, we see our sampler operators being
used in a few different ways: (1) to construct training
data for machine learning applications by slicing rela-
tions on some feature value (e.g., positive and negative
examples) and sampling each slice differently; not do-
ing so affects model quality because the model may
become blind to the less common cases; (2) explicit
sampling where the developer’s intent is not to gen-
erate an approximate version of the unsampled query
but rather intentionally chooses to run the query on a
sample and (3) output sampling, i.e., using the sample
operator as the “last operator” to produce a smaller
copy of some query output that can be investigated
more carefully by humans or consumed by other tools.
To our knowledge, these use-cases have not been re-
ported before. We have seen uniform, distinct and
universe samplers used in all of these use cases.

• Data scientists are comfortable reasoning about sam-
plers with minimal training; however, with a majority
of cluster users, we observe substantial cognitive over-
head in terms of choosing which sampler to use and
reasoning about confidence intervals. Both of these
issues hamper adoption.

• Another barrier to adoption is the lack of an accuracy
guarantee; even if the query does well during testing,



there is no guarantee that it will work well on unseen
data. This concern is less pronounced for recurring
jobs wherein the same query periodically executes on
newly arriving data which has been shown to have sim-
ilar data statistics as previously-seen data [14].

• Some users hesitate to use *any* approximation; even
though cost reduces and latency improves, they are
unwilling to accommodate even a hint of inaccuracy.
This is despite the fact that most log analytics are
implicitly sampled results because even a query that
processes all log entries only obtains a measurement
estimate of how the underlying system is behaving;
arguing in this way has helped in some cases.

• Sampling operators can be an extremely powerful tool
for experts; on TPC-H [11], we will show sizable re-
ductions in query cost and latency with only a small
change in answers (§4.1). Note that this result has
zero overhead; that is, no apriori samples [15, 39] or
indices [23, 34] need to be maintained, no other rela-
tional operators have to change [29, 31] and there is
no constraint on how input is partitioned or stored [29,
30, 31].

The primary contribution of this paper is our reported ex-
periences from production use of samplers in big-data clus-
ters at Microsoft. These clusters are used by thousands of
developers and we present results from over six months of
usage. Additional technical contributions include:

• Although the deployed samplers are like previously
published descriptions [33], there are some key differ-
ences and we highlight these in §2.1.

• The plan transformation rules which pushdown sam-
plers have been substantially simplified and extended
relative to prior work [33]; in large part, the simpli-
fication is possible because script owners specify the
sampler to use whereas in prior work, the QO had to
choose the most appropriate sampled plan [33]. We
discuss the deployed transformation rules in §2.2.

2. QUERY-TIME SAMPLING
As shown in Figure 1, the two main steps in query-time

sampling are (1) users add sample operators to their scripts
and (2) the query optimizer uses a collection of transforma-
tion rules to push down the samplers while ensuring that
accuracy remains the same. In this section, for each of these
steps, we discuss design details and measurements from the
use of samplers in production at Microsoft’s big-data clus-
ters. Note that the results here are from an analysis of
production logs over the period of July 2018 to Feb 2019.

2.1 Sampler operators
Our production system exposes three types of samplers.

Uniform (p) picks incoming rows uniformly at random with
the specified probability p. The size of the output is gov-
erned by a binomial distribution and the expected size is a
p fraction of the input. Our implementation of this sampler
has no appreciable memory footprint; it is zero-copy, and
does not access the row memory; all of these aspects lead
to a pipelinable operator with very high throughput.

Table 1: Breaking down sampler types and the prevalence
of weight column.

Types of samplers used
Uniform: 36.3%
Distinct: 23.5%
Universe: 40.2%

Weight column requested 4.31% of samplers

Table 2: The number of samplers used in each query.

Number of samplers per query
1 2 3 > 3

In query (logical) 67% 14% 19% 0.7%
In query plan (physical) 66% 14% 19% 1.7%

Universe (p, D) picks a p fraction of the values of the
columns in set D; all rows with such value are passed by this
sampler. This sampler is useful because it can be pushed
down to multiple inputs of a join; for example, joining the
universe samples of two relations is identical to taking the
same universe sample of the join result [33]. The universe
sampler also has no appreciable memory footprint but it
accesses row memory to retrieve the values of columns in
set D and computes strong hash functions over these values.
Hence, the throughput of the universe sampler is somewhat
less than that of the uniform sampler above.

Distinct (p, D, f) passes at least f rows per distinct
value of the columnset D and the other rows are passed
with at least p probability. The distinct sampler can be used
below a group-by by choosing D to be the group columns
because every unique value of D will be represented in the
sample unlike the case of a uniform sample which can miss
small groups. To distinguish between rows that are passed
for the frequency check and the probability check, this sam-
pler emits a weight column for each row which is either 1 or
1
p
. The distinct sampler has internal state; it uses a heavy

hitter sketch [35] to track the more frequent distinct values
of columnset D as described in [33]. The memory footprint
is at most logarithmic in the number of input rows (see [35]
for proof) but we observe that it is much smaller in prac-
tice. This sampler has smaller throughput than the two
samplers above.

2.1.1 Samplers in production clusters

Sampler usage by type: Table 1 breaks-down the us-
age of these three samplers over all the production jobs that
used any sampler during the examined period in all of our
big-data clusters. We see that all three samplers are used
roughly evenly. Note this finding contrasts with results on
the TPC-DS benchmark, presented in [33], where the uni-
form and distinct samplers were used more often.

Table 2 shows that roughly one third of the queries in the
examined cluster use multiple sampler operators; the largest
number of sampler operators observed in a query expression
(which we term logical operators) is 8. When the query op-
timizer pushes samplers below a join it can, in some cases,
push samplers to multiple join inputs. Hence, as shown
in Table 2, there can be more samplers in the plan output
by the QO than the samplers specified in the query expres-
sion; the largest number of such physical sampler operators
observed was 92.

Sampler throughput: Figure 4 shows a CDF of the
processing rate of all of the sample operators that executed
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Figure 4: Data processing rate of the sampler operators
(elapsed time attributed to sampler divided by the input
size). We show the processing rate of filters for comparison.
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Figure 5: Memory used by sampler operators.

during the examined period in our clusters. The processing
rate metric is computed by dividing the input size processed
by an operator with the time attributed to that operator.
The servers are Xeon class with 32 cores, 128GB RAM, mul-
tiple SSD drives, 10Gbps network interfaces and the inter-
connect has nearly the full bisection bandwidth [28]. In the
SCOPE execution runtime, each task has an internal graph
of operators and task execution proceeds by the output op-
erator(s) pulling rows from their upstream operators until
all of the tasks’ input data has been processed. Operators
can maintain local state and rows are passed between opera-
tors as memory pointers. We see that the median processing
rate for samplers is over 1000MBps; over 95% of the sam-
plers process input at over 100MBps; most of the operators
having low processing rate process very little data and their
processing rate is low because of constant overheads. The
uniform and universe sampler operators as noted above have
higher processing rates than the distinct sampler. The figure
also shows a CDF of the processing rate for filter (predicate)
operators with a thin blue line; filters are one of the most
efficient operators in a relational platform because they re-
quire no local state and can be implemented with zero copy.
From the figure, we see that overall the sampler operators
have a processing rate similar to that of the filter operators.
We describe some of the optimizations that were necessary
to yield such highly performant samplers shortly.

Sampler’s memory footprint: Figure 5 depicts the
memory used by the samplers; our operator runtime tracks
memory used by each operator. The figure plots the max-
imum memory sized used during the operator’s lifetime.
Note that the x axes is in log scale. The figure shows that

a significant majority of the samplers have no appreciable
memory footprint; the others, which are all distinct sam-
plers, use about 10MB. This substantiates our earlier asser-
tion that the memory footprint of the hashed heavy hitter
sketch is small in practice.

Performant operator implementations: Implement-
ing uniform and universe samplers in a highly performant
manner is relatively straightforward. We take care to not
access the row in memory (in the case of the uniform sam-
pler) and to only access the necessary columns (for the uni-
verse sampler). To generate “high quality” random numbers
quickly we use the std :: mersenne twister engine which
has been shown to outperform other widely available ran-
dom number generators (RNGs) [4]; “better” RNGs use
processor-specific instructions and do not easily generalize
across architectures [4].

The distinct sampler has a more complex implementation.
One key requirement is to track groups 2 that have large
numbers of rows; recall that the distinct sampler will out-
put at least a specified number of rows for each group and
so only groups having more rows than the specified number
will be randomly sampled. As noted above, our implementa-
tion only tracks groups that are heavy hitters to reduce the
memory footprint; however, note that doing so will cut into
sampling gains because groups that have more rows than the
specified number but are not heavy hitters will needlessly
have more rows pass through this implementation. Figure 6
plots the gap between the sampler’s specified probability and
the actual operator selectivity; note that the gap is small in
general 3. A second challenge is that the heavy hitter sketch
that we use [35] makes frequent insertions and deletions into
a dictionary; a naive implementation, e.g., using std :: map
can fragment memory leading to a much larger footprint
than the actual number of stored elements and so we built a
customized dictionary that works over a memory pool that
we manage. A third challenge is from supporting parallel
executions of the distinct sampler. Note that the uniform
and universe samplers are trivially parallelizable but not the
distinct sampler. Consider the case of a group with 10f rows
that is processed by 11 tasks in parallel with each task hav-
ing a distinct sampler with a frequency cut-off of f ; if the
group’s rows are uniformly distributed across the samplers
all 10f rows will pass because no individual sampler sees
more than f rows. Avoiding this requires the input of the
distinct sampler to be partitioned on the distinct columnset
which may require a network shuffle; shuffles are expensive
in parallel processing because they lead to a scheduling bar-
rier and/or writes to stores and data movement across the
network. Our implementation does not introduce this shuffle
to retain high performance but, as we already saw in Fig-
ure 6, the cost of doing so in terms of passing more rows
than needed is small in our experience. We will note an
exception in a case study, later, in §4.2.3.

Characterizing sampler parameters: Figure 6 shows,
as a CDF over all samplers, the sampling probability param-
eter that the authors specify as input as well as the actual
selectivity achieved by the operator. Note that the x-axes is
in log scale. About 30% of the samplers pick less than 0.001

2We colloquially use group to refer to the set of rows that
have the same value in the columnset of the distinct sampler.
3Even a perfectly implemented distinct sampler will have a
non-zero gap because it passes all rows for small groups.
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Figure 6: Desired sample probability vs. actual selectivity.
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Figure 7: Number of columns in the input columnset for
the distinct sampler (“Strat. Cols”) and the universe sam-
pler (“Univ. Cols”). The figure also shows the size of the
input and output relations of sampler operators.

or 10−3 fraction of the input; these are commonly jobs with
very large inputs. Many samplers also pick 10% (or 10−1

fraction) of the input; this was the recommended setting in
our manual; we based this recommendation on the largest
probability parameter that can achieve a sizable speed-up
for jobs. Fewer than 10% of the samplers use a probability
assignment above 0.25. The figure also shows that the actual
selectivity observed is, in some cases, larger than the desired
probability value; this is almost entirely because of the dis-
tinct samplers for reasons noted in the preceding paragraph.

Figure 7 shows the set sizes of various relevant column
sets. We see that 80% of the universe sampler instances are
over a single column; the largest is 8 different columns. Typ-
ically, the universe columns are the columns used in an equi-
join condition because when a universe sampler is pushed to
multiple inputs of join, the universe columnset has to match
the columns in the corresponding equijoin condition.

Figure 7 also shows that 90% of the input columnsets for
the distinct sampler have between 1 and 6 columns (the
“Strat. Cols” line); 1 column is most likely and we see a
roughly uniform distribution between 2 to 6 columns. When
printing plans, our implementation truncates column-sets
that are larger than 10 columns; roughly 10% of the distinct
samplers stratify on more than 10 columns. The large size
is because stratifying on the more distinctive columns in
groups as well as columns that appear in highly selective
predicates is necessary to be able to push distinct sampler
below group-by and selections respectively. The large size

of the stratification column set and the number of different
column sets that are used (not shown in this figure) indicate
that apriori generation of stratified samples [15, 21] may be
less useful; such methods maintain many different stratified
samples, one per stratification column set, and can consume
a lot of space. Moreover, these samples have to be refreshed
as datasets evolve; query-time sampling does not have such
maintenance overheads.

Finally, Figure 7 shows the sizes of the input and output
relations of the samplers; roughly 60% of the samplers apply
on relations having over 10 columns (recall our plan print
logic only prints the first 10 columns). The figure shows
that output relations are roughly as large as the input rela-
tions likely because the cases when samplers add the weight
column (output relation is larger) are offset by cases where
samplers fuse with projections and drop redundant columns.

Deterministic re-execution: Distributed job schedulers
can execute a task multiple times during failure scenarios.
It is preferable that a task yields the same output when pre-
sented with the same input rowset. We achieve this by seed-
ing the samplers in each task; the seeds are code-generated
by the QO at plan compilation. Seeding also ensures that
re-running a job can produce the same output. Using a
different seed, as expected, will randomize the output4.

Hash collisions affect the distinct sampler in a specific
manner which is worth noting. The heavy hitter sketch [35]
used by the distinct sampler only records hash values of the
stratification columnset and so hash collisions can lead to
some groups receiving fewer rows from the sampler than the
desired number of rows. We make the practical likelihood of
this case small by using “high quality” hash functions and
64 bit hash values [16, 40]. The likelihood of delivering fewer
than the desired minimum number of rows or of missing a
group entirely depends on the number of groups, the num-
ber of heavy hitters and the number of rows contained in
a group; only tracking the frequency of a small number of
heavy hitters as we do by using a heavy hitter sketch reduces
the likelihood of hash collisions.

2.1.2 Language extension for samplers
We extend the SCOPE language [19] which mashes re-

lational and imperative aspects; a query in SCOPE is an
imperative list of named SQL-like statements. Users can
specify samplers in their query by either adding a new sam-
ple statement (as shown in Figure 2b) or adding a sample
clause to an existing SQL select statement. While samplers-
as-a-clause is easier to insert into a script, clauses have some
specific constraints including their inability to change the
output schema which is needed when the sampler outputs a
weight column. Recall that select statements have multiple
clauses such as HAVING, WHERE, GROUP BY etc.; the prece-
dence order among these clauses is such that the sample
clause executes after the WHERE clause and before the GROUP

BY clause [5]. The syntax for the clause is:

Sample Clause :=
Query Expression SAMPLE UNIFORM ( row fraction ).

An example usage of sample-clause is:

4Note that with some job schedulers the input of a task can
change between its original execution and re-execution (e.g.,
with work-stealing schedulers [36]); in such cases seeding is
not sufficient to ensure deterministic output from samplers
and a more nuanced implementation is needed.
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Figure 8: Locations of the samplers in the plan as well as
in the task execution graph.

SELECT * FROM input SAMPLE UNIFORM (0.1)

A sample statement takes as input a table valued func-
tion (TVF) and returns a TVF. The syntax is:

Sample Statement :=
SAMPLE Rowset Sampler Details [WITH WEIGHT AS Ident]

Sampler Details :=
UNIFORM ( row fraction ) |
ON Ident List UNIVERSE ( row fract ) |
ON Ident List DISTINCT ( row fract , min row cnt )

Some examples follow:

SAMPLE @input UNIFORM (0.1)

SAMPLE @input ON c1, c2 DISTINCT (0.1, 3) WITH WEIGHT
AS w

SAMPLE @input ON y UNIVERSE (0.1)

2.2 Sampler pushdown rules
We use plan transformation rules to push samplers down

without affecting accuracy. In general, doing so improves
plan performance because more relational operators execute
on the reduced size relations obtained after sampling. We
use a strict notion of preserving accuracy: two query ex-
pressions are said to be equivalent if every subset of rows in
the output relation has the same probability of occurring in
either expression. We use this property because when such
accuracy-preserving plan transformation rules are applied,
the unbiased estimators of downstream aggregates and the
estimators of aggregate variance (for confidence intervals)
remain unmodified. Furthermore, we eschew using some of
the transformation rules proposed by prior work [32, 33]
which preserve accuracy only when the underlying relations
have certain data statistics; e.g., all groups have a suffi-
ciently large number of rows. We do not use these rules
in production because due to the complexity of queries and
the sheer volume of datasets, the cluster does not have meta-
data information required to verify that these data statistics
hold. Consequently, the transformation rules that we use are
independent of data statistics.

We describe the effects of sampler pushdown rules on the
plans of production queries before discussing more details of
the rules that we have implemented.

Characterizing value of sampler pushdown: Fig-
ure 8 shows the CDFs of four different heights of all the
observed sampler operators. Starting from the bottom right,
the plan after QO and plan from query curves correspond to
the heights of the sampler operator in the query optimizer’s

output plan and the literal plan from the query respectively.
Operators in the actual execution graph do not have a one-
to-one match with operators in the plan because multiple
plan ops can be fused into the same runtime op and con-
versely, due to parallel execution, shuffles, sorts or partitions
may have to be added [19]. Hence, the eg op curve denotes
the height of the samplers in the operator graph. Finally,
the eg tsk curve shows the height of the task, in the exe-
cution graph, that the sampler belongs to; recall that each
task executes an internal operator graph. Our height metric
is 1 for the leaves, e.g., the operator that reads input or the
task that reads input, and increases by 1 per operator or
task as the case may be.

We note several points from the results in Figure 8. First,
the height of samplers in the plan output by the query op-
timizer (plan after QO curve) is smaller than the samplers
height in the plan specified by the user (plan from query
curve). This directly corresponds to samplers being pushed
down. We see that the gap ranges from 1 to well over 10;
note that the x axes is in log scale. Next, from the eg tsk
curve, we see that 90% of the samplers execute in the first
pass on data (task height = 1); over 98% of samplers exe-
cute in the first three passes of data (task height ≤ 3); the
latest sampler executed in the 11’th pass on data. Third, we
see that the plans are complex; the operator height of the
sampler in the actual execution graph (eg op curve) is often
much larger than its task height (eg tsk curve); this is be-
cause tasks execute multiple operators. In summary, we see
evidence that plan transformation rules are effective, lead-
ing to smaller heights for samplers in the output plans. We
also see that most samplers (but not all) execute in the first
few passes over data potentially speeding-up all operators
that execute in subsequent tasks.

We next describe the sampler pushdown rules that we
have implemented.

Sampler below projection: Consider a relation R and a
projection π which renames the columns in set Ca with the
corresponding columns in set Cb and generates a new col-
umn c using as input columns in the set Cc. Note this im-
plies that c is functionally dependent on Cc, i.e., Cc ` c. Ex-
tending to cases with multiple functions is straightforward.
Rules U1, V1 and D1 in Table 3 show the transformation
rules that push samplers below such a projection and the
conditions required to apply these rules. These transforma-
tions encode the previously specified equivalence; that is,
the likelihood of any set of rows appearing in either expres-
sions is identical. In V1 and D1, the universe and stratifi-
cation columns are renamed; moreover the rules apply only
if the newly generated column c is not used by the sam-
pler (e.g., in V1 and D1) or if c is functionally dependent
on columns that are already present in the stratification
set (e.g., in rule D1).

Sampler below selection: Consider a relation R and let
σC denote a selection over columns in set C. Rules U2,
V2 and D2 in Table 3 show transformation rules that push
samplers below selection. These rules also encode equiva-
lence. Rule D2 relies on functional dependence between the
stratification columns and the predicate columns. For com-
plex predicates these rules can be applied to each clause in
a CNF of the actual predicate; we use standard QO trans-
formations to explore the space of predicate rewriting.



Table 3: Plan transformation rules. See §2.2. Here, ΓU
p ,Γ

V
p,D, and ΓD

p,D,f are a uniform, universe and distinct sampler
respectively with probability p, universe and stratification columns from set D and a frequency target of f . The notation
DCb→Ca denotes replacing columns in D that are in the set Cb with corresponding columns from the set Ca. For relation R, we
use Rc to denote the columns in R. When relations R and S are joined, we use DS→R to denote a set generated by replacing
the columns in set D that belong to Sc with equivalent columns in Rc as per the equijoin conditions, e.g., if D = {r1, s1, s2}
and the join condition is r3 = s1 where ri and si are from the relations R and S, then DS→R = {r1, r3, s2}.

Transformation Condition

Rule-U1 ΓU
p(π(R))

∗⇔ π(ΓU
p(R)) –

Rule-V1 ΓV
p,D(π(R))

∗⇔ π(ΓV
p,DCb→Ca

(R)) if c /∈ D
Rule-D1 ΓD

p,D,f (π(R))
∗⇔ π(ΓD

p,DCb→Ca ,f (R)) if c /∈ D or Cc ⊆ D
Rule-U2 ΓU

p(σC(R))
∗⇔ σC(Γ

U
p(R)) –

Rule-V2 ΓV
p,D(σC(R))

∗⇔ σC(Γ
V
p,D(R)) –

Rule-D2 ΓD
p,D,f (σC(R))

∗⇔ σC(Γ
D
p,D,f (R)) if C ⊆ D

Rule-U3 ΓU
p(R ./C S)

∗⇔ ΓU
p(R) ./C S if C is a primary-key in S

Rule-V3a ΓV
p,D(R ./C S)

∗⇔ ΓV
p,DS→R

(R) ./C S if DS→R ⊆ Rc and C is a primary-key in S

Rule-V3b ΓV
p,D(R ./C S)

∗⇔ ΓV
p,C(R) ./C ΓV

p,C(S) if C = D
Rule-D3 ΓD

p,D,f (R ./C S)
∗⇔ ΓD

p,DS→R,f (R) ./C S if C ⊆ DS→R ⊆ Rc and C is a primary-key in S.

Sampler below join: Given two relations R and S being
equijoined on columns C, rules U3, V3 and D3 in Table 3
show how samplers push below joins. As above, all specified
rules encode equivalence.

Since all of the sampler pushdown rules shown in Table 3
encode equivalence, the accuracy of aggregates computed
over these expressions is identical. Moreover, the expres-
sions on the right are less expensive to evaluate in most
cases (but not always, e.g., in V2 and D2, the sampler may
be costlier to evaluate than a simple predicate). We have
implemented all of these transformations as plan substitu-
tions to simplify implementation in the QO; in practice, even
if a particular pushdown does not improve performance, it
can lead to other pushdowns and the cumulative effect of
multiple pushdowns often leads to better performing plans
because most of the pushdowns improve performance.

3. CHARACTERIZING JOBS THAT USE
SAMPLERS

Thus far, we have discussed operator-level measurements
(e.g., usage, throughput, memuse, parameters) and plan-
level measurements (height of samplers before and after push-
down). In this section, we broaden our scope to examine
aspects of the jobs that use sampler operators.

Usage frequency: Figure 9 shows the prevalence of sam-
plers in production; in every examined day over the past
several months, hundreds of jobs execute with at least one
sample operator. There is a small positive trend, i.e., a small
increase with time in the number of jobs that use samplers.

Profiling jobs that use samplers: Figure 10 shows the
sizes of the queries that use samplers. We see that the me-
dian query has in excess of 10 SQL-like SELECT statements,
upwards of a few hundreds of lines in all and a few tens
of thousands of characters. In contrast, the median query
in TPC-DS [12] when expressed in SCOPE has 2 SELECT

statements. Note also the substantial tail; the x axes is in
log-scale and we have observed queries with several hundred
SELECT statements. In summary, the queries that use sam-
plers are rather complex.
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Figure 9: Usage frequency: Hundreds of jobs run every
day using sampler operators.
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Figure 10: CDF over jobs containing samplers of the num-
ber of select statements, lines and characters.

Figure 11 characterizes the jobs that use samplers in other
ways; it shows a CDF over the jobs that use samplers, their
total compute hours, the total data read and written. We see
that at least 50% of the jobs take over 60 hours of execution
time (Figure 11a), read over 10TB of data (Figure 11b) and
write over 100GB (Figure 11c). A sizable fraction of the
jobs are much larger. This shows that the usage of samplers
is distributed among different types of jobs; small jobs that
finish within minutes and massively parallel jobs that take
several thousands of cluster hours use samplers.



 0

 0.2

 0.4

 0.6

 0.8

 1

10-2 1 102 104

C
D

F

Compute Hours
(a) Compute Hours

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-2 1 102 104 106

C
D

F

Read (GB)
(b) Volume of data read

 0.2

 0.4

 0.6

 0.8

 1

102 104 106

C
D

F

Write (GB)
(c) Volume of data written

Figure 11: Characterizing the jobs that use samplers

Understanding use-cases: We identified the following
common themes among the queries that use samplers.

• Computing aggregate queries quickly with little
change in answer quality: This has traditionally
been the expected use-case for approximate query pro-
cessing; it is perhaps most clearly reflected in bench-
marks for decision support queries [11, 12]. Queries
having a group-by with one or more aggregates com-
puted over a select-project-join expression can exe-
cute more quickly over appropriate samples of the in-
put. Some difficulties for this query class include:
operators such as unions, nested queries and down-
stream ops that rely on the aggregate value such as
an ORDER BY and TOP or filtering on the aggre-
gate value etc. (e.g., value > 0.5 ∗ average). Most
previously published works only report results for this
use-case [15, 33, 39]. This use-case is also prevalent
in our production clusters with the primary differ-
ence being that the queries are significantly more com-
plex; groups can contain tens of columns and many
queries have user-defined filters, aggregations, projec-
tions, joins and group-bys.

• Explicit sampling: Another typical case is where
queries take a sample somewhere in the query and
proceed to perform some complex and detailed com-
putation on the sampled relation. These queries never
correct for the effect of sampling unlike queries in the
above use-case; that is, sampling is used with some
other intent besides approximating the result of the
unsampled query.

• Sampling to construct training datasets for ML:
One predominant special-case of explicit sampling is
queries that perform some complex log analytics to
generate training and test datasets for machine learn-
ing purposes. Some queries use sampling to break up
the datasets into training datasets (e.g., pick some p
fraction as training and the rest as test). More com-
plex usages include dividing the dataset into silos (e.g.,
based on predicates over some feature values), sam-
pling each silo with a different probability and then
union’ing the results. We believe that the user goal
here is to construct representative training sets to en-
sure that the learnt models are not biased towards just
the more frequent examples.

• Output sampling: In many complex log analytics
jobs we see that sampling is used nearly at the output
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Figure 12: Cumulative fraction of jobs that use samplers
as a function of the number of times that job repeats.

often to generate a small copy of the actual output.
The user goal here is most likely to use this smaller
copy for manual judgment or as input to other queries
or external ML tools.

Recurring jobs vs. non-recurring jobs: Figure 12
breaks-down the total number of jobs versus the number of
times the jobs repeated during the examined period. Among
the jobs that use samplers, only 2% are from non-recurring
jobs; that is, jobs that never occur again. Over 80% of
the jobs that use samplers repeat at least 100× each (i.e.,
y > 0.2 ⇒ x ≥ 100). Note, each instance of a job runs the
same query over different inputs. Typically, jobs run period-
ically over changing time-windows of logs. As noted earlier,
the cognitive overhead that an application developer faces
to pick an appropriate sampler (choice of sampler type, pa-
rameters such as probability value and columns to use the
distinct or universe sample over) amortizes over the multiple
repetitions of these jobs because the different inputs of the
repeating job instances have similar data statistics [14].

4. PERFORMANCE AND ACCURACY OF
JOBS WITH SAMPLERS

Does the use of samplers offer sizable performance im-
provements relative to the inaccuracy introduced to the an-
swers? We discuss a few specific case studies here beginning
with queries from the TPC-H benchmark [11].

4.1 TPC-H
We present results on the TPC-H benchmark because it is

well-known allowing our results to be compared with other
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Figure 13: The effects of using sample operators on queries from TPC-H; results are from ten executions of each query on
a large shared data-parallel cluster. Input is 100GB.

published work. These results also demonstrate the useful-
ness of query-time sampling (the operators and query op-
timizer transformation rules that we implemented). Fig-
ure 13a and Figure 13b show the change in performance
and answers for all 22 queries in TPC-H.

The results use an input size of 100GB, i.e., a scale factor
of 100; the data was generated with a custom data genera-
tor [13] which differs from the standard datagen in one way:
instead of generating entries distributed uniformly at ran-
dom, we skewed the frequency distribution with a zipf factor
of 2. We executed the queries on a shared production data-
parallel cluster. Figure 13a presents the median, minimum
and average values over many different executions. Our met-
rics are: latency which is the job completion time and total
compute hours which is the sum over all tasks in the job the
execution time of the tasks.

Figure 13a shows that roughly 8 out of the 22 queries
in TPC-H, specifically {2, 3, 10, 11, 13, 16, 18, 21} are unsam-
pled; as the figure shows, there is no appreciable change in
the performance metrics for these queries; the changes visi-
ble represent the performance variability in our cluster due
to contention from other jobs running in the cluster. These
jobs do not benefit from sampling for a few different reasons,
the most common reason is that they require stratification
on such a large column set that samplers have to pass the
entire input.

All but one of the other 14 queries receive sampled query
expressions and improve; the exception is query #6 which
receives a sampled plan with a 1% sampling rate but very lit-
tle work remains after the sampler and so the cost of execut-
ing the sampler is not counter-weighted by improvements in
later operations. Five of the queries (specifically {5, 7, 8, 9,
17}) improve substantially on both metrics: latency and
total compute hours. Most of the other sampled queries
also improve substantially in the total compute hours that
they use, i.e., their processing cost substantially decreases
but the query latency only improves moderately. This is
primarily because when sampling reduces the data in flight

subsequent parallel joins choose broadcast join implementa-
tions instead of pair (hashed) joins [14]; however doing so
adds to the job’s critical path because an aggregation step
is needed to reduce the degree of parallelism of the sampled
input and longer critical paths increase job latency.

Figure 13b shows the change in answer quality; our met-
rics are the fraction of missed rows in the answer, denoted
as missed groups and the average over multiple aggregates
of the average relative error across the various groups de-
noted as AvgAvgRelErr, the average over multiple aggre-
gates of the maximum relative error across groups denoted
as AvgMaxRelErr and the average over multiple aggregates
the ratio of the average absolute error to the average true
value. An example can help explain these metrics. Assume
that the actual answer is {X, 10, 10}, {Y, 20, 2}, {Z, 30, 3} and
that the sampled answer is {X, 10.5, 11}, {Y, 21, 1}, then the
fraction of missed groups is 1

3
= 0.33, AvgAvgRelErr = 0.19,

AvgMaxRelErr = 0.28, Avg(AvgAbsOverAvgTrueV) = 0.11.
Observe that the relative error metrics magnify small errors
when the true values are small (2→ 1 is a 50% error) but the
last metric which divides the average absolute error value of
an aggregate across groups by the average true value of the
aggregate across groups is more robust.

As Figure 13b shows, none of the queries miss groups.
Moreover, all aggregate error metrics are small for most of
the queries, i.e., about 5% for 17 of the 22 queries; for most
of the other queries, we see that the only large error metric
is AvgMaxRelErr (shown in blue) but even in those case the
average absolute value over true value (shown in orange) is
small indicating that the error is limited to groups with small
aggregate values. Overall, we conclude that the change in
TPC-H answer quality is insignificant.

4.2 Case studies from production
We next present a few case studies of production jobs that

use samplers; all of the presented jobs recur at least once per
day throughout the examined period.
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Figure 14: Query plans with and without the sampler for the case study in §4.2.1, ‘Aggregates over Sampled Relations’.

Table 4: Results for the case study in §4.2.1.

Metric Job Stats. Change
Orig. Sampled

Duration (hours) 10.2 6.9 −32.4%
Total Compute Hours 5117.8 3182.7 −37.8%
Bytes read from disk (TB) 339.8 341.6 +0.5%
Bytes written to disk (TB) 171.6 169.8 −1.0%
# Tasks 85540 85457 −0.1%

Table 5: Comparing the sampled output with the unsam-
pled output for the case study in §4.2.1

# Groups 650583
MissedGroupFract. 0.00
# Aggregates 24
AvgAvgAbsOverAvgTrueV 1.30%
AvgAvgRelErr 17.7%

4.2.1 Case Study 1: ‘Aggregates over Sampled Re-
lations’

Our first case study illustrates the use-case where sam-
plers were used to reduce the size of input leading into a
group-by and aggregation. This case also illustrates the typ-
ical complexity of such production queries.

Figure 14 shows the sampled plan in the middle with data
flowing from top to bottom; each circle denotes a collection
of tasks with the size of the circle denoting the number of
tasks (in log scale) and the color of the circle denoting the
average execution time of the tasks in that collection; the
legend is shown on the left. Lines encode data dependence
with the width of the line denoting the volume of data ex-
changed and the color (green or brown) denoting whether
data has to be shuffled or not.

The job joins five inputs and computes various grouped
aggregates. Two of the joins execute in the stage marked J1
and two remaining joins are in the stage marked J2. Before
these joins, the inputs are extracted, partitioned and aggre-
gated. J2 also executes a local group-by and aggregate after
all four joins complete. A few other aggregates are computed
on smaller subsets of the inputs; these are not sampled. This
job uses a distinct sampler inside J2 before both joins; the
stratification is over the columns in the group.

The distinct sampler was pushed to one of the inputs be-
low both of the outer joins in J2 because preceding oper-
ations on the other join inputs allowed the QO to infer
that these joins are primary key – foreign key joins (e.g.,
SELECT DISTINCT c or SELECT c, Agg() Group By c where c

is the join column) 5. The sampler could not be pushed be-
low the other two joins, i.e., into J1 or earlier, because no
such primary key relationship could be inferred.

The distinct sampler in J2 uses a frequency cutoff of 100
and a sampling probability of 0.1, i.e., f = 100, p = 0.1. In
an example job, the sampler takes as input 9.7 ∗ 1011 rows,
outputs 2.0 ∗ 1011 rows and runs in parallel in 2500 tasks.

Accuracy numbers, shown in Table 5, were considered ad-
equate by the application developer.

Using the sampler does not result in a substantially dif-
ferent query plan, in this case, because the output of J2 is
roughly as large as in the unsampled plan, shown on the
right, because in both cases a local group-by and aggregate
executes in J2 after the joins.

However, as shown in Table 4, the sampled plan is sub-
stantially faster because the two large relations being out-
erjoined in J2 after the sampler now execute on many fewer
rows. Table 4 shows that the sampled version of the job con-
sumes almost 2000 fewer cluster hours and finishes roughly
3 hours earlier. A typical single core VM on Azure today
costs about 3 cents/ hour [2] and so even a conservative es-
timate that does not charge for storage or for the value-add
from data-parallel services results in an annual savings of
about 22, 000$ by using samplers in this job 6. Of course,
the faster job completion time helps as well and we believe
that the actual cost savings can be up to an order of mag-
nitude larger when actual costs are considered. Such case
studies lead us to strongly believe that the batched log ana-
lytics jobs that are prevalent in production big-data clusters
can benefit substantially from query-time sampling.

4.2.2 Case Study 2: ‘Explicit Sampling’
5Specifically, Rule-D3 from Table 3 was used here.
6365 days/ year * 2000 cluster hrs/day * 0.03$/hr =
21900$/year



Table 6: Results for the case study in §4.2.2.

Metric Job Stats. Change
Orig. Sampled

Duration (hours) 0.396 0.231 −41.7%
Total Compute Hours 67.28 42.65 −36.6%
Bytes read from disk (TB) 16.23 12.05 −25.8%
Bytes written to disk (TB) 11.30 6.90 −38.9%
# Tasks 9961 9961 0%

(a) Sampled query (b) Unsampled counterpart

Figure 15: Query plans with and without the sampler for
the case study in §4.2.2.

Table 7: Results for the case study in §4.2.3.

Metric Job Stats. Change
Orig. Sampled

Duration (hours) 6.29 4.97 −21.0%
Total Compute Hours 21903.5 16467.4 −24.8%
Bytes read from disk (TB) 1037 1211 +16.8%
Bytes written to disk (TB) 446 764 +71.3%
# Tasks 668064 419064 −37.3%

Figure 15 and Table 6 show an instance of explicit sam-
pling; the plan on the left uses a uniform sample with prob-
ability p = 2 ∗ 10−6. The sampler reads 7.0 ∗ 109 rows and
outputs 1.5 ∗ 104 rows. Just for comparison, we show the
unsampled plan on the right. As Table 6 shows the sam-
pled plan is substantially faster because many tasks work
on the much smaller sampled relation. Note however a clear
difference from the previous case study (§4.2.1) where the
sampled plan output is comparable to the output of the un-
sampled plan; here, the user query executes only on a sam-
ple (for reasons that are not apparent from examining the
query) and so the output is not comparable to the output
of the unsampled plan.

4.2.3 Case Study 3: Explicit partition before sample
We present a second case where a distinct sampler was

used to reduce the cost and latency of a query that computes
grouped aggregates to highlight an interesting aspect of the
distinct sampler. In this case, the distinct sampler was used
with a frequency cut-off of f = 100, a p = 0.3 sampling
probability and a group that consisted of over 20 different
attributes, i.e., |D| > 20. The sampler ran in parallel in
15000 tasks over an input of 4.5 ∗ 1010 rows and produced
an output of 4.5∗1010 rows; i.e., the sampler passed all rows!
The group (column set D) was not a primary key but the
distinct sampler was unable to reduce data because of the
excessive parallelism; none of the groups had more than f ∗
15000 rows and because the rows were arbitrarily distributed

among the tasks, none of the tasks observed over f = 100
rows for any group. We advised the application developer to
partition the input to the sampler on the group columnset.
With this change, each sampler task sees disjoint subsets
of groups allowing the sampler to output only 2.9 ∗ 1010

rows; a data reduction of ∼ 34%. In spite of the additional
cost to partition sampler input, Table 7 shows that both
job latency and the total compute hours improve because
substantial work occurs after the sampler 7.

5. DISCUSSION
Experiences engaging with users: In addition to the
experiences noted in §1, we briefly mention experiences when
users resisted using sampled plans:

• Users were more resistant to use sampling when a
query’s output was consumed by other groups because
any changes in answer quality would now have to be
cleared among many different groups.
• Whether or not users will use approximations, in some

sense, appears akin to a religious belief; users who hes-
itate initially often remain unconvinced with logical
explanations.
• Efficiency mandates which force groups to reduce their

cluster usages (and long queues in backlogged clusters)
were often a good motivation for users to consider ap-
proximations. However, especially for legacy scripts,
we found that individual script owners lack the time
and motivation to change their scripts. Tools that rec-
ommend how to change scripts (e.g., by picking appro-
priate sampler parameters) can help here.

Next steps: As a next step, we are focusing on automat-
ically injecting sampler operators into recurring job queries
where fine-grained data statistics, e.g., at the granularity of
sub-expressions, can be obtained from previous job execu-
tions [14]. Other directions include: exploring richer set
of sampler pushdown rules, considering cascades of sam-
plers and extending the language’s compiler to automati-
cally rewrite aggregates add confidence intervals or other
aposteriori error estimates.

6. RELATED WORK
Much research has focused on approximating queries; we

defer a broader discussion to prior works [15, 21, 39, 30]. Al-
most every commercial database supports uniform sampling.
Here, we concentrate on practical usages of approximations.

Using sketches to support specific aggregates has recently
become common place. In particular, different data plat-
forms including BigQuery [3], Oracle [6] and SQL Server [1]
now support an approximate form of COUNT DISTINCT by us-
ing the HyperLogLog (HLL) sketch [24]. The HLL sketch
is compact and can be constructed in parallel and merged
leading to substantial speed-up. However, even simple ex-
tensions cannot be easily supported. For example, the HLL
sketch cannot support predicates 8. In contrast, the distinct
sampler (e.g., with f = 1, p = 0) presents a more general al-
ternative. Because the distinct sampler can be pushed below

7Note the increase in the bytes to/from disk due to the extra
partitioning.
8A HLL sketch on attribute c cannot be used to compute
SELECT (COUNT DISTINCT c) WHERE pred = 0



selections (e.g., by expanding the set of columns to stratify
on), it can be more performant than HLL.

Sketches for percentiles, t-digest [10] in particular, are also
used in production (e.g., at Netflix) although we are unaware
of data platforms that support t-digests natively.

SnappyData [9, 37] supports using differently stratified in-
put samples in a way that is similar to [15]. We believe that
input samples are very useful in some cases, e.g., when the
workload has simple predictable queries (e.g., only foreign
key joins, no user-defined operations) and an immutable or
slowly changing dataset. As discussed earlier, input sam-
ples are however not suitable for complex queries. The
main reason is that whereas query-time sampling can ex-
ecute samplers any where in the query plan and in partic-
ular after selective predicates or other complex operations,
input samples are constrained to only sample the input. Ver-
dictDB [39] is a recent start-up that also only supports input
samples; its key insight is that the samples can be stored in
any underlying DBMS system and that the techniques to
rewrite queries to use these samples can be built as a mid-
dleware layer.

7. CONCLUDING REMARKS
We have presented a first detailed longitudinal study of

over tens of thousands of production queries that use ap-
proximations in Microsoft’s big-data clusters. Our findings
suggest new use-cases for sampler operators; we find that
sampler pushdown rules improve plan performance while
respecting the user-specified accuracy requirements. Our
results show that the latency and cost vs. accuracy trade-
off from using approximations for production queries in Mi-
crosoft’s big-data clusters is appealing, specifically for batch
queries that recur. However, ceding control on accuracy to
the query writer raises the bar for adoption because users
have to identify the samplers and parameters that are ap-
propriate for their query. The holy grail of automatically
obtaining adequate answers for complex queries on large
datasets at interactive timescales remains open.
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