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Abstract
High performance distributed storage systems face the chal-
lenge of load imbalance caused by skewed and dynamic work-
loads. This paper introduces Pegasus, a new storage archi-
tecture that leverages new-generation programmable switch
ASICs to balance load across storage servers. Pegasus uses
selective replication of the most popular objects in the data
store to distribute load. Using a novel in-network coherence
directory, the Pegasus switch tracks and manages the location
of replicated objects. This allows it to achieve load-aware for-
warding and dynamic rebalancing for replicated keys, while
still guaranteeing data coherence. The Pegasus design is prac-
tical to implement as it stores only forwarding metadata in the
switch data plane. The resulting system improves the 99% tail
latency of a distributed in-memory key-value store by more
than 95%, and yields up to a 9× throughput improvement un-
der a latency SLO – results which hold across a large set of
workloads with varying degrees of skewness, read/write ratio,
and dynamism.

1 Introduction
Distributed storage systems are tasked with providing fast,
predictable performance in spite of immense and unpre-
dictable load. Systems like Facebook’s memcached deploy-
ment [39] store trillions of objects and are accessed thousands
of times on each user interaction. To achieve scale, these sys-
tems are distributed over many nodes; to achieve performance
predictability, they store data primarily or entirely in memory.

A key challenge for these systems is load balancing in the
presence of highly skewed workloads. Just as a celebrity may
have millions of times more followers than the average user,
so too do some stored objects receive millions of requests per
day while others see almost none [3]. Moreover, the set of pop-
ular objects changes rapidly as new trends rise and fall. While
classic algorithms like consistent hashing [23] are effective at
distributing load when all objects are of roughly equal popu-
larity, here they fall short: requests for a single popular object
commonly exceed the capacity of any individual server.

Replication makes it possible to handle objects whose re-
quest load exceeds one server’s capacity. Replicating every
object, while effective at load balancing [11, 37], introduces
a high storage overhead. Selective replication of only a set of
hot objects avoids this overhead. Leveraging prior analysis of
caching [14], we show that surprisingly few objects need to

be replicated in order to achieve strong load-balancing prop-
erties. However, keeping track of which objects are hot and
where they are stored is not straightforward, especially when
the storage system may have hundreds of thousands of clients.

We address these challenges with Pegasus, a new archi-
tecture for selective replication and load balancing in a rack-
scale storage system. Pegasus uses a programmable dataplane
switch to route requests to servers. Drawing inspiration from
CPU cache coherency protocols [4, 15, 17, 24, 26–28, 31], the
Pegasus switch acts as an in-network coherence directory that
tracks which objects are replicated and where. Leveraging the
switch’s view of request traffic, it can dynamically replicate
or migrate data objects as the workload demands. Pegasus
uses load-aware replication to maximize system utilization
by directing read requests to the least-loaded available replica.
Unlike prior approaches, Pegasus’s coherence directory also
allows it to dynamically rebalance the replica set on each
write operation, accelerating both read- and write-intensive
workloads – while still maintaining consistency.

Pegasus introduces several new techniques, beyond the con-
cept of the in-network coherence directory itself. Load-aware
replication requires the switch to know server load levels. We
describe and evaluate two such mechanisms: (1) reverse in-
network telemetry, where servers report their load levels to the
switch, and (2) switch-based load prediction. We use these,
along with new approximate-set-minimum structures, to im-
plement load-aware scheduling policies in a switch dataplane.

Pegasus is a practical approach. We show that it can be
implemented using a Barefoot Tofino switch, and provides
effective load balancing with minimal switch resource over-
head. In particular, unlike prior systems [22], Pegasus stores
no application data in the switch, only metadata. This dramat-
ically reduces switch memory usage, permitting it to co-exist
with existing switch functionality and thus reducing a major
barrier to adoption.

Our evaluation with 32 servers and a Pegasus switch shows:
• Pegasus reduces the 99th-percentile latency for skewed

workloads by up to 97%.
• Pegasus can increase the throughput by up to 9× – or re-

duce by 88% the number of servers required – of a system
subject to a 99%-latency SLO.
• Pegasus can react quickly to dynamic workloads where the

set of hot keys changes rapidly.
• Pegasus is able to achieve these benefits for many classes
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Figure 1: Pegasus architecture

of workloads, both read-heavy and write-heavy, with dif-
ferent levels of skew.

2 System Model
We consider a rack-scale storage system consisting of a num-
ber of storage servers connected via a single top-of-rack
switch, as shown in Figure 1. The storage system stores a
number of objects, each identified by a key; for simplicity, we
consider a simple read/write interface. Each server is respon-
sible for a disjoint part of the keyspace, and cross-partition
operations are not possible. Pegasus specifically targets in-
memory storage systems, like Redis or memcached, as these
offer the fastest and most predictable performance per server.

The Pegasus architecture is a co-design of in-switch pro-
cessing and an application-level protocol. This is made possi-
ble by leveraging the capabilities of newly-available switches
with programmable dataplanes, such as the Barefoot Tofino,
Cavium XPliant, or Broadcom Trident3 families. Broadly
speaking, these chips offer reconfigurability in three relevant
areas: (1) programmable parsing of application-specific head-
ers; (2) flexible packet processing pipelines, usually consist-
ing of 10–20 pipeline stages each capable of a match lookup
and one or more ALU operations; and (3) general-purpose
stateful memory, on the order of 10 MB. Importantly, all of
these features are on the switch dataplane, meaning that they
can be used while processing packets at full line rate – a total
capacity today measured in terabits per second.

We limit ourselves here to architectures consisting of a sin-
gle Pegasus switch, i.e., 32–256 servers. Larger-scale systems
might be built out of multiple Pegasus deployments, with each
rack responsible for a different partition of the key space.

3 Selective Replication for Load Balancing
How should a storage system handle skewed workloads,
where the request load for a particularly popular object might
exceed the processing capability of an individual server? Clas-
sically, two approaches have proven effective here: caching
popular objects in a faster tier, and replicating objects to in-
crease aggregate load capacity. In particular, caching has long

served as the standard approach for accelerating database-
backed web applications. Recent work has demonstrated, both
theoretically and practically, the effectiveness of a caching ap-
proach: only a small number of keys need to be cached in or-
der to achieve provable load balancing guarantees [14,22,32].

However, the effectiveness of a caching approach hinges on
the ability to build a cache that can handle orders of magnitude
more requests than the storage servers. Once an easily met
goal, this has become a formidable challenge as storage sys-
tems themselves employ in-memory storage [39, 41, 45], new
NVM technologies [19, 54], and faster network stacks [29,
33, 36]. Despite recent efforts to build faster caches out of
programmable switches [22] – an approach that comes with
significant practical limitations – the writing is on the wall:
the era of readily-deployable magnitude-faster caches is over.

Motivated by these trends, we ask whether turning to a
replication approach can provide us with a general, effective
load-balancing solution. We show in this section that selec-
tive replication can provide the same provable load balancing
properties as caching with neither significant space overhead
nor the need to engineer a magnitude-faster cache. In §4, we
show that selective replication can be implemented efficiently
using an in-network coherence directory.

3.1 Caching for Load Balancing

Caching serves two performance goals: to lower latency
by providing faster access to data, and to increase system
throughput capacity by offloading certain requests to a cache
where they can be processed faster. This paper is concerned
with the second goal. We begin with a summary of recent
theoretical analysis that showed that caching is particularly
effective in skewed workloads [14].

Fan et al. [14] consider a storage system with n storage
servers and m keys. The key space is partitioned among all
storage servers, such that each of the m keys is randomly
assigned to a single server. Each server has a processing ca-
pacity of r requests per second, and the total request rate the
system receives never exceeds the total capacity n · r. An ad-
versarial workload analysis demonstrates that as long as the
cache can hold the c = O(k · n logn) most popular keys, the
normalized load on a server is bounded by O

(
1+ 1√

k

)
. The

constant factors are not large; a cache of size 8n logn ensures
that each server receives no more than 20% load beyond the
average. Importantly, this result depends only on the number
of servers n, not the number of keys m.

A key assumption in this analysis is that the caching layer
can absorb the entire load of requests to the top c most popular
keys. In the extreme, this could be the entire system workload
of n · r requests per second. As mentioned above, building a
cache that can handle this workload is a daunting task.

3.2 Limitations of In-Switch Caching

Taking advantage of this load balancing result requires a cache
that can handle massive system throughput, but needs only



cache a small number of objects. At first glance, caching data
directly in the switch dataplane [22] appears an attractive so-
lution, as switch ASICs are designed to sustain line rate I/O
at terabits per second and are capable of processing billions
of packets per second – orders of magnitude faster than server
machines even with kernel-bypass I/O or RDMA. However,
we observe three limitations that make in-switch caching dif-
ficult to use in practice:

First, switches have very limited on-chip memory, typically
on the order of 16 to 32 megabytes [52,53]. In practice, much
of this memory is used to store the L2 and L3 forwarding,
ACL, VLAN, and other tables required for bread-and-butter
switch functionality. When value sizes may be as large as
megabytes in real world deployments [3], switch ASICs can
hardly fit enough key-value pairs for effective load balancing.

Second, in-switch caches are restricted to small key-value
pairs. The switch must be able to read the key and value from
a packet header, but the switch’s packet parser can only extract
a limited-length packet header vector – a few hundred bytes
at most [22]. SRAM bandwidth is also limited; each pipeline
stage can only access a fixed amount. Even with a smart multi-
stage design [22], the largest value size a switch can support
is 128 bytes – insufficient for many workloads.

Finally, in-switch caching provides a benefit only for read-
heavy workloads. Because switches can fail and do not have
durable state, writes must be processed by storage servers. As
a result, for workloads with a significant write fraction, the
switch data plane can no longer absorb traffic for the popular
keys. This issue is not just an academic one; while read-mostly
workloads have attracted much attention, write-intensive and
mixed workloads also commonly exist in real world deploy-
ments [3, 39].

We do not believe any of these hardware limitations are
likely to change substantively in the future. On-chip SRAM is
an expensive resource, and pipeline stages that read from and
write to it are subject to strict timing constraints. The packet
header vector size is the major factor in parser gate count, as
well as in other parts of the processing pipeline [6].

3.3 Selective Replication for Load Balancing

The hardware limitations above lead us to the following re-
quirement: Pegasus must not store application data in the
switch dataplane. Can we nevertheless implement an effec-
tive load balancing strategy? Our key observation is that the
same load balancing effect can be achieved by replicating the
O(n logn) most popular keys across multiple servers rather
than caching them. We show here that the same provable load
balancing result applies to replication. In sections 5 to 7, we
show that this selective replication approach can be imple-
mented efficiently, storing only metadata in the switch data-
plane.

Consider first a system with n nodes that handles a read-
only workload with total request load L, and assume that each
server has uniform processing capacity r = α

L
n , where α is

a slack factor representing the maximum load imbalance. If
all data were replicated on every server, i.e., any server can
handle any request, then clearly there exists some way to re-
distribute the load such that no server exceeds its capacity (as
long as α > 1).

Can we achieve the same result even if only some of
the keys are replicated? Fan et al’s analysis says that if the
most popular O(n logn) keys are cached separately from the
servers, then (for the right α) no server receives load greater
than its capacity. Can we re-add the load of the O(n logn)
cached keys? By definition, there is enough spare capacity
somewhere in the system, as the total capacity is αL > L.

If we then replicate each of the most popular O(n logn)
keys onto all n servers, we can achieve an acceptable load
balancing. Since the system as a whole is underutilized, there
exists at least one server whose load is below its processing
capacity. We can use the following simple routing strategy: a
request for a replicated key is forwarded to the least-loaded
server.

But what about writes? A replicated write has a cost equal
to the replication factor R – here, that is all nodes (R = n).
A simple answer is to increase the slack factor to α +R fW ,
where fW is the fraction of writes. This may be enough
for read-intensive workloads. Pegasus additionally accommo-
dates write-intensive workloads by tracking the write fraction
for each object and reducing the replication factor when it
is high. By choosing a number of replicas proportional to
the expected number of reads per write, i.e., R = 1

β fW
, the

needed slack factor becomes α + 1
β

. Strictly speaking, the
analysis above does not necessarily apply in this case, as it is
no longer possible to send any read to any server. However,
Pegasus dynamically rebalances the replica set to the R least-
loaded nodes on every write. We show empirically (§8.2) that
this remains effective at load balancing. Intuitively, because
the replica set is rebalanced on every write, and there are few
reads between each write, the same form of load balancing
continues to take place, merely on a coarser granularity.

4 A Case for In-Network Coherence Directo-
ries

We have shown in §3 that by selectively replicating a small
number of popular keys, the storage system can guarantee
balanced load. It remains a major challenge to track the set
of replicated objects and provide strong data consistency, all
without incurring significant overhead nor sacrificing load-
balancing guarantees. In this section, we argue for an in-
network coherence directory which manages the replicated
data and guarantees data consistency with minimum over-
head.

4.1 Coherence Directory for Replicated Data

Implementing selective replication poses the following chal-
lenges: first, the system needs to keep track of the replicated
items and their locations (i.e., the replica set). Second, read



requests for a replicated object must be forwarded to a server
in the current replica set. Third, after a write request is com-
pleted, all subsequent read requests must return the updated
value.

The standard distributed systems approaches to this prob-
lem do not work well in this environment. One might try to
have clients contact any server in the system, which then for-
wards the query to an appropriate replica for the data, as in
distributed hash tables [12, 46, 47]. However, for in-memory
storage systems, receiving and forwarding a request imposes
nearly as much load as executing it entirely. Nor is it feasible
for clients to directly track the location of each object (e.g., us-
ing a configuration service [7, 20]), as there may be hundreds
of thousands or millions of clients throughout the datacenter,
and it is a costly proposition to update each of them as new
objects become popular or are rebalanced.

In Pegasus, we take a different approach. We note that these
are the same set of challenges faced by CPU cache coherence
and distributed shared memory systems. To address the above
issues, these systems commonly run a cache coherence proto-
col using a coherence directory [4, 15, 17, 24, 26–28, 31]. For
each data block, the coherence directory stores a directory en-
try, which contains the set of processors that have a shared or
exclusive copy of the block. When a processor needs to read a
data block, it sends a request to the coherence directory. The
coherence directory forwards the request to a processor with
a valid copy, and adds the original requestor to the sharers
list. When a processor modifies a data block, it also sends a
request to the coherence directory. The coherence directory
either invalidates or updates all other copies, ensuring subse-
quent reads return the new value.

A coherence directory serves as an appropriate solution
for selective replication. It can track the set of replicated ob-
jects and forward read requests to the right servers, and it
can ensure data consistency by removing stale replicas from
the replica set. However, to use a coherence directory for a
distributed storage system requires the directory to handle
all client requests. A coherence directory implemented on a
conventional server will quickly become the performance bot-
tleneck of the entire system, as well as incurring high latency
overhead and unpredictable tail latency behavior.

4.2 Implementing Coherence Directory in the Network

Programmable dataplane switches provide an option that al-
lows us to implement the coherence directory directly in the
network. As detailed in §2, these switch ASICs provide flex-
ible processing of custom-defined packet headers, and op-
erate at full line rate. This enables us to implement a fully
functional coherence directory for selective replication in the
switch data plane: we store the replicated keys and their
replica sets in the switch’s stateful memory, program the
switch to match and forward based on custom packet header
fields (e.g. keys and operation types), and apply directory
updating rules for the coherence protocol. We give a more

detailed description of our switch implementation in §7.
Because switch ASICs are optimized for I/O, they provide

the performance needed for an coherence directory. Current
generation switches can support packet processing at more
than 10 Tb/s aggregate bandwidth and several billion pack-
ets per second throughput [51]. Implementing the coherence
directory in the top-of-rack switch for a rack-scale storage sys-
tem will, almost by definition, not become the bottleneck, as
the switch is designed to process packets at line rate for the en-
tire rack. Additionally, a fast cut-through switch can process
packets in a few hundred nanoseconds consistently [1], two
to three orders-of-magnitude faster on average than a Linux
based server system [30, 43]. Moreover, because client traffic
traverses the ToR switch anyway, implementing the coher-
ence directory in the ToR switch effectively adds zero latency
overhead.

4.3 Coherence Protocol for an In-Network Coherence
Directory

Designing a coherence protocol using an in-network coher-
ence directory raises several new challenges. Traditional CPU
cache coherence protocols can rely on an ordered and reliable
interconnection network, and they commonly block proces-
sor requests during a coherence update. Switch ASICs have
limited buffer space and therefore cannot hold packets indef-
initely. Network links between ToR switches and servers are
also unreliable: packets can be arbitrarily dropped, reordered,
or duplicated. Implementing an ordered and reliable commu-
nication end-point on a switch is infeasible, as it requires com-
plex logic for timeout, transmission retry, and large buffering
space.

We design a new version-based, non-blocking coherence
protocol to address these challenges. For each replicated ob-
ject, the coherence directory stores a current version number,
and a next version number. The switch increments the next
version number on a write request and inserts it in the packet
header. After the storage server processes the write request,
it attaches the same next version number in the reply packet.
The switch updates the coherence directory based on the re-
ply’s version number: if it is greater than the object’s current
version number, the switch updates the current version num-
ber and resets the replica set to include only the source server.
The updated directory entry ensures subsequent read requests
are forwarded to the server with the new value.

The above protocol still does not fully guarantee lineariz-
ability [18]. Before a write reply reaches the switch, which
can be arbitrarily delayed or dropped, the switch may for-
ward read requests to servers with either the new value or the
old value. If the new value is returned to the client, and a
subsequent read returns the old value, we have violated lin-
earizability. To fix this issue, the server stores the next version
number for each replicated object when processing write re-
quests. It inserts the next version number in the reply packet of
a read request. The switch then uses the same mechanism to



update the coherence directory for read replies, guaranteeing
subsequent read requests will return the new value.

Our new protocol leverages two key insights. First, all stor-
age system requests and replies have to traverse the ToR
switch. We therefore only need to update the in-network co-
herence directory to guarantee data consistency. This allows
us to avoid expensive invalidation traffic or any inter-server
coordination overhead. Second, we use the monotonicity prop-
erty of version numbers to handle network asynchrony. Imple-
menting version numbers in the switch data plane – includ-
ing storing, comparing, and inserting into packet headers – is
made possible by the programmable switches’ flexible packet
processing.

4.4 Load-Aware Scheduling

As discussed in §3, to guarantee balanced load, requests for a
replicated object need to be forwarded in a load-aware man-
ner. More specifically, the switch needs to forward requests to
servers that have not reached their processing capacity. This
load-aware forwarding requires the switch to possess servers’
load statistics. We have implemented three such mechanisms:
• Reverse in-network telemetry. Storage servers them-

selves track load statistics, e.g. CPU utilization, request
rate, etc. They report load information in the reply packets
going back to the switch.
• Switch-based load prediction. The switch estimates the

current load on each server by tracking the number of out-
standing requests it has forwarded to each server.
• Randomized Forwarding. As a baseline, we also imple-

mented randomized forwarding. This uses no load infor-
mation and may overload servers, but in some cases may
suffice to provide statistical load balancing.
Applying these mechanisms to load-aware scheduling for

read requests is straightforward. More surprisingly, they can
also be used for write requests. At first glance it appears nec-
essary to broadcast new writes to all servers in the replica set
– potentially creating significant load and overloading some
of the servers. In fact, the switch can choose a new replica
set for the object on each write. It can forward write requests
to one or more of the least-loaded servers, and the coherence
directory ensures data consistency, no matter which server the
switch selects. The ability to move data frequently allows a
switch to use load-aware scheduling for both read and write
requests. This is key to Pegasus’s ability to improve perfor-
mance for both read- and write-intensive workloads.

5 Pegasus Overview
We implement an in-network coherence directory and load-
aware scheduling in a new rack-scale storage system, Pegasus.
Figure 1 shows the high level architecture of a Pegasus de-
ployment. All storage servers reside within a single rack. The
top-of-rack (ToR) switch that connects all servers implements
Pegasus’s coherence directory for replicated objects.

Coherence Directory

Replicated Keys Sharers List
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C
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Figure 2: Logical view of the Pegasus coherence directory

Switch. The ToR switch maintains the coherence directory.
Figure 2 shows a logical view of the directory: it maintains
the set of replicated keys, and for each key, a list of storage
servers that have a valid, shared copy of the data. To reduce
switch resource overhead and to support arbitrary key sizes,
the coherence directory only stores a small, fixed-size hash of
each replicated key. The switch also implements a standard
L2/L3 routing module and a request statistics engine.

The ToR switch identifies Pegasus packets by a reserved
L3 port number. It forwards all non-Pegasus packets using
standard L2/L3 routing, and thus is fully compatible with
existing applications, network protocols and functions. A Pe-
gasus packet includes a customized packet header – as shown
in Figure 3 – that contains the operation type (READ, WRITE,
etc.) and the hash of the requested key.

To keep space usage low, the Pegasus switch keeps direc-
tory entries only for the small set of replicated objects. Read
and write requests for replicated keys are forwarded accord-
ing to the Pegasus load balancing and coherence protocol.
The other keys are mapped to a home server using a fixed
algorithm, e.g., consistent hashing [23]. Although consistent
hashing could be implemented in the switch, we avoid the
need to do so by having clients address their packets to the ap-
propriate server; for non-replicated keys, the Pegasus switch
simply forwards them according to standard L2/L3 forward-
ing policies.

To handle dynamic workloads with changing key popular-
ities, the switch also implements a request statistics engine
that tracks the access rate of the replicated keys. The con-
troller reads access statistics from the engine, and compares
them with heavy hitter reports from the storage servers to find
the most popular keys.

Controller. The main task of the Pegasus controller is to de-
cide which keys should be replicated. It is responsible for con-
stantly updating the coherence directory with the most popular
O(n logn) keys. To do so, the controller collects heavy hitter
reports from the storage servers, and compares them with ac-
cess rates of replicated keys read from the switch statistics
engine. The controller keeps only soft state, and therefore can
be immediately replaced upon a controller failure. The con-
troller can be deployed directly inside the ToR switch OS, or
run on any remote server.
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Figure 3: Pegasus packet format

Switch States:
• rkeys: set of replicated keys
• rset: map of replicated keys→ set of servers with a valid copy
• ver_curr: map of replicated keys→ next version number
• ver_next: map of replicated keys→ current version number
• all_servers: set of all storage servers

Switch Functions:
• select(p, s): returns one or more servers in set s based on selec-

tion policy p

Figure 4: Switch states and functions

6 Pegasus Protocol
6.1 Packet Format

Pegasus defines an application-layer packet header embedded
in the L4 payload, as shown in Figure 3. Pegasus reserves a
special UDP/TCP port for the switch to match Pegasus pack-
ets. The application-layer header contains an OP field, which
can be one of the following operation types: READ and WRITE
for client requests, or READ-REPLY and WRITE-REPLY for
server replies. KEYHASH is an application-generated, fixed-
size hash value of the key. VER contains an optional version
number of the key for the coherence protocol.

6.2 Switch State

To implement an in-network coherence directory, Pegasus
maintains a small amount of metadata in the switch data-
plane, as listed in Figure 4. A lookup table rkeys stores the
O(n logn) replicated hot keys, using KEYHASH in the packet
header as the lookup key. For each replicated key, the switch
maintains the set of servers which have a valid copy in rset.
ver_curr and ver_next store each key’s current and next ver-
sion number respectively. The switch also maintains the set of
all storage servers in all_servers. Additionally, the switch
also implements a select(p, s) function that returns one or
more servers in set s based on selection policy p. In §7, we
elaborate how we implement the above states and functions
in the switch dataplane.

6.3 Request and Reply Processing

Pegasus leverages the in-network coherence directory to dis-
tribute load for the selectively replicated objects. The switch
forwards READ requests to servers in the replica set in a load-
aware manner, and updates the coherence directory after a
WRITE request is completed. Algorithm 1 and Algorithm 2
give the pseudo code for switch request and reply processing
respectively.

6.3.1 Handling Client Requests

The switch matches the request key with entries in the rkeys

lookup table. For replicated READs, the switch, based on the
selection policy, chooses one server from the key’s rset as the
destination (Algorithm 1 line 2-3). For replicated WRITEs, the

Algorithm 1 HandleRequestPacket(pkt)

1: if rkeys.contain(pkt.key) == true then
2: if pkt.op == READ then
3: pkt.dst← select(p,rset[pkt.key])
4: else if pkt.op == WRITE then
5: pkt.dst← select(p,all_servers)
6: pkt.ver← ++ver_next[pkt.key]
7: end if
8: end if
9: Forward packet

Algorithm 2 HandleReplyPacket(pkt)

1: if rkeys.contain(pkt.key) == true then
2: if pkt.ver > ver_curr[pkt.key] then
3: ver_curr[pkt.key]← pkt.ver
4: rset[pkt.key]← set(pkt.src)
5: else if pkt.ver == ver_curr[pkt.key] then
6: rset[pkt.key].add(pkt.src)
7: end if
8: end if
9: Forward packet

switch increments the next version number of the key, writes
that version number into the packet header, and forwards the
packet to one or more selected servers (Algorithm 1 line 4-6).

Servers process READ and WRITE requests similar to exist-
ing key-value stores. To implement the version-based coher-
ence protocol as described in §4.3, we augment the servers to
store a version number for each key alongside its value. For
replicated WRITEs, the switch fills in the VER header field.
The server updates the key’s value and version number only if
the packet has a higher VER number; otherwise the request is
dropped. The server also inserts the updated version number
in the packet header of WRITE-REPLY. For replicated READs,
the server reads the version number from the data store and
writes it into the packet header of READ-REPLY.

6.3.2 Handling Server Replies

When the switch receives a READ-REPLY or a WRITE-REPLY,
it looks up the reply’s key in the switch rkeys table. If the key
is replicated, the switch compares VER in the packet header
with the current version number of the key. If the reply has a
higher version number, the switch updates the key’s current
version number, and resets its replica set to include only the
source server (Algorithm 2 line 2-4). If the two version num-
bers are equal, the switch adds the source server to the key’s
replica set (Algorithm 2 line 5-6).

The effect of this algorithm is that write requests are sent
to a new replica set which may or may not overlap with the
previous one. As soon as one server completes and acknowl-
edges the write, the switch directs all future read requests to it
– which is sufficient to ensure linearizability. As other replicas
also acknowledge the same version of the write, they begin to



receive a share of the read request load.

6.4 Server Selection Policy

Which server should be chosen for a request? Pegasus sup-
ports two general policies: a random choice (random) and a
least-loaded server policy (minimum load). For the latter, the
Pegasus switch must estimate the load at each server. We have
implemented and evaluated two such policies.

Reverse in-network telemetry. Our first approach relies
on servers to report their load to the Pegasus switch on every
reply packet – the inverse of in-network telemetry [21], which
calls for switches to report their load to servers. They report
this numeric value in a designated field in the Pegasus header.
In a sense, this is the most general strategy, as it leaves it to
the endpoints to choose what load metric to use; this flexi-
bility makes it easier to handle heterogeneous clusters where
servers may have different capacity, for example. However,
as we show in §8, it suffers from a classic control loop delay
problem [2]. That is, because server reply packets take time
to reach the switch, the switch is making forwarding deci-
sions based on past load information. By the time the request
reaches the “least loaded” server, the server may have already
received a burst of requests.

Load prediction. The second option is to predict server
load on the switch, based on projected queue length at the
server. The switch increments a counter each time a request
is forwarded to the server. The counter could be decremented
each time a reply packet is received; however, packet drops (a
common occurrence on overloaded servers) make this prob-
lematic. Empirically, we have found the most effective ap-
proach to be to decrement the counter at a periodic time in-
terval intended to correspond to the rate at which a server
drains its message queue. To handle servers of different ca-
pacity, servers report their processing rate using the reverse
in-network telemetry mechanism. This hybrid approach gives
the best of both worlds; it avoids the control loop delay prob-
lem with the pure-RINT approach.

Write replication policy. Read operations are sent to ex-
actly one replica. For write requests, the switch has the option
to select any number of servers to forward it to. Larger replica
set sizes improve load balancing by offering more options for
future read requests. However, they also increase the cost of
write operations: every server in the replica set must process
the WRITE. We have seen that for workloads with a substantial
write fraction, increasing the write cost for the most popular
keys can easily overload the system and negate any load bal-
ancing benefit.

Our key observation is that Pegasus only needs to choose
multiple recipients for WRITE operations during read heavy
workloads, in which the load increase caused by WRITEs is
negligible. For write heavy workloads, the number of consec-
utive READs following a WRITE is small. A single WRITE
recipient is sufficient to handle to the load, until the next

WRITE arrives. We exploit this observation in a simple way:
the switch tracks the average number of writes per read for
each key, then caps the number of replicas at this level (mul-
tiplied by a constant factor). As discussed in §3, this bounds
the overhead regardless of the write fraction.

6.5 Adding and Removing Replicated Keys

Key popularities change constantly. To deal with this dy-
namism, the Pegasus controller continually monitors key ac-
cess frequencies and updates the coherence directory with the
most popular O(n logn) keys. Frequency monitoring for all
keys on the switch, however, requires an infeasible amount
of switch memory. To reduce memory usage, we only keep
access counters for the currently replicated keys on the switch.
Storage servers, with much larger memory, track access rate
for the non-replicated keys, and periodically send heavy hitter
reports to the controller. The controller compares heavy hitter
reports with switch access counters, and updates the rkeys

set if a non-replicated key becomes more popular.
When a new key becomes popular, the controller adds it to

the coherence directory with a single entry in rset, the home
server. This does not directly move or replicate the object;
however, the next write request will move the object to a new
(and larger) replica set. The controller also resets ver_curr

and ver_next for the key, and adds the key to rkeys. It also
notifies all servers that the key is now in the coherence direc-
tory.

Safely removing a replicated key is more complicated, be-
cause we must the home server has the latest version of the
object before the key is removed from the coherence direc-
tory. This protocol must remain correct even if there are in-
flight WRITEWR7612(I)-62(T)-62(E)]TJ/F100 9.9626 Tf 27.446(f)10-62(T)-62(690 9.9626 -f 17.015 0 Td [(W)-6/F8small.)-36D
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Figure 5: Coherence directory dataplane design

that is not replicated, and it is not the home server of the key,
this indicates it is a delayed message (or a key hash collision;
see §6.6) and should be forwarded to the key’s home server.

6.6 Hash Collision

The Pegasus coherence directory acts on small key hashes,
rather than full keys. Should there be a hash collision involv-
ing a replicated key, requests for non-replicated keys may be
falsely forwarded to a server not its home server. Because
each storage server tracks the set of currently replicated keys,
it can forward the request to the correct home server. This re-
quest chaining approach has little performance impact: it only
affects hash collisions involving the small set of replicated
keys, and the requests that are forwarded are for the unrepli-
cated, non-popular. In the extremely rare case of a hash col-
lision involving two of the O(n logn) hot keys, Pegasus only
replicates one of them to guarantee correctness.

6.7 Handling Switch Failure

Being a rack-scale storage system, failure of the Pegasus ToR
switch would render the entire system unavailable. However,
naively rebooting or replacing the switch could cause coher-
ence violations, because the location of replicated keys could
be lost. To address this issue, the controller polls each server
for any replicated objects (and their versions) it may be stor-
ing. It then sends the value with the highest version number to
each object’s home server. After receiving acknowledgments
from the home servers, the controller informs the switch and
all servers to clear the set of replicated keys. Only then does
it resume processing client requests.

7 Switch Implementation
Pegasus implements the in-network coherence directory,
version-based coherence protocol, and load-aware selection
policy in the dataplane of a programmable switch. This sec-
tion details that implementation.

7.1 Coherence Directory

Pegasus leverages the stateful memory in the programmable
switch ASICs to construct a coherence directory. Switches
such as Barefoot’s Tofino [50] expose their stateful memory
as register arrays. Individual elements of an array is accessed

by an index, and can be read and updated at line rate.
Figure 5 shows how we build a coherence directory for

selective replication using exact-match tables and register ar-
rays. First, an exact-match table is used to match the hash
of the replicated keys. Each matching entry supplies an rkey
index to be used for the register arrays. Second, a list of reg-
ister arrays, one for each replicated key, store the replica set.
The rkey index in the match table entry is used to locate the
register array for the key. Third, three additional register ar-
rays maintain the size of the replica set, the current version
number, and the next version number for each replicated key.
Finally, a server ID forwarding table matches on a server ID,
and rewrites the packet destination address to the correspond-
ing server on a match. The controller updates this table when
server membership changes.

When the switch receives a READ request, the pipeline first
matches KEYHASH in the packet header with the exact-match
table. If there is a match, the switch uses the rkey index to
locate the replica set register array. It then reads a server ID
from an array element, chosen using the server selection pol-
icy (§7.2), and forwards the packet using the server ID for-
warding table.

For WRITE packets that have a match in the lookup table,
the switch increments the next version number in the register
array (using rkey index), and fills the version number in the
VER header field. The server selection policy for a WRITE may
choose multiple servers.

For READ-REPLYs and WRITE-REPLYs that have a match in
the lookup table, the pipeline first checks the VER field in the
packet header with the current version number register. If VER
is greater than the current version number, the switch writes
the ID of the source server into the replica set register array at
index zero, updates the current version number register, and
changes the replica set size register to one. If VER equals the
current version number, the switch increments the replica set
size register, and uses the new size as an index to write the
server ID into the replica set register array.

When adding or removing replicated keys, the switch con-
troller inserts or deletes entries in the lookup table through the
switch control plane interface. When a new key is added to
the table, the controller also writes the ID of the home server
into the corresponding replica set register array at index zero,
sets the replica set size register to one, and resets the current
and next version number registers.

7.2 Server Selection Policy

In §6.4, we discussed several server selection policies for load-
aware scheduling. We now describe how we realize these poli-
cies in the switch dataplane.

Randomized Forwarding. Lacking a random number gen-
erator, we use a round-robin mechanism to approximate ran-
dom server selection. As shown in Figure 6, we allocate a
round-robin counter register. For READs, the switch incre-
ments the round-robin counter register corresponding to the
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key, and uses it to index into the replica set register array. For
WRITEs, there is a read-write ratio register maintained by the
statistics engine (§7.3). The pipeline reads this value to deter-
mine the replication factor. In order to send to R replicas, we
statically configure a set of broadcast groups for each size R.
The switch increments and uses a global round-robin counter
to select a broadcast group from the set.

Minimum Load Policy. In order to select servers with the
minimum load, we allocate a register array that stores the
load for each server, as shown in Figure 7. If a reverse in-
network telemetry policy is used, servers insert load value
into the header of the reply packets. When processing reply
packets, the switch updates the server load register array with
the load value in the header. If instead a load prediction policy
is used, the switch increments the register corresponding to
the destination server each time it forwards a request packet.
To decrement the register at a particular rate over time, we use
the packet generator on Tofino to generate virtual DEC packets
for each server. The generator determines the generation rate
using a per-server processing rate updated using the reverse in-
network telemetry mechanism. Processing a DEC causes the
switch to decrement the corresponding server load register,
but produces no output packet.

The switch data plane does not directly support finding
the minimum value in a set. To naively do a pairwise com-
parison across elements in the register array would require
require pipeline stages proportional to the number of storage

servers, not a scalable approach. Instead, we approximate the
minimum function by allocating a register array that tracks
the least loaded server for each replica set, as well as the
global minimum. This global minimum is easy to update: ev-
ery time a server’s load changes, the switch compares the new
load against the global minimum, and updates it as needed.
The per-replica-set minimum, however, requires a more elab-
orate update scheme: on each reply packet, the switch picks a
replica set, reads the load of one of the servers in the set, and
compare it to the set’s minimum load register. Essentially, we
use the reply packets as “probes” to update the per-replica-set
minimum.

The per-replica-set minimum load register is used to choose
the least loaded server for a READ. For WRITEs, we use the
global minimum register to find the least loaded server. If the
WRITE is forwarded to only one server, this is sufficient. Oth-
erwise, because tracking the least loaded n servers in general
is more challenging and requires more switch resources, we
instead use the single least loaded server plus n−1 randomly
selected servers.

7.3 Request Statistics Engine

The request statistics engine tracks three statistics: the ac-
cess rate and read-write ratio for each replicated key, and the
load for each server. The first two are computed using per-
replicated-key read and write counters that are updated each
time a request hits on the corresponding key. The Pegasus
controller periodically reads these registers and computes the
read-write ratio. To support the load prediction policy, the en-
gine tracks each server’s processing rate, and updates it based
on telemetry information that the servers store in packet head-
ers.

8 Evaluation
We implemented a prototype of Pegasus, including the switch
data and control planes, a Pegasus controller, and a simple
in-memory key-value store that runs the Pegasus protocol.
The switch data plane is implemented in P4 [5], and com-
piled using the Barefoot Capilano SDE [8]. The data plane
implementation runs on a Barefoot Tofino programmable
switch ASIC [50]. The Pegasus controller is written in Python.
It reads and updates the switch data plane through Thrift
APIs [49] generated by the P4 SDE. The in-memory key-
value store client and server are implemented in C++.

We ran all our experiments on a testbed that consists of ten
servers with 2.5 GHz Intel Xeon E5-2680 v3 processors and
64 GB RAM running Ubuntu Linux 18.04, connected through
a Tofino-based Edgecore Wedge 100BF-32 top-of-rack switch.
We ran up to thirty-two key-value store servers co-located on
disjoint cores of four physical servers, and used the remaining
six servers to generate client load.

To evaluate the effectiveness of Pegasus under realistic
workloads, we generated load using concurrent open-loop
clients, with inter-arrival time following a Poisson distribu-
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tion. The total key space consists of one million randomly
generated keys, and client requests chose keys following ei-
ther a uniform distribution or a Zipf distribution with different
skewness parameters. For all experiments, we used 64-byte
keys and 128-byte values. We also experimented with varying
read/write request ratio, from read-intensive to write-intensive
workloads.

We compared Pegasus against two other load balancing so-
lutions: a conventional static consistent hashing scheme for
partitioning the key space, and NetCache [22]. The NetCache
implementation caches up to 10,000 128-byte values in the
switch data plane, consuming more than 1 MB of switch mem-
ory. In contrary, Pegasus stores less than 5 KB of forwarding
metadata, a 200× space reduction compared to NetCache.

8.1 Impact of Skewness

To test and compare the performance of Pegasus under a
skewed workload , we measured the maximum throughput
of all three systems subject to a 99%-latency SLO. To do so,
we gradually increased the client load until the 99% end-to-
end latency exceeds 300µs. Figure 8 shows system through-
put under increasing workload skewness with read-only re-
quests. Pegasus maintains the same throughput level even as
the workload varies from uniform to high to extreme skew-
ness (Zipf α = 0.9–1.2), demonstrating its effectiveness in
balancing load under highly skewed access patterns. In con-
trast, throughput of the consistent hashing system drops to as
low as 12% under more skewed workloads. At α = 1.2, Pe-
gasus achieves a 9× throughput improvement over consistent
hashing. NetCache provides similar load balancing benefits.
In fact, its throughput increases with skew, outperforming
Pegasus. This is because requests for the cached keys are pro-
cessed directly by the switch, not the storage servers, albeit at
the cost of significantly higher switch resource overhead.

Figure 9 compares the 99% latency and request comple-
tion rate of the three systems with increasing Zipf skewness.
We set the request rate to achieve 80% utilization on a uni-
form workload, and maintain this request rate as we increase
skew. Both Pegasus and NetCache maintain the same low
tail latency as compared to running a uniform workload, and
complete 100% of the requests. Tail latency of the consistent
hashing system, however, spikes when workload skewness
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exceeds 0.9. At Zipf-1.2, Pegasus improves the tail latency
over consistent hashing by 97%. There, one or more storage
servers are constantly saturated, and client requests are either
queued or dropped or dropped once the server receive buffers
are filled. In fact, the consistent hashing system is able to
complete only 60% of the client requests under Zipf-1.2.

8.2 Read/Write Ratio

Pegasus targets not only read-intensive workloads, but also
write-intensive and read-write mixed workloads, both of
which are common in real deployments [3]. Figure 10 shows
the maximum throughput subject to a 99%-latency SLO of
300 µs, with varying read ratio. The Pegasus coherence pro-
tocol allows write requests to be processed by any storage
server, so Pegasus can load balance both read and write re-
quests. As a result, Pegasus is able to handle skewed work-
loads at the same throughput level as uniform ones, regardless
of the read/write ratio. This is in contrast to NetCache, which
can only balance read-intensive workloads; it requires storage
servers to handle writes. As a result, NetCache’s throughput
drops rapidly as the write ratio increases, approaching the
same level as static consistent hashing. Even when only 20%
of requests are writes, its throughput drops by 60%. Its ability
to balance load is eliminated entirely for write-only work-
loads. In contrast, Pegasus maintains its high throughput even
for write-intensive workloads, achieving as much as 7.9× the
throughput than NetCache.

8.3 Scalability

To evaluate the scalability of Pegasus, we measured the max-
imum throughput subject to a 99%-latency SLO under a
skewed workload (Zipf 1.2) with increasing number of storage
servers, and compared it against the consistent hashing system.
As shown in Figure 11, Pegasus scales nearly perfectly as the
number of servers increases. On the other hand, throughput of
consistent hashing stops to scale after four servers: due to se-
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vere load imbalance, the overloaded server quickly becomes
the bottleneck of the entire system. Adding more servers thus
does not further increase the overall throughput.

8.4 Impact of Number of Replicated Keys

The theoretical analysis in §3 proves that Pegasus needs to
replicate the O(n logn) most popular keys to balance load
under arbitrary access patterns. What constant factors lie hid-
den here? For adversarial workloads, they are not high (e.g,
8n logn) [14]. We show in Figure 12 that they are even lower
for our non-adversarial Zipf workload. Specifically, Pegasus
only needs to replicate 4, 8, and 16 keys to reach the same
throughput level as running a uniform workload under Zipf
distributions α = {0.9,1.0,1.2} respectively – significantly
less than n logn. While these numbers would be expected to
increase with more servers, they easily remain within the ca-
pacity of the switch’s register memory.

8.5 Load-Aware Scheduling Policies

We have implemented two policies for load-aware schedul-
ing: minimum load and random. For the minimum load pol-
icy, Pegasus additionally supports two mechanisms to track
server load levels: server-based load report and switch-based
load prediction. We evaluated all three variations of the load-
aware scheduling schemes, and Figure 13 shows the maxi-
mum throughput under increasing workload skewness respec-
tively.

The minimum load policy is more effective with switch-
based load prediction rather than server-based load reporting.
As mentioned in §6.4, server-based load report suffers from
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a longer control loop delay that results in temporary server
overloading before the switch can react. The switch-based
load prediction mechanism, on the other hand, can accurately
predict server load at forwarding time, avoiding any control
loop delay.

A random policy is in fact quite effective at distributing
load when we use a set of dedicated, homogeneous servers
with the same load capacity. It begins to fall short, however,
when some servers are more capable than others, or back-
ground process sap their available capacity. We evaluated this
by reducing the processing capacity of half of the servers by
50%. As shown in Figure 13, throughput with random pol-
icy drops 50% as the slower servers become the performance
bottleneck, even though the faster servers still have spare pro-
cessing capacity. By having the servers report their process
rate, the minimum load policy with load prediction distributes
requests in a load-aware manner, allowing both the slower and
faster servers to fully utilize their processing capacity.

8.6 Handling Dynamic Workloads

Finally, we evaluated Pegasus under dynamic workloads with
changing key popularities, similar to SwitchKV [32] and Net-
Cache [22]. Specifically, we selected 100 keys every 10 sec-
onds and changed their popularity rankings in the Zipf distri-
bution. Here we consider two dynamic patterns:
• Hot-in. The 100 coldest keys in the popularity ranking are

promoted to the top of the list, immediately turning them
into the hottest objects. This workload represents extreme
fluctuations in object popularities, which we hypothesize
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is rare in real world workloads.
• Random. We randomly select 100 keys from the 10,000

hottest keys, and swap their popularities with another set
of randomly chosen keys. As the most popular keys are
less likely to be changed, this dynamism represents a more
moderate change to object popularities.
We evaluate Pegasus for these workloads with a Zipf-1.2

workload and 80% utilization. We report the 99% end-to-end
latency measured in time intervals of 100ms.

Hot-in. As shown in Figure 14a, sudden changes to the pop-
ularities of all hottest keys cause the tail latency to increase.
Pegasus, however, is able to immediately detect the popular-
ity changes and updates the in-switch coherence directory.
Within 100 ms, tail latency observed by clients recovers as Pe-
gasus resumes balancing load effectively for the new popular
keys. A workload change this drastic is unlikely in practice,
but Pegasus nevertheless reacts quickly.

Random. Under a random dynamic pattern, only a moder-
ate number of the most popular keys are changed. Pegasus
thus can continue balancing load for the unaffected replicated
keys, and leveraging load-aware scheduling to avoid overload-
ing the servers. As shown in Figure 14b, the 99% tail latency
remains largely unaffected.

9 Related Work
Load Balancing. Load imbalance in large-scale key-value
stores has been addressed by past systems in three ways. Con-
sistent hashing [23] and virtual nodes [10] are widely used,
but do not perform well with changing workloads. Solutions
based on migration [9, 25, 48] and randomness [38] can be
used to balance dynamic workloads, but these techniques in-
troduce additional overheads and have limited ability to han-
dle high skew. EC-Cache [44] balances load using erasure
coding to split and replicate values, but works best for large
keys in data-intensive clusters. SwitchKV [32] balances load
across a flash-based storage layer using switches to route to an
in-memory caching layer; it cannot react fast enough to chang-
ing load when the storage layer is in memory. NetCache [22]
caches values directly in programmable dataplane switches;

while this provides excellent throughput and latency, value
sizes are limited by switch hardware constraints.

Another class of load balancers are designed to balance
layer 4 traffic, such as HTTP, across a dynamic set of backend
servers. These systems may be implemented as clusters of
servers, as in Ananta [42], Beamer [40], and Maglev [13];
or using switches, as in SilkRoad [35] or Duet [16]. These
load balancers are designed to balance long-lived flows across
servers, whereas Pegasus balances load of individual request
packets.

Directory-Based Coherence. Directory-based coherence
protocols have been used in a variety of shared-memory mul-
tiprocessors and distributed shared memory systems [4,15,17,
24, 26–28, 31]. These systems can be thought of as key-value
stores with fixed-size keys (addresses) and values (cache lines
or pages). Directory protocols have been used in general key-
value stores as well; IncBricks [34] implements an in-network
key-value store using a distributed directory to cache values
in network processors attached to datacenter switches. Keys
have a designated home node that must be involved in writes
and coherence operations, limiting the opportunity for load-
balancing. In Pegasus, switches are responsible only for rout-
ing data to servers, where keys and values are stored; keys in
Pegasus may be stored in any server, leading to better load-
balancing.

10 Conclusion
With Pegasus, we have demonstrated that programmable
switches can improve the load balancing of a storage appli-
cation. Using our in-network coherence directory protocol,
the switch takes over responsibility for placement of the most
popular keys. This makes possible new data placement poli-
cies that cannot be achieved using traditional methods, such
as reassigning the set of replicas on each write or selecting
read replicas based on fine-grained load measurements. The
end result is that Pegasus increases by 9× the throughput level
achievable subject to a latency SLO, compared to a consistent
hashing workload. This permits a major reduction in the size
of a cluster needed to support a particular workload.

More broadly, we believe that Pegasus provides an exam-
ple of the class of applications that programmable dataplane
switches are well suited for. It takes a classic use case for
network devices – load balancing – and extends it to the next
level by integrating it with an application-level protocol.
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