
AI Meets AI: LeveragingQuery Executions to Improve
Index Recommendations

Bailu Ding
§

Sudipto Das
§

Ryan Marcus
†

Wentao Wu
§

Surajit Chaudhuri
§

Vivek R. Narasayya
§∗

§
Microsoft Research

†
Brandeis University

ABSTRACT
State-of-the-art index tuners rely on query optimizer’s cost

estimates to search for the index configuration with the

largest estimated execution cost improvement. Due to well-

known limitations in optimizer’s estimates, in a significant

fraction of cases, an index estimated to improve a query’s

execution cost, e.g., CPU time, makes that worse when imple-

mented. Such errors are a major impediment for automated

indexing in production systems.

We observe that comparing the execution cost of two plans

of the same query corresponding to different index configu-

rations is a key step during index tuning. Instead of using

optimizer’s estimates for such comparison, our key insight is

that formulating it as a classification task in machine learn-

ing results in significantly higher accuracy. We present a

study of the design space for this classification problem. We

further show how to integrate this classifier into the state-

of-the-art index tuners with minimal modifications, i.e., how

artificial intelligence (AI) can benefit automated indexing (AI).
Our evaluation using industry-standard benchmarks and a

large number of real customer workloads demonstrates up

to 5× reduction in the errors in identifying the cheaper plan

in a pair, which eliminates almost all query execution cost

regressions when the model is used in index tuning.

∗
Ryan Marcus performed the work while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3324957

CCS CONCEPTS
• Information systems → Autonomous database ad-
ministration; Data layout; • Computer systems organi-
zation → Cloud computing;

KEYWORDS
Automated indexing; autonomous database management;

performance tuning; relational database-as-a-service.

ACM Reference Format:
Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaud-

huri, Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Ex-

ecutions to Improve Index Recommendations. In 2019 International
Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3299869.3324957

1 INTRODUCTION
Motivation. Selecting an appropriate set of indexes for a

given workload can result in significant reductions in query

execution cost, e.g., CPU time. Thus, recommending indexes

for databases has been an active research area for several

decades [2, 12, 17–19, 23, 25, 30, 56, 65, 72]. Being able to

fully automate index recommendation and implementation is

a significant value-add. One key requirement of automated

index implementation for production systems is that creating

or dropping indexes does not cause significant query per-
formance regressions. Such regressions, where a query’s

execution cost increases after changing the indexes, is a ma-

jor impediment to fully-automated indexing [24, 52] as users

desire to enforce a no query regression constraint.
State-of-the-art industrial-strength index tuning systems [2,

23, 72] rely on query optimizer’s cost estimates to recom-

mend indexes with the most estimated improvement. When

a tuner searches for alternative index configurations, it needs

to compare execution cost of different plans for the same query

that correspond to different configurations. The tuner can

enforce the no regression constraint using the optimizer’s

estimates. However, due to well-known limitations in opti-

mizer’s estimates, such as errors in cardinality estimation

https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957

or cost model [47, 50, 68], using the optimizer’s estimates to

enforce the constraint can result in significant errors.

Cost estimation errors. To comprehend the challenge even

in the simplified task of comparing the cost of two plans,

consider a plan pair ⟨P1,P2⟩ for the same query. Figure 1

reports the ratio
Cost (P2)

Cost (P1)
computed with CPU time (clipped

between 0.01 and 100) on the y-axis and the optimizer’s

cost estimate on the x-axis. We only consider a small set

of randomly-selected pairs from TPC benchmarks [63, 64]

and several real customer workloads where the optimizer
estimates P2 to be cheaper than P1.

0.01

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1C
P

U
 E

xe
cu

ti
o

n
 C

o
st

 R
at

io

Optimizer's Estimated Cost Ratio
Improve Comparable Regress

Figure 1: The ratio of CPU ex-
ecution cost vs. that of opti-
mizer’s estimated cost.

Any point whose

y value is < 1 (blue

circles) is an improve-

ment in execution

cost, whilewhose value

is > 1 is a regres-

sion (orange ×). Note

that in ∼ 20–30%

cases, an estimated

improvement is a re-

gression, with sev-

eral instances where

a plan estimated to be

2–10× cheaper ends up with 2× or more regression. Hence,

using the optimizer’s cost estimates to enforce the no re-

gression constraint still results in significant regressions

compared to the existing configuration [10, 26, 28].

A cloud database provider, such as Microsoft Azure SQL

Database, can observe aggregated (and anonymized) execu-

tion statistics over millions of databases. When databases

are auto-indexed, we collect execution statistics for several

plans of the same query across different index configurations.

Given this huge execution data repository, we ask: How can
an index tuner effectively leverage this data to improve its
index recommendation quality in terms of execution cost?
OurApproach:Wepresent a design and implementation for

state-of-the-art index tuners [2, 19, 72] to effectively leverage

machine learning (ML) techniques to improve index recom-

mendation quality, i.e., leverage artificial intelligence (AI) to
improve automated indexing (AI). It is common to use exe-

cution history to train an ML model to predict execution

cost [5, 27, 31, 49] by formulating the problem as a regres-

sion task.
1
The index tuner can then use the ML model’s

predicted cost instead of the query optimizer’s estimated

cost. However, due to the huge diversity of queries, data

distributions, physical operator types, and index types, this

regression problem is challenging. Not surprising, all the

1
The machine learning regression task should not be confused with query

performance regression.

existing approaches for cost prediction report significant

errors when compared to true execution cost [5, 49, 68].

Our first key insight is that comparing execution cost

of two plans can be formulated as a classification task in ML.

Training a classifier to decide which plan has cheaper exe-

cution cost among a pair of plans results in higher accuracy

in contrast to using a (learned or analytical) cost model to

compare cost. While we present empirical evidence backing

this insight in Section 7.5, an intuitive explanation lies in the

error metric that each ML task minimizes. The ML regression

task minimizes the prediction error for each plan. If accurate,

such a model is much more general and versatile compared

to the classification approach. However, such models have

significant prediction errors in practice [5, 49, 68], which

could translate to significant errors in cost comparison. Sim-

ilarly, a regression model that learns ratio of execution cost

on pairs of plans minimizes the error for predicting ratios

instead of that for predicting comparisons. In contrast, the

classifier learns on pairs of plans and can directly minimize
the error metric that corresponds to comparison errors, which
results in significantly higher accuracy in practice.

We present the design space for this classification task:

(a) how to featurize query plans (i.e., trees of operators) into

vectors (Section 3); and (b) how to learn such a classifier (Sec-

tion 4). To leverage execution data collected from millions

of databases in the cloud, such as in Azure SQL Database,

we learn an offline model across the databases (Section 4.1).

An important assumption for ML models to perform well

is that the train/test data have similar distributions. As we

discuss in Section 4.2, such an assumption often does not

hold across queries within a database. The huge diversity

of schema, data distributions, and query workloads that a

cloud database service hosts makes it even more challenging.

We present a lightweight approach to adapt the offline cross-
database model to individual databases and workloads with

very little additional execution data from the new distribu-

tions (Section 4.3) that significantly improves accuracy over

the offline model. This adaptation addresses an important

challenge neglected by most applications of ML techniques.

We also present alternativemodeling techniques in Section 6.

Existing index tuners use the optimizer’s cost estimates to
be “in-sync” with the query optimizer [17, 25, 30, 65], i.e.,

ensure that the optimizer will use the indexes if implemented.

Our second key insight is that being “in-sync” with the op-

timizer only requires the tuner to use the plan the optimizer

will pick. We implement our technique in an prototype index

tuner for Azure SQL Database that builds on the concepts

described in literature [2, 17, 19, 65, 72]. We extend the tuner

to use the optimizer’s “what-if” API [18] to obtain plans for

hypothetical configurations and leverage the classifier to pre-

dict whether a query’s plan in a hypothetical configuration is

cheaper compared to that in the existing configuration (Sec-

tion 5). For a workload (i.e., a set of queries), we leverage the

classifier to enforce (with a high probability) the constraint
that no single query regresses and recommend a configura-

tion that minimizes the estimated cost of the workload.

In Section 7, we present a thorough evaluation of the

proposed techniques using a large collection of industry-

standard TPC benchmarks and real customer workloads. Our

experiments show that the classification-based approaches

have significantly higher F1 score in identifying the more

expensive plan from a plan pair, compared to several other

regression-based approaches as well as the query optimizer.

Our techniques reduce the errors in the plan pair compar-

ison by up to 5×, especially when train/test distributions

are similar. We observe that for this classification task, a

Random Forest trains over millions of data points in tens of

minutes on commodity servers, results in model size of tens

of megabytes, and has high prediction accuracy. An index

tuner augmented with the classifier has very few regressions

and has improvement comparable with the original tuner.

The overhead of using the model during tuning is negligible.

In summary, our work makes the following contributions:

• We present our key insight that training a classifier to

compare the cost of two plans (a common task in an index

tuner) can be more accurate than learning to predict the

cost for a plan and then comparing the cost.

• We present a technique to featurize query plans into vec-

tors and present a thorough study of model alternatives.

• We present a lightweight approach to adapt the models to

new execution data to tackle the scenario where train and

test data have different distributions.

• We show how an index tuner can use this classifier to sig-

nificantly improve its recommendations while still being

“in-sync” with the optimizer.

• Wepresent an extensive evaluation of our techniques using

a diverse collection of benchmarks and real workloads.

2 OVERVIEW
2.1 Index Recommendation
The problem of index recommendation is to find the best

configuration for a workload, often under a storage budget:

Problem Statement 1. Index tuning: Given a workload
W = {(Qi , si)}, where Qi is a query and si is its associated
weight, and a storage budget B, find the set of indexes or the
configuration C that fits in B and results in the lowest execution
cost

∑
i si · cost(Qi , C) forW, where cost(Qi , C) is the cost of

query Qi under configuration C.

Since the cost of query and the size of index are unknown

during index tuning, state-of-the-art index tuners use opti-

mizer’s estimates.

Index tuners can support additional constraints, such as

limit the number of recommended indexes. In particular, to

avoid query regression, we constrain cost(Q, C) ≤ (1 + λ) ·
cost(Q, C0) for all queries, where C0

is the database’s initial

configuration and λ is the regression threshold (e.g., 0.2).

In production systems, physical configurations are changed

incrementally and continuously to constrain the impact on

workload, limit the chances of major regressions, and adapt

to changing workloads. In this case, the index tuning is in-

voked iteratively to find the best indexes:

Problem Statement 2. Continuous index tuning: Given
the number of iterations K , a workloadW = {(Qi , si)}, where
Qi is a query and si is its associated weight, and a storage bud-
get B, find a sequence of configurations C1 · · · CK , where the
change in configuration Ck − Ck−1 fits in B at each iteration
k and

∑K
k=1

∑
i si · cost(Qi , C

k) results in the lowest execution
cost for W.

Since finding the optimal sequence of configurations re-

quires exhaustive search which is prohibitively expensive [3,

12], state-of-the-art index tuners greedily find the best Ck

at each iteration k . Similarly, we can limit the number of

indexes recommended per iteration and constrain that no

query regresses, i.e., cost(Q, Ck) ≤ (1+λ) · cost(Q, Ck−1) for

all queries Q and iterations k .

2.2 Classification Task
Given two query plans P1 and P2 for query Q chosen by the

query optimizer under configurations C1 and C2, our goal is

to predict if P2 is cheaper or more expensive in execution

cost compared to P1. Given configurable thresholds α1 >
0,α2 > 0, P2 is more expensive if ExecCost(P2) > (1 +

α1) · ExecCost(P1) and cheaper if ExecCost(P2) < (1 − α2) ·
ExecCost(P1), where ExecCost is the execution cost of a plan.
For simplicity, we use α1 = α2 = α which is usually set to

0.2 to specify the significance of the change.

We set up a ternary classification task as: given ⟨P1,P2⟩,

assign label regression if P2 is more expensive, improve-
ment if P2 is cheaper, and unsure otherwise. A binary clas-

sifier that flags regression or non-regression is sufficient to

enforce no regression constraint, a ternary classifier supports

additional properties for single query tuning (see Section 5).

We assign labels by comparing the logical execution cost

of plans, e.g., the CPU time or number of bytes processed.

Such logical execution cost is more robust to runtime effects,

such as concurrency, compared with a physical measure (e.g.,

latency). Due to measurement variance or different param-

eters for a query template, we assign labels with a robust

statistical measure, e.g., the median of several executions.

Aggregated execution stats

Application requests

Cross-database
offline model

Deploy
model

Execution History

Query
Optimizer

DBMS Engine

Query
Execution

Metadata

Index Tuner

Classifier

Search Algorithm

Query-level

Workload-
level

Q, CH

<P1, P2>

Regress,
Improve

Cloud Database Service

PH

“what-if” API

Figure 2: Overview of an architecture leveraging the
classifier trained on aggregated execution data from
multiple databases in a cloud database service.

2.3 Architecture
Figure 2 illustrates the end-to-end architecture of an in-

dex tuner leveraging aggregated execution data in a cloud

platform, such as Azure SQL Database. Databases emit ag-

gregated query plan execution statistics through telemetry.

These statistics include the featurized plans (see Section 3.2)

from different index configurations, which happen naturally

as indexes are changed by human administrators or auto-

mated services [24, 52]. Plans of the same query are identified

with a unique query hash generated by Azure SQL Database

from the abstract syntax tree. Using different plans for the

same query, we construct the pairs that provide the final fea-

ture vectors (see Section 3.3) and use plans’ execution cost

to assign the class label. We train a classifier by aggregating

this data across databases, which corresponds to the offline
model (Section 4.1). This offline model is then deployed for

the index tuner to use during its search for index config-

urations (Section 5). The application’s queries execute in

parallel to the index tuner implementing its indexes, similar

to the auto-indexing service in Azure SQL Database [24].

These new configurations result in additional execution data

collected local to each database. We adapt the model to each

database (Section 4.3) by retraining the adaptive model on

these additional data at each invocation of the index tuner.

3 FEATURIZING QUERY PLAN PAIRS
3.1 Rationale
The input to the classification task is a pair of query plans,

where each query plan is a tree of operators. Off-the-shelf

ML techniques rely on feature vectors of fixed dimensions.

Hence, we need to convert the pair of query plans into fea-

ture vectors. Several approaches exist to convert graphical or

tree-structured data into vectors [33, 71]. While being more

general purpose, such approaches do not leverage informa-

tion specific to database semantics and critical for execution

cost that query plans encode, e.g., operator type, parallelism,

execution mode, etc. To better leverage such information, we

develop a featurization, inspired by other approaches used

for DB applications (e.g.,[5, 31]), that is efficient and results

in models with high accuracy. While some featurization as-

pects leverage the details of SQL Server, we expect the key

ideas are applicable to other database engines.

We use the following guiding principles to encode the

semantics of the query plans and other factors that contribute

to execution cost in our featurization:

• Learn across queries and databases: Be schema agnos-

tic to allow cross-database learning, leveraging execution

data from millions of databases in a cloud platform.

• Learn from the optimizer: Leverage the valuable infor-
mation presented in query plans generated by industrial-

strength query optimizers.

• Learn from information in estimated query plans:
The index tuner can search for configurations that have

never been implemented. Thus, execution statistics, such

as true cardinalities, are rarely available at inference time.

Featurization should not use such information.

In addition to the above principles, the feature vectors should

encode the following key types of information that provide

a way for the model to learn the classification task:

• Measure of work done: The query optimizer’s estimate

for an operator’s cost or the number of rows processed by

an operator are example features for this measure.

• Structural information: Join orders or the position of

an operator in the plan is often useful, especially when

comparing two plans for the same query.

• Physical operator details: Physical operators in a plan

play a crucial role in the cost. For instance, a nested loop

join will have very different cost compared to a merge join

even if they correspond to the same logical join operator.

We assume all execution data is collected on similar hard-

ware; extensions to heterogeneous hardware is future work.

3.2 Featurizing a Plan
Guided by our principle of being able to learn across plans,

queries, and databases and our goal of capturing physical

operator details, we use the physical operators supported

by SQL Server as our feature dimensions or attributes.

SQL Server supports a set of physical operators (such as

Index Scan, Table Scan, Hash Join, etc.) which are known in

advance and also do not change very frequently. A query

plan is a tree of these physical operators. Two additional

properties of physical operators are relevant to execution

cost: (a) parallelism: whether the operator is single-threaded

(serial) or multi-threaded (parallel); and (b) execution mode:
whether the operator processes one row at a time (row
mode) or a batch of data items in a vectorized manner

(batch mode). Each operator is assigned a key of the form

Table 1: Example feature channels with different ways
of weighting nodes encoding different types of infor-
mation. All estimates are from the query optimizer.

Channel Description

EstNodeCost Estimated node cost as node weight (work done).

EstRowsProcessed Estimated rows processed by a node as its weight (work done).

EstBytesProcessed Estimated bytes processed by a node as its weight (work done).

EstRows Estimated rows output by a node as its weight (work done).

EstBytes Estimated bytes output by a node as its weight (work done).

LeafWeightEst-
RowsWeightedSum

Estimated rows as leaf weight and weight sum as node weight

(structural information).

LeafWeightEst-
BytesWeightedSum

Estimated bytes as leaf weight and weight sum as node weight

(structural information).

⟨Physical Operator⟩_⟨Execution Mode⟩_⟨Parallelism⟩.

Execution mode is either Row or Batch, and paral-

lelism is either Serial or Parallel. Examples of such

keys are ⟨Seek_Row_Serial⟩, ⟨HashJoin_Row_Serial⟩,

⟨Scan_Batch_Parallel⟩, etc. Since the set of physical

operators is fixed, the set of keys is also fixed.

For a given query plan, we assign a value to each key

which: (i) measures the amount of work done by the cor-

responding operators in the plan; (ii) encodes structural

information. In a plan with multiple operators having the

same key, we sum up all the values assigned to the key. If an

operator does not appear in a plan, we assign zero to the cor-

responding key, allowing a fixed dimensionality of the vector.

Different ways of assigning a value to an operator encode

different information and create different feature channels.
Table 1 lists the different feature channels, how the weights

are computed, and what information they encode. Each chan-

nel has the same dimensionality. Since channels in Table 1

have some redundancy, a subset of channels, usually two or

three, are sufficient as long as we pick channels that encode

a measure of work and structural information. We also use

the optimizer-estimated plan cost as a feature.

Table 1 shows various ways to encode the amount of work

done by an operator, such as using the optimizer’s estimate

of the node’s cost (EstNodeCost) or the estimated bytes pro-

cessed by the node (EstBytesRead). The channels withWeight-
edSum suffix encode some structural information even in the

flattened vector representation. We assign a weight to each

node which is computed recursively from the leaf nodes in

the plan to the root. Each leaf node has a weight, e.g., esti-

mated number of rows output by the node. Each node has a

height, i.e,. starting with 1 for the leaves and incremented

by 1 for each level above the leaf. The value of a node is the

sum of weight × height of all its children. Structural changes

in the plan, e.g., join order change, will likely result in differ-

ent children weights and potentially node heights (e.g., see

Figure 4), thus resulting in different feature vectors.

Figure 3 gives an example of our featurization for a simple

query plan shown in Figure 3(a). The plan joins three tables

Hash Join
(HJ)

Est Cost: 35
Est Rows: 200

Serial
Row
Mode

Hash Join
(HJ)

Est Cost: 20
Est Rows: 200

Serial
Row
Mode

Index Seek T1

Est Cost: 10
Est Rows: 200

Serial
Row
Mode

Index Scan T2

Est Cost: 30
Est Rows: 1000

Serial
Row
Mode

Index Scan T3

Est Cost: 50
Est Rows: 1000

Serial
Row
Mode

(a) Example query plan.

Seek_Row_Serial 10

Scan_Row_Serial 80

HJ_Row_Serial 55

NLJ_Row_Serial 0

MJ_Row_Serial 0
… …

EstNodeCost

Seek_Row_Serial 200

Scan_Row_Serial 2000

HJ_Row_Serial 4600

NLJ_Row_Serial 0

MJ_Row_Serial 0
… …

LeafWeightEstRows
WeightedSum

(b) Feature channels for the plan.

Figure 3: An example of encoding a query plan into a
vectorized representation called feature channels.

Plan P1

Plan P2

Seek_Row_Serial 10
Scan_Row_Serial 80
HJ_Row_Serial 55
NLJ_Row_Serial 0
MJ_Row_Serial 0
… …
EstNodeCost

(P1)
EstNodeCost

(P2)

Seek_Row_Serial 30
Scan_Row_Serial 30
HJ_Row_Serial 55
NLJ_Row_Serial 0
MJ_Row_Serial 0
… …

Seek_Row_Serial 20
Scan_Row_Serial -50
HJ_Row_Serial 0
NLJ_Row_Serial 0
MJ_Row_Serial 0
… …

EstNodeCost
(P2 – P1)

Seek_Row_Serial 200
Scan_Row_Serial 2000
HJ_Row_Serial 4600
NLJ_Row_Serial 0
MJ_Row_Serial 0
… …

LeafWeightEst
RowsWeighted

Sum (P1)

LeafWeightEst
RowsWeighted

Sum (P2)

Seek_Row_Serial 1200
Scan_Row_Serial 1000
HJ_Row_Serial 6200
NLJ_Row_Serial 0
MJ_Row_Serial 0
… …

Seek_Row_Serial 1000
Scan_Row_Serial -1000
HJ_Row_Serial 1600
NLJ_Row_Serial 0
MJ_Row_Serial 0
… …

LeafWeightEstRows
WeightedSum

(P2 - P1)

Hash Join
(HJ)

Est Cost: 35
Est Rows: 200

Serial
Row
Mode

Hash Join
(HJ)

Est Cost: 20
Est Rows: 200

Serial
Row
Mode

Index Seek T1

Est Cost: 10
Est Rows: 200

Serial
Row
Mode

Index Scan T2

Est Cost: 30
Est Rows: 1000

Serial
Row
Mode

Index Scan T3

Est Cost: 50
Est Rows: 1000

Serial
Row
Mode

Hash Join
(HJ)

Est Cost: 35
Est Rows: 200

Serial
Row
Mode

Hash Join
(HJ)

Est Cost: 20
Est Rows: 1000

Serial
Row
Mode

Index Seek T3

Est Cost: 20
Est Rows: 1000

Serial
Row
Mode

Index Scan T2

Est Cost: 30
Est Rows: 1000

Serial
Row
Mode

Index Seek T1

Est Cost: 10
Est Rows: 200

Serial
Row
Mode

Figure 4: Example of combining the individual plan
features into a feature vector for the pair by using
a channel-wise difference. Join order change (a struc-
tural change) is reflected in the values for channels
ending with WeightedSum.

and returns their result, executing single-threaded in row

mode. Each node is also annotated by the physical operator

being used as well as some optimizer-estimated measures,

such as estimated node cost, estimated rows, etc. Figure 3(b)

shows how two example channels are computed using the

raw values obtained from the plan. Consider the EstNodeCost
channel, it uses the optimizer-estimated node cost as the

weight and sums the weights of the same key in the plan. For

instance, the keys ⟨Scan_Row_Serial⟩ corresponds to two

operators and the weight in Figure 3(b) for this key is the

sum of the weight, 50 and 30, of each operator.

3.3 Featurizing a Pair
After featurizing individual plans, we combine their features

to encode a pair of plans ⟨P1,P2⟩. A key insight driving this

combination is that the classifier is conceptually learning

to find the difference between the plans. If we rewrite the

expression in Section 2, a regression label is assigned is if:

ExecCost(P2) − ExecCost(P1)

ExecCost(P1)
> α (1)

Empirically, we observe that if the featurization mimics this

mathematical transformation used to assign labels, it im-

proves the model’s prediction performance compared to just

concatenating the selected channels from both plans.

The first mathematical transformation we consider is com-

puting an attribute-wise difference among the corresponding

channels from P1 and P2; we refer to this transformation

as pair_diff. Figure 4 illustrates this process for a pair of

plans using the EstNodeCost and LeafWeightEstRowsWeight-
edSum channels. To further mimic the formula (1), a different

transformation is to compute the attribute-wise difference

for each channel and then divide it by the corresponding

attribute in P1. We call it pair_diff_ratio. To overcome the

challenge where many attribute values in a channel might

be zero, we clip values to a large enough value (e.g., 10
4
) on

division by zero; such clipping is commonly-used in ML [32].

An alternative to avoid the need of clipping is to use a differ-

ent denominator. For every channel, we compute the sum of

the values of all attributes and use it as the denominator and

the attribute-wise difference as the numerator. We refer to

this transformation as pair_diff_normalized.

4 LEARNING THE CLASSIFIER
4.1 Offline Model
Once the query plan pairs have been featurized as described

in Section 3, we can use off-the-shelf ML packages to train

the classifier. The simplest approach is to use linear or tree

models to train one offline model. This offline model can

be per-database or even a global model for all databases.

Among linear learners, we picked Logistic Regression (LR)
for its simplicity and training speed. Among the tree-based

techniques, we tried two broad categories of models, both

of which are ensemble of trees: (a) bagging ensembles such

as Random Forest (RF) [9]; (b) boosting ensembles such as

Gradient-boosted Trees (GBT) [21] and Light GBM with

gradient-boosted decision trees (LGBM) [42].

4.2 Need for Adaptation
A crucial assumption for ML models to perform well is that

the train and test data follow the same distribution in the

feature space. This assumption often does not hold in our

setting, because train/test data distributions differ across

databases and even within a database across queries. This is

empirically confirmed by our analysis on a large collection

of benchmarks and customer workloads (see Section 7.7).

There are three major reasons for these differences. First,

in a cloud platform where a huge variety of new applications

get deployed every day, the execution data on a new database

can be completely different from that observed for existing

databases. Second, within a database, there is huge diversity

in the types of queries executed (e.g., the joins, predicates,

aggregates), and changing indexes adds even more diversity.

Third, even with databases where several plans of a query

have executed, these plans often represent a tiny fraction

of the alternatives considered during the tuner’s search. For

complex queries, the tuner may explore hundreds of different

configurations that may result in tens of very different plans.

The featurized representations of these unseen plans can be

significantly different from the executed ones.

Preparing for unseen data is a necessity in our setting.

While the offline models can be periodically retrained with

new data and redeployed in a cloud platform, given the scale

of the infrastructure, such as Azure SQL Database, the re-

training and redeployment will be infrequent (e.g., once a day

or even less frequent). Thus, a model that quickly adapts to

new execution data in a database is invaluable for automated

indexing which continuously tunes and changes indexes.

4.3 Adaptive Model
A simple approach to adapt a model to a database is to learn

a local model with execution data only from that database

and use it for prediction. This local model is lightweight,

usually trained on hundreds or a few thousands of plans,

and is orders of magnitude cheaper than retraining the of-

fline model with the new data. However, the local model is

only trained on a small amount of execution data from a

database, and it can overfit and generalize poorly to unseen

queries and plans even from the same database. Completely

ignoring the offline model trained from millions of plans

on other databases can be problematic especially when the

execution data from this database is insufficient. Thus, we

explore approaches to combine the offline and local models.

Nearest neighbor:We observe that ML models have higher

prediction accuracy for points which are in the neighborhood

(in feature space) of training data. This is because data points

with similar feature values likely have similar labels. Thus,

for each data point d , if the local model has trained with data

in d’s neighborhood, we can use the local model to predict;

otherwise, we use the offline model. This approach requires

us to tune the distance threshold parameter for neighborhood

and adds the overhead of finding the neighbors.

Uncertainty:ML models often expose an uncertainty score

where lower uncertainty corresponds to a higher probability

of correct prediction [9]. Thus, another approach is to use

uncertainty scores from the local and offline models, and

picks the prediction with lower uncertainty. While intuitive,

the semantics and robustness of these uncertainty scores are

model-specific and can be a weak indicator.

Meta model: Nearest neighbors and uncertainty provide

weak signals about which of the online and offline models

is more likely to predict correctly for a given data point.

Finding appropriate thresholds and combinations of these

signals to make the choice is itself a learning problem. Hence,

instead of manually tuning these thresholds, we formulate

a meta learning problem where we train a meta model to
use predictions from both the models, the uncertainty, and

neighborhood as features to make the final prediction.

We use the local execution data collected on a database

to train the meta model Mmeta . We split the data into two

disjoin sets Dl and Dm . We use Dl to train the local model

(Mlocal) and use Dm to train the meta model (Mmeta); the

offline modelMof f l ine is trained with execution data from

other databases. We extractmeta features for each data point

d in Dm , such as the predictions ofMof f l ine andMlocal for d ,
the corresponding uncertainty scores, and the distances and

labels of close neighbors of d inDl . With these meta features,

we train a Random Forest on Dm . Both Mlocal and Mmeta
are retrained as new execution data becomes available.

5 INTEGRATIONWITH INDEX TUNER
Section 2.3 describes the overall end-to-end architecture of

an index tuner leveraging the aggregated execution statistics.

We now describe in detail how to integrate a classifier into

the index tuner. The model, trained with a pre-specified

thresholdα , supports two APIs: (i) IsImprovement (P1,P2);

and (ii) IsRegression (P1, P2); where P1 and P2 are plans

for query Q. This interface is independent of the model type

or whether it is the offline or adaptive model.

We implement an index tuner similar to state-of-the-art

tuners [2, 17, 65]. Given a database D, a workload W, an

initial configuration C0
when the tuner is invoked, and

constraints such as the maximal number of indexes recom-

mended, a storage budget, or no query regresses compared

to its cost in C0
, the tuner recommends a new configuration

CR
to minimize the total query optimizer-estimated cost of

W subject to these constraints. The tuner has two major

phases: (a) a query-level search to find the optimal config-

uration for each query Q ∈ W; and (b) a workload-level
search to find the optimal configuration for W by enumer-

ating different sets of indexes obtained from phase (a).
We retain the tuner’s use of the “what-if” API to obtain

the plan PH
for a hypothetical configuration CH

to be “in-

sync” with the optimizer [18]. For query-level search, we use

IsRegression to enforce the no regression constraint. The

tuner only considers a hypothetical configuration CH
as a

candidate configuration for query Qi if IsRegression(P
0

i ,

PH
i) is false, where PH

i is the plan in CH
and P0

i is the

plan for the initial configuration C0
. Optionally, the tuner

can only consider configurations that are predicted to im-

prove execution cost. That is, it will update the cheapest

configuration C it has searched so far and the corresponding

plan Pi to CH
and PH

i if IsImprovement(PH
i , Pi) is true.

Since the classifier is trained with α > 0 (e.g., 0.2), for cer-
tain plan pairs, both IsImprovement and IsRegression
could return false, which corresponds to the unsure class of
insignificant difference in execution cost. In such cases, the

tuner uses a cost model, e.g., the optimizer.

Similarly, forworkload-level search, we use IsRegression
API to enforce the no regression constraint for each Q ∈ W.

That is, the tuner searches for configuration CH
that mini-

mizes the optimizer’s estimated cost of W and also satisfies

that IsRegression (P0

i , P
H
i) is false for all Qi ∈ W.

6 DESIGN ALTERNATIVES
6.1 Alternative Learning Tasks
While we focus on training a classifier to predict query re-

gressions, an alternative is to use an ML regression model.

We consider three types of regressors: (a) an operator-level
regressor that given a plan, estimates the execution cost of

each operator and then determines the plan’s execution cost;

(b) a plan-level regressor that learns to predict the execu-

tion cost of a plan; (c) a plan pair regressor that given a

pair of plans ⟨P1,P2⟩, learns to predict the ratio
ExecCost(P2)

ExecCost(P1)
.

The regressors (a) and (b) estimate execution cost and can

be used for other applications including comparing plans

and workload costs. The regressor (c) is more specific to

comparing plans, but can support any threshold α , while our
classifier needs to be trained for a pre-specified α .

We use the operator-level model proposed by Li et al. [49]

for the regressor in (a). We ensure that our implementation

has comparable performance to that reported in the paper.

The plan-level regressor (b) is similar to Akdere et al. [5]

adapted to our setting. We use the feature channels described

in Section 3.2 as they are more comprehensive for the com-

plex execution model and class of operators in SQL Server.

The plan-pair regressor (c) uses the featurization in Sec-

tion 3.3. Since there can be several orders of magnitude dif-

ference in values of the ratio, to make the learning problem

easier and minimizing the L1 error meaningful, we label the

pairs as log(
ExecCost(P2)

ExecCost(P1)
). In addition, since for comparing

plans, we usually care for α in the range of 0.2 to 0.3, we clip
the ratio to be in the range of 10

−2
to 10

2
.

6.2 Alternative Classifiers
6.2.1 Deep Neural Networks. Over the past decade, Deep
Neural Networks (DNNs) have achieved success with com-

plex cognition tasks, e.g., object detection, tracking, etc [32].

Hence, it is natural to explore if DNNs can provide a signifi-

cant improvement in prediction performance compared with

ML techniques in Section 4. Moreover, theoretically DNNs

can learn non-linear functions on the input features [36, 37],

which could potentially complement our featurization.

200

189

98

103

…

4

10

85

0

-10

…

23

30

30

0

10

…

5

Figure 5: A partially-connected DNN architecture.

Since DNNs cannot automatically featurize query plans,

we use the same featurization of plans in Section 3 as the in-

put. Since there are no well-known network architectures for

our problem, we explored a variety of network architectures:

Fully-connectednetworks.We start with a fully-connected

network architecture: all neurons in a layer receive inputs

from all neurons in the previous layer. Each neuron uses a

non-linear activation [32], and the output layer uses a soft-

max activation to learn class labels using one-hot encoding.

We configure the network to maximize categorical cross

entropy. Because our featurization can have hundreds of di-

mensions, the number of trainable parameters grows rapidly

to hundreds of thousands with more layers and the training

becomes prohibitively expensive. We further observed that

the prediction performance of such a network was low even

on the training data, in spite of tens of hidden layers.

Partially-connected networks. To reduce the number of

trainable parameters, we design a novel partially-connect-
ed network architecture. Our key intuition is that when

learning to compare plans, it is more meaningful to compare

similar operator types (or the same keys in our featurization

in Section 3.2) across different channels. For example, when

comparing two plans with joins, it is natural to compare the

values of hash joins in both plans instead of hash join in one

plan and index scan in another. As shown in Figure 5, by

removing cross-key connections in early layers, a partially-

connected network can first learn to combine values within

a key. The last layer in the partially-connected part reduces

to one neuron per key, followed by fully-connected layers to

learn to combine different keys for the final prediction.

Training deeper networks. While deeper networks can

learn more complex functions in theory [32, 36, 37], the

difficulty in training them properly can lead to worse per-

formance compared to shallower networks [32, 35, 59]. This

challenge comes from: (i) propagating gradients backwards

across layers of non-linear activations; and (ii) vanishing
gradients (i.e., gradients become infinitesimally small).

We faced the same challenge and found two techniques

effective for combating the issue: skip connections [35] and

highway networks [59]. We incorporated these techniques

into the fully-connected layers in our partially-connected

network architectures.

6.2.2 Hybrid of DNN and Tree. The hidden layers of DNNs

can be conceptually viewed as learning a function to com-

bine the input feature vector into a latent representation,

i.e., the output of the last hidden layer. The output layer

then learns a model using the latent representation. For the

classification task, the output layer is often equivalent to Lo-

gistic Regression (when using either the sigmoid or softmax
activation for the output layer). We explore the design of a

Hybrid DNN where the output layer of a DNN is replaced

by a more advanced model, e.g., a Random Forest (RF). We

stack an RF over a DNN to use the featurization power of the

DNN with RF’s ability to efficiently learn complex rules. We

first train the DNN as before and then train the RF by taking

the output from the last hidden layer of the DNN as the new

input. At inference time, we first use the DNN to infer with

the input and then feed the output of its last hidden layer

into the RF for the final prediction.

6.2.3 Adapting DNNs. To adapt the DNN models to new

data distribution, we use transfer learning [53] to transfer

the knowledge from the offline model and customize the

predictions to a specific database. We initialize a DNN with

pre-trained weights from the offline model. We then retrain

the weights of the output layer (or the last a few layers) with

back-propagation on the new training data, while freezing

the weights of the other hidden layers. This training is fast

since the amount of additional training data is small. For

individual DNNs explored in Section 6.2.1, we only retrain

the output layer. For Hybrid DNN in Section 6.2.2, since the

stacked RF is essentially equivalent to the output layer, we

retrain the RF while freezing the weights of the DNN.

7 EXPERIMENTAL EVALUATION
The major facets our evaluation focuses on are:

• Regression vs. classification: evaluate whether a clas-
sifier is more accurate than a regressor for the task of

comparing plans. We observe between 2 × −5× reduction in
fraction of errors for picking the cheaper one between a pair
of plans when using the classifier compared to using other
learned or analytical models to predict cost or cost ratio.

• Offline model: evaluate the performance and trade-offs

of different ML techniques for offline learning across data-

bases, queries, and plans. We find that overall the RF-based
models outperform others in accuracy and training efficiency.

• Need for adaptation and adaptive model: empirically

quantify the need and the benefits for adapting to un-

seen databases and queries.We observe that the lightweight
adaptive strategies are effective in reducing the fraction of

Table 2: Aggregate statistics about the schema and
query complexity of the workloads.

Workload
DB size

(GB)
#

tables

#
queries

Avg.
joins Total

Plans

Max
Plans
/ Query

Plan
Pairs

TPC-DS 10g 11.2 24 92 7.9 3, 500 166 200, 825
TPC-
DS 100g

87.7 24 92 7.9 3, 714 139 211, 541

TPC-H 10g
Zipf

12.1 8 22 2.8 299 44 6, 986

TPC-H 100g
Zipf

132 8 22 2.8 306 49 6, 600

Customer1 87.7 20 111 5.9 4, 669 114 144, 474
Customer2 1723 23 34 7.2 2, 364 174 214, 842
Customer3 44.6 614 32 8.1 584 50 17, 926
Customer4 1.2 8 125 1.6 2, 539 139 153, 752
Customer5 283 3, 394 35 7.2 2, 041 170 133, 671
Customer6 9.9 474 311 21 18, 677 140 865, 125
Customer7 93 22 23 5.2 841 82 37, 157
Customer8 0.25 129 474 1.1 3, 746 135 82, 738
Customer9 48.7 7 15 2.2 76 18 680

Customer10 17.0 32 10 8 242 46 7, 854
Customer11 7.2 81 399 0.8 2820 74 19, 257

errors in plan comparison by up to 2× with a tiny fraction
of newly-labeled plans from the unseen database.

• Improvement in index recommendations: quantify the
end-to-end recommendation improvement in execution

cost by using the classifier. We observe that augmenting
the index tuner with the model eliminates most regressions
while preserving or even boosting the improvement.

In Appendix A, we present additional experiments on pro-

duction data, feature sensitivity, different DNN architectures,

and index recommendation quality with different models.

7.1 Metrics
Wemeasure the classifier’s prediction quality using Precision,

Recall, and F1 score [9]. These metrics are robust to skew in

distribution of classes. For the regression class, plan pairs

labeled with that class are considered positives while others

are negatives. For a given test set of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN),

Precision is (
T P

T P+F P), i.e., the model’s accuracy of positive

prediction; Recall is (
T P

T P+FN), i.e., the model’s coverage in

correctly predicting the positives; F1 score is the harmonic

mean of precision (P) and recall (R) (
2PR
P+R).

7.2 Workloads
We use a diverse collection of workloads including industry-

standard benchmarks, such as TPC-H [64] and TPC-DS [63],

and elevenworkloads from customers of SQL Server. For TPC

benchmarks, we use two different scale factors, 10 and 100,

which share query templates but use different parameters,

data sizes, and distributions. For TPC-H, we use a skewed

data generator [54] instead of uniform, which makes cost

estimation more challenging. Table 2 summarizes the key

statistics of the workloads which comprises of SELECT only.

7.3 Experimental Setup
To thoroughly evaluate the models in the huge search space

a tuner explores, we study the models in isolation by simulat-

ing plan pair cost comparisons outside the tuner. Our training

and test data is derived from workloads in Table 2. Since our

goal is to improve index recommendations, we collect exe-

cution data for a diverse set of index configurations. We use

index recommendations generated by the tuner (without the

ML model) for individual queries in the workload. To simu-

late the configurations and plans during the tuner’s search,

we construct different subsets of indexes from the tuner’s

recommendation. We implement those indexes, execute the

queries in isolation with data entirely in-memory, and record

query plans and execution cost, e.g., CPU time. We use the

median CPU time over several executions for labeling. To

simulate different initial database configurations (the input

C0
to the tuner), we use different initial indexes, e.g., with-

out any indexes, with B+ tree indexes, and with columnstore

indexes. Table 2 summarizes the statistics of the execution

data, such as the number of plans, the number of plan pairs,

etc. For complex queries, there can be hundreds of plans

due to hundreds of index subsets from a large set of indexes

recommended by the tuner. We also evaluate the models

with production data in Appendix A.1, where the execution

data is collected passively as described in Section 2.3.

Since the task is to compare plan costs, we construct our

data set as pairs of plans ⟨P1,P2⟩ for the same query Q. We

split the data in different ways to construct the train/test sets.

(i) Pair: split the union of all plan pairs into disjoint sets; (ii)
Plan: split the set of plans into two disjoint sets of plans from
which the pairs are constructed. Plans in test are different

from plans in training, simulating the setup where during

the tuner’s search, the model is used to infer on new plans

for new configurations. (iii) Query: split the set of queries
into two disjoint sets, and use the plans corresponding to

queries in each set to construct the pairs. This corresponds to

inference on new queries that did not appear in training. (iv)
Database: the test set is an unseen database for which no

queries or plans appear in training. With these approaches

of splitting, the train/test distributions become increasingly

different, with most similarity for Pair and least for Database.

For splitting by pair, plan, and database, we randomly split

train/test and repeat the experiment five times; since there

is more diversity among queries, for splitting by query, we

repeat the experiment ten times. We report the average F1

score for the regression class; the F1 score for the improve-

ment class is comparable. The Precision and Recall num-

bers are close to the F1 score in most cases and are omitted

for brevity. Unless otherwise stated, we use the EstNode-
Cost, LeafWeightEstBytesWeightedSum feature channels and

pair_diff_normalized to combine features of a plan pair.

7.4 Hyper-parameter Tuning
We use standard cross-validation to tune hyper-parameters.

Following are the hyper-parameters for tree-based tech-

niques: (i) Number of trees in the ensemble. We vary

the number of trees from 50 to 400 and observe very lit-

tle change in F1 score. (ii) Regularization. (a) minimum

number of samples in a leaf node (i.e., 1), and (b) early stop-

ping threshold that will prevent node splitting if the Gini

impurity [9] is below a threshold (i.e., 10
−6
).

We report themost significant hyper-parameters for DNNs:

(i) Activation function. We find tanh activation results

in much better training and prediction accuracy compared

to ReLU [32, 34, 35], Leaky ReLU [32], or Parameterized
ReLU [34]. (ii) Initialization.We find a clipped normal dis-

tribution [34] as the most effective initialization strategy for

weights, with biases initialized to zero. (iii) Regularization.
We use two regularization techniques: (a) dropout regulariza-
tion (with dropout ratio of 0.2); and (b) L2 regularization of

the weights (with a regularization factor of 10
−3
). (iv) Learn-

ing rate.We find using an adaptive learning rate to be more

effective than using a fixed learning rate. We start with a

learning rate of 0.01 and then once the loss does not improve

over several epochs, e.g., hit a plateau or a saddle point, we

halve the learning rate. We allow up to 10 such adaptations.

(v) Optimizer.We use the Adam optimizer [45].

7.5 Regression vs. Classification
We now empirically evaluate our key insight that a classifier

is more accurate in predicting regressions or improvement

compared to models predicting execution cost or cost ratios.

We compare the regressors discussed in Section 6.1 with the

classifier using the query optimizer’s cost estimates. For the

plan-level model (Plan Model), we tune hyper-parameters

and choose the model configuration with the least L1 loss
(|EstCost −ActualCost |) in cross-validation, i.e., an RF-based

model with 250 trees and feature channels EstNodeCostSum,
EstDataSizeReadSum, LeafWeightEstBytesWeightedSum. The

plan pair model (Pair Model) uses a GBT-based model with

250 trees and the same feature channels as Plan Model, and
the plans are combined using pair_diff_ratio. For the clas-

sifier (Classifier), we use an RF-based classifier as a repre-

sentative among classifiers we have studied. We use 250

trees and feature channels EstNodeCostSum, LeafWeight-
EstBytesWeightedSum where the plans are combined us-

ing pair_diff_normalized. All the models are trained using

ML.NET [51]. The operator-level model (Operator Model) is
implemented as described in Section 6.1.

Figure 6 reports the F1 score for different approaches. In

each cluster of bars, Optimizer uses the optimizer’s estimates

to compare, the second to fourth bars correspond to the differ-

ent regressors, and the last bar corresponds to the classifier.

0.75 0.75

0.59 0.56

0.81
0.75

0.85
0.78

0.96

0.85

0.5

0.6

0.7

0.8

0.9

1

Plan Query

F1
 S

co
re

Train/Test Split Mode
Optimizer Operator Model Plan Model Pair Model Classifier

Figure 6: F1 score of different approaches to compare
execution costs of a pair of plans.

Table 3: Segmented F1 score for different models, i.e.,
Optimizer (O), Pair Model (P), and Classifier (C), with
the best F1 score for each segment in bold.

Diff Ratio 0.2 − 0.5 0.5 − 1 1 − 2 > 2
Plan Cost O P C O P C O P C O P C

0-25% 0.70 0.84 0.84 0.74 0.92 0.93 0.85 0.96 0.97
25-50% 0.53 0.71 0.75 0.63 0.87 0.89 0.73 0.92 0.94 0.92 0.97 0.99
50-75% 0.53 0.77 0.84 0.62 0.90 0.93 0.71 0.95 0.97 0.92 0.98 0.99
75-100% 0.50 0.70 0.81 0.57 0.86 0.89 0.67 0.93 0.94 0.92 0.96 0.99

Different clusters correspond to how the train and test data

are split, i.e., split by Plan or Query. The train set has 60% of

the plans or queries, while the test set has the remaining 40%.

As is evident, the classifier’s F1 score is significantly higher

compared to any other model. In particular, compared with
the query optimizer, which is used in state-of-the-art index
tuners, for unseen plans, the classifier remarkably increases
the F1 score by 21 percentage points, equivalent to about 5×
reduction in the error. For unseen queries, which is a much
harder problem to predict, the classifier still improves over the
optimizer by 10 percentage points, i.e., almost 2× reduction
in error. Moreover, the classifier is much more accurate com-
pared to any of the regressors. Interestingly, the operator-level
model has a significantly lower F1 score compared to the

plan-level model, even though it has significantly lower L1
error in CPU cost estimation. This is further evidence for

our observation that the ML models need to be trained to

minimize the loss function that directly impacts the applica-

tion, e.g., plan cost comparison in our setting. Even if the L1
error for individual plans may be low, the errors might be in

opposite directions or large enough to result in an incorrect

comparison outcome. Similarly, even if the L1 error for cost
ratio may be low, the predicted ratio can still be opposite in

direction and result in incorrect comparison prediction.

The averaged F1 score does not differentiate the errors by

how expensive a plan is or how significant the regression

is, while an error in more expensive plans or more signifi-

cant regressions are worse than cheaper plans and smaller

regressions for index tuning. Thus, we break down the re-

sult by splitting the data into segments by the percentile

of the cost of a plan pair (Plan Cost, i.e., cost1 + cost2) and

.75 .75 .75.73 .71 .68

.98 .96

.85

.94 .93

.84
.89 .89 .89.92 .92 .92

0.5

0.6

0.7

0.8

0.9

1

Pair Plan Query

F1
 S

co
re

Train/Test Split Mode
Optimizer LR RF LGBM DNN Hybrid DNN

Figure 7: Comparison of different modeling tech-
niques for the classification task.

the ratio of plan cost difference of a plan pair (Diff Ratio,

i.e.,max(cost1, cost2)/min(cost1, cost1) − 1). We compare the

performance of all the models and report three of them due

to space limit: Optimizer (O), Pair Model (P), and Classifier
(C). We choose the Pair Model since it has the best F1 score
among the three regressors presented earlier. Table 3 shows

the segmented F1 score, with the best F1 score in bold for

each segment. As is evident, the classifier outperforms the

other models in all segments, especially when the cost differ-

ence ratio is small to moderate, i.e., < 1. In Appendix A.2, we

simulate the workload cost with models’ predictions. Again,

using the classifier results in the lowest workload cost.

7.6 Offline Model
We compare the performance of all the classes of models we

consider in the paper (see Section 4.1 and Section 6.2): Logis-

tic Regression (LR), Random Forest (RF), Gradient-boosted

methods (LGBM), Deep Neural Networks (DNN), and the

hybrid of DNN and RF (Hybrid DNN). Here we report the

test F1 score of the models with best cross-validation F1

score. The tree and linear models are trained using the scikit-

learn library [57] while the DNN models are trained using

Keras [43] on Tensorflow [1]. The scikit-learn models are

similar in performance to the ML.NET models used earlier.

Figure 7 reports the performance of the different classifiers

with different modes of splitting the train and test data: Pair,

Plan, and Query. The tree-based models use 400 trees, and

the RF model uses a Gini improvement threshold of 10
−6
.

The DNN is a partially-connected network with 3 hidden

layers for the partially-connected part, 12 hidden layers for

the fully-connected part, and 64 neurons per hidden layer.

This network gives the best cross-validation performance

among various partially-connected DNNs we have studied,

and a larger network does not further improve the perfor-

mance. The Hybrid DNN stacks an RF with 50 trees over the

partially-connected DNN described earlier. All techniques

use EstNodeCostSum, LeafWeightEstBytesWeightedSum fea-

ture channels and combine plans with pair_diff_normalized.

For unseen pairs and plans, where train and test distribu-

tions are more similar, the tree models have better F1 score,

.68 .69

.61
.64

.73
.76

.70
.73

.69
.73

.69
.72

0.5

0.6

0.7

0.8

0.9

1

Average Median

F1
 S

co
re

Optimizer LR RF LGBM DNN Hybrid DNN

Figure 8: F1 score on unseen databases.

with RF being the best. The DNNs, both individual and hy-

brid, outperform the tree models for unseen queries, with

Hybrid DNN being the best. The DNNs also take longer to

train. For our data set with about two million plan pairs,

the RF trains in tens of minutes and infers in less than 10

microsecond per data point in average on a commodity In-

tel Xeon processor with 20 CPU cores. On the other hand,

the DNN trains in a couple of hours and infers in tens of

microseconds on an NVIDIA Tesla P100 GPU. Both models

consume tens of megabytes of memory.

7.7 Need for Adaptation
We now consider a more drastic data shift by holding out

databases. From the fifteen databases in our setup (see Ta-

ble 2), we train on fourteen and test on the remaining one.

We repeat this experiment for all fifteen databases and report

the aggregate F1 score across all fifteen runs.

Figure 8 plots the F1 score across all the databases for all

the models, i.e., LR, RF, LGBM, DNN, and Hybrid DNN, with

the optimizer as a baseline. First, the model’s test F1 score is

significantly lower compared to previous experiments, while

the train and cross-validation (where the validation set is

sampled from the training distribution, disjoint from training

data) performance remains comparable to earlier numbers.

Such a big drop in F1 score from cross-validation to test is

usually a signal of difference in train/test data distribution.

We further verify this with a density-based clustering of the

train/test data, which results in very small fraction of clusters

having data from both train and test sets. Second, with such

train/test difference, the model’s aggregate F1 score is only

marginally higher compared with using the optimizer.

We now evaluate how the models’ F1 scores change as we

include a tiny fraction of plans from the held-out database

into training. The held out setup mimics new applications

and databases being deployed in a cloud platform, where

execution data accumulates over time after deployment and

a new model gets retrained and redeployed.

Figure 9 plots the average F1 score over fifteen databases

as k plans for each query in the held-out database are moved

from test data to training data. We vary k from 0 which cor-

responds to using the offline model for an unseen database

.73 .73 .73 .73.73

.82
.85 .87

.74

.80
.85 .87

.75
.81 .83

.86

.76
.81

.86 .87

.67 .69 .71 .72

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8

F1
 S

co
re

Number of Leaked Plans Per Query
Offline Local Nearest Neighbor Uncertainty Meta Hybrid DNN

Figure 10: F1 score for adaptive models varying the
number of plans leaked per query.

up to 8, at steps of 2. The different bars correspond to two dif-

ferent ways of combining pairs of plans: pair_diff_ratio and

pair_diff_normalized. Here, we use EstNodeCost, LeafWeight-
EstBytesWeightedSum feature channels.

.72 .73

.81
.84 .87

.73 .73

.82
.85 .87

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

F1
 S

co
re

Number of executed plans in training

pair_diff_ratio pair_diff_normalized

Figure 9: F1 score of the RF
model as plans from the held-
out database are gradually
added to the training set.

With 4 leaked plans,

there is a significant

increase in themodel’s

F1 score compared

to k = 0, and the

F1 score increases as

more plans are added

to training. This ex-

periment is further

evidence of the differ-

ences in train/test dis-

tribution and that ad-

ditional training data

from the test distribution helps improve the offline model.

7.8 Adaptive Model
Given the need of adaptation, we now evaluate how quickly

we can adapt the offline model with new plans available on

a database to improve its prediction. Similar to Section 7.7,

we hold out the plans in a test database and gradually move

plans from test to training.

Figure 10 shows the average F1 score over all the datasets

varying the number of plans leaked to training.We evaluate a

number of adaptive models discussed in Section 4.3 and 6.2.3,

including the local model (Local), uncertainty-based adap-

tion (Uncertainty), nearest neighbors-based adaption (Nearest
Neighbor), the meta model (Meta), and transfer learning with
the hybrid DNN model (HybridDNN). We use the probability

associated with the prediction in RF to calculate uncertainty

as subtracting the probability of the predicted class from 1,

and we use cosine distance as the distance metric in nearest

neighbors. As more plans are leaked, the performance of all

adaptive models improves. Except for hybrid DNN, all other

models outperforms the offline model (Offline) even with 2

plans leaked. With 8 plans leaked, the best adaptive model

achieves 0.87 F1 score. That is, in contrast to Offline, the

adaptive models have reduced the fraction of errors by ∼ 2×

with only 8 out of hundreds of plans per query. In addition, the

meta model effectively combines the local and offline models,

often beating the local model’s F1 score. DNN’s performance

is inferior compared to RF, likely due to how different the

train/test distributions are and all but the last layer’s param-

eters are learned from the train distribution, as noted by

Yosinki et al. [70]. All adaptive models train within a minute

for most databases, thus allowing them to be retrained on

every invocation of the tuner.

7.9 Index Recommendation Quality
We now evaluate the impact of RF-based classifier integrated

into the index tuner on the end-to-end recommendation

quality in terms of execution cost (CPU time). We consider

the scenario of continuous index tuning as described in Sec-

tion 2.1, where the number of iterations is 10 and themaximal

number of indexes recommended per iteration is 5.

Baselines: We compare with two baselines: (a) Opt: the
original index tuner with optimizer’s estimated cost and (b)
OptTr : the index tuner with optimizer’s estimated cost where

a configuration is only recommended when the estimated

improvement is greater than a threshold (set to 20% to match

the threshold α used for the classifier).

Tuner with model: Similar to our earlier experiments on

models in isolation, we consider two settings of how training

data is collected: (a) Split by plan (AdaptivePlan): where the
offline model is trained on some plans that are collected from

a database before tuning starts in addition to plans from other

databases. (b) Split by database (AdaptiveDB): only use data

collected from databases other than the one being tuned.

Since we tune the database continuously, additional indexes

are implemented after each iteration and new execution

data becomes available. We passively collect the additional

execution data and retrain the adaptive component of the

adaptive models on every invocation of the tuner.

Since our goal is to prevent regressions, if a query re-

gresses after implementing the index configuration, we revert
the indexes. Because Opt and OptTr do not take feedback

from previous executions, once a query regresses, they will

recommend the same reverted indexes in future iterations

and hence cannot make any progress. Thus, for Opt and
OptTr, the tuning stops when there is no index recommenda-

tion available or a query regresses. In contrast, as Adaptive-
Plan and AdaptiveDB are retrained with additional execution

data, after a regression and indexes reverted, it can recom-

mend an alternative configuration in the next iteration. Thus,

the tuning stops if only no such configuration is found.

Workloads:Weevaluate the end-to-end tuning performance

with three workloads: (a) TPC-DS 10g with no index as initial
configuration. (b) TPC-DS 100g with existing columnstore as

40

10

37

9

40

4

44

0
0

10

20

30

40

50

Improve (cumulative) Regress (final)

N
u

m
b

er
 o

f
Q

u
er

ie
s

Opt OptTr AdaptiveDB AdaptivePlan

(a) TPC-DS 10g

13

20

9

15
13

0

12

0
0

5

10

15

20

25

Improve (cumulative) Regress (final)

N
u

m
b

er
 o

f
Q

u
er

ie
s

Opt OptTr AdaptiveDB AdaptivePlan

(b) TPC-DS 100g

75

36

51

14

68

8

70

5

0

20

40

60

80

Improve (cumulative) Regress (final)

N
u

m
b

er
 o

f
Q

u
er

ie
s

Opt OptTr AdaptiveDB AdaptivePlan

(c) Customer6

Figure 11: Number of queries improved at its final configuration (with regressed configuration reverted) and re-
gressed at the last iteration for query-level tuning with ten iterations.

initial configuration. (c) Customer6 with no index as initial

configuration. Customer6 is the most complex real customer

workload having many queries with tens of joins. We only

tune queries with original CPU cost ≥ 500ms, i.e., expensive

queries, resulting in 126 queries out of more than 300 queries.

Query-level tuning: We first evaluate single query tuning,

a common scenario where a DBA or the system tunes a

single expensive or problematic query. We tune each query

separately to get the best index recommendation for a query.

Figure 11 summarizes the results with Opt, OptTr, Adaptive-
Plan, and AdaptiveDB on the three workloads. We report two

metrics: (a) Improve (cumulative): the number of queries that

are improved at least by 20% in execution cost at the final

configuration compared with that at the initial configura-

tion. If a query regresses when the tuning stops, we revert

the recommended indexes and use its execution cost before

the regressed tuning iteration as its final execution cost; (b)
Regress (final): the number of queries that regress when the

tuning stops. Note Improve (cumulative) and Regress (final)
are not exclusive. For example, a query improves at early

iterations and regresses at iteration ten. It can be included in

both Improve (cumulative) and Regress (final) if the query still
improves over its initial execution cost after reverting the

index recommendation at iteration ten. We further show the

breakdown of the distribution of improvement for queries

in Table 6 of Appendix A.5.

With Opt, the percent of queries that end up with regres-

sions can be as high as 29% (see Figure 11(c)), which aligns

with our observation of the percent of regressions using

auto-indexing on Azure SQL Database [8]. While OptTr only
recommends indexes with enough estimated improvement,

it fails to prevent many regressions. For example, it reduces

only one out of ten regressions in TPC-DS 10g (see Regress
(final) in Figure 11(a)). This confirms our analysis in Fig-

ure 1 that huge estimated improvement can still result in

significant regressions. Moreover, OptTr can backfire and

prevent improvement, since it will stop the tuning process

early if there is not enough estimated improvement. For

Table 4: Distribution of workload-level execution cost
improvement after ten iterations with Opt, OptTr (Tr),
AdpativeDB (ADB), AdaptivePlan (APlan).

Workload TPC-DS 10g TPC-DS 100g Customer6
Improve Opt Tr ADB APlan Opt Tr ADB APlan Opt Tr ADB APlan

0.2 5 5 5 9 5 5 3 4 8 6 5 9

1 3 3 3 3 5 6 9 8

5 1 1

10 1

Total 8 8 9 13 5 5 3 4 14 12 14 17

example, OptTr reduces 22 regressions while losing 24 im-

proved queries (see Figure 11(c)), including 11 improved

queries with ≥ 10× or more improvement (see Table 6).

In contrast,AdaptiveDB andAdaptivePlan consistently and
significantly reduce the number of regressed queries when

the tuning stops, e.g., reducing Regress (final) from 20 to 0

in TPC-DS 100g (see Figure 11(b)). Since the models are not

perfect, we can lose improvement, e.g., reduce Improve (cu-
mulative) from 75 to 70 with AdaptivePlan in Customer6 (see

Figure 11(c)). However, tuning with models does not lose any

huge improvement, i.e., the number of queries with 10× or

more improvement in Table 6. In fact, since tuning with mod-

els eliminates configurations that are predicted to regress,

which can lead to a different recommendation than that of

Opt, it can improve more queries (see Improve (cumulative) in
Figure 11(a)) and improve queries to a larger degree (see the

number of queries with ≥ 100× improvement for Customer6

in Table 6). We further compare models’ recommendation

quality at different iterations in Appendix A.5. Overall, we

observeAdaptivePlan recommends better indexes thanAdap-
tiveDB, especially in early iterations.

Workload-level tuning:We recommend the best indexes

for a set of queries in a workload. For each database work-

load, we construct twenty query workloads by randomly

sampling five queries from that workload. The queries in a

query workload have uniform weight. As with query-level

tuning, Opt and OptTr can stop early if there is no index rec-

ommendation or any query regresses in the query workload.

At each iteration, models are retrained with execution data

from previous iterations with this query workload. Similarly,

a configuration will revert to that of the previous iteration if

a query regresses. The improvement is computed between

the execution cost of the workload at the final configuration

(with reversion) and that at the initial configuration.

Table 4 shows the distribution of workload-level execu-

tion cost improvement. Overall, Opt outperforms OptTr and
improves 27 out of 60 workloads. AdaptivePlan improves

34 workloads or 26% more workloads than Opt and it im-

proves some workloads to a larger degree, e.g., TPC-DS 10g.

However, the models lose a big improvement in Customer6

due to the tuner with models not being able to improve one

expensive query in that query workload.

Overhead: Index tuning with optimizer’s cost estimate can

take a few minutes to a few hours depending on the com-

plexity of the workload. Training the offline model is not in

the critical path of tuning and it only takes tens of minutes.

Similarly, training data is collected passively and does not

add overhead to tuning. The two major overheads when tun-

ing with models are: online model retraining for adaptive

model and model inference during tuning. As noted earlier,

retraining the adaptive model even on thousands of plans

completes within a minute on one or two threads, and infer-

ence using the RF-based model takes tens of microseconds.

Together, these add less than 10% tuning time on average.

8 RELATEDWORK
Database tuning is critical to improve query performance.

Several facets of automatic database tuning have been stud-

ied, such as configuration parameters [66, 67], data parti-

tioning schemes [4, 22, 55], memory/buffer management [11,

62], optimized index and data structures [41, 46, 48], self-

organized index structures [6, 7, 38–40], and cost models [60,

68]. We focus on index tuning for a given workload.

Automatic index tuning has been an active research area

for several decades [30, 61]. The problem was first formu-

lated as a search of indexes on a specified workload [17, 65],

leveraging extensions to the query optimizer known as the

“what-if” API [18]. Several variants of the problem were

subsequently studied with different search strategies [13],

integrating index tuning with other physical design struc-

tures such as partitioning, materialized views, or column-

stores [2, 28, 44, 72], formulating it as a continuous tuning

problem [12, 56], or modeling robustness of physical design

tuning [29]. All these approaches have focused on using the

query optimizer’s cost estimates for tuning. On the other

hand, this paper considers a complementary problem of rec-

ommending indexes that improve actual execution cost.

Many regressions are caused by query optimizer errors

and improving the optimizer has been an active research

area [14–16, 20, 60, 69]. However, as observed in [47, 50],

estimation errors in query optimization remains a significant

problem. While improvements in query optimization can

help index tuning, such improvements are orthogonal to our

approach. Our approach works external to the optimizer and

can compliment the optimizer unless the optimizer never

makes errors. Application of our classification-based cost

comparison to improve query optimization is future work.

Recently, there has been a renaissance of applying ML

techniques to database tuning problems. Pavlo et al. [52] and

Sharma et al. [58] use advancedML techniques such as neural

networks or reinforcement learning to automate index tun-

ing. Since only the vision is presented and details are missing,

it is hard to compare these techniques with our approach.

We focus on improving recommendation quality in terms

of execution cost as well as present techniques to quickly

adapt to unseen data, lifting the closed-world assumption of

similar train/test distribution of most ML techniques.

9 CONCLUSION
Automated indexing in production systems requires that in-

dex recommendations improve query execution cost, not

just query optimizer’s estimates. We study the problem of

leveraging query execution statistics to improve index recom-

mendation quality with minimal changes to state-of-the-art

index tuners. We present our key insight that the tuner fre-

quently needs to compare the execution cost of the plans, and

learning a classifier that directly minimizes the comparison

errors results in significantly higher accuracy in comparing

plans in contrast to using learned or analytical regressors.

We present an extensive study of the design space of ML

techniques, address the issue of different train/test distribu-

tions often observed in our setting, and propose an effective

lightweight adaptive model that relaxes the closed-world

assumption made in most applications of ML in systems.

Thorough evaluation using benchmarks and customer work-

loads demonstrates that learning to compare plans can result

in 2 × −5× reduction in errors. Integrating the model into

an index tuner can significantly improve recommendation

quality by eliminating most execution cost regressions while

preserving the improvement.

It is worth noting that the query optimizer, during its

search of a query’s plan, also needs to compare sub-plans

to find the best sub-plan for a query sub-expression. Many

of today’s cost-based optimizers use cost estimates for this

comparison. Applying our classification-based comparison

to query optimization is interesting future work.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers,

our shepherd Matthias Boehm, Anshuman Dutt, and Arnd

Christian König for their valuable feedback.

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: A System for Large-Scale Ma-

chine Learning. InOSDI. 265–283. https://www.usenix.org/conference/

osdi16/technical-sessions/presentation/abadi

[2] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P.

Marathe, Vivek R. Narasayya, and Manoj Syamala. 2004. Database

Tuning Advisor for Microsoft SQL Server 2005. In VLDB. 1110–1121.
[3] Sanjay Agrawal, Eric Chu, and Vivek Narasayya. 2006. Automatic

physical design tuning: workload as a sequence. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data.
ACM, 683–694.

[4] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. 2004. Inte-

grating Vertical and Horizontal Partitioning Into Automated Physi-

cal Database Design. In SIGMOD. 359–370. https://doi.org/10.1145/

1007568.1007609

[5] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stan-

ley B. Zdonik. 2012. Learning-based Query Performance Modeling and

Prediction. In ICDE. IEEE Computer Society, Washington, DC, USA,

390–401. https://doi.org/10.1109/ICDE.2012.64

[6] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O:

a hands-free adaptive store. In SIGMOD. 1103–1114. https://doi.org/

10.1145/2588555.2610502

[7] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging

the Archipelago between Row-Stores and Column-Stores for Hybrid

Workloads. In SIGMOD. 583–598. https://doi.org/10.1145/2882903.

2915231

[8] Azure SQL Database [n. d.]. Azure SQL Database. https://azure.

microsoft.com/en-us/services/sql-database/.

[9] Christopher M. Bishop. 2007. Pattern recognition and machine learning,
5th Edition. Springer. http://www.worldcat.org/oclc/71008143

[10] Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. 2012.

Automated physical designers: what you see is (not) what you get. In

DBTest. 9. https://doi.org/10.1145/2304510.2304522

[11] Kurt P. Brown, Michael J. Carey, and Miron Livny. 1996. Goal-oriented

Buffer Management Revisited. In SIGMOD. ACM, New York, NY, USA,

353–364. https://doi.org/10.1145/233269.233351

[12] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to

Physical Design Tuning. In ICDE. 826–835. https://doi.org/10.1109/

ICDE.2007.367928

[13] Nicolas Bruno and Surajit Chaudhuri. 2007. Physical design refinement:

The ‘merge-reduce’ approach. ACM Trans. Database Syst. 32, 4 (2007),
28.

[14] Surajit Chaudhuri. 1998. An Overview of Query Optimization in

Relational Systems. In PODS. ACM, New York, NY, USA, 34–43. https:

//doi.org/10.1145/275487.275492

[15] Surajit Chaudhuri. 2009. Query optimizers: time to rethink the con-

tract?. In SIGMOD. 961–968. https://doi.org/10.1145/1559845.1559955

[16] Surajit Chaudhuri, Vivek Narasayya, and Ravi Ramamurthy. 2008. A

pay-as-you-go framework for query execution feedback. PVLDB 1, 1

(2008), 1141–1152.

[17] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-

Driven Index Selection Tool forMicrosoft SQL Server. InVLDB. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 146–155.

[18] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’

Index Analysis Utility. In SIGMOD. 367–378. https://doi.org/10.1145/

276304.276337

[19] Surajit Chaudhuri and Vivek R. Narasayya. 2007. Self-Tuning Database

Systems: A Decade of Progress. In VLDB. 3–14.
[20] Chungmin Melvin Chen and Nick Roussopoulos. 1994. Adaptive Se-

lectivity Estimation Using Query Feedback. In SIGMOD. ACM, New

York, NY, USA, 161–172. https://doi.org/10.1145/191839.191874

[21] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree

Boosting System. In SIGKDD. 785–794. https://doi.org/10.1145/

2939672.2939785

[22] Carlo Curino, Evan Jones, Yang Zhang, and SamMadden. 2010. Schism:

a workload-driven approach to database replication and partitioning.

PVLDB 3, 1-2 (2010), 48–57.

[23] Benoît Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed

Zaït, and Mohamed Ziauddin. 2004. Automatic SQL Tuning in Oracle

10g. In VLDB. 1098–1109. http://www.vldb.org/conf/2004/IND4P2.PDF

[24] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jo-

vanovic, Vivek Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang

Xu, and Surajit Chaudhuri. 2019. Automatically Indexing Millions

of Databases in Microsoft Azure SQL Database. In SIGMOD. ACM.

https://doi.org/10.1145/3299869.3314035

[25] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011.

CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large

Workloads. PVLDB 4, 6 (2011), 362–372. https://doi.org/10.14778/

1978665.1978668

[26] Bailu Ding, Sudipto Das, Wentao Wu, Surajit Chaudhuri, and Vivek R.

Narasayya. 2018. Plan Stitch: Harnessing the Best of Many Plans.

PVLDB 11, 10 (2018), 1123–1136.

[27] Jennie Duggan, Ugur Çetintemel, Olga Papaemmanouil, and Eli Upfal.

2011. Performance prediction for concurrent database workloads. In

SIGMOD. 337–348. https://doi.org/10.1145/1989323.1989359

[28] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R.

Narasayya, and Manoj Syamala. 2018. Columnstore and B+ tree - Are

Hybrid Physical Designs Important?. In SIGMOD. 177–190. https:

//doi.org/10.1145/3183713.3190660

[29] Kareem El Gebaly and Ashraf Aboulnaga. 2008. Robustness in auto-

matic physical database design. In EDBT. 145–156. https://doi.org/10.

1145/1353343.1353365

[30] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. 1988. Phys-

ical Database Design for Relational Databases. ACM Trans. Database
Syst. 13, 1 (1988), 91–128. https://doi.org/10.1145/42201.42205

[31] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener,

Armando Fox, Michael Jordan, and David Patterson. 2009. Predicting

Multiple Metrics for Queries: Better Decisions Enabled by Machine

Learning. In ICDE. IEEE Computer Society, Washington, DC, USA,

592–603. https://doi.org/10.1109/ICDE.2009.130

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[33] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature

Learning for Networks. In SIGKDD. 855–864. https://doi.org/10.1145/

2939672.2939754

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delv-

ing Deep into Rectifiers: Surpassing Human-Level Performance on

ImageNet Classification. In ICCV. 1026–1034. https://doi.org/10.1109/

ICCV.2015.123

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In CVPR. 770–778. https:

//doi.org/10.1109/CVPR.2016.90

[36] Kurt Hornik. 1991. Approximation capabilities of multilayer feed-

forward networks. Neural Networks 4, 2 (1991), 251–257. https:

//doi.org/10.1016/0893-6080(91)90009-T

[37] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. 1989. Mul-

tilayer feedforward networks are universal approximators. Neural

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/1007568.1007609
https://doi.org/10.1145/1007568.1007609
https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1145/2588555.2610502
https://doi.org/10.1145/2588555.2610502
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2882903.2915231
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
http://www.worldcat.org/oclc/71008143
https://doi.org/10.1145/2304510.2304522
https://doi.org/10.1145/233269.233351
https://doi.org/10.1109/ICDE.2007.367928
https://doi.org/10.1109/ICDE.2007.367928
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/1559845.1559955
https://doi.org/10.1145/276304.276337
https://doi.org/10.1145/276304.276337
https://doi.org/10.1145/191839.191874
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://www.vldb.org/conf/2004/IND4P2.PDF
https://doi.org/10.1145/3299869.3314035
https://doi.org/10.14778/1978665.1978668
https://doi.org/10.14778/1978665.1978668
https://doi.org/10.1145/1989323.1989359
https://doi.org/10.1145/3183713.3190660
https://doi.org/10.1145/3183713.3190660
https://doi.org/10.1145/1353343.1353365
https://doi.org/10.1145/1353343.1353365
https://doi.org/10.1145/42201.42205
https://doi.org/10.1109/ICDE.2009.130
http://www.deeplearningbook.org
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T

Networks 2, 5 (1989), 359–366. https://doi.org/10.1016/0893-6080(89)

90020-8

[38] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database

Cracking. In CIDR. 68–78.
[39] Stratos Idreos, Stefan Manegold, and Goetz Graefe. 2012. Adaptive

indexing in modern database kernels. In EDBT. 566–569. https://doi.

org/10.1145/2247596.2247667

[40] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe.

2011. Merging What’s Cracked, Cracking What’s Merged: Adaptive

Indexing in Main-Memory Column-Stores. PVLDB 4, 9 (2011), 585–597.

https://doi.org/10.14778/2002938.2002944

[41] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S.

Kester, and Demi Guo. 2018. The Data Calculator: Data Structure De-

sign and Cost Synthesis from First Principles and Learned Cost Models.

In SIGMOD. 535–550. https://doi.org/10.1145/3183713.3199671

[42] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei

Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017.

LightGBM: A Highly Efficient Gradient Boosting Deci-

sion Tree. In NIPS. 3149–3157. http://papers.nips.cc/paper/

6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree

[43] Keras 2018. Keras: The PythonDeep Learning library. https://keras.io/.

[44] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. 2017.

Access Path Selection in Main-Memory Optimized Data Systems:

Should I Scan or Should I Probe?. In SIGMOD. 715–730. https:

//doi.org/10.1145/3035918.3064049

[45] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Sto-

chastic Optimization. CoRR abs/1412.6980 (2014). arXiv:1412.6980

http://arxiv.org/abs/1412.6980

[46] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.

2018. The Case for Learned Index Structures. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018. 489–504. https://doi.org/10.

1145/3183713.3196909

[47] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons

Kemper, and Thomas Neumann. 2015. How Good Are Query Opti-

mizers, Really? PVLDB 9, 3 (Nov. 2015), 204–215. https://doi.org/10.

14778/2850583.2850594

[48] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive

radix tree: ARTful indexing for main-memory databases. In ICDE. 38–
49. https://doi.org/10.1109/ICDE.2013.6544812

[49] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit

Chaudhuri. 2012. Robust Estimation of Resource Consumption for

SQL Queries using Statistical Techniques. PVLDB 5, 11 (2012), 1555–

1566. https://doi.org/10.14778/2350229.2350269

[50] Guy Lohman. 2014. Is Query Optimization a “Solved” Problem? http:

//wp.sigmod.org/?p=1075.

[51] ML.NET 2018. Machine Learning for .NET. https://github.com/dotnet/

machinelearning.

[52] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin

Ma, Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah,

Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken,

Ziqi Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. 2017. Self-

Driving Database Management Systems. In CIDR.
[53] Lorien Y. Pratt. 1992. Discriminability-Based Transfer between

Neural Networks. In NIPS. 204–211. http://papers.nips.cc/paper/

641-discriminability-based-transfer-between-neural-networks

[54] Program for TPC-H Data Generation with Skew [n. d.]. Program

for TPC-H Data Generation with Skew. https://www.microsoft.com/

en-us/download/details.aspx?id=52430.

[55] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman. 2002.

Automating physical database design in a parallel database. In SIGMOD.
558–569. https://doi.org/10.1145/564691.564757

[56] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis.

2006. COLT: continuous on-line tuning. In SIGMOD. 793–795. https:

//doi.org/10.1145/1142473.1142592

[57] scikit-learn 2018. scikit-learn: Machine Learning in Python. http:

//scikit-learn.org/stable/.

[58] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. The

Case for Automatic Database Administration using Deep Reinforce-

ment Learning. CoRR abs/1801.05643 (2018).

[59] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015.

Training Very Deep Networks. In NIPS. 2377–2385. http://papers.nips.

cc/paper/5850-training-very-deep-networks

[60] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil.

2001. LEO - DB2’s LEarning Optimizer. In VLDB. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 19–28.

[61] Michael Stonebraker. 1974. The choice of partial inversions and com-

bined indices. International Journal of Parallel Programming 3, 2 (1974),
167–188. https://doi.org/10.1007/BF00976642

[62] Adam J Storm, Christian Garcia-Arellano, Sam S Lightstone, Yixin

Diao, and Maheswaran Surendra. 2006. Adaptive self-tuning memory

in DB2. In VLDB. VLDB Endowment, 1081–1092.

[63] TPC Benchmark DS: Standard Specification v2.6.0. [n. d.]. TPC Bench-

mark DS: Standard Specification v2.6.0. http://www.tpc.org/tpcds/.

[64] TPC Benchmark H: Standard Specification v2.17.3. [n. d.]. TPC Bench-

mark H: Standard Specification v2.17.3. http://www.tpc.org/tpch/

default.asp.

[65] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and

Alan Skelley. 2000. DB2 Advisor: An Optimizer Smart Enough to

Recommend Its Own Indexes. In ICDE. 101–110. https://doi.org/10.

1109/ICDE.2000.839397

[66] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.

2017. Automatic Database Management System Tuning Through

Large-scale Machine Learning. In SIGMOD. ACM, New York, NY, USA,

1009–1024. https://doi.org/10.1145/3035918.3064029

[67] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zab-

back. 2002. Self-tuning database technology and information services:

from wishful thinking to viable engineering. In VLDB. Elsevier, 20–31.
[68] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan

Hacigümüs, and Jeffrey F. Naughton. 2013. Predicting Query Exe-

cution Time: Are Optimizer Cost Models Really Unusable?. In ICDE.
IEEE Computer Society, Washington, DC, USA, 1081–1092. https:

//doi.org/10.1109/ICDE.2013.6544899

[69] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-

Based Query Re-Optimization. In SIGMOD. ACM, New York, NY, USA,

1721–1736. https://doi.org/10.1145/2882903.2882914

[70] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

2014. How transferable are features in deep neural net-

works?. In NIPS. 3320–3328. http://papers.nips.cc/paper/

5347-how-transferable-are-features-in-deep-neural-networks

[71] Haijun Zhang, Shuang Wang, Xiaofei Xu, Tommy W. S. Chow, and

Q. M. Jonathan Wu. 2018. Tree2Vector: Learning a Vectorial Represen-

tation for Tree-Structured Data. IEEE Trans. Neural Netw. Learning Syst.
29, 11 (2018), 5304–5318. https://doi.org/10.1109/TNNLS.2018.2797060

[72] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm,

Christian Garcia-Arellano, and Scott Fadden. 2004. DB2 Design Advi-

sor: Integrated Automatic Physical Database Design. In VLDB. VLDB
Endowment, 1087–1097.

https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1145/2247596.2247667
https://doi.org/10.1145/2247596.2247667
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.1145/3183713.3199671
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://keras.io/
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/3035918.3064049
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.14778/2350229.2350269
http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075
https://github.com/dotnet/machinelearning
https://github.com/dotnet/machinelearning
http://papers.nips.cc/paper/641-discriminability-based-transfer-between-neural-networks
http://papers.nips.cc/paper/641-discriminability-based-transfer-between-neural-networks
http://approjects.co.za/?big=en-us/download/details.aspx?id=52430
http://approjects.co.za/?big=en-us/download/details.aspx?id=52430
https://doi.org/10.1145/564691.564757
https://doi.org/10.1145/1142473.1142592
https://doi.org/10.1145/1142473.1142592
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://papers.nips.cc/paper/5850-training-very-deep-networks
http://papers.nips.cc/paper/5850-training-very-deep-networks
https://doi.org/10.1007/BF00976642
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/default.asp
http://www.tpc.org/tpch/default.asp
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1109/ICDE.2013.6544899
https://doi.org/10.1109/ICDE.2013.6544899
https://doi.org/10.1145/2882903.2882914
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
https://doi.org/10.1109/TNNLS.2018.2797060

.75 .75 .74

.90
.85 .82

0.6

0.7

0.8

0.9

1.0

Pair Plan Query

F1
 S

co
re

Train/Test Split Mode

Optimizer RF

(a) Train with 10% data

.75 .75 .76

.93 .90
.84

0.6

0.7

0.8

0.9

1.0

Pair Plan Query

F1
 S

co
re

Train/Test Split Mode

Optimizer RF

(b) Train with 50% data

Figure 12: F1 score when training and testing on
plans obtained from a production auto-indexing ser-
vice with different fractions of data used in training.

.85 .85 .84
.89 .87 .86.89 .89 .89.92 .92 .92

0.6

0.7

0.8

0.9

1

Pair Plan Query

F1
 S

co
re

Train/Test Split Mode

FC PC PC-skip Hybrid DNN (PC-skip)

Figure 13: F1 score for different DNN architectures.

A ADDITIONAL EXPERIMENTS
A.1 Classification on production data
We collect anonymized and aggregated execution data from a

production auto-indexing service in Azure SQLDatabase [24].

This service continuously analyzes databases and workloads

to recommend indexes that can improve query execution cost.

For databases where indexes are automatically implemented,

the service collects query execution data before and after

the change. These executions are on a production database

running queries concurrently, in contrast to the controlled

setting of execution data collection in Section 7. This pro-

duction data includes various statement types, e.g., SELECT,
UPDATE, INSERT, DELETE, UPSERT, in addition to the query

and data diversity. We collected two weeks of execution data

from ∼ 10K databases with ∼ 40K plans, resulting in ∼ 750K
plan pairs. For many queries, we observed tens of plans, and

more than 80% queries have at least 2 plans.

We evaluate the model on this production data. Similar

to the experiment in Section 7.6, we split the plan pairs into

train/test using three modes: Pair, Plan, and Query. We vary

the fraction of data in the training set from 0.1 - 0.5, where
the remainder of the data is in the test set. We compare

the best classifier model (i.e., RF) with using the optimizer’s

estimates. Figure 12 reports the F1 score for the different split

modes with train/test ratio 0.1 and 0.5. Even with 0.1 train
ratio, the classifier’s F1 score is significantly higher compared

to the optimizer, with performance being higher when train

and test data distributions are similar (e.g., split by pairs).

Table 5: F1 score forRFwhenholding out all execution
statistics from a database, with different feature chan-
nels and ways to combine features from plan pair.

NC NC, LWB NC, LWR NC, LWB, BP NC, LWR, RP
Avg. Median Avg. Median Avg. Median Avg. Median Avg. Median

pair_diff 0.7 0.73 0.71 0.75 0.7 0.73 0.7 0.75 0.7 0.74
pair_diff_ratio 0.7 0.75 0.71 0.77 0.71 0.77 0.72 0.76 0.71 0.76

pair_diff_normalized 0.72 0.75 0.72 0.75 0.72 0.75 0.73 0.75 0.74 0.75

This experiment shows the effectiveness of the classifier

even with diverse workloads, concurrently executed queries,

and various statement types from thousands of databases in

production systems.

A.2 Regression vs. Classification

1.51
1.14 1.22 1.11

0.0

0.5

1.0

1.5

2.0

N
o

rm
al

iz
ed

 C
o

st

Figure 15: Normalized work-
load cost with different models.

In Section 7.5, we

evaluate and com-

pare the F1 score

for regression pre-

diction using the

classifier, the re-

gressors, and the

optimizer. We fur-

ther compute the

workload cost us-

ing the models for

plan comparison.

For each plan pair P1,P2, if the model predicts a regres-

sion, we select plan P1; otherwise, we select plan P2. For

each model, we sum up the execution cost of all the plans

selected as the workload cost using the model. The sum of

the execution cost of the cheaper plan in each pair is the

optimal workload cost.
Figure 15 shows the workload cost for all the models in

Section 7.5 normalized by the optimal workload cost. As

is evident, the classifier outperforms all the other models,

with the optimizer being the worst. This further confirms

our key insight that formulating the regression prediction

as a classification task rather than a regression task is more

appropriate for index recommendation.

A.3 Feature sensitivity
In Section 7.7, we observe the need of adaptation for unseen

databases where train/test distributions are significantly dif-

ferent. To ensure that such differences in train/test distribu-

tions are not due to a specific choice of feature channels or

how we combine the vectors for a plan pair into the final vec-

tor, we repeat the experiment (as in Section 7.7) for different

featurization: (i) by varying feature channels (Section 3.2);

and (ii) by varying how we combine vectors (Section 3.3).

We pick different subsets of channels from Table 1. We report

11

17

9

15

9
7

10

5

0

5

10

15

20

25

Improve (cumulative) Regress (final)

N
u

m
b

er
 o

f
Q

u
er

ie
s

Opt OptTr AdaptiveDB AdaptivePlan

(a) Iteration 1

11

18

9

15
12

2

12

2

0

5

10

15

20

25

Improve (cumulative) Regress (final)

N
u

m
b

er
 o

f
Q

u
er

ie
s

Opt OptTr AdaptiveDB AdaptivePlan

(b) Iteration 3

13

20

9

15
13

0

12

0
0

5

10

15

20

25

Improve (cumulative) Regress (final)

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

Opt OptTr AdaptiveDB AdaptivePlan

(c) Iteration 10

Figure 14: Number of queries improved at the current configuration (with regressed configuration reverted) and
regressed at the current iteration during tuning at various iterations for workload TPC-DS 100g.

Table 6: Distribution of execution cost improvement
after ten iterations for query-level continuous tuning.

Workload TPC-DS 10g TPC-DS 100g Customer6
Improve Opt Tr ADB APlan Opt Tr ADB APlan Opt Tr ADB APlan

0.2 12 10 13 13 3 2 3 1 7 8 10 10

1 16 15 14 20 6 3 5 5 30 19 21 16

5 6 6 7 5 2 2 1 1 8 5 5 9

10 3 3 3 3 2 2 4 3 21 13 20 21
100 3 3 3 3 0 0 0 2 9 6 12 14

Total 40 37 40 44 13 9 13 12 75 51 68 70

the F1 score for different featurization in Table 5. Each pair

of columns corresponds to a subset of feature channels, we

report the average and median of fifteen runs where each

of the fifteen databases is held out from training and used

in testing. In the table, NC is for EstNodeCost, LWB is for

LeafWeightEstBytesWeightedSum, LWR is for LeafWeightE-
stRowsWeightedSum, BP is for EstBytesProcessed, RP is for Es-
tRowsProcessed. While there are minor differences in F1 score

across various featurization, the RF’s F1 score remains signif-

icantly lower compared to that reported in Figure 7. Hence,

the train/test differences hold across various featurization.

We also observe that an appropriate choice of featurization

has an impact on the model’s generalization to unseen data.

A.4 DNN Architectures
In Section 6.2.1, we present several novel DNN architectures,

gradually increasing the sophistication starting from the

fully-connected network architecture. Here we evaluate the

impact of those novel architectural changes on the model’s

predictions. Figure 13 plots the F1 score for the different

DNN architectures: (a) fully-connected (FC); (b) partially-
connected (PC) with 3 PC layers; (c) partially-connected
with skip connections (connecting the output of layer Li
to input of Li+2), i.e., PC-skip; and (d) Hybrid DNN. We

split train/test in different ways, with 60% used for training

and 40% for testing. The DNN in each setting has 12 hidden

layers with 64 neurons each, with other hyper-parameters

set to values specified in Section 7.4. The Hybrid DNN uses

the PC-skip DNN and adds an RF with 50 estimators. This

experiment shows the incremental improvement from dif-

ferent architectures with an approximately 10 percentage

point increase in F1 score of a more sophisticated design (d)
compared to the simple FC network architecture (a).

A.5 Index recommendation
In Section 7.9, we show the summary of the query-level

tuning result. Table 6 breaks down the result and shows

the distribution of the improvement for query-level tuning.

As is evident from the table, both AdaptiveDB (ADB) and

AdaptivePlan (APlan) retain similar or more queries with 10×

or more improvement as compared with Opt, while OptTr
significantly reduces the number of such improved queries.

In Section 7.8, we show that the F1 score plunges when we

train the model with unseen database compared to that when

the training data includes the execution data from the target

database, and with adaptive models and four plans per query

leaked from the unseen database, the F1 score improves from

0.73 to 0.82. Thus, with continuous tuning, the adaptive

models learn from the passively collected execution data and

can potentially improve index recommendation quality after

a few iterations compared to the offline model.

Figure 14 shows the number of improved queries with

regressed configuration reverted (Improve (cumulative)) and
the number of regressed queries (Regress (final)) on TPC-

DS 100g at various iterations. At iteration 1, AdaptivePlan
outperforms AdaptiveDB because initially AdaptivePlan is

trained with data from other databases and TPC-DS 100g

while AdaptiveDB is only trained with data from other data-

bases. As the tuning continues, AdaptiveDB is retrained with

passively collected data from previous iterations and quickly

catches up with AdaptivePlan at iteration 3, eventually result-
ing in no regressed queries and similar number of improved

queries with AdaptivePlan at iteration 10. Thus, the adaptive

models effectively improve prediction performance as more

execution data becomes available.

	Abstract
	1 Introduction
	2 Overview
	2.1 Index Recommendation
	2.2 Classification Task
	2.3 Architecture

	3 Featurizing Query Plan Pairs
	3.1 Rationale
	3.2 Featurizing a Plan
	3.3 Featurizing a Pair

	4 Learning the Classifier
	4.1 Offline Model
	4.2 Need for Adaptation
	4.3 Adaptive Model

	5 Integration with Index Tuner
	6 Design Alternatives
	6.1 Alternative Learning Tasks
	6.2 Alternative Classifiers

	7 Experimental Evaluation
	7.1 Metrics
	7.2 Workloads
	7.3 Experimental Setup
	7.4 Hyper-parameter Tuning
	7.5 Regression vs. Classification
	7.6 Offline Model
	7.7 Need for Adaptation
	7.8 Adaptive Model
	7.9 Index Recommendation Quality

	8 Related Work
	9 Conclusion
	References
	A Additional Experiments
	A.1 Classification on production data
	A.2 Regression vs. Classification
	A.3 Feature sensitivity
	A.4 DNN Architectures
	A.5 Index recommendation

