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ABSTRACT
Axiomatic information retrieval (IR) seeks a set of principle prop-
erties desirable in IR models. These properties when formally ex-
pressed provide guidance in the search for better relevance esti-
mation functions. Neural ranking models typically contain a large
number of parameters. The training of thesemodels involve a search
for appropriate parameter values based on large quantities of la-
beled examples. Intuitively, axioms that can guide the search for
better traditional IR models should also help in better parameter
estimation for machine learning based rankers. This work explores
the use of IR axioms to augment the direct supervision from labeled
data for training neural ranking models. We modify the documents
in our dataset along the lines of well-known axioms during training
and add a regularization loss based on the agreement between the
ranking model and the axioms on which version of the document—
the original or the perturbed—should be preferred. Our experiments
show that the neural ranking model achieves faster convergence
and better generalization with axiomatic regularization.
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1 INTRODUCTION
The goal of axiomatic information retrieval (IR) [8–10] is to for-
malize a set of desirable constraints that any reasonable IR models
should (at least partially) satisfy. For example, one of the axioms
(TFC1) states that a document containing more occurrences of a
query term should receive a higher score. According to another
axiom (LNC1), extra occurrences of non-relevant terms should neg-
atively impact the score of a document. All else being equal, an IR
model that satisfies these two axioms should theoretically be more
effective than one that does not. The formalization of these axioms,
therefore, provide a means to analyse IR models analytically, in lieu
of purely empirical comparisons. As a corollary, these axioms can
help in the search for better retrieval functions given a candidate
space of IR models [10].

Most neural approaches to IR [16] consider models with large
number of parameters. The training procedure for these models
typically involve an iterative search—e.g., using stochastic gradient
descent [2]—to find good combinations of model parameters by
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leveraging large quantities of labeled data. Intuitively, IR axioms—
that can guide the search for models in the space of traditional IR
methods—should also be useful in optimizing the parameters of
neural IR models. Under supervised settings, neural ranking models
learn by comparing two (or more) documents for a given query and
optimizing its parameters such that the more relevant document
receives a higher score. An over-parameterized model may find
several ways to fit the training data. But in the presence of many
possible solutions, we hypothesize that it is preferable to find the
solution that conforms to well known axioms of IR.

In this work we propose to incorporate IR axioms to regularize
the training of neural ranking models. We select five axioms—TFC1,
TFC2, TFC3, TDC, and LNC—for this study, that we describe in
more details in Section 3. We perturb the documents in our training
data along the lines of these axioms. For example, to perturb a doc-
ument using TFC1 we add more instances of the query terms to the
document. During training—in addition to comparing documents
of different relevance grades for a query—we also compare the doc-
uments to their perturbed version. We compute a regularization
loss based on the agreement (or disagreement) between the rank-
ing model and the axiom on which version of the document—the
original or the perturbed—should be preferred.

Our experiments show that axiomatic regularization is effective
at speeding up convergence of neural IR models during training
and achieves significant improvements in effectiveness metrics on
heldout test data. In particular, axiomatic regularization helps a
simple yet effective neural learning to rank model, Conv-KRNM
(CKNRM) [4], improve MRR on MS-MARCO and a large internal
dataset by about 3%. The improvements from axiomatic regular-
ization are particularly encouraging under the smaller training
data regime—which indicates it may be useful in alleviating our
dependence on the availability of large training corpus in neural
IR.

2 RELATEDWORK
Axiomatic IR. While inductive analysis of IR models have been

previously attempted [3], it was Fang et al. [8] who proposed the
original six IR axioms related to term frequency (TFC1 and TFC2),
term discrimination (TDC), and document length normalization
(LNC1, LNC2, and TF-LNC)—followed by an additional term fre-
quency constraint (TFC3) by Fang et al. [9]. Since then these axioms
have been further expanded to cover term proximity [24], semantic
matching [7, 11], and other retrieval aspects [14, 25, 28]. We refer
the reader to [27] for a more thorough review of the existing ax-
ioms. Recently, Rennings et al. [21] adopted these axioms to analyze
different neural ranking models. However, this is the first study
that leverages IR axioms to regularize neural ranker training.

Incorporating domain knowledge in supervised training. State-
of-the-art neural ranking models—e.g., [4, 17, 19]—have tens of
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millions to hundreds of millions of parameters. Models with such
large parameter sets can overfit when only small amount of training
data is available. Domain knowledge may help identify additional
sources of supervision, or inform methods for regularization to
compensate for the lack of enough training data. Weak supervision
using domain knowledge has been effective in many application
areas with little or no training data—including, entity extraction
[15], computer vision [23], and IR [5]. In a supervised setting, data
augmentation methods may be developed based on domain knowl-
edge. In computer vision a labeled image can be scaled, flipped or
otherwise transformed in ways that create a different image, but
the label is still valid [20]. Similarly in machine translation, data
can be augmented by replacing words on both sides of a training
pair, while tending to preserve a valid translation [6]. A different
approach is to incorporate domain knowledge as a regularizer. For
example, when predicting a physical response, adding a penalty
term for diverging from laws of physics [18]. In this study we adopt
the regularization approach.

3 AXIOMATIC REGULARIZATION FOR
NEURAL RANKING MODELS

In ad-hoc retrieval—an important IR task—the ranking model re-
ceives as input a pair of query q and document d , and estimates a
score proportional to their mutual relevance. The learning-to-rank
literature [13] explores a number of loss functions that can be em-
ployed to discriminatively train such a ranking model sθ . We use
the hinge loss [12] in this study.

L = Eq∼ϕ, dpos ,dneд∼ψ [ℓ(q,dpos ,dneд)] (1)

ℓ(q,dpos ,dneд) = max{0, ϵ −
(
sθ (q,dpos ) − sθ (q,dneд)

)
} (2)

Minimizing the hinge loss implies maximizing the gap between
sθ (q,dpos ) and sθ (q,dneд)—where query q is sampled randomly
from distribution ϕ and documents dpos and dneд fromψ . We use
the notation dpos ≻q dneд to denote that the document dpos is more
relevant of the two documents w.r.t. query q.

We define a set ∆ of axiomatic regularization constraints based
on existing IR axioms. Each regularization constraint ∆i defines a
dimension in which a document d can be perturbed—to generate a
new document d(i)—such that its relevance to a queryq is impacted—
either positively or negatively. Let δi ∈ {+1,−1} be equal to 1, if
the constraint ∆i states that d ≻q d(i)—i.e., the original document d
should be considered as more relevant than d(i) w.r.t. query q—and
be equal to −1 otherwise.

We redefine the hinge loss of Equation 1 to include the axiomatic
regularization (abbrv. ‘AR’) below.

L = Eq∼ϕ, dpos ,dneд∼ψ ,∆i∼υ [ℓ(q,dpos ,dneд)] (3)

ℓAR (q,dpos ,dneд ,∆i ) =

max{0, ϵ −
(
sθ (q,dpos ) − sθ (q,dneд)

)
}

+ λ ·max{0, µ − δi ·
(
sθ (q,dpos ) − sθ (q, d

(i)
pos )

)
}

+ λ ·max{0, µ − δi ·
(
sθ (q,dneд) − sθ (q, d

(i)
neд)

)
}

(4)

where, υ is the uniform distribution over all axiomatic regular-
ization constraints in ∆. We treat λ and µ as hyper-parameters.

In this study, we consider three of the standard IR axioms that
we formally state below.

TFC1 This axiom states that we should give higher score to a
document that has more occurrences of a query term.
if: |q | = 1, |di | = |dj |, and #(q1,di ) > #(q1,dj ),
then: di ≻q dj
where, #(t ,u) denotes the term frequency of t in text u.

TFC3 This axiom states that if the cumulative term frequency of all
query terms in both documents are same and every term is
equally discriminative, then a higher score should be given
to the document covering more unique terms.
if: |q | = 2, |di | = |dj |, td(q1) = td(q2), #(q1,di ) = #(q1,dj ) +
#(q2,dj ), #(q2,di ) = 0, #(q1,dj ) , 0, and #(q2,dj ) , 0,
then: dj ≻q di
where, td(t) is any measure of term discrimination, such as
inverse document frequency [22].

LNC This axiom states the score of a document should decrease
if more non-relevant terms are added.
if: t < q, #(t ,dj ) = #(t ,di ) + 1, ∀w ∈ di ∪ dj , #(w,di ) =
#(w,dj ),
then: dj ⊁q di

Based on these stated axioms we derive the set ∆ of four regu-
larization constraints.

TFC1-A We randomly sample a query term and insert it at a random
positions in document d . We expect the perturbed document
d(i) to be more relevant to the query—i.e., d(i) ≻q d .

TFC1-D We randomly sample one query term and delete all its occur-
rences in document d . We expect the perturbed document
to be less relevant to the query—i.e., d ≻q d(i).

TFC3 We randomly sample one of the query terms not present in
document d , if any, and insert it at a random position in the
document. We expect the perturbed document to be more
relevant to the query—i.e., d(i) ≻q d .

LNC We randomly sample k terms from the vocabulary and insert
them at random positions in the document d . We expect the
perturbed document to be less relevant to the query—i.e.,
d ≻q d(i).

Next, we describe our experiment methodology and present
results from the empirical study.

4 EXPERIMENTS
For reproducibility, we use an open-source repository of neural
ranking models1 containing CKNRM [4], which we train on the
publicly available MS MARCO [1] ranking dataset2. The train and
dev set in MS MARCO contains 398,792 and 6,980 queries, respec-
tively. For each query, the top 1000 passages are retrieved by BM25.
On average, about one passage is manually labeled as relevant to
the query.

1https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models
2http://www.msmarco.org/



For the MS MARCO experiments we use the CKNRM model. We
use the 400K GloVe vocabulary3 to initialize the word embeddings.
The out-of-vocabulary rate was about 1% on MS MARCO training
and dev data.

For training CKNRM, we use its default hyperparameters in the
repository: learning rate 0.001, batch size 64, and Adam optimizer
with weight decay. We sub-sample 512 out of the 6,900 queries from
the MS MARCO dev set to select the best model in intermediate
evaluations during training, and then evaluate on the remaining
dev queries. We generate one perturbation of each of the positive
and negative passages in each row of the MS MARCO training
data by independently and uniformly at random choosing an axiom
from {TFC1-A, TFC1-D, TFC3, LNC}.

We add to the original CKNRM ranking loss two additional
axiomatic hinge losses: one comparing the pair of original and
perturbed positive passage, and similarly for the pair of negative
passages. We tune the coefficient of the axiomatic loss, λ, and its
margin, µ, over {0.001, 0.01, 0.1, 0.25, 0.5, 1.0} and find that smaller
coefficients and smaller margins work better as the size of the
training dataset increases.

To show how axiomatic regularization impacts learning, we train
CKNRM and its axiomatic variant on four subsamples of the MS
MARCO ranking dataset. We sub-sample 100, 1k, 10k, and 100k
queries from the data and include all the passage pairs for the
subsampled queries. We then train four independent models of the
baseline CKNRM and its axiom-regularized variant on each of the
datasets, and ensemble the models by averaging their scores for
each document in the dev set to produce the MRR numbers shown
in Figure 1. Every model is trained for exactly 15,000 steps, except
for the points on the far right, which are trained for 60,000 steps
on all 300k queries of the MS MARCO training data.

We perform an ablation study of adding each axiom in isolation
to the original hinge loss of CKNRM in Table 2.

We also apply axiomatic regularization to a proprietary rank-
ing dataset from a commercial search engine—comprised of 10
documents for each of 500k queries. The documents have human
judgments on the {bad, fair, good, excellent, perfect} scale. There
are two evaluation sets, a sample of about 16K queries from a six
month period weighted by their occurrence in the log, and an un-
weighted (uniform) sample of queries from the same six month
period. We use a proprietary deep neural model (DNN) to encode
the query and the document from its various fields including Title,
URL, Anchor, and Co-Clicks. The model is trained to regress to the
pointwise relevance label using mean square error loss, to which
we add the axiomatic regularization. We compare this DNN model
and its axiom-regularized variant to BM25 in Table 1 (Bottom).

5 RESULTS
We show the value of axiomatic regularization in Figure 1 across
a variety of data sizes subsampled from MS-MARCO. Its impact
is most pronounced in low-data scenarios where it significantly
improves a deep neural model that was struggling to capture basic
relevance signals on 100, 1k, or even 10k query datasets. Only
after introducing axiomatic regularization could CKNRM overtake
BM25 on 10k queries. In fact, for these low volume datasets the

3https://nlp.stanford.edu/projects/glove/

Figure 1: MRR results of training CKNRM and its axiomatic
variant on datasets with 100, 1k, 10k, 100k, and all MS-
MARCO queries on the dev set. Each point represents the
ensemble of four independently trained models.

Figure 2: Training curve of the loss and dev MRR of both
CKNRM and AR-CKNRM on the 10k query dataset

best hyperparameters for the axiomatic loss were at least 0.25 for
both the loss coefficient and the margin, suggesting that the axioms
played a major role in guiding the model.

These axiomatic hyperparameters transitioned lower, however,
in the higher data scenarios which are more accommodating for
neural models. This agrees with our intuition that regularization
coefficients should contribute only a fraction of the total loss, and
the margin separating a document and its perturbation should be
smaller than that separating documents of different human-labeled
relevance classes. The best empirical axiomatic hyperparameters
agree with these intuitions; the coefficient and margins were all at
or below 0.1. In this case, the axioms behaved more like traditional
regularization techniques. We show the regularizing effect in Figure
2, where we plot the original hinge loss (without axiomatic loss
added in) and the dev MRR for both types of models.

Even when data is abundant, where deep models typically thrive,
Table 1 (Top) demonstrates that the axioms still contribute notice-
able improvements which are competitive with the MS MARCO



Results on MS-MARCO
MAP MRR

CKNRM 25.75 26.07
AR-CKNRM 26.62 26.94

Results (NDCG@1) on Proprietary Data
Weighted Unweighted

BM25 33.69 23.75
DNN 44.04 25.11

AR - DNN 45.39 26.13
Table 1: (Top) Results on the MS-MARCO Eval set of the en-
semble of four models trained on all MS-MARCO queries.
(Bottom) NDCG@1 numbers of a proprietary neural model
and its axiomatic variant on an large scale commercial rank-
ing dataset. (All values are x100)

Ablation on 10k Queries
MAP MRR

CKNRM 15.13 15.36
+ TFC1-A 19.33 19.56
+ TFC1-D 18.16 18.38

+ TFC3 19.05 19.28
+ LNC 11.42 11.47

+ All Axioms 19.70 19.95
Table 2: An add-one-in ablation study of each of the ax-
iomatic losses; the last row shows all axioms.

leaderboard. On the MS MARCO eval dataset, axiomatic regulariza-
tion improves performance by about 3%. This improvement is also
consistent with that of NDCG on the proprietary ranking dataset
in Table 1 (Bottom).

Table 2 shows the results of an add-one-in ablation study of
each axiom added individually to the original hinge loss. On their
own, TFC1 and TFC3 are enough to provide a roughly 30% relative
improvement on a dataset of 10k queries, reinforcing the importance
of query termmatching signals which CKNRM on its own could not
capture. Curiously, however, LNC1 on its own hinders performance,
which raises the question of how to best teach a neural model to
penalize noise terms and length of a document.

6 CONCLUSION
While some traditional IR methods have directly inspired specific
neural architectures—e.g., [26]—arguably much of neural IR’s cur-
rent recipes have been borrowed from other application areas of
deep learning, such as natural language processing. It is therefore
exciting to see a framework like axiomatic IR—that was originally
intended to provide an analytical foundation for classical retrieval
methods—proving effective in improving generalizability of mod-
ern neural approaches. While we find axiomatic constraints to be
effective as regularization schemes, we suspect they may also hold
the key to thinking about novel unsupervised and distant learning
strategies for IR tasks.
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