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Figure 1: (a) Traditional image-based localization using 3D point cloud, which reveals potentially confidential information in the scene.
(b) Reconstructed image using projected sparse 3D points and their SIFT features [50]. (c) Our proposed 3D line cloud protects user
privacy by concealing the scene geometry and preventing inversion attacks, while still enabling accurate and efficient localization.

Abstract

Image-based localization is a core component of many
augmented/mixed reality (AR/MR) and autonomous robotic
systems. Current localization systems rely on the persis-
tent storage of 3D point clouds of the scene to enable cam-
era pose estimation, but such data reveals potentially sensi-
tive scene information. This gives rise to significant pri-
vacy risks, especially as for many applications 3D map-
ping is a background process that the user might not be
fully aware of. We pose the following question: How can
we avoid disclosing confidential information about the cap-
tured 3D scene, and yet allow reliable camera pose estima-
tion? This paper proposes the first solution to what we call
privacy preserving image-based localization. The key idea
of our approach is to lift the map representation from a 3D
point cloud to a 3D line cloud. This novel representation
obfuscates the underlying scene geometry while providing
sufficient geometric constraints to enable robust and accu-
rate 6-DOF camera pose estimation. Extensive experiments
on several datasets and localization scenarios underline the
high practical relevance of our proposed approach.

1. Introduction
Localizing a device within a scene by computing the

camera pose from an image is a fundamental problem in
computer vision, with high relevance in applications such
as robotics [16, 19, 64], augmented/mixed reality (AR/MR)
[36, 46], and structure from motion (SfM) [25, 60, 62]. Ar-
guably, the most common approach to image-based local-
ization is structure-based [19, 33, 46, 58] and tackles the
problem by first matching the local 2D features of an im-
age to the 3D point cloud model of the scene. Geometric

constraints derived from the matched 2D–3D point corre-
spondences are then used to estimate the camera pose. In-
herently, the traditional approach to image-based localiza-
tion thus requires the persistent storage of 3D point clouds.

The popularity of AR platforms such as ARCore [5]
and ARKit [7], wearable AR devices such as Microsoft
HoloLens [31], and announcements of Microsoft’s Azure
Spatial Anchors (ASA) [11], Google’s Visual Positioning
System (VPS) [79] as well as 6D.AI’s mapping platform [1]
indicate rising demand for image-based localization ser-
vices that enable spatial persistence in AR/MR and robotics.
Even today, devices like HoloLens, MagicLeap1, or iRobot
Roomba continuously map their 3D environment to oper-
ate. This is a background process that users often are not
consciously aware of. As robotics and AR/MR become in-
creasingly relevant in consumer and enterprise applications,
more and more 3D maps of our environment will be stored
on device or in the cloud and then shared with other clients.
Even though the source images are typically discarded af-
ter mapping, a person can easily infer the scene layout and
presence of potentially confidential objects based on a ca-
sual visual inspection of the 3D point cloud (see Fig. 1-(a)).
Furthermore, methods that reconstruct images from local
features (such as [18, 50]) make it possible to recover re-
markably accurate images of the scene from point clouds
(see Fig. 1-(b)). From a technical standpoint, these pri-
vacy risks have been widely ignored so far. However, these
will become increasingly relevant as localization services
are adopted by more users as well as when mapping and
localization capabilities will be more and more integrated
with the cloud. As a consequence, there has recently been
a lot of discussion in the AR/MR community around the
privacy implications of this development [48, 54, 78].
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(a) 3D Point Cloud (b) Lifting to 3D Lines (c) 3D Line Cloud

Figure 2: 3D Line Cloud. The main idea of the proposed 3D line
cloud representation that hides the geometry of the map.

In general, we predict three scenarios in which the pri-
vacy of users will be compromised. First, if the scene it-
self is confidential (e.g., a worker in a factory or a person
at home), then storing maps with a cloud-based localiza-
tion service is inherently risky. Running localization on
trusted servers with maps stored securely could address pri-
vacy concerns, but even then the risk of unauthorized ac-
cess remains. In the second scenario, the scene itself is
not confidential but there is a secret object or information
(e.g., a hardware prototype in a workshop or some private
details at home). Yet, we still want to enable persistent
localization in the same environment later on, without the
risk of the secret information leaking via the 3D map of the
scene. This is especially relevant since users are typically
not aware that mapping and localization services often con-
tinuously run in the background. The final scenario involves
low-latency and offline applications that need localization to
run on client devices, which requires 3D maps to be shared
among authorized users. Obviously, distributing 3D maps
with other users also compromises privacy.

To address these privacy concerns, we introduce a new
research direction which we call privacy preserving image-
based localization (see Fig. 1). The goal is to encode the
3D map in a confidential manner (thus preventing sensi-
tive information from being extracted), while maintaining
the ability to perform robust and accurate camera pose es-
timation. To the best of our knowledge, we are the first to
propose a solution to this novel problem.

The key idea of our solution is to obfuscate the geometry
of the scene in a novel map representation, where every 3D
point is lifted to a 3D line with a random direction but pass-
ing through the original 3D point. Only the 3D lines and the
associated feature descriptors of the 3D points are stored,
whereas the original 3D point locations are discarded. We
refer to such maps as 3D line clouds (see Fig. 2). The 3D
line cloud representation hides the underlying scene geom-
etry and prevents the extraction of sensitive information.

To localize an image within a 3D line clouds, we lever-
age the traditional approach of feature matching [33, 58] to
obtain correspondences between local 2D image features
and 3D features in the map. Each correspondence pro-
vides the geometric constraint that the 2D image observa-
tion must lie on the image projection of its corresponding

3D line. Based on this constraint, the problem of abso-
lute camera pose estimation from 3D line clouds entails the
intersection of a set of camera rays and their correspond-
ing 3D lines in the map. Towards leveraging this concept
for privacy preserving localization, we show that a 3D line
cloud can be interpreted as a generalized camera. As a con-
sequence, absolute camera pose estimation from 3D line
clouds boils down to solving a generalized relative or abso-
lute pose problem, which means we can repurpose existing
algorithms [30, 39, 42, 67–69] to solve our task.

In our paper, we study several variants of our approach.
We first consider the case where the input is a single im-
age and then generalize this concept to the case of jointly
localizing multiple images. We also present several special-
izations of our method for localization scenarios, where the
vertical direction or the scale of the scene is known. These
specializations are especially valuable in practical applica-
tions and underline the high relevance of our approach.

Contributions. We make the following contributions:
(1) We introduce the privacy preserving image-based local-
ization problem and propose a first solution for it. (2) We
propose a novel 3D map representation based on lifting
3D points to 3D lines, which preserves sufficient geomet-
ric constraints for pose estimation without revealing the 3D
geometry of the mapped scene. (3) We propose minimal
solvers for computing the camera pose given correspon-
dences between 2D points in the image and 3D lines in the
map. We study eight variants when the input is either a sin-
gle image or multiple images, with and without the knowl-
edge of the gravity direction or the scale of the scene.

2. Related Work
Image-Based Localization. Recent progress in image-
based localization has led to methods that are now quite ro-
bust to changes in scene appearance and illumination [4,61],
scale to large scenes [43,56,58,83], and are suitable for real-
time computation and mobile devices [8, 33, 35, 43–45, 57,
76] with compressed map representations [15, 21]. Tradi-
tional localization methods based on image retrieval [34,66]
and based on learning [12, 35, 80, 81] have the advantage of
not requiring the explicit storage of 3D maps. However,
model inversion techniques [47] pose privacy risks even for
these methods. Besides, they are generally not accurate
enough [59, 80] to enable persistent AR and robotics appli-
cations. Overall, to the best of our knowledge, there is no
prior work on privacy preserving image-based localization
or on privacy-aware methods in other 3D vision tasks.

Privacy-Aware Recognition. Privacy-aware object recog-
nition and biometrics have been studied in vision since
Avidan and Butman [9, 10], who devised a secure face
detection system. Other applications include image re-
trieval [65], face recognition [22], video surveillance [74],



biometric verification [75], activity recognition in videos to
anonymize faces [53, 55], and detecting computer screens
in first-person video [40]. A recent line of work ex-
plores learning data-driven models from private or en-
crypted datasets [2, 27, 82]. All related works on privacy
in computer vision focus on recognition problems, whereas
ours is the first to focus on geometric vision. While our
work aims at keeping the scene geometry confidential, it is
worth exploring confidential features as well. However, this
is beyond the scope of this paper.
Privacy Preserving Databases. Privacy preserving tech-
niques have been studied for querying data without leak-
ing side information [17]. Differential privacy [20] and k-
anonymity [71] have been applied to the problem of loca-
tion privacy [3, 6, 26]. Learning data-driven models from
private datasets has also received attention [2,27,82]. How-
ever, existing techniques are inapplicable for geometric vi-
sion problems such as image-based localization.
Generalized Camera Pose Estimation. An important in-
sight we present in the paper is that privacy preserving cam-
era pose estimation from 3D line clouds has a close re-
lation to generalized cameras. After Grossberg and Na-
yar [28] formulated the theory of generalized cameras,
Pless [51] derived generalized epipolar constraints from
the the Plücker representation of 3D lines. Stewenius et
al. [67] proposed the first minimal solver for the general-
ized relative pose problem, whereas numerous other solvers
have been proposed for various generalized pose prob-
lems [13, 14, 23, 37, 38, 41, 42, 49, 68–70, 72, 77].

Generalized cameras are mostly used to model rigid
multi-camera rigs or for dealing with multiple groups of
calibrated cameras with known extrinsics [68–70]. In those
settings, generalized cameras typically have a small number
of pinhole cameras with several observations per image. In
contrast, our 3D line clouds can be viewed as generalized
cameras with one pinhole camera (and one observation) per
3D line. While existing generalized pose solvers can be
prone to degeneracies, we avoid this problem by choosing
lines with random directions. This not only enhances pri-
vacy but also leads to better conditioning of the problem.

3. Proposed Method
In this section, we describe our proposed solution to pri-

vacy preserving image-based localization. To give context,
we first introduce the traditional approach to this problem
for a single camera and then present the key concepts be-
hind our privacy preserving method. We then describe the
extension of these concepts for jointly localizing multiple
cameras. Finally, we discuss practical solutions for sev-
eral special cases, where the gravity direction is known or
where we can obtain a local reconstruction of the scene with
known or unknown scale. In our description, we focus on
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Figure 3: Camera Pose Estimation. Left: using traditional 3D
point cloud. Right: using our privacy preserving 3D line cloud.

the high level intuitions behind our approach and refer the
reader to related literature for details on the underlying al-
gorithms needed to solve the various cases.

3.1. Traditional Camera Pose Estimation

We follow the traditional approach of structure-based vi-
sual localization [33,58], where the map of a scene is repre-
sented by a 3D point cloud, which is typically reconstructed
from images using SfM [60]. To localize a pinhole camera
with known intrinsics in the reconstructed scene, one esti-
mates its absolute pose P =

[
R T

]
with R ∈ SO(3) and

T ∈ R3 from correspondences between normalized 2D ob-
servations x ∈ R2 in the image and 3D points X ∈ R3

in the map. To establish 2D–3D correspondences, the clas-
sical approach is to either use direct or indirect matching
from 2D image features to 3D point features [33, 58]. Each
2D–3D point correspondence provides two geometric con-
straints for absolute camera pose estimation in the form of

0 = x̄− PX̄ = λ

[
x
1

]
− PX̄ , (1)

where λ is the depth of the image observation x while
x̄ ∈ P2 and X̄ ∈ P3 are the lifted representations of x and
X in projective space, respectively. Naturally, we need a
minimum of three 2D–3D correspondences to estimate the
six unknowns in P . In the general case, this problem is
typically referred to as the pnP problem and in the mini-
mal case as the p3P problem. Since the matching process
is imperfect and leads to outliers in the set of 2D–3D cor-
respondences, the standard procedure is to use robust algo-
rithms such as RANSAC [24, 52] in combination with ef-
ficient minimal solvers to optimize Eq. (1) for computing
an initial pose estimate. Subsequently, that estimate is then
refined by solving the non-linear least-squares problem

P ∗ = argmin
P

‖x̄− PX̄‖2 , (2)

which gives the maximum likelihood estimate based on a
Gaussian error model x ∼ N (0,σx) for the image obser-
vations. This approach has been widely used [33,45,46,58,
83] and enables efficient and accurate image-based localiza-
tion in large scenes. However, it requires knowledge about



the scene geometry in the form of the 3D point cloudX and
thereby this approach inherently reveals the geometry of the
scene. In the next sections, we present our novel localiza-
tion approach that overcomes this privacy limitation.

3.2. Privacy Preserving Camera Pose Estimation

The core idea behind our approach to enable privacy
preserving localization is to obfuscate the geometry of the
map in a way that conceals information about the underly-
ing scene without losing the ability to localize the camera
within the scene. In order to obfuscate the 3D point cloud
geometry, we lift each 3D pointX in the map to a 3D lineL
with a random direction v ∈ R3 passing through X . The
lifted 3D line L in Plücker coordinates [51] is defined as

L =

[
v
w

]
∈ P5 with w = X × v . (3)

Importantly, since direction v is chosen at random and due
to the cross product being a rank-deficient operation, the
original 3D point location X cannot be recovered from its
lifted 3D line L. We only know that L passes through X
somewhere and that this also holds for their respective 2D
projections l and x in the image. Formally, a 2D image
observation x passes through the projected 2D line l, if it
satisfies the geometric constraint

0 = x̄T l with [l]× =

[
0 −l3 l2
l3 0 −l1
−l2 l1 0

]
= P [L]×P

T , (4)

where [L]× is the Plücker matrix defined as

[L]× =

[
−[w]× −v
vT 0

]
. (5)

Using this constraint for absolute camera pose estimation
requires a minimum of six 2D point to 3D line correspon-
dences to solve for the six unknowns in P . This is in
contrast to the traditional approach, where each correspon-
dence provides two constraints and thus only three corre-
spondences are needed. Similar to the traditional pnP and
p3P problems, we denote the general problem as pnL and
the minimal problem as p6L. Geometrically, solving the
pnL problem is equivalent to rotating and translating the
bundle of rays defined by x and passing through the pinhole
of the camera, such that the bundle of camera rays intersect
with their corresponding 3D lines in the map (see Fig 3).
Note, this is a specialization of the generalized relative pose
problem [67], where the rays in the first generalized cam-
era represent the known 3D lines of the map, and the rays
of the second generalized camera represent the 2D image
observations of the pinhole camera that we want to localize.

We embed this concept into the traditional localization
pipeline by robustly estimating an initial pose estimate us-
ing RANSAC with the minimal solver by Stewenius et
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Figure 4: Camera Pose Estimation with Known Structure.
Left: traditional setup with 3D point cloud maps. Right: our pro-
posed approach using 3D line cloud maps.

al. [67] to solve Eq. (4). We then non-linearly refine the
initial pose by minimizing the geometric distance between
the observed 2D point and the projected 3D line as

P ∗ = argmin
P

x̄T l√
l21 + l22

. (6)

After deriving the theory for a single camera in this section,
we next generalize our approach to the joint localization of
multiple images and the special case with known vertical.

3.2.1 Generalization to Multiple Cameras

While existing localization approaches typically only con-
sider a single image [33, 46, 58, 83], many devices such as
head mounted displays, robots, or vehicles are equipped
with multiple rigidly mounted cameras, that have been cal-
ibrated a priori. Jointly localizing multiple cameras to-
gether brings great benefits for localization by leveraging
the combined field of view to retrieve more 2D–3D corre-
spondences and by reducing the number of unknown pose
parameters for an increased redundancy in the estimation
problem. In addition, many mobile devices nowadays have
built-in SLAM capabilities (e.g., ARKit, ARCore), which
can be leveraged to take advantage of the same simplifica-
tions as with multi-camera systems by treating a local cam-
era trajectory as an extrinsic calibration of multiple images.

The joint localization of multiple cameras differs from
the case of a single camera primarily in how the problem
is parameterized. Instead of determining a separate pose
P ∈ SE(3) for each camera, we reparameterize the pose as

P = P cPm with Pm = sm

[
Rm Tm
0 s−1

m

]
. (7)

We now estimate only a single 3D similarity transformation
Pm ∈ Sim(3), while the known relative extrinsic calibra-
tions P c of the individual cameras stay fixed. Note that
if we know the relative scale of P c with respect to the
3D points X in the map, we can eliminate the scale fac-
tor sm ∈ R+ and reduce Pm to a 3D rigid transformation.



Constraints Query Type POINT TO POINT (Traditional) POINT TO LINE (Privacy Preserving)

2D – 3D
Single-Image p3P [29] p2P+u [68] p6L [67] p4L+u [69]
Multi-Image m-p3P [30] m-p2P+u [32] m-p6L [67] m-p4L+u [69]

3D – 3D Multi-Image
m-P3P+λ [73] m-P2P+λ+u [73] m-P4L+λ [70] m-P3L+λ+u [13]
m-P3P+λ+s [32] m-P2P+λ+u+s [32] m-P3L+λ+s [30] m-P2L+λ+u+s [68]

Table 1: Camera Pose Problems. Traditional methods are p*P (2D point to 3D point) and P*P (3D point to 3D point), whereas privacy
preserving methods are p*L (2D point to 3D line) and P*L (3D point to 3D line). The methods in the first row localize single images,
whereas the rest jointly localizes multiple images (prefix m). We have general solvers as well specialized ones for known vertical direction
(suffix +u). The bottom two rows exploit known 3D structure (suffix +λ and suffix +s for known scale) local to the camera to be localized.

In the literature, this problem is referred as the general-
ized absolute pose problem [30, 49], which is analogous to
the traditional problem and does not conceal the 3D point
cloud. In most practical applications, we can assume that
the scale sm = 1, because multi-camera setups are typi-
cally calibrated to metric scale, and due to the fact that most
SLAM systems recover scale from integrated inertial mea-
surements. In the following, we therefore initially restrict
our work to the scenario where Pm ∈ SE(3). We refer to
the solution of this problem as m-pnP in the general case
and m-p3P in the minimal case. However, efficient solu-
tions also exist for the more general case Pm ∈ Sim(3)
[70, 77].

In the privacy preserving setting, the generalization to
multiple images again boils down to solving a generalized
relative pose problem [67]. However, the rays of the sec-
ond generalized camera arise from 2D image observations
of multiple instead of a single pinhole camera. We refer to
the generalized solutions in the privacy preserving setting
as m-pnL in the general and m-p6L in the minimal case.

3.2.2 Pose Estimation with Known Structure

So far, we have discussed a way to estimate the camera pose
from the rays of 2D image observations directly. In many
situations though, it is possible to obtain the depth λ of an
image observation x, after which, its 3D location relative to
the camera is computed as X̃ = λx̄. Such 3D data can be
extracted through an active depth camera that yields RGB-
D images or through multi-view triangulation. In the tradi-
tional localization problem, we can therefore directly esti-
mate the camera pose as the transformation that best aligns
the two corresponding 3D point sets using the constraint

0 = X̃ − PX̄ . (8)

To solve this equation in the minimal case, we need only
three correspondences for the 6-DOF of the 3D rigid trans-
formation P . Eq. (8) is typically solved in a least-squares
fashion, and in this form has a direct and computationally
efficient solution [32, 73]; we refer to this as m-PnP+λ and
m-P3P+λ in the general and minimal cases, respectively.

Similarly, we can also take advantage of the local 3D
points X̃ in our privacy preserving approach. Instead of

solving a generalized relative pose problem to find the in-
tersection between the 3D lines of the map and the camera
rays, we now try to find a pose such that the 3D lines L of
the map pass through the 3D points X̃ . We can formalize
this in the following geometric constraint

0 = X̃ − P
[
v ×w + αv

1

]
, (9)

where α is the unknown distance from the random origin
v × w of the 3D line L to the secret 3D point X . By in-
verting the role of the camera and the map, this problem
is geometrically equivalent to the generalized absolute pose
problem, i.e., we can repurpose m-pnP to solve for the un-
known pose P . As such, we now only need a minimum
of three 3D point to 3D line correspondences compared to
the six correspondences needed to solve m-p6L (see Fig.4).
Note that requiring fewer points to solve the minimal prob-
lem is advantageous in RANSAC, which has an exponential
runtime complexity in the number of sampled points. The
solution to Eq. (9) is also more efficient to compute [30] as
compared to m-p6L. We refer to this problem as m-pnL+λ
in the general and m-P3L+λ in the minimal case.

3.2.3 Extension to Unknown Scale

The approach described in the previous section can be sen-
sitive to inaccurate 3D point locations X and X̃ . This
is problematic, even if the two 3D point clouds have only
slightly different scale, e.g., due to drift in SLAM or slight
miscalibrations of the multi-camera system. In comparison,
the constraints used by pnP and pnL are less susceptible to
this issue. This is because the viewpoints used to triangulate
X and X̃ are inherently similar in image-based localization
and the uncertainties σλ in the depths λ are usually larger
than the uncertainties σx in image space.

To overcome this issue, it is typically better to estimate a
3D similarity transformation sP with s ∈ R+ instead of a
3D rigid transformation, when performing structure-based
alignment. The constraint in Eq. (8) then becomes

0 = X̃ − sPX̄ , (10)

while the privacy preserving constraint in Eq. (9) becomes

0 = X̃ − sP
[
v ×w + αv

1

]
. (11)
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Figure 5: Dataset Visualization. The original 3D point cloud with the corresponding 3D line cloud is shown.

Now we need at least four correspondences to estimate the
7-DOF 3D similarity. Note that Eq. (10) has a compara-
tively simple and efficient solution [73] that we refer to as
m-PnP+λ+s. In the privacy preserving setting, the problem
of computing a 3D rigid transformation is exactly minimal,
i.e., we now need a fourth correspondence to estimate the
additional scale parameter using the constraints in Eq. (11).
This is equivalent to the generalized absolute pose and scale
problem [70], where the role of cameras and map is again
reversed. We refer to the reversed problem as m-PnL+λ+s
in the general and as m-P4L+λ+s in the minimal case.

3.2.4 Specialization with Known Vertical

Oftentimes, an estimate of the gravity direction in both the
reference frame of the camera and the 3D map may be avail-
able, e.g., from inertial measurements or vanishing point
detection. By pre-aligning the two reference frames to the
vertical direction, we can reduce the number of rotational
pose parameters from three to one such that R ∈ SO(2).
This parameterization of the rotation simplifies the geomet-
ric constraints, and leads to more efficient and numerically
stable solutions for these problems. In addition, the mini-
mal cases require fewer points, leading to a better runtime
of RANSAC. We implement the known gravity setting for
all described problems and indicate this with the suffix +u.
An overview of all the problems is given in Table 1.

4. Experimental Evaluation

To demonstrate the high practical relevance of our ap-
proach, we conduct an extensive list of experiments on real-
world data with ground-truth. We evaluate the pose estima-
tion performance in terms of accuracy/recall and robustness
to the input by comparing our privacy preserving approach
using 3D line clouds to the traditional approach of using 3D

point clouds. In the following, we first describe the experi-
mental setup before presenting the results.

4.1. Setup

Datasets. We collect 15 real-world datasets of complex
indoor and outdoor scenes (see Fig. 5) using a mix of
mobile phones and the research mode of the Microsoft
HoloLens [31]. To realistically simulate an image-based lo-
calization scenario, we captured map images used to recon-
struct a 3D point cloud of the scene and query images from
significantly different viewpoints used for evaluating local-
ization. For sparse scene reconstruction and camera cali-
bration, we feed all the recorded (map and query) images
into the COLMAP SfM pipeline [60, 63] to obtain high-
quality camera calibrations. The obtained camera poses of
the query images serve as ground-truth R̂ and T̂ for our
evaluations. All query images alongside their correspond-
ing 3D points are then carefully removed from the obtained
reconstructions to prepare the 3D map for localization. Af-
terwards, we perform another bundle adjustment with fixed
camera poses to optimize the remaining 3D points given
only the map images. These steps are to reconstruct ac-
curate ground-truth poses for the query images, and to also
ensure a realistic 3D map for localization, in which we are
only given the map images. Across the datasets, we cap-
tured 375 single-image and 402 multi-image queries.

Protocol. To establish 2D–3D correspondences, we use in-
direct matching of SIFT features at the default settings of
the SfM pipeline [60, 63]. In the single-image scenario, we
treat each query image separately, while for the multi-image
scenario, we group several consecutive images in the cam-
era stream as one generalized camera. When evaluating the
multi-image case and pose estimation with known structure,
we reconstruct the 3D points X̃ and camera poses P c using
SfM [60,63] from only the query images. For a fair compar-
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Figure 6: Camera Pose Estimation Errors Plots. Cumulative rotation and translation error histograms for all 16 evaluated methods.

ison, all methods use exactly the same 2D–3D correspon-
dences, thresholds, and RANSAC implementation [24]. See
supplementary material for more details.

Metrics. In our evaluation, we compute the rotational er-
ror as ∆R = arccos Tr(RT R̂)−1

2 and the translational error

as ∆T = ‖RTT − R̂
T
T̂ ‖2. We also report the average

point-to-point and point-to-line (c.f . Eq. (2) and Eq. (6)) re-
projection errors w.r.t. to the obtained pose estimate.

Methods. We compare the results of our proposed 8 privacy
preserving to the corresponding 8 variants of traditional
pose estimators, see Table 1. The initial pose estimates of
all methods are computed using standard RANSAC and a
minimal solver for the geometric constraints. We also com-
pare the results of a non-linear refinement (suffix +ref ) of
the initial pose using a Levenberg-Marquardt optimization
of Eqs. (2) and (6) based on the inliers from RANSAC.

4.2. Results

Accuracy and Recall. The accuracy/recall curves are pre-
sented in Fig. 6, and reprojection errors in Table 2. As
expected, the traditional approaches achieve better accu-
racy/recall, because their solutions leverage two constraints
for pose estimation. Surprisingly, even though ours uses
only a single geometric constraint, it comes very close to
the results achieved by the traditional approach. Moreover,
incorporating known information about structure, gravity,

and scale leads to an additional improvement of the results
for all methods.
Runtime. Table 2 reports the mean number of required
RANSAC iterations, inlier ratio, generated solutions in the
minimal solver, and time required to estimate a single min-
imal solution. The results show that, while our method is
slower than the conventional approach, it provides runtimes
that are suitable for practical real-time applications. Es-
pecially, the specialized solvers with known structure and
gravity achieve competitive runtime. We used the same
RANSAC threshold for all the methods, but in practice this
threshold could be chosen smaller for the privacy preserv-
ing methods, since the point-to-line is always smaller than
point-to-point reprojection errors. This, together with the
possibility to more easily include some additional outliers
along the line due to mistakes in feature matching, leads to
slightly higher inlier ratios for our method, see Table 2.
Robustness. We study robustness with respect to point
cloud density and image noise. In Fig. 7, we demonstrate re-
liable pose estimation even when only retaining every 20th

point of an already sparse SfM point cloud. Fig. 8 shows
similar behavior for ours and the conventional approach un-
der varying noise σx on the image observations.

5. Discussion

Let us now discuss to what extent the privacy risks have
been addressed, and highlight directions for future work.



POINT TO POINT (Traditional) POINT TO LINE (Privacy Preserving)
p3P i: 31 r: 64 s: 2.05 t: 3.54 p2P+u i: 15 r: 64 s: 2 t: 3.21 p6L i: 158 r: 69 s: 64 t: 1002 p4L+u i: 40 r: 70 s: 4 t: 5.27

m-p3P i: 38 r: 64 s: 1.70 t: 3.81 m-p2P+u i: 11 r: 65 s: 2 t: 3.16 m-p6L i: 64 r: 72 s: 64 t: 691 m-p4L+u i: 23 r: 72 s: 4 t: 3.61

m-P3P+λ i: 23 r: 62 s: 1 t: 1.82 m-P2P+λ+u i: 12 r: 62 s: 1 t: 0.97 m-P4L+λ i: 27 r: 68 s: 1.5 t: 26.3 m-P3L+λ+u i: 24 r: 68 s: 1 t: 4.07

m-P3P+λ+s i: 24 r: 62 s: 1 t: 4.19 m-P2P+λ+u+s i: 12 r: 62 s: 1 t: 2.37 m-P3L+λ+s i: 18 r: 68 s: 2.1 t: 2.3 m-P2L+λ+u+s i: 9 r: 68 s: 2 t: 2.10

Notation: i: mean number of iterations, r: inlier ratio [%], s: mean number of solutions, t: minimal solver time [ms].

p3P 1.84 / 1.42 p2P+u 1.88 / 1.43 p6L 1.55 (4.20) / 1.10 (3.24) p4L+u 1.45 (3.62) / 1.08 (3.11)

m-p3P 2.06 / 1.51 m-p2P+u 1.88 / 1.51 m-p6L 1.56 (4.23) / 1.13 (3.29) m-p4L+u 1.46 (3.90) / 1.12 (3.17)

m-P3P+λ 1.71 / 1.42 m-P2P+λ+u 1.62 / 1.42 m-P4L+λ 1.39 (4.20) / 1.08 (3.52) m-P3L+λ+u 1.62 (4.92) / 1.17 (3.73)

m-P3P+λ+s 1.72 / 1.43 m-P2P+λ+u+s 1.63 / 1.41 m-P3L+λ+s 1.47 (4.29) / 1.13 (3.48) m-P2L+λ+u+s 1.31 (4.06) / 1.07 (3.52)

Table 2: Quantitative Results. RANSAC statistics (top) and reprojection errors in pixels (bottom) for initial / refined results in traditional
(Point to Point, Eq. (2)) and privacy preserving setting (Point to Line, Eq. (6); in brackets also Point to Point, if we had the secret points).
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Figure 7: Point Cloud Density. Rotation and translation error
with varying point cloud density by uniformly dropping a percent-
age of points/lines at random from the map.

What is revealed during localization? When images are
successfully localized within a scene, the inliers of the pose
estimate reveal the secret 3D points through intersection of
the camera rays with the corresponding 3D lines. On first
sight, this might seem like a privacy issue, but in practice
only objects visible in the image are revealed, while the rest
of the map or any confidential objects remain secret.

Permanent Line Cloud Transformation. The lifting
transformation must be performed only once and becomes
permanent for a scene; otherwise, an adversary that retains
multiple copies of line clouds generated by different lifting
transformations can easily recover the secret 3D points by
intersecting corresponding 3D lines.

Compactness of Representation. A more compact repre-
sentation than Plücker lines in Eq. (3) would be to chose
a finite set of line directions; e.g., 256 to fit within a byte,
and encode the position of the line as the intersection with
the plane through the origin and orthogonal to the direction,
this reduces memory usage to 2 floats and 1 byte, i.e., even
less than the 3 floats to encode a 3D point.

Privacy Attack on Line Clouds. Recovering the location
of a single 3D point from its lifted 3D line representation
is an ill-posed inversion problem, see Eq. (3). However, by
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Figure 8: Measurement Noise Sensitivity. Rotation and transla-
tion errors for varying Gaussian noise level on the measurements.

analyzing the density of the 3D line cloud, one could poten-
tially recover information about the scene structure. While
3D line clouds appear effective at making the underly-
ing scene geometry incomprehensible, it really depends on
the sampling density of the 3D points in the scene (see
suppl. material). In practice, we believe that our method is
generally quite robust to such attacks, since image-based lo-
calization typically uses sparse SfM point clouds. Besides,
a sparsification in Fig 7 of the 3D line cloud is an effective
defense mechanism. Nevertheless, a more thorough theo-
retical analysis is an interesting avenue of future research.

6. Conclusion

This paper introduced a new research direction called
privacy preserving image-based localization. With this
work, we are the first to address potential privacy concerns
associated with the persistent storage of 3D point cloud
models, as required by a wide range of applications in AR
and robotics. Our proposed idea of using confidential 3D
line cloud maps conceals the geometry of the scene, while
maintaining the ability to perform robust image-based lo-
calization based on the standard feature matching paradigm.
There are numerous directions for future work and we en-
courage the community to investigate this problem.
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