

An Optimization-Centric Theory of Mind for Human-Robot Interaction

Anca Dragan

$$\max_{\pi_R} \mathbb{E}[U(\pi_R, \pi_H)]$$

robot cumulative reward

amount of data

amount of data

amount of data

What is the right inductive bias for HRI?

Humans as black-box policies

Humans as intent-driven agents

inductive bias

inductive bias

$$w_1 d(x, \theta_H) + w_2 |u_H| + w_3 d(x, x_o)$$

 θ_H

$$\max_{P} H(P)$$

$$s \cdot t \cdot \mathbb{E}[Q_{\theta_{H}}] = Q_{\theta_{H}}^{*} - \epsilon$$

$$P(u_H \mid x, \theta_H) \propto e^{\beta Q(x, u_H; \theta_H)}$$

$$b'(\theta_H) \propto b(\theta_H) P(u_H \mid x, \theta_H)$$

$$\theta_H$$

action (demonstration)

$$P(u_H \,|\, x, \theta_H) \propto e^{\beta Q(x, u_H; \theta_H)}$$

action (demonstration)

$$u_H > u \forall u$$

$$P(u_H | x, \theta_H) = \frac{e^{\beta Q(x, u_H; \theta_H)}}{\int e^{\beta Q(x, u; \theta_H)} du}$$

comparison

$$u_A > u_B$$

$$P(u_A \mid x, u_A, u_B, \theta_H) = \frac{e^{\beta Q(x, u_A; \theta_H)}}{e^{\beta Q(x, u_A; \theta_H)} + e^{\beta Q(x, u_B; \theta_H)}}$$

correction

$$u_H + u_R > u \forall u$$

$$P(u_H | x, u_R, \theta_H) = \frac{e^{\beta Q(x, u_H + u_R; \theta_H)}}{\int e^{\beta Q(x, u; \theta_H)} du}$$

stop

$$u_0 > u_R$$

$$P(u_0 | x, u_R, \theta_H) = \frac{e^{\beta Q(x, u_0; \theta_H)}}{e^{\beta Q(x, u_0; \theta_H)} + e^{\beta Q(x, u_R; \theta_H)}}$$

action (demonstration)

$$u_H > u \forall u$$

$$P(u_H | x, \theta_H) = \frac{e^{\beta Q(x, u_H; \theta_H)}}{\int e^{\beta Q(x, u; \theta_H)} du}$$

comparison

$$u_A > u_B$$

$$P(u_A | x, u_A, u_B, \theta_H) = \frac{e^{\beta Q(x, u_A; \theta_H)}}{e^{\beta Q(x, u_A; \theta_H)} + e^{\beta Q(x, u_B; \theta_H)}}$$

correction

$$u_H + u_R > u \forall u$$

$$P(u_H | x, u_R, \theta_H) = \frac{e^{\beta Q(x, u_H + u_R; \theta_H)}}{\int e^{\beta Q(x, u; \theta_H)} du}$$

stop

$$u_0 > u_R$$

$$P(u_0 | x, u_R, \theta_H) = \frac{e^{\beta Q(x, u_0; \theta_H)}}{e^{\beta Q(x, u_0; \theta_H)} + e^{\beta Q(x, u_R; \theta_H)}}$$

proxy reward, current world state, ...

Challenge:

noisy rationality is sometimes too rigid.

inductive bias

Treating people as robots is what makes noisy rationality too rigid.

What if it's also the key to fixing it?

When are robots not rational?

 $P(u_H \,|\, x; \theta, \eta) \propto e^{Q(x, u_H; \theta, \eta)}$

$$\max_{n,w} P(u_H \mid x; w) - \lambda \delta(w, \eta; \theta)^2$$

noisy rationality under internal dynamics

When are robots not rational?

When are robots not rational?

When are humans better than rational robots?

People think about the robot

Implication: the robot's actions influence human actions

People think about what the robot thinks about them

If we could solve this, it'd go like this:

$$V_R(x, T+1) = 0$$
 $V_H(x, T+1) = 0$

Hierarchical approximation

Strategic level: simplified state-action space

The rationality coefficient

If the human appears too suboptimal to the model, be skeptical of the model.

Multiple humans

Multiple humans

What is the right inductive bias for HRI?

Humans have intent

Humans have intent

inductive bias

Thanks!

