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Is RL “real-world-ready”?




Is RL “real-world-ready”?

(Spoiler: No)

Deep RL is unreliable even in simple settings...




How do we get reliable RL?

An algorithmic understanding of
modern RL methods




The RL Setup

Environment Initial state so

Initial policy 1o




The RL Setup

Initial policy 1o




The RL Setup

Environment Next state st

Reward,
State

Initial policy 1o




The RL Setup

Environment Next state s;

Reward,
State




The RL Setup
Environment Next state s;

Reward. \Sampled action
State
/Actnon distribution

Updated policy mt

Goal: Maximize expected total reward

(over trajectories)




Policy Gradient Algorithms




Policy Gradients

Key Principle: View our goal as
an optimization problem

0* = argmax E___ r(s,a
Rk, [ 2 ( )]

(s,a)ET




Policy Gradients

Key Principle: View our goal as
an optimization problem

Expected value (over sampled Total reward
trajectories) under current policy
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Policy Gradients

Key Principle: View our goal as
an optimization problem

0* = arg max|E r(s.a
B M(,[ pI )]
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No gradient access

Method of choice: gradient descent




Policy Gradients

Can we instead get a good estimate of the gradient?
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Policy Gradients

Can we instead get a good estimate of the gradient?
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Policy Gradients

Can we instead get a good estimate of the gradient?
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Then: use estimate in gradient descent!




Policy Gradient Successes
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The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but has...

» Poor reliability over repeated runs

HalfCheetah-vl (TRPO, Different Random Seeds)
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The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but has...

» Poor reliability over repeated runs
» High sensitivity to hyperparameters

HalfCheetah
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The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but has...

p Poor reliability over repeated runs
» High sensitivity to hyperparameters
» Poor robustness to environmental artifacts

— HalfCheetah-vl (DDPG, Reward Scale, Layer Norm)

Average Return
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The Rotten Truth of Deep RL

Deep RL can successfully solve tasks, but has...

» Poor reliability over repeated runs
» High sensitivity to hyperparameters
p Poor robustness to environmental artifacts

Notably, benchmarks don'’t reveal these problems
Where do such issues come from?

Hard to know: deep RL algorithms have
many moving parts!
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Source: GitHub issues
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Implementation Obscures
Deep RL Algorithms

openai / baselines ® watch~ 383 % Star 5,061 Y Fork 1,455
<> Code issues 137 Pull requests 71 Projects 0 Wiki Insights

OpenAl Baselines: high-quality implementations of reinforcement learning algorithms

o Differences between the policies.
mportant modification

* Huge architectural differences.

e Nontrivial changes to the paper, part 2. The code is sprinkled with small tricks.

e Nontrivial changes to the paper.

big difference between ppo and ppo

Source: GitHub issues




Implementation Obscures
Deep RL Algorithms

openai / baselines ® watch~ 383 % Star 5,061 VF

Deep RL algorithms are complicated &
underspecified!

mportant mo dification

There is one thing between PPO1 and PPO2 that | don't understand.

Source: GitHub issues
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Implementation Obscures
Deep RL Algorithms

B Without Optimization B With Optimization
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Implementation Obscures
Deep RL Algorithms

» Deep RL methods are complicated & underspecified
» Reasons for unreliability, performance are unclear

» Deep RL methods are poorly understood!
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Back to First Principles
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Gradient Estimation

Key assumption of policy gradient framework:
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Gradient Estimation

Key assumption of policy gradient framework:

VoE[R©O)] ~ Zg(r)

r~9

How valid is this?
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Gradient Estimation

91 (current policy parameters)




Gradient Estimation

Gradient _
Variance

(mean pairwise correlation) @
Ht (current policy parameters)




Gradient Variance
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Gradient Variance
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Gradient Estimation

» No good understanding of training dynamics
» How does variance influence optimization?
» Can we use insights from stochastic opt?

p Missing a link from reliability to sample size
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Gradient Estimation

» No good understanding of training dynamics
» How does variance influence optimization?
» Can we use insights from stochastic opt?

p Missing a link from reliability to sample size




Value Prediction

Gradient estimation is hindered by high variance!

Observation: If we can estimate the value of a
state, can significantly lower variance

(The value of a state is the cumulative expected reward
received after visiting the state)

Intuition: Need to separate action quality from
state quality




Value Prediction

Variance reduction needs good value estimates
In Deep RL, values come from a neural network

To what degree do we actually reduce variance?




Value Prediction
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Value Prediction

# lteration: 150

Baselines:

True value function

Agent’s value function
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Agent does significantly worse than optimal!




Value Prediction

# lteration: 150

Baselines:

» Might look small, but using a value
network makes big difference

» How would using the true value
affect training?

Avg. pairwise cos sim
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» Can we get better value estimates?
0 2000 4000 6000 8000 100

# State-action pairs
True value function
Agent’s value function

No value function




Optimization Landscapes

Assumption: taking gradient steps increases reward

How valid is this assumption in practice?
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Optimization Landscapes

Step 0

Reward
(1000 trajectories)

Reward




Optimization Landscapes
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Optimization Landscapes
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Optimization Landscapes
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Optimization Landscapes

Methods iteratively maximize a “surrogate reward”

(not the true reward!)
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Step 0 Step 300

Reward

Steps are often not predictive

What'’s going on here?




Optimization Landscapes

Methods iteratively maximize a “surrogate reward”

(not the true reward!)

How do surrogate rewards compare with true rewards?




Optimization Landscapes

Surrogate Landscape




Optimization Landscapes
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Optimization Landscapes

Surrogate Landscape Reward Landscape
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Optimization Landscapes
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Optimization Landscapes

Surrogate Landscape Reward Landscape
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Optimization Landscapes

Surrogate Landscape Reward Landscape
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Optimization Landscapes

Surrogate Landscape Reward Landscape
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Optimization Landscapes

Surrogate Landscape Reward Landscape
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Optimization Landscapes

All landscapes so far are in the high sample regime

Reward
(1000 trajectories)

N (0,19)
How do landscapes appear to the agent?

(~20 trajectories)




Optimization Landscapes

20-sample estimates

Reward




Optimization Landscapes

20-sample estimates

Reward

20 trajectories per reward estimate




Optimization Landscapes
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Optimization Landscapes

20-sample estimates 200-sample estimates 1100-sample estimates

Reward

using many samples induces a smooth landscape...

.. but improvement is hard to detect in the agent’s sample regime




Optimization Landscapes

p Surrogate landscapes are often not
reflective of rewards

» How can we better navigate the reward
landscape?




Trust Regions




Trust Regions
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Trust Regions
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Trust Regions

TRPO and PPO: Motivated by KL-based trust region:

max Dy, (ng (*|5) |7z91(- |S)> <0

+1
A)

“keep the max distance between action distributions small”

But relax to an expectation:

I”et( ' ‘S))

<0

— 50, DKL (ﬂ(),“( : IS)

“keep the mean distance between action distributions small”




Trust Regions

What happens in practice?




Trust Regions
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Trust Regions

» What part of algorithms keep trust regions?

» How do we reason about algorithms when
they use such loose relaxations?

» How can we capture different kinds of
uncertainty in our trust regions?




Takeaways




Recap

» Deep RL methods are complicated

» Deep RL training dynamics are poorly understood
» Steps are often uncorrelated
p Surrogate rewards do not match true rewards

» Trust regions do not hold




How do we proceed?

» Reconciling RL with our conceptual framework
» How can we make algorithms better follow our
conceptual framework?
» Rethinking primitives for modern settings
» How do we deal with high dimensionality? Algorithm
“optimizations?” Non-convex function approximators?
» Better evaluation for RL systems
» Benchmarks don’t capture reliability, safety, or

robustness of RL agents




Read more

Paper Blog Posts
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Optimization Landscapes
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