

QuickInsights: Quick and Automatic Discovery of Insights
from Multi-Dimensional Data

Rui Ding, Shi Han, Yong Xu, Haidong Zhang, Dongmei Zhang
Microsoft Research

Beijing, China
{juding, shihan, yox, haizhang, dongmeiz}@microsoft.com

ABSTRACT
Discovering interesting data patterns is a common and
important analytical need in data, with increasing user
demand for automated discovery abilities. However,
automatically discovering interesting patterns from
multi-dimensional data remains challenging. Existing
techniques focus on mining individual types of patterns.
There is a lack of unified formulation for different pattern
types, as well as general mining frameworks to derive
them effectively and efficiently. We present a novel
technique QuickInsights, which quickly and automatically
discovers interesting patterns from multi-dimensional
data. QuickInsights proposes a unified formulation of
interesting patterns, called insights, and designs a
systematic mining framework to discover high-quality
insights efficiently. We demonstrate the effectiveness and
efficiency of QuickInsights through our evaluation on 447
real datasets as well as user studies on both expert users
and non-expert users. QuickInsights is released in
Microsoft Power BI.

ACM Reference format:

Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019.
QuickInsights: Quick and Automatic Discovery of Insights from Multi-
Dimensional Data. In Proceedings of ACM SIGMOD conference
(SIGMOD’19), 15 pages. https://doi.org/10.1145/3299869.3314037

1. INTRODUCTION
Discovering interesting data patterns is a common and
important analytical need when users try to obtain
meaningful, useful, and actionable information hidden in
data through data analysis and exploration [1][2][3][4][8]
[22][24][29]. Such interesting patterns include
correlation, anomaly, trend, etc. [8]. Two examples of

interesting patterns are shown in Figure 1. The left chart
shows CPU usage of a server is exceptionally lower than
the other servers. The right chart shows sales of tablet
devices in China is trending upwards in recent years.

Exploratory visual analysis is a commonly used approach
for understanding and reasoning about data to uncover
interesting data patterns [9][35][36][39][40], in which
users have to manually select data variables and specify
visual encodings, either via a programming library (e.g.,
ggplot [31]) or via a graphical interface (e.g., Tableau
[30]). Although manual specification is flexible for data
exploration, it is non-trivial to iteratively create and refine
visualizations to search for the ones that are interesting
and useful [9][22], especially for non-expert users who
have limited time and limited skills in statistics and data
visualization [29][40].

Figure 1. Two examples of interesting patterns

To speed up the data exploration process, we can
complement interactive visual exploration tools with
automated recommendation of interesting data patterns.
With patterns automatically mined from the data and
presented to users as visualizations, users can jump-start
the exploration from them rather than from the scratch
[28][29][36]. The patterns capture characteristics of a
dataset from different perspectives, so they can help users
understand data and prioritize their exploration actions.
Some patterns may hit an “interesting zone” of users, thus
inspiring them to generate new hypotheses and initiate
further data exploration and analysis. Further, some
patterns can directly lead to actions, e.g., system admin
could login to server Svr07 for diagnosis when they find
unexpected lower CPU usage from the data. Hence,
Gartner’s report [25] has identified smart, automated
pattern detection as one critical capability of next-
generation BI and analytics platforms.

However, automatically discovering interesting patterns
from data remains an open research problem. First, there

Svr01 Svr02 Svr03 Svr04 Svr05 Svr06 Svr07 Svr08 Svr09 Svr10

CPU Usage of Different Servers

2009 2010 2011 2012 2013 2014 2015 2016

Year

Sales in China by Year

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGMOD’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3314037

mailto:Permissions@acm.org

is a lack of unified and consistent formulation of
“interesting patterns”. A set of techniques [5][7][9][10]
have been proposed to extract different types of
interesting patterns from multi-dimensional data, such as
anomalies or exceptions. However, these techniques focus
on mining individual types of patterns; therefore, they are
insufficient for facilitating comprehensive data analysis.
While “facts taxonomy” [8] was proposed to categorize
interesting patterns, it does not provide a unified
formulation. Second, there is a lack of efficient mining
frameworks that target general interesting patterns. The
search space grows exponentially as the number of
dimensions increases, and interesting patterns are hidden
in unknown subsets of data.

We present QuickInsights, a novel technique for
automatically discovering interesting patterns from
multi-dimensional datasets. QuickInsights provides a
unified formulation of interesting patterns, called insights,
and a systematic mining framework to derive insights
efficiently. Specifically, given a multi-dimensional
dataset, an insight reflects something interesting on a
specific subject in the data from certain perspective. We
formulate an insight based on three key elements: subject,
perspective and interestingness. Such formulation is able to
unify different types of interesting patterns proposed in
previous works [5][7][9][10]. Given the formulation, the
mining framework of QuickInsights aims to automatically
discover insights with quality and efficiency.

Quality challenge: Some insights may be easily inferred
by users based on data schema information. They provide
little information gain, thus are less interesting to users.
E.g., an almost perfect linear correlation of two measures
over years, where measure1 is sales in USD, and measure2
is sales in EUR (i.e., only differ by exchange rate) will
become easily inferable to users. We try to avoid such
Easily Inferable Insights (EII for short) to guarantee high-
quality insight mining results. How to effectively detect
and eliminate EIIs imposes challenges on insight mining.

Efficiency challenge: The search space of mining multi-
dimensional dataset grows exponentially as the number
of dimensions increases. Moreover, since QuickInsights is
mostly used in interactive data exploration, it must output
insights within a short time budget. To effectively utilize
the time budget, we should try to first explore the “best”
possible subsets of data where high-quality insights exist.
In addition, insight evaluation always involves a lot of
data aggregation queries against the database, which may
further impact mining performance.

To address the quality challenge, we notice that EII is
mainly caused by inter-dimensional dependency.

Therefore, we conduct functional dependency checking of
insight subjects, and implement an efficient algorithm to
detect and eliminate EIIs caused by functional
dependency. To address the efficiency challenge, we first
employ a “best-first” search mechanism to prioritize
insight evaluation tasks. Given a time budget, this
mechanism tries to prioritize insight evaluation tasks, by
estimating which task would result in a higher score
before evaluation. We then employ a smart-batching
mechanism to effectively reduce the number of queries by
taking advantage of spatial locality across multiple related
queries in data, thus improve query performance.

We conducted quantitative experiments on 447 real
datasets to evaluate the effectiveness and efficiency of
QuickInsights. We also performed qualitative user studies,
which showed that the insights generated by
QuickInsights are useful and valuable to both expert users
and non-expert users. QuickInsights has been released in
Microsoft Power BI [14] as a feature available to end users,
which is recognized by Gartner as a basic form of smart
data discovery [25]. We make the following contributions:

• We propose a unified formulation of interesting
patterns, called insights on multi-dimensional
dataset.

• We build an insight mining framework to achieve
efficient insight mining performance using two key
techniques: best-first search mechanism to prioritize
insight evaluation tasks, and smart query-grouping to
reduce the number of queries.

• We design an insight evaluation algorithm to
eliminate EIIs to achieve high-quality insight results.

• We evaluate QuickInsights and verified its
effectiveness and efficiency on discovering insights.
QuickInsights is released in Microsoft Power BI.

2. INSIGHT MODELING

2.1 Data Model
Multi-dimensional data conceptually is organized in a
tabular format that consists of a set of records, and each
record is represented by a set of attributes (columns in the
table). Table 1 shows some sample data from a multi-
dimensional dataset about tablet sales. There are two
types of columns in the table: dimensions and measures.
Dimensions are used to group or filter records. The values
of dimensions are either categorical (e.g., “Country”) or
ordinal (e.g., “Year”). Measures are numerical columns
(e.g., “Sales”) on which certain aggregations (e.g., SUM,
AVG) can be performed. Formally, given a multi-
dimensional dataset ℝ(𝒟, ℳ) , where 𝒟 = {𝐷1 , … 𝐷𝑑} is

the collection of dimensions and ℳ is the collection of
measures. Let 𝑑𝑜𝑚(𝐷𝑖) be the domain of 𝐷𝑖 .

Table 1. A sample of multi-dimensional data.

Subspace. A subspace is defined as a size-d collection of
filters 𝑠 = {𝑠[1], … , 𝑠[𝑑]} , where 𝑠[𝑖] ∈ 𝑑𝑜𝑚(𝐷𝑖) ∪ {∗} ,
and ‘*’ refers to the “any” value. We hide the filters with
star value (‘*’) for brevity. We call a subspace 𝑠 with
dimensionality 𝑙 ≔ |{𝑠[𝑖]|𝑠[𝑖] ∈ 𝑠, 𝑠[𝑖] ≠∗}| . Each
subspace associates with an aggregate value per each
measure, e.g., {Country: China} is one subspace with 𝑙 =

1, and its corresponding aggregation on measure Sales is
aggregated by SUM. For conciseness, we denote {Country:
China} as {China} for short.

Sibling group & breakdown. Given a subspace s and a
dimension 𝐷𝑖 , a sibling group is defined as 𝑆𝐺(𝑠, 𝐷𝑖) =

{𝑠′|𝑠′[𝑖] ≠∗, 𝑠′[𝑗] = 𝑠[𝑗]∀𝑗 ≠ 𝑖} , i.e., a set of subspaces
only differ in the values of 𝑑𝑜𝑚(𝐷𝑖). In this setting, we
call 𝐷𝑖 the breakdown dimension (i.e., the group-by
operation against a subspace), and we denote 𝑠 ⊕ 𝐷𝑖 →

𝑆𝐺(𝑠, 𝐷𝑖) to indicate that sibling group 𝑆𝐺(𝑠, 𝐷𝑖) is
generated from subspace s by breaking down of 𝐷𝑖 . For
example, subspaces {2011, China}, …, {2016, China} form a
sibling group because they only differ in the value of
dimension Year, and Year is the breakdown dimension.

2.2 Insight Formulation
In the domain of multi-dimensional data analysis, an
interesting pattern can generally be summarized as
follows: it reflects something interesting on a specific
subject of data from a certain perspective. We refer to such
kinds of interesting pattern as insight. Subject scopes the
content of an insight. Taking the trend insight in Figure 1
as an example, its subject includes the sibling group
𝑆𝐺({𝐶ℎ𝑖𝑛𝑎}, 𝑌𝑒𝑎𝑟) and the measure Sales. Its aggregate
values form a time series over years for trending analysis,
which is the perspective of this insight. Its interestingness
is reflected by “trending upwards rapidly and
consistently”. Below we describe subject, perspective, and
interestingness of an insight accordingly.

2.2.1 Insight Subject
We define insight subject as:

Definition 1. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)}

For example, the subjects of the two insights in Figure 1
are: {{*}, ServerName, CPU Usage}, and {{China}, Year,
Sales}, respectively. Insight subject specifies the scope of

content of an insight, and it corresponds to one or more
sets of aggregate values, which can be used to quantify
the interestingness. To facilitate intuitive understanding,
let’s map to visual charts. Each combination of {subspace,
breakdown, measure} corresponds to a sibling group and
their aggregate values on the measure. The values of the
breakdown dimension can map to x-axis values; and the
aggregate values can map to y-axis values; while the
subspace can map to filter. For the cases with multiple
subspaces or multiple measures, they can map to multiple
series of y-axis values with the same x-axis.

Such a natural mapping to visual charts is an important
advantage of Definition 1, given that insights are typically
consumed via visual interfaces [8], thus enabling seamless
integration with visual objects as the underlying object
model. In addition, there are more advantages as follows.
First, it is an abstraction that covers a wide range of
subjects of specific “insights” in the literature. E.g., [9]
automatically discovers insights with large deviation over
a distribution, where the distribution can be properly
modeled by Definition 1. Second, based on the feedback
from several data science teams that we have closely
engaged with in Microsoft, the insights derived from
Definition 1 is satisfactory to facilitate their basic
analytical needs.

2.2.2 Insight Types
We materialize different perspectives as different insight
types. For instance, insight type “Outstanding#1”
corresponds to the perspective of finding “the leading
value that is outstandingly higher than the remaining
values”. Specifying insight type is essential for further
quantifying insight interestingness. E.g., given the sales in
China over years, the evaluation criteria are different for
perspectives such as trend or seasonality.

We have developed 12 types of insights, corresponding to
12 different perspectives commonly adopted in practice,
such as Attribution, Change Point, Correlation, Outlier,
Seasonality, etc. Details are available on website [15]. The
mining framework of QuickInsights is designed to be
extensible, and configurable (see Section 3.1.3 for details)
to support new insight types easily.

2.2.3 Insight Scoring
We quantify the “interestingness” of an insight by
assigning an appropriate score to it. Intuitively,
interestingness of an insight is judged by two factors. First,
the subject of the insight should be non-trivial, so that the
insight expresses something important, e.g., we would
like insight subject to be a best-selling brand, or a
category that has large market share rather than being
neglectable. Second, aggregation results of the subject

Year OS Region Country Vendor Sales Units

2010 iOS USA United States Sony 1.1 7,032

2010 Android Asia India Amazon 1.5 10,462

2011 Windows USA United States Toshiba 2.4 12,337

2012 Android Asia China Huawei 3.7 28,556

… … … … … …

should exhibit significant differences against a baseline.
We express the baseline as a statistical hypothesis, which
reflects common situations formed up by majority of non-
insights (i.e., aggregation results with uninteresting
patterns). E.g., for correlation analysis, it is desirable to
look for two time-series instances exhibiting correlation
against null hypothesis 𝐻0: 𝜌 = 0. Such a null hypothesis
reflects one common situation where two time-series
instances are independent. In this paper, we term these
two factors as impact and significance, respectively, and
score an insight by combining them.

Figure 2. Illustration of impact and significance.

Impact. Impact reflects the importance of the subject of
an insight against the entire dataset. It can be determined
by the best possible perspective for promoting the insight
regarding any “meaningful measures”. Here we term
these “meaningful measures” as impact-measures, and
denote the value of impact on a specific impact-measure i
as 𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) or just 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 for
brevity. Figure 2 shows sales trends of two different
markets when impact-measure is market share. The
higher the market share the more important. 𝑖𝑚𝑝𝑎𝑐𝑡𝑖
should hold anti-monotonic condition [16] , and should be
normalized for fairness comparison across different
impact-measures. Anti-monotonic is necessary because it
is compliant with common sense: if the subject of insight
A is a superset of the subject of insight B, then impact of
A should be no less than impact of B. [11] provides
calculations to accommodate anti-monotonic condition
being held by various aggregations. The corresponding
calculations are denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) .
Normalization is necessary for fairness comparison across
impact-measures. Having these, we propose: 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡.𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})
. To avoid divide-by-zero, we restrict

the impact-measures to be measures only containing
strictly positive values. E.g., COUNT is a valid impact-
measure; Sales or Units in Table 1 are also suitable impact-
measures. Users can specify meaningful impact-measures
aligned with their needs. Under this restriction, 𝑖𝑚𝑝𝑎𝑐𝑡𝑖
is well-defined and bounded within [0, 1], and we define
impact of an insight, which seeks the impact-measure that
best promotes insight:

Definition 2. 𝑖𝑚𝑝𝑎𝑐𝑡 = max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖)

Lemma 1. Definition 2 satisfies anti-monotonic condition
and is bounded between 0 and 1. (Proof is in Appendix).

Significance. Significance is evaluated on the
aggregation values of the insight subject, and it is
designed to reflect how significant the fact (i.e., the
obtained aggregate values) against a baseline in a
stochastic fashion. We express the baseline as an insight-
type-dependent null hypothesis, which reflects common
situations formed up by majority of non-insights and
quantify insight significance by conducting significance-
based hypothesis testing. The bellowing two charts in
Figure 2 shows two different time series signals: the left
one is more significant than the right one, because it
contains certain regularities instead of pure noise.

More specifically, in the scenario of QuickInsights,
without knowing further knowledge of user preferences,
we propose baseline for each type of insight based on
common sense. Such common sense should approximate
the distribution of possible outcome which is
uninteresting (i.e., trivial or less valuable for data
analysis). E.g., to calculate significance of whether there
exists a change point on a time series instance, a
reasonable baseline is to assume the time series to be
relatively stable, which is compliant with common sense
(such time series provides no value on change point
related analysis), and can be easily formalized as:
𝐻0: 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑁: 𝑝𝜃(𝑦𝑘|𝑦𝑘−1~𝑦1) = 𝑝𝜃0

(𝑦𝑘|𝑦𝑘−1~𝑦1) , where
𝑝𝜃0

is a fixed probability distribution [21]. The insight
significance takes a value within [0, 1]. The closer the
value to 1, the more significant the insight is. Detailed
baseline setup and significance calculations are available
at website [15].

Score. By combining the two factors together, we come
up with the final score which quantifies the overall
“interestingness” of an insight:

Definition 3. 𝑠𝑐𝑜𝑟𝑒𝑡 = 𝑓(𝑖𝑚𝑝𝑎𝑐𝑡) ∙ 𝑔𝑡(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒)

Here the subscript t refers to a specific insight type,
considering the significance calculation is insight type
dependent. f and g are any non-negative, monotonic
functions. Currently, we take the simplest form: 𝑠𝑐𝑜𝑟𝑒𝑡 =

𝑖𝑚𝑝𝑎𝑐𝑡 ∙ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡

Definition 4 (Insight representation). With the above
considerations, we represent an insight as a 5-tuple

𝑖𝑛𝑠𝑖𝑔ℎ𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠), 𝑡𝑦𝑝𝑒, 𝑠𝑐𝑜𝑟𝑒}

3. INSIGHT MINING

3.1 Mining Framework
Overall, QuickInsights aims to achieve three design goals:
(1) be a time-bounded mining procedure; (2) be portable

0

1000

2000

3000

4000

5000

2013 2014 2015 2016 2017

sales for a small market (low impact)

0

1000000

2000000

3000000

4000000

5000000

2013 2014 2015 2016 2017

sales for a big market (high impact)

time series with regularities (high significance) noisy time series (low significance)

to commodity query engines; (3) be extensible to adapt
new types of insights.

Time-bounded mining procedure. The typical
scenario of QuickInsights is one that targets interactive
data exploration, thus it must output insights within a
given limited time budget, e.g., 10 seconds. To effectively
utilize the time budget, the mining procedure should try
to explore the best possible subjects (i.e., combination of
subspace and breakdown), where high-quality insights
might exist. To discover insights, data queries and
significance evaluations are performed by a set of tasks,
where each task takes certain subspace(s) (and the
corresponding impact of each subspace) and breakdown
as input, and is responsible for evaluating certain types of
insights that are applicable to the input parameters (e.g.,
time series related insights are evaluated when input
breakdown dimension is ordinal). Therefore, a best-first
prioritization of tasks is necessary (Section 3.1.1).

Figure 3. Overall workflow of QuickInsights

Portable to arbitrary query engines. As a general
mining framework, QuickInsights should be portable to
build upon arbitrary query engines such as SQL Databases,
SQL Server Analysis Services, etc. where multi-
dimensional datasets are typically stored. Thus, an
abstracted and general query interface layer is necessary.

Extensible to adapt new types of insights.
QuickInsights is designed to support new insight types
easily. Therefore, we decouple the mining procedure into
two parts: subject enumeration and insight’s significance
evaluation, only insight evaluation module is responsible
for registering new insight types (Section 3.1.3).

Figure 3 depicts the overall workflow of QuickInsights.
The workflow can be divided into three stages, “Search &
Task Generation” (Stage 1), “Query & Evaluation” (Stage
2), and “Store and Refinement” (Stage 3). The first two
stages are executed simultaneously in a parallel fashion
within a time budget. Once the time exceeds the time
budget, refinement is conducted in Stage 3 and then the
qualified insights are output.

In Stage 1, the SubjectSearcher module tries to enumerate
all possible subspaces. Each subspace is assigned with
impact by using the AutoImpact module. Insight
evaluation tasks are then generated by combining
subspaces with any valid breakdowns that pass trivial-
insight checks (by Functional-Dependency checker). The
generated tasks are stored in a priority queue, to be
executed in Stage 2. The tasks associated with higher
impacts will be assigned higher priorities. In Stage 2, the
tasks are computed in parallel by a set of dedicated worker
threads. The computing of tasks consists of three steps.
First, the task with highest priority from the queue is
fetched by a worker thread; then data query is performed
as the next step, by conducting aggregation over all
measures, conditioned on the task parameters. Insight
evaluation is conducted as the last step, where the
discovered insights (i.e., significance exceeds certain
threshold) are stored. Both Stage 1 and Stage 2 are
executed within a time budget. Below are the details.

3.1.1 Best-First Prioritization
The generated tasks are stored in a priority queue, as
depicted in Figure 3 to facilitate best-first prioritization.
Recall that each task has three input parameters:
subspace(s), breakdown and impact, and we use the
impact as priority to prioritize different tasks. According
to Definition 3, the score of insight is monotonic to both
impact and significance, so without knowing the
significance (since insight evaluation has not yet been
done), impact is useful for prioritizing and pruning tasks.

3.1.2 Query Abstraction
To make QuickInsights portable for general systems, an
abstracted query interface layer is necessary. Table 2
shows the query interface AggregationQuery, which
builds a connection between the mining layer of
QuickInsights and the data store. Thus, QuickInsights is
portable as long as the underlying data store provides the
implementation of AggregationQuery. A query via our
query interface is semantically equivalent to a SQL query:

“SELECT Aggr1(measure1), Aggr2(measure2), … GROUP BY

breakdownDimension where filter = subspace”.

Note that the efficiency of QuickInsights mainly depends
on the efficiency of underlying query engine. Microsoft
Power BI team has supported our query API based upon
Analysis Service. To further improve query performance
by leveraging data locality, we introduce a pre-fetch
mechanism and modify the above GROUP BY clause to:

“GROUP BY expandingDimension, breakdownDimension”.

The aggregation results are packaged into a dictionary.
Each item of the dictionary collects the result of each
value in expandingDimension. Setting it to null disables

Subject

Searcher

Trivial Insights

Checker
Task Task … Task

Smart Queryer

Search & Task

Generation

Query &

Evaluation

Insight

Evaluator

significant?

pruning1

pruning2pruning3

Worker

Worker

…

insights

Type A

insights

Type B

insights

Type x

Redundant-Insight

Eliminator

output Store &

Refinement

priority queue

Worker

Query

interface

Database
Analysis

Service

…

AutoImpact

pre-fetching. Table 3 shows two typical query examples
and the corresponding results.

Table 2. Query Interface
/* aggregate one or more measures for a subspace, group-by a breakdown dimension.
If an expanding dimension is provided, also aggregates for the siblings of this
subspace based on the expanding dimension. */
Dictionary<BasicValue, Dictionary<Measure, AggrResult>> AggregationQuery(
 Subspace subspace,
 Dimension expandingDimension,
 Dimension breakdownDimension,
 Dictionary<Measure, AggrParams> params,
 OrderByType orderBy);

Table 3. Examples of query and aggregation result

3.1.3 Extensibility
QuickInsights is designed to be extensible to support new
types of insights easily. The extensibility of QuickInsights
largely relies on the unified definition of insights
(Definition 4). Specifically, since each insight subject is
formulated as {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)} , thus
the aggregation results of an insight subject can be
represented by a common data structure, which can be
reused for any new insight type. An example of adding a
new insight type is depicted in Appendix.

3.1.4 Pruning
As depicted in Figure 3, we applied three pruning criteria
(pruning1, 2, 3) to boost performance: pruning1 prunes
out significant portion of search space, and pruning2 and
pruning3 reduce the cost of insight evaluation.

pruning1: We prune out any insights with impact
smaller than a given threshold. An insight with impact
below the threshold becomes less important and thus less
interesting, so we adopt pruning1 to eliminate
unimportant tasks. Furthermore, considering the anti-
monotonic condition of impact (Lemma 1), any
descendant subspaces can also be discarded from the
SubjectSearcher module safely. In current
implementation, we set the threshold to 0.01.

pruning2: For each insight type, we use a size-k buffer to
keep the top-k scored insights. Considering 𝑠𝑐𝑜𝑟𝑒𝑡 =

𝑖𝑚𝑝𝑎𝑐𝑡 ∙ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡 < 𝑖𝑚𝑝𝑎𝑐𝑡 (because significance is
bounded within 0 and 1), so if impact of current insight
candidate is already smaller than the score of kth insight,
its further evaluation is saved. Furthermore, since each
task knows what types of insight it needs to evaluate, if
insight evaluation can be pruned on all the needed types,
then data query can be saved and the task is discarded.

pruning3: When a sibling group contains only one
subspace, further insight evaluation becomes trivial
(because this subspace is identical to its parent subspace
and thus implies duplication), hence unnecessary. So after

data query, if there is only one item among the sibling
group, we avoid further insight evaluation.

3.2 Easily Inferable Insights Elimination
We illustrate how to improve insight quality by detecting
and eliminating EIIs (i.e., Easily Inferable Insights)
incurred by functional dependency (FD in short).

3.2.1 FD Induced EII
Definition 5 (functional dependency). A functional
dependency FD: X → Y means that the values of Y are
determined by the values of X, where X and Y are two sets
of columns (i.e., dimensions or measures) [12].

FD is a commonly existing relationship in multi-
dimensional data, e.g., in Table 1, Country → Region. FDs
reflect certain hierarchical structure or consistent
relationship across columns.

Definition 6 (FD of insight subject). We pick all the
columns that appear in an insight subject as 𝐶𝑜𝑙 ≔

{𝑠1, … , 𝑠𝑝, 𝑑, 𝑚1, … , 𝑚𝑞} , where 𝑠1~𝑠𝑝 are the dimensions
appearing in subspace(s), 𝑑 is breakdown, and 𝑚1~𝑚𝑞
are q measures. If ∃ 𝑋 ⊂ 𝐶𝑜𝑙, 𝑌 ⊂ 𝐶𝑜𝑙, 𝑋 ∩ 𝑌 =

∅, 𝑠. 𝑡. 𝑋 → 𝑌, we say 𝑋 → 𝑌 is a FD of this insight subject.

Table 4. Taxonomy of trivial insights

Based on Definition 6, we notice that FD of insight subject
would bring up EIIs.

Definition 7 (FD induced EII). An insight is called an FD
induced EII (or EII in short) if its aggregate values exhibit
pre-determined relationships thus providing trivially
useful information for the purpose of data analysis.

We carefully inspect all possible FDs incurred in insight
subject, and come up to five forms of FD that would
induce EIIs, as shown in Table 4 (ID1 ~ ID5). The details
of how ID1~5 induce EII are shown in Appendix.

3.2.2 Efficient FD Checking
Given an insight candidate, we need to check if there
exists FDs to satisfy any of ID1~5 in Table 4 thus to avoid
further insight evaluation. The checking can be
generalized as determining whether {𝑑1~𝑑𝑖} → 𝑑𝑗 is
held or not. On the other hand, such determination
requires knowing the FDs that are globally held in a given
dataset, and such FDs can be obtained from data schema

subspace expanding breakdown params orderBy Aggregated result

{China} null Year
{Sales, SUM},

{Units, SUM}
Ascend

{China, [Sales, (2009:1.3) (…) (2016:12.3)],

[Units, (2009: 6,403) (…) (2016:13,432)]}

{China} Country Year {Sales, SUM} Ascend
{China, [Sales, (2009:1.3) (…) (2016:12.3)]}

{USA, [Sales, (2009:2.7) (…) (2016:11.8)]}…

ID Form of Functional-Dependency Trivial insight description Example

ID1 𝑠1 , … , 𝑠𝑝 → 𝑑 Only one item in sibling group

ID2 𝑚1 , … , 𝑚𝑞 → 𝑑 Fixed x-y axis relationship

ID3 𝑑 → 𝑚1 , … , 𝑚𝑞 Fixed x-y axis relationship

ID4 𝑠1 , … , 𝑠𝑝 → 𝑚1, … , 𝑚𝑞 Flat line

ID5 𝑚1 , … , 𝑚𝑖 → 𝑚𝑗 Fixed x-y axis relationship

{Model:X5}Sales

Brand
BWM

Age

Birth Year

Age

Region

{BirthYear:1980}

Sales (EURO)

Sales(USD)

Height

Height Category
low medium high

or can be pre-calculated using FD mining techniques such
as [13]. Thus, we formulate the problem as:

Problem 1 (checking functional dependency). Given a set
of FDs {𝑋1 → 𝑌1}, … , {𝑋𝑡 → 𝑌𝑡}, check if {𝑑1~𝑑𝑖} → 𝑑𝑗 is
held or not.

This problem can be solved by leveraging two axioms in
the field of FD theory: Reflexivity and Transitivity [12].
Roughly, if 𝑑𝑗 ∈ {𝑑1~𝑑𝑖} , the {𝑑1~𝑑𝑖} → 𝑑𝑗 is true

(Reflexivity). Otherwise, find 𝑋 = ⋃ {𝑋𝑖|𝑑𝑗 ∈ 𝑌𝑖}𝑖 , and
check if {𝑑1~𝑑𝑖} → 𝑋 (Transitivity). This process repeats
recursively until an empty set is reached. The pseudo code
of an efficient algorithm (IsDependent) of FD checking is
shown in Appendix due to page limit.

Lemma 2. Time complexity of IsDependent is 𝑂(𝑙𝐷) ≪

𝑂(𝐷2). Details of the proof are available in Appendix.

Here D is the number of columns, and 𝑙 = max
𝑖

|𝑋𝑖|, where

|𝑋𝑖| refers to the cardinality of a set 𝑋𝑖 . In general, the FDs
obtained from data schema describes FD relationship
between a small set of dimensions, thus 𝑙 ≪ 𝑑.

3.3 Batched Query & Cache
Data query occupies the majority of computational cost of
QuickInsights. Next, we illustrate our considerations and
approach on query optimization to significantly save the
computational cost.

3.3.1 Caching
As depicted in Figure 3, the Subject-Searcher module, the
AutoImpact module, and Tasks issue data queries.
Subject-Searcher uses queries to enumerate subspaces,
AutoImpact needs query results on impact-measures to
assign impact to each subspace, and Tasks issue queries
for insight evaluation. These modules would generate
duplicate queries, e.g., query {China}⊕Year can be used
for insight evaluation, while Subject-Searcher also needs
resultant subspaces for search space exploration, and the
impact of resultant subspaces is obtained from
AutoImpact by aggregating all impact-measures. Thus,
cache mechanism is needed, and the cache unit needs to
be designed to facilitate the requirements of these
modules, as depicted in Figure 4. Here the cache unit is 2-
dimensional aggregation results grouped-by breakdown,
and across all measures (both insight measures and
impact-measures), and the corresponding lookup key for
each cache unit is indicated by 𝑠 ⊕ 𝐷. Such granularity is
necessary for the needs of all the modules.

3.3.2 Smart Batching
A typical multi-dimensional dataset contains a huge
number of 𝑠 ⊕ 𝐷 combinations, and requires a large

number of data queries, which would lead to significant
performance impact. On the other hand, by inspecting the
issued queries from QuickInsights, we find that the
generated subspaces exhibit strong relationships with
each other, which provides opportunity to reduce the
number of queries.

Figure 4. Example of cache unit: breakdown⊗measure

Definition 9 (level-2 sibling group). A set of subspaces
form a level-2 sibling group if they can be generated by a
level-2 group-by: 𝑠 ⊕ 𝐷1 ⊕ 𝐷2.

E.g., when we have the following three query requests:
{China}⊕Year, {USA}⊕Year, {India}⊕Year, they can be
covered by a level-2 group-by: {*}⊕Country⊕Year, thus
the corresponding subspaces belong to a level-2 sibling
group. Batching these three queries together would take
advantage of spatial locality across multiple related
queries in data, thus improving query performance.

However, one problem arises from batching: higher level
group-by would introduce additional aggregation results
which may never be used. In the mentioned example,
{*}⊕Country⊕Year obtains the necessary results for the
three requests, but it also obtains results for all countries
besides China, USA, and India. In addition, considering
QuickInsights typically runs within a time budget, only a
portion of a whole search space can be inspected.
Therefore, we prefer conducting a batched query on-
demand rather than exhaustive pre-fetching in the
beginning to mitigate the issue of querying useless
results.

As depicted in Table 2, query API of QuickInsights
considers an expanding dimension as an additional group-
by for batching purpose. We notice that using the latest
breakdown as an expanding dimension can fully leverage
spatial locality, and pre-fetched results can also be
effectively utilized for later tasks.

From another perspective, column cardinality together
with pruning1 will affect the utility of batched query. For
example, if there are >1000 distinct values in City for
{China}, the batched query by expanding on City
generates 1000 subspaces, but at most 100 subspaces has
impact > 0.01 due to the Pigeonhole Principle, thus most
(>90%) prefetched subspaces are useless which makes this
query very ineffective. Therefore, when the number of

measure1 measure2 … impact-measure1 …

2009 1.1 22.43 … 14 …

2010 2.1 34.32 … 23 …

2011 3.2 53.91 … 63 …

… 0.9 17.06 … 10 …

Measure

Year

aggregation on all measures

v
alu

es in
 b

reak
d

o
w

n

subspaces generated by a breakdown exceeds a threshold,
we don’t use it for expanding dimension.

With these considerations, we name our approach smart
batching. The approach aims to reduce number of data
queries, while the pre-fetched results are effectively
utilized. Considering page limit, we put the examples,
pseudocode of QuickInsights’ query logic with both cache
and smart batching in Appendix.

4. EVALUATION
We evaluate the effectiveness and efficiency of
QuickInsights quantitatively on real datasets (Section 4.1).
We further evaluate the usefulness of QuickInsights in
assisting data analysis through two user studies on expert
users and non-expert users, respectively (Section 4.2).

4.1 Evaluation on Real Datasets
4.1.1 Setup
Datasets. We evaluate QuickInsights on 447 real datasets.
These multi-dimensional datasets are collected with
assistance from partnering Microsoft teams. The datasets
cover various domains such as sales, weather, market,
healthcare, etc. Their scales are quite variant, with the size
ranging from 8.8KB to 386.2MB, and the dimensionality
varying from tens to hundreds. Some of the datasets are
available on our website [26].

Environment. All experiments are conducted on a
machine with 3.6GHz Intel Core i7-4790 processor, and
16GB RAM. QuickInsights is deployed upon a SQL Server
Analysis Service (SQL Server 2016 RTM, version:
13.0.1601.5, Tabular Mode).

Configuration. We set the configuration of
QuickInsights as follows: #worker threads = 8; maximum
dimensionality of explored subspace = 2 since output
insights with high-dimensionality subspaces are less
informative for common usages; we set COUNT as
impact-measure for all datasets for simplicity, because
setting different impact-measure has little affect to
efficiency evaluation.

4.1.2 Design
We aim to evaluate QuickInsights from three perspectives:
overall effectiveness, effectiveness for EIIs elimination
and mining efficiency. To make the experimental results
measurable, we set golden set of each dataset as the
obtained insights from QuickInsights with time budget set
to ∞ , denoted as 𝑂𝑖 , where i indicates the index of a
dataset. More specifically, we set the number k of top-k
buffers (as depicted in Figure 3, we maintain a top-k buffer
for each type of insight) to 10, and 𝑂𝑖 is the union of

insights from all the buffers after insight mining is
finished with an unbounded time budget.

Overall effectiveness. To evaluate the overall
effectiveness of QuickInsights, we define metric 𝑐𝑜𝑣𝑖(𝑡) =
|𝑂𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂𝑖(𝑡) is the set of output insights when time

budget is set to t. Thus 𝑐𝑜𝑣𝑖(𝑡) is the coverage of “good”
insights of 𝑂𝑖(𝑡).

Effectiveness of EIIs elimination. To improve the
quality of output insights, QuickInsights exploits the FD
checker to avoid yielding EIIs. To demonstrate the
effectiveness of such improvement, we assess the insights
mined when the FD checker is turned off.

FD checker enabled vs. disabled. Among the whole
datasets, there are 218 ones with input FDs according to
the data schema. Evaluation of the FD checker is therefore
conducted on this subset because the other datasets have
no effect. We compare the results when the FD checker is
disabled to the golden set by two metrics:

𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡) =
|𝑂_𝐹𝐷𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑓𝑝_𝐹𝐷𝑖(𝑡) =

|𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖|

|𝑂_𝐹𝐷𝑖(𝑡)|

where 𝑂_𝐹𝐷𝑖(𝑡) is the set of output insights when the FD
checker is disabled. 𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡) reflects the coverage of
insights when the FD checker is disabled. 𝑓𝑝_𝐹𝐷𝑖(𝑡) reflects
the estimated ratio of trivial insights in 𝑂_𝐹𝐷𝑖(𝑡). This is
because 𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖 indicates the set of insights being
eliminated by golden set, which must be FD induced EIIs.

Mining efficiency. QuickInsights exploits best-first
prioritization and smart-batching to boost mining
performance. Thus, the evaluation of mining efficiency
mainly is conducted on these two techniques. We propose
the below evaluation metrics.

Best-first prioritization enabled vs. disabled. We implement
a priority queue (by using impact as priority) to prioritize
insight evaluation tasks. To assess the effectiveness of
such a strategy, we compare the coverage of output
insights by replacing the priority queue with a FIFO
queue. The metric is defined as: 𝑐𝑜𝑣_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡) =
|𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡) is the set of output

insights when best-first prioritization is disabled.

Smart-batching enabled vs. disabled. We assess the
efficiency improvement of smart-batching from two
aspects: coverage when smart-batching is disabled, and
the utilization of the cache:

𝑐𝑜𝑣_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) =
|𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑡) =

|𝐻𝑖𝑡𝑠(𝑡)|

|𝐶𝑎𝑐ℎ𝑒𝑑(𝑡)|

where 𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) is the set of output insights when
smart-batching is disabled, 𝐶𝑎𝑐ℎ𝑒𝑑(𝑡) is the set of total

cached items (See Figure 4 for definition of cache unit),
and 𝐻𝑖𝑡𝑠(𝑡) is the set of cached items that are utilized.

In our experiment design, we vary time budget t from 5
seconds to 25 seconds, and so each evaluation metric
generates a curve with respect to time budget on a specific
dataset. Evaluation results are analyzed by averaging on
all datasets, and via comparison between different curves.

4.1.3 Results
Below are the results of our experiments.

Figure 5. Average coverage by varying time budgets

Result of overall effectiveness. The curve at top of
Figure 5 presents the coverage of “good” insights (i.e.,
golden set insights) mined in different time budgets. Each
data point is an average of the coverage over totally 447
datasets. The coverage increases as more time budget is
given, which is reasonable since more search spaces can
be explored and evaluated, and more hard-to-find insights
can be discovered. Moreover, the coverage ranges from
0.6 to 0.8. For example, when the time budget is set to 5
seconds, the coverage is 0.63, which indicates that even
when the response time is very quick, more than 60% of
the insights returned by QuickInsights are truly top-
scoring ones.

Results of FD checker enabled vs. disabled. Table 5
depicts the average coverage of output insights when the
FD checker is disabled (third row), and ratio of the EIIs
(fourth row). Since this evaluation is conducted on 218
datasets that have FDs as input, we also list the
corresponding coverage when the FD is enabled (second
row) for comparison. As shown in Table 5, coverage of
good insights decreased about 3% consistently when the
FD checker is disabled. Moreover, value of 𝑓𝑝_𝐹𝐷(𝑡) is
around 25% when the FD checker is disabled, i.e., when
users inspect the output insights, one out of four will be
easily inferred. So disabling FD checker will significantly
decrease the user experience of QuickInsights.

Table 5. Results of disabling the FD checker
Time budget (s) 5 10 15 20 25

𝑐𝑜𝑣 0.49 0.57 0.62 0.65 0.67

𝑐𝑜𝑣_𝐹𝐷(𝑡) 0.46 0.55 0.60 0.62 0.64

𝑓𝑝_𝐹𝐷(𝑡) 0.28 0.25 0.25 0.23 0.22

Results of best-first prioritization enabled vs.
disabled. As depicted in Figure 5, the bottom curve
presents the coverage of good insights when best-first
prioritization is disabled. Compared to the top curve (with
best-first prioritization enabled), we can see that the gain
of the best-first prioritization is significant. Without such
a mechanism, the insight mining procedure seems to be
trapped into massively worthless search spaces, making
the curve rather flat. To increase coverage to around 63%,
it needs much more time than 25 seconds, while the same
coverage is achieved only in 5 seconds if best-first
prioritization is enabled. We can see that the performance
gain by using best-first prioritization is huge.

Results of smart-batching enabled vs. disabled. As
depicted in Figure 5, the middle curve presents the
coverage of good insights when smart-batching is
disabled. Compared to the top curve (with smart-batching
enabled), smart-batching contributes to about 10%
coverage increase. From a performance perspective, it
takes about 15 seconds to achieve 63% coverage (the
dashed line in Figure 5) when smart-batching is disabled,
which is about three times slower than when smart-
batching is enabled.

Table 6. Cache utilization ratio
Time budget (s) 5 10 15 20 25

𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 38% 41% 43% 44% 44%

Table 6 illustrates the cache utilization with varying time
budgets, which reflects how many pre-fetched queries are
reused in further insight evaluation. We can see that the
ratio of utilization is relatively stable at 40%. The ratio is
impacted by the near-timeout batched queries, which
generate lots of unused cached items.

4.2 User Study
We conduct user studies to understand usefulness of
insights generated by QuickInsights.

4.2.1 Methodology
QuickInsights is designed to serve both expert users and
non-expert users. The usage scenarios and requirements
vary among different user groups, e.g., expert users would
like QuickInsights to aid their further data analysis and
decision making, while non-expert users would want to
gain a better understanding of data. Thus, we conducted
two user studies for expert users and non-expert users.

User study for expert users. We invite six participants
from three business groups in Microsoft to participate in
this user study: HR (Human Resource), IT and UR
(University Relationship). In each group, we select two
data analysts whose daily work is data analysis.

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

C
o

ve
ra

ge

time budget (s)

Coverage by difference setup

full functionality

without best-first

without smart-batching

For each group, we ask the participants to provide one
dataset of their own, since users would provide
reasonable feedback on the datasets that they care about.
The datasets are required to be stored in Microsoft Excel
spreadsheets, in the form of multi-dimensional table. In
addition, we require that the datasets have different levels
of familiarity to the corresponding groups. Specifically,
HR participants provide a recently-conducted survey
dataset for which they have no idea about the content
(Not familiar), while UR participants give us a dataset
which they have already conducted comprehensive
analysis (Very familiar), and IT participants give us a new
dataset but they have conducted analysis on similar
datasets before (Moderate). Table 7 lists the information
of the three datasets.

Table 7. Datasets for user study on expert users
Dataset #row #col Familiarity Description

HR_data 351 10 Not familiar Internal survey results on a specific HR service

IT_data 353,686 9 Moderate
GPU usage data of servers, collected every 10

minutes in one month

UR_data 1202 14 Very familiar
Records of hired interns in recent 4 years

We provide a questionnaire for each group, which
contains 15 insights randomly selected among the
insights obtained by running QuickInsights on the
corresponding dataset. For each insight, we design three
questions for scoring:

Q1: How interesting do you feel of this insight?

Q2: How helpful is this insight for you to understand the data

characteristic, such as distribution, anomaly or correlation, etc.?

Q3: To what extent do you feel interested to take follow-up

actions, such as sharing with others, pinning to a dashboard, or

conducting drill-down analysis?

Specifically, Q1 targets obtain an overall impression of the
insight from users; Q2 is designed to evaluate whether the
insight is helpful for better data understanding or not; and
Q3 is used to evaluate the actionability of the insight.
Participants are asked to answer each question on a 5-
point Likert Scale from “the least interesting/helpful” (1)
to “the most interesting/helpful” (5). In addition, we allow
users to provide free-text comments on each insight. We
provide a text description along with a chart to represent
each insight. Figure 6 shows a snapshot of an example
insight and the corresponding questions.

Our user study is conducted by interviewing the three
groups separately. Each session consists of three stages.
In the first stage, each participant briefly describes his/her
experience and the role of data analysis, and we introduce
QuickInsights and the process of the user study. We also
educate them how to interpret an insight from its text
description and visual representation. In the second stage,
participants assign scores to the questions for each

insight. They are encouraged to provide additional
comments as well. In the last stage, we ask participants
about their overall feedback, and whether they would use
QuickInsights for their analytical tasks. Each session lasts
about one hour on average.

Figure 6. Example of questions for a ChangePoint insight

User study for non-expert users. We invite 30
participants (18 males) to participate in this user study.
The participants are employees or interns from Microsoft.
They have certain data analysis needs in daily work, but
none of them are professional data analysts. To minimize
potential bias, we select the participants with diverse roles
and experiences. Detailed user profiles are shown in
Appendix.

Table 8. Datasets for user study on non-expert users
(275/5 means 275 rows, 5 columns)

Dataset Schema data scale Description

Movie
Snowflake schema

with 6 tables

65 columns, largest table

has >70,000 rows

Worldwide movie sales from

1985~2016

CarSales Single table 275/5
Car sales of different Brands,

Models, etc. in past years

Emission Single table 41,156/7
The emission of CO2/SO2/NOx in

past 25 years in USA

Census Single table 90/6
A census dataset mainly focuses on

marriage status

Since non-expert users normally do not have dedicated
analytical tasks, we select four datasets from public
domains, which are common, and easy-to-understand.
Table 8 lists the information of these datasets. We
generate insights from these datasets via Power BI (thus
under same configuration) and present them to users. The
study design is an easier version compared with the user
study for expert users. Specifically, the questionnaire
contains 10 insights randomly selected from the results of
running QuickInsights on the corresponding dataset. For
each insight, we only ask the participants Q1 and Q2 but
discard Q3, since the typical scenario for non-expert users
is knowledge discovery and data understanding.

4.2.2 Key Findings
We identified five key findings from the two user studies.

Finding 1: QuickInsights demonstrates its usefulness
for general data analysis for both two types of users.

The expert users provided positive feedback on the overall
satisfaction of QuickInsights. All three groups agreed that
QuickInsights provides valuable information to aid their
analytical tasks. In addition, some participants even

provided “out-of-scope” feedback, such as improvements
of visualization design, feature request of insight sharing,
etc. This finding also indicates the effectiveness of our
scoring function, since the insights in user study are the
ones with highest scores.

Figure 7. Statistics of scores from expert users

Figure 8. Statistics of scores from non-expert users

Figure 7 depicts the statistics of the scores from all expert
participants. The error-bar indicates the standard
deviation across 15 insights. The top-left chart illustrates
the scores from HR participants. The average score on
three questions are high and stable. The top-right chart
illustrates the scores from IT participants, which has the
largest deviation compared to HR or UR. In fact, the scores
for most insights are either close to 1 (least interesting) or
close to 5 (most interesting). The IT participants patiently
provided comments on the insights with extreme scores,
from which we learned that the IT analysts have very
specific analytical tasks. Therefore, the insights are either
valuable or less useful. The bottom-left chart is the scores
from the UR group. The average score given by UR
participants is the lowest compared to the scores from HR
and IT participants. Based on feedback, the major reason
is that they are very familiar with the dataset, thus most
of the lower-scored insights are compliant with their prior
knowledge. These observations are expected since the
typical QuickInsights scenario targets users who are not
familiar with dataset.

As shown in Figure 8, non-expert participants also
provide very positive feedback on the overall satisfaction
of QuickInsights. In addition, 11 out of 30 non-expert
participants wrote down additional feedback, and quite a
few pointed out that QuickInsights is really helpful on
knowledge discovery.

Finding 2: Certain insight types would be favored for
some domain-specific analysis tasks. We obtained this
finding from the user study with expert users. One typical
task of the IT group is to monitor GPU usage of various
service jobs running over multiple servers, to detect
which servers are overloaded (with high GPU usage) or
idle (with low GPU usage), and reallocate jobs
accordingly. The insight (with ChangePoint type) shown
in Figure 6 is valuable (with a score 5 for all three
questions) to them, since it discovered Server44 kept
being idle for >20 days in October, which indicated some
unknown service issues. Moreover, the Seasonality
insights are especially interesting to them. QuickInsights
discovered GPU usage for a specific GPU Model exhibits
strong seasonality pattern with period equals to 24 hours.
Thus, the IT users would want to take follow-up actions
to see which periods within a day had low GPU usage, so
that additional service jobs can potentially be scheduled
during such a period. However, any transient spikes of
GPU usage (regarding to the Outlier insight) are
uninteresting since they are not indicators of workload.
One possible solution is to assign insight type-dependent
weights, so that the insight types with higher weights
have more chance to be mined, and with higher score.

Finding 3: Insight subjects with certain structure
would be less meaningful for some domain-specific
analysis tasks. Specifically, certain dimensions,
measures or combination are trivial. This finding
emerged based on further feedback from the IT
participants in the user study with expert users. For
insights with a score equal to 1, typically their
combinations of 𝑠 ⊕ 𝐷 are less meaningful to users. E.g.,
some insights concern a specific GPU Model (one
dimension) breakdown by different GPU card slots
(another dimension), which makes no sense since this is a
fixed hardware configuration. QuickInsights should take
this information into account, to avoid unnecessary data
queries and insight evaluation.

Finding 4: Prior knowledge is valuable for improving
insight score calculation. In the user study on expert
users, the UR participants shared with us their thoughts
during the interview. Since they are very familiar with the
dataset, most of the insights are compliant with their prior
knowledge, making them less interesting. For example,
“Computer Science is the major for most hired interns” is
mined by QuickInsights as an insight, but it is not
surprising to them. In contrast, the HR participants claim
that similar insights are helpful for their understanding of
the survey data. Since they were not familiar with the
content of the dataset, no prior knowledge was built
before inspecting the insights. Since QuickInsights

0

1

2

3

4

5

Q1 Q2 Q3

average score of insights for HR data

participant1 participant2

0

1

2

3

4

5

Q1 Q2 Q3

average score of insights for IT data

participant3 participant4

0

1

2

3

4

5

Q1 Q2 Q3

average score of insights for UR data

participant5 participant6

0

1

2

3

4

5

Q1 Q2 Q3

average score over all participants

1

2

3

4

5

MovieSales CarSales Emission Census Overall

Average score of insights from non-expert users

Q1 Q2

provides a general mining framework, so we can
incorporate prior knowledge in via customized
significance calculation.

Finding5: Visualization and natural language
description are important to convey insights. Based on
the free-text comments, most of the negative feedback is
about confusion on either the visual charts or the text
descriptions. Comparing with expert participants, non-
expert participants are more often be confused by the
charts or text descriptions. E.g., “the outlier does not seem
so significant”, or “what does repeat pattern mean?”. We
believe that future work from visualization and NLP
communities could be very helpful and important to
better represent and convey insights to non-expert users.

5. RELATED WORK
Pattern mining on multi-dimensional data. There
exists lots of work in the literature which target mining
various types of interesting patterns from multi-
dimensional data. Sarawagi et al. [5] aim to find
exceptions in OLAP data cubes. Wu et al. [7] propose
promotion analysis for business intelligence, which
discovers highly ranked subspaces associated with a given
promotion object. Vartak et al. [9] focus on
recommending high-deviation patterns via visualization.
Chen et al. [10] investigate methods for multi-
dimensional regression analysis of time series stream
data. Their approach can be used to efficiently detect
trends or outliers from multi-dimensional data. Palpanas
et al. [18] provide answers to queries and find interesting
cells in a data cube by the principal of maximum-entropy.
Compared to these works, we attempt to propose a unified
formulation of various types of interesting pattern as
insights and conduct efficient insight mining via a general
and extensible mining framework. Chen et al. [8] build a
fact taxonomy of interesting patterns from visual
perspective. All the facts can be formulated by the
definition of insights.

Interestingness measures for data mining.
Silberschatz et al. [19] advocate using unexpectedness to
measure the interestingness of a pattern. Unexpectedness
patterns are interesting because they exhibit contrary to
common knowledge and may suggest certain perspectives
of data that require further analysis. This idea is
conceptually compliant with our formulation of insight
significance. In addition, we propose using impact to
express the importance of a pattern, which is also a key
factor contributing to the interestingness measure. Ceng
et al. [20] identify 9 criteria to determine whether a
pattern is interesting or not, where coverage and
surprisingness are analogical to the impact and significance
of QuickInsights. Coverage is a specific implementation of

impact when COUNT is adopted as impact-measure. Tang
et al. [27] propose composite extractors for discovering
latent yet interesting knowledge that can be derived by
higher-order calculations. QuickInsights can incorporate
composite extractors by calculating impact and
significance based on the results of composite extractors.

OLAP and cubing. The data cube modeling has been a
mature area to facilitate exploratory data analysis with
lots of work such as Colliat [17], and Gray et al. [23].
Instead of pre-constructing data cubes, QuickInsights
adopts a more economical way by on-demand querying
and caching. Such an approach can avoid generating too
many cubes which have no chance to be used for insight
evaluation, and the query performance can be further
improved via smart-batching, which is guided based on
the subject searching mechanism of QuickInsights.

Visualization recommendation. There has been much
work [9][22][32][33][34][36][37][41][42][43] that aims to
facilitate rapid visual data exploration by automatically
recommending visualizations. Some recommenders, such
as APT [32], SAGE [33] and Show Me [34], focus on
suggestions of visual encodings. More recent work
[9][22][36][37] also suggest what data to visualize. They
might rank visualization candidates based on various
statistical analysis to promote the visualizations with
interesting patterns [35]. E.g., Voyager [36][37] suggests
visualizations based on statistical properties. Some
systems are designed for specific tasks and patterns.
Profiler [39] finds anomalies. SeeDB [9] identifies charts
that are largely deviated from a given reference.
Zenvisage [22] targets charts that are similar to a given
input. Some novel visual data exploration tools (e.g.,
Foresight [29], Voder [38], DataSite [28]) are developed
based on automatic insights and visualizations. In
comparison, QuickInsights provides a unified formulation
of interesting patterns, and developed a systematic insight
mining framework to automatically mine insights from
data. QuickInsights can be leveraged by visualization
recommendation systems to produce insightful
visualizations that convey interesting data patterns.

6. CONCLUSION
We present a novel technique QuickInsights to quickly
and automatically discover insights from multi-
dimensional data. QuickInsights proposes a systematic
formulation of interesting patterns in terms of insights
and conducts efficient insight mining to discover high-
quality insights. QuickInsights has been released as a
feature of Microsoft Power BI.

Acknowledgement. We thank our partners in Microsoft
Power BI team for collaboration and system integration.

REFERENCES
[1] J. Han, M. Kamber and Jian Pei. Data Mining: Concepts and

Techniques. Morgan Kaufmann Publishers, 2011.

[2] D. A. Keim. Information Visualization and Visual Data Mining.
TVCG, 2002.

[3] U. Fayyad, G. P. Shapiro, and P. Smyth. From Data Mining to
Knowledge Discovery: An Overview. In advances in Knowledge
Discovery and Data Mining, 1996.

[4] R. Amar, J. Eagan, and J. T. Stasko. Low-level Components of
Analytic Activity in Information Visualization. InfoVis,’05

[5] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven
Exploration of OLAP Data Cubes. In EDBT, pages 168-182, 1998.

[6] S. Sarawagi. Explaining Differences in Multi-Dimensional
Aggregates. In VLDB, pages 42-53, 1999.

[7] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion Analysis in Multi-
dimensional Space. In VLDB, 2009.

[8] Y. Chen, J. Yang, and W. Ribarsky. Toward Effective Insight
Management in Visual Analytics Systems. IEEE Pacific
Visualization Symposium, 2009.

[9] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N.
Polyzotis. Seedb: Efficient Data-driven Visualization
Recommendations to Support Visual Analytics. In VLDB, 2015.

[10] Y. Chen, G. Dong, J. Han, B. W. Wah and J. Wang. Multi-
Dimensional Regression Analysis of Time-Series Data Streams.
VLDB, 2002.

[11] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. Efficient
Computation of Iceberg Cubes with Complex Measures.
SIGMOD, 1-12, 2001.

[12] M. Y. Vardi. Fundamentals of dependency theory. In E. Borger,
editor, Trends in Theoretical Computer Science, 171-224, 1987.

[13] H. Yao, H. J. Hamilton. Mining Functional Dependencies from
Data. DMKD, 197-219, 2008.

[14] https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-
integration-with-cortana-and-new-ways-to-quickly-find-insights-
in-your-data/.

[15] QuickInsights. https://www.microsoft.com/en-
us/research/project/quickinsights/

[16] R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory Mining
and Pruning Optimization of Constrained Association rules.
SIGMOD’98

[17] George Colliat. OLAP, Relational, and Multidimensional Database
Systems. Technical report, CA, 1995.

[18] T. Palpanas and N. Koudas. Entropy based Approximate Querying
and Exploration of Data Cubes. SSDBM, 2001.

[19] A. Silberschatz and A. Tuzhilin. What Makes Patterns Interesting
in Knowledge Discovery Systems. TKDE, 1996.

[20] L. Ceng, and H. J. Hamilton. Interestingness Measures for Data
Mining: A Survey. ACM Computing Surveys, 2006.

[21] M. Basseville, and I. V. Nikiforov. Detection of Abrupt Changes:
Theory and Application. Prentice-Hall, 1993.

[22] T. Siddiqui, A. Kim, J. Lee, K. Karrie and A. Parameswaran.
Effortless Data Exploration with zenvisage: An Expressive and
Interactive Visual Analytics System. VLDB, 2017.

[23] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational
Aggregation Operator Generalizing Group-by, Cross-tab, and Sub
Totals. DMKD, 1997.

[24] E. K. Choe, B. Lee, and M. C. Schraefel. Characterizing
Visualization Insights from Quantified Selfers’ Personal Data

Presentations. IEEE Computer Graphics and Applications,
Volume 35, Issue 4, 2015.

[25] Gartner. Magic Quadrant for Business Intelligence and Analytics
Platforms. Feb 2017. https://www.gartner.com/doc/reprints?id=1-
3TYE0CD&ct=170221&st=sb

[26] https://docs.microsoft.com/en-us/power-bi/sample-datasets

[27] B. Tang, S. Han, M. L. Yiu, R. Ding, and D. Zhang. Extracting Top-
k Insights from Multi-dimensional Data. SIGMOD, 2017.

[28] Z. Cui, S. K. Badam, A. Yalcin, and N. Elmqvist. Datasite:
Proactive Visual Data Exploration with Computation of Insight-
based Recommendations. arXiv:1802.08621, 2018

[29] C. Demiralp, P. J. Hass, S. Parthasarathy, and T. Pedapati.
Foresight: Recommending Visual Insights. VLDB, 2017.

[30] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Relational
Databases. IEEE TVCG, 2002.

[31] H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer, 2009.

[32] J. Mackinlay. Automating the Design of Graphical Presentations
of Relational Information. ACM Transactions on Graphics, 1986.

[33] S. F. Roth, J. Kolojejchick, J.Mattis, and J. Goldstein. Interactive
Graphic Design using Automatic Presentation Knowledge. ACM
CHI, 1994.

[34] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic
Presentation for Visual Analysis. IEEE TVCG, 2007.

[35] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Towards A General-Purpose Query Language for
Visualization Recommendation. HILDA, 2016.

[36] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory Analysis via Faceted Browsing
of Visualization Recommendations. IEEE TVCG, 2016.

[37] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A.
Anand, J. Mackinlay, B. Howe, and J. Heer. Voyager 2:
Augmenting Visual Analysis with Partial View Specifications.
ACM CHI, 2017.

[38] A. Srinivasan, S. M. Drucker, A. Endert, J. Stasko. Augmenting
Visualizations with Interactive Data Facts to Facilitate
Interpretation and Communication. IEEE TVCG, 2019.

[39] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, J. Heer.
Profiler: Integrated Statistical Analysis and Visualization for Data
Quality Assessment. AVI, 2012.

[40] L. Grammel, M. Tory, and M. Storey. How Information
Visualization Novices Construct Visualizations. IEEE TVCG, 2010.

[41] K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo.
VizML: A Machine Learning Approach to Visualization
Recommendation. arXiv: 1808.04819, 2018.

[42] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe,
and J. Heer. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco. IEEE
TVCG, 2019.

[43] Y. Luo, X. Qin, N. Tang, and G. Li. DeepEye: Towards Automatic
Data Visualization. ICDE, 2018.

https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
https://powerbi.microsoft.com/en-us/blog/announcing-power-bi-integration-with-cortana-and-new-ways-to-quickly-find-insights-in-your-data/
http://approjects.co.za/?big=en-us/research/project/quickinsights/
http://approjects.co.za/?big=en-us/research/project/quickinsights/
https://www.gartner.com/doc/reprints?id=1-3TYE0CD&ct=170221&st=sb
https://www.gartner.com/doc/reprints?id=1-3TYE0CD&ct=170221&st=sb
https://docs.microsoft.com/en-us/power-bi/sample-datasets

APPENDIX

Property of Impact

We restrict the impact-measures to be measures only containing
non-negative values. Paper [13] provides a set of calculations to
accommodate anti-monotonic condition being held by various
aggregations (e.g., top-k average for AVG). The corresponding
calculations are denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒). thus, we
define impact by the following two steps:

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})

𝑖𝑚𝑝𝑎𝑐𝑡 = max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖)

Lemma. In definition 2, impact satisfies anti-monotonic
condition, and it is bounded between 0 and 1.

Proof: Considering the impact-measures are restricted to only
contain non-negative values, and since
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) satisfies anti-monotonic
condition, thus,

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) ≤ 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗}) →

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 ∈ [0,1] → 𝑖𝑚𝑝𝑎𝑐𝑡 ∈ [0,1], because every subspace is a
subset of overall subspace {*}.

To prove anti-monotonic condition, let S and s be two subspaces
where 𝑠 ∈ 𝑆, then

𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠) ≤ 𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆) ∀𝑖 → max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠))

≤ max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆))

Complexity Analysis for FD Detection

Lemma. Time complexity of IsDependent (as shown in Table 9)
is 𝑂(𝑙𝐷) ≪ 𝑂(𝐷2) , here D is the number of columns, and 𝑙 =

max
𝑖

|𝑋𝑖|, where |𝑋𝑖| refers to the cardinality of a set 𝑋𝑖 .

Proof: Similar to the analysis of graph traverse, we use a
Boolean array inspected to record which column has been
evaluated. Thus, each column will be evaluated at most once.
And considering we inspect at most D columns, then we come
up with the complexity 𝑂(𝑙𝐷). Further considering in general, the
FDs obtained from data schema describe FD relationship
between a small set of dimensions, thus 𝑙 ≪ 𝑑 , the proof
concludes.

Example of Batched Query

For example, let a query request be {China, Android}⨁Year, and
we know the subspace {China, Android} is generated from a
previous query {China} ⨁ OS, then we choose OS as the
expanding dimension rather than Country or any other
dimensions, because all the subspaces generated by query
{China}⨁OS have been inserted into the task queue (combined
with all feasible breakdowns including Year), thus the query
results expanded by OS will be useful for these tasks, but which

is uncertain if we use other dimensions as the expanding
dimension.

Pseudo Code
Table 9. Pseudo code of FD detection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/* check if a set of columns determine another column, given a set of
 basicFDs */
IsDependent(determinantCols, col, basicFDs)

 inspected {}
 return Qualify(determinantCols, col, inspected, basicFDs)

/* check if a set of columns determine another column recursively */
Qualify(determinantCols, col, inspected, basicFDs)
 /* reflexivity axiom */
 if col in determinantCols
 return true
 /* this column has already been inspected */
 if col in inspected
 return inspected[col]
 inspected[col] false

/* retrieve all the determinant sets of col. it is possible that one
 column can be determined by multiple determinant sets */

 dtSets GetAllDeterminants(col, basicFDs)
 foreach set in dtSets

 qualify true
 /* if all the columns within this set can be determined,
 then col can be determined according to transitivity axiom */

 foreach newCol in set
 if Qualify(determinantCols, newCol, inspected, basicFDs) is false
 then qualify false
 break
 if qualify is true
 then inspected[col] true
 return true
 return false

Table 10. Pseudo code of batched-query with cache
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/* a specific query issued from QuickInsights miner layer */
Query(subspace, expanding, breakdown, params)

ret Cache.Lookup(subspace, breakdown, params)
if ret ≠ null

 return ret
/* a special optimization for the case where breakdown is null: we swap
breakdown and expanding to increase cache hit */
if breakdown = null and expanding ≠ null
 newSubspace subspace - expanding
 ret Cache.Lookup(newSubspace, expanding, params)
 if ret ≠ null
 /* in case the lookup successful, we need to re-format result */
 return ExtractResult(ret)

/* conduct real data query */
queryResult DataDriver.AggregationQuery(subspace, expanding,
breakdown, params)
if expanding is null
 ret first in queryResult
 Cache.Add(subspace, breakdown, params, ret)
else
 root subspace - expanding
 foreach t in queryResult
 newSubspace root + {expanding:t.Key}
 Cache.Add(newSubspace, breakdown, params, t.Value)
 if newSubspace is subspace
 ret t.Value
return ret

Example of Adding A New Insight Type

Suppose we would like to support a new insight type which is
equivalent to the pattern depicted in [9], we first need to register
it as a new insight type, named “HighDeviation”. Considering
the subject of HighDeviation insight is with single subspace and
single measure, thus only the tasks with single subspace as input
are allowed for its evaluation, this is reflected by a single-line
checking “case HighDeviation: return subspaces.Count==1;” in the
method CanEvaluate in Table 11. In the Evaluation method,
certain statistical metrics are calculated to measure the deviation
for each individual measure, and qualified insights are output.

Table 11. Three steps for supporting a new type of insight

Step1: add the new insight type
enum InsightType {…, newType, …}

Step2: implement insight evaluation of the new type
List<Insight> Evaluate(List<Dictionary<Measure, AggrResult>> aggrResults);

Step3: register new insight type to task execution pre-condition
bool CanEvaluate(
List<Subspace> subspaces, Dimension breakdown, InsightType type);

Examples of FD Induced EII

For example, suppose there exists FD between two measures
𝑆𝑎𝑙𝑒𝑠(𝑈𝑆𝐷) → 𝑆𝑎𝑙𝑒𝑠(𝐸𝑈𝑅𝑂) (falls into the category of ID5 in Table
4), the corresponding values only differ by a constant exchange-
rate. These two measures will exhibit perfect correlation no
matter breakdown by any dimension (thus the relationship is
pre-determined) when drawn in a scatter plot, but clearly
provides little value for analysis. The example of ID2 in Table 4
is another case about measure height determining dimension
Height-Category. For example, the value of Height-Category is
calculated by measure height, by setting 𝑙𝑜𝑤 = ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 100, ℎ𝑖𝑔ℎ =

ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 1000, 𝑚𝑒𝑑𝑖𝑢𝑚 = 100 < ℎ𝑒𝑖𝑔ℎ𝑡 < 1000. Any insight describes
height breakdown by Height-Category would become a trivial
Outstanding No. 1 insight: “height of high is outstanding No. 1
among all Height-Categories”, which is pre-determined no
matter what subspace of the insight is. The details of how ID1~5
induce EII are available at website [15] due to page limit.

Profiles of Non-Expert Users

To mitigate any potential bias, we select non-expert participants
by different jobs, genders, and different familiarity with data
analysis, as shown in Table 12.

Table 12. Statistics of non-expert users

Details of “Movie” Dataset

Figure 9. Snapshot of the schema of 'Movie' Dataset

Figure 9 shows a snapshot of the database schema of ‘Movie’
data. This is a real-world dataset, containing the various
information of movie in the years from 1985 to 2016. This is a
typical multi-dimensional dataset, which is formed by six tables,
connected by Snowflake schema. Table 13 shows the scale of
each table. There are in total about 60 dimensions, and almost
every table has more than 10,000 rows. Thus the search space
for QuickInsights is very large.

Table 13. Data scale of each table

Table Name #Dimensions #Measures #Rows

Movies* 27 8 4740

Movie Cast 10 1 74038

Actors 8 2 39567

Genres 2 1 22470

Production Companies 2 1 22222

Production Locations 2 1 12084

When this dataset is run by Power BI, QuickInsights could
generate quite a few insights within 20 seconds. Figure 10 shows
nine sample insights generated by QuickInsights. We have used
these insights to conduct the user study. The details of the user
study are presented in Section 4.2.2.

Figure 10. Snapshot of sampled insights recommended
from Movie

Job role Count

Researcher 17

Developer 8

UX Designer 2

IT 1

Admin 1

PM 1

Gender Count

male 18

female 12

Analysis frequency Count

Daily 5

Weekly 8

Monthly 10

Seldom 7

