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ABSTRACT 
Discovering interesting data patterns is a common and 
important analytical need in data, with increasing user 
demand for automated discovery abilities. However, 
automatically discovering interesting patterns from 
multi-dimensional data remains challenging. Existing 
techniques focus on mining individual types of patterns. 
There is a lack of unified formulation for different pattern 
types, as well as general mining frameworks to derive 
them effectively and efficiently. We present a novel 
technique QuickInsights, which quickly and automatically 
discovers interesting patterns from multi-dimensional 
data. QuickInsights proposes a unified formulation of 
interesting patterns, called insights, and designs a 
systematic mining framework to discover high-quality 
insights efficiently. We demonstrate the effectiveness and 
efficiency of QuickInsights through our evaluation on 447 
real datasets as well as user studies on both expert users 
and non-expert users. QuickInsights is released in 
Microsoft Power BI. 
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1. INTRODUCTION 
Discovering interesting data patterns is a common and 
important analytical need when users try to obtain 
meaningful, useful, and actionable information hidden in 
data through data analysis and exploration [1][2][3][4][8] 
[22][24][29]. Such interesting patterns include 
correlation, anomaly, trend, etc. [8]. Two examples of 

interesting patterns are shown in Figure 1. The left chart 
shows CPU usage of a server is exceptionally lower than 
the other servers. The right chart shows sales of tablet 
devices in China is trending upwards in recent years.  

Exploratory visual analysis is a commonly used approach  
for understanding and reasoning about data to uncover 
interesting data patterns [9][35][36][39][40], in which 
users have to manually select data variables and specify 
visual encodings, either via a programming library (e.g., 
ggplot [31]) or via a graphical interface (e.g., Tableau 
[30]). Although manual specification is flexible for data 
exploration, it is non-trivial to iteratively create and refine 
visualizations to search for the ones that are interesting 
and useful [9][22], especially for non-expert users who 
have limited time and limited skills in statistics and data 
visualization [29][40]. 

 

Figure 1. Two examples of interesting patterns 

To speed up the data exploration process, we can 
complement interactive visual exploration tools with 
automated recommendation of interesting data patterns. 
With patterns automatically mined from the data and 
presented to users as visualizations, users can jump-start 
the exploration from them rather than from the scratch 
[28][29][36]. The patterns capture characteristics of a 
dataset from different perspectives, so they can help users 
understand data and prioritize their exploration actions. 
Some patterns may hit an “interesting zone” of users, thus 
inspiring them to generate new hypotheses and initiate 
further data exploration and analysis. Further, some 
patterns can directly lead to actions, e.g., system admin 
could login to server Svr07 for diagnosis when they find 
unexpected lower CPU usage from the data. Hence, 
Gartner’s report [25] has identified smart, automated 
pattern detection as one critical capability of next-
generation BI and analytics platforms.   

However, automatically discovering interesting patterns 
from data remains an open research problem. First, there 
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is a lack of unified and consistent formulation of 
“interesting patterns”. A set of techniques [5][7][9][10] 
have been proposed to extract different types of 
interesting patterns from multi-dimensional data, such as 
anomalies or exceptions. However, these techniques focus 
on mining individual types of patterns; therefore, they are 
insufficient for facilitating comprehensive data analysis. 
While “facts taxonomy” [8] was proposed to categorize 
interesting patterns, it does not provide a unified 
formulation. Second, there is a lack of efficient mining 
frameworks that target general interesting patterns. The 
search space grows exponentially as the number of 
dimensions increases, and interesting patterns are hidden 
in unknown subsets of data. 

We present QuickInsights, a novel technique for 
automatically discovering interesting patterns from 
multi-dimensional datasets.  QuickInsights provides a 
unified formulation of interesting patterns, called insights, 
and a systematic mining framework to derive insights 
efficiently. Specifically, given a multi-dimensional 
dataset, an insight reflects something interesting on a 
specific subject in the data from certain perspective. We 
formulate an insight based on three key elements: subject, 
perspective and interestingness. Such formulation is able to 
unify different types of interesting patterns proposed in 
previous works [5][7][9][10]. Given the formulation, the 
mining framework of QuickInsights aims to automatically 
discover insights with quality and efficiency. 

Quality challenge: Some insights may be easily inferred 
by users based on data schema information. They provide 
little information gain, thus are less interesting to users. 
E.g., an almost perfect linear correlation of two measures 
over years, where measure1 is sales in USD, and measure2 
is sales in EUR (i.e., only differ by exchange rate) will 
become easily inferable to users. We try to avoid such 
Easily Inferable Insights (EII for short) to guarantee high-
quality insight mining results. How to effectively detect 
and eliminate EIIs imposes challenges on insight mining.       

Efficiency challenge: The search space of mining multi-
dimensional dataset grows exponentially as the number 
of dimensions increases. Moreover, since QuickInsights is 
mostly used in interactive data exploration, it must output 
insights within a short time budget. To effectively utilize 
the time budget, we should try to first explore the “best” 
possible subsets of data where high-quality insights exist. 
In addition, insight evaluation always involves a lot of 
data aggregation queries against the database, which may 
further impact mining performance.  

To address the quality challenge, we notice that EII is 
mainly caused by inter-dimensional dependency. 

Therefore, we conduct functional dependency checking of 
insight subjects, and implement an efficient algorithm to 
detect and eliminate EIIs caused by functional 
dependency. To address the efficiency challenge, we first 
employ a “best-first” search mechanism to prioritize 
insight evaluation tasks. Given a time budget, this 
mechanism tries to prioritize insight evaluation tasks, by 
estimating which task would result in a higher score 
before evaluation. We then employ a smart-batching 
mechanism to effectively reduce the number of queries by 
taking advantage of spatial locality across multiple related 
queries in data, thus improve query performance. 

We conducted quantitative experiments on 447 real 
datasets to evaluate the effectiveness and efficiency of 
QuickInsights. We also performed qualitative user studies, 
which showed that the insights generated by 
QuickInsights are useful and valuable to both expert users 
and non-expert users. QuickInsights has been released in 
Microsoft Power BI [14] as a feature available to end users, 
which is recognized by Gartner as a basic form of smart 
data discovery [25]. We make the following contributions: 

• We propose a unified formulation of interesting 
patterns, called insights on multi-dimensional 
dataset. 

• We build an insight mining framework to achieve 
efficient insight mining performance using two key 
techniques: best-first search mechanism to prioritize 
insight evaluation tasks, and smart query-grouping to 
reduce the number of queries. 

• We design an insight evaluation algorithm to 
eliminate EIIs to achieve high-quality insight results. 

• We evaluate QuickInsights and verified its 
effectiveness and efficiency on discovering insights. 
QuickInsights is released in Microsoft Power BI. 

2. INSIGHT MODELING  

2.1 Data Model 
Multi-dimensional data conceptually is organized in a 
tabular format that consists of a set of records, and each 
record is represented by a set of attributes (columns in the 
table). Table 1 shows some sample data from a multi-
dimensional dataset about tablet sales. There are two 
types of columns in the table: dimensions and measures. 
Dimensions are used to group or filter records. The values 
of dimensions are either categorical (e.g., “Country”) or 
ordinal (e.g., “Year”). Measures are numerical columns 
(e.g., “Sales”) on which certain aggregations (e.g., SUM, 
AVG) can be performed. Formally, given a multi-
dimensional dataset ℝ(𝒟, ℳ) , where 𝒟 = {𝐷1 , … 𝐷𝑑} is 



 

 

the collection of dimensions and ℳ  is the collection of 
measures. Let 𝑑𝑜𝑚(𝐷𝑖) be the domain of 𝐷𝑖 . 

Table 1. A sample of multi-dimensional data. 

 

Subspace. A subspace is defined as a size-d collection of 
filters 𝑠 = {𝑠[1], … , 𝑠[𝑑]} , where 𝑠[𝑖] ∈ 𝑑𝑜𝑚(𝐷𝑖) ∪ {∗} , 
and ‘*’ refers to the “any” value. We hide the filters with 
star value (‘*’) for brevity. We call a subspace 𝑠  with 
dimensionality 𝑙 ≔ |{𝑠[𝑖]|𝑠[𝑖] ∈ 𝑠, 𝑠[𝑖] ≠∗}| . Each 
subspace associates with an aggregate value per each 
measure, e.g., {Country: China} is one subspace with 𝑙 =

1, and its corresponding aggregation on measure Sales is 
aggregated by SUM. For conciseness, we denote {Country: 
China} as {China} for short. 

Sibling group & breakdown. Given a subspace s and a 
dimension 𝐷𝑖 , a sibling group is defined as 𝑆𝐺(𝑠, 𝐷𝑖) =

{𝑠′|𝑠′[𝑖] ≠∗, 𝑠′[𝑗] = 𝑠[𝑗]∀𝑗 ≠ 𝑖} , i.e., a set of subspaces 
only differ in the values of 𝑑𝑜𝑚(𝐷𝑖). In this setting, we 
call 𝐷𝑖  the breakdown dimension (i.e., the group-by 
operation against a subspace), and we denote  𝑠 ⊕ 𝐷𝑖 →

𝑆𝐺(𝑠, 𝐷𝑖)  to indicate that sibling group 𝑆𝐺(𝑠, 𝐷𝑖)  is 
generated from subspace s by breaking down of 𝐷𝑖 . For 
example, subspaces {2011, China}, …, {2016, China} form a 
sibling group because they only differ in the value of 
dimension Year, and Year is the breakdown dimension. 

2.2 Insight Formulation 
In the domain of multi-dimensional data analysis, an 
interesting pattern can generally be summarized as 
follows: it reflects something interesting on a specific 
subject of data from a certain perspective. We refer to such 
kinds of interesting pattern as insight. Subject scopes the 
content of an insight. Taking the trend insight in Figure 1 
as an example, its subject includes the sibling group 
𝑆𝐺({𝐶ℎ𝑖𝑛𝑎}, 𝑌𝑒𝑎𝑟) and the measure Sales. Its aggregate 
values form a time series over years for trending analysis, 
which is the perspective of this insight. Its interestingness 
is reflected by “trending upwards rapidly and 
consistently”. Below we describe subject, perspective, and 
interestingness of an insight accordingly. 

2.2.1 Insight Subject 
We define insight subject as:  

Definition 1. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)} 

For example, the subjects of the two insights in Figure 1 
are: {{*}, ServerName, CPU Usage}, and {{China}, Year, 
Sales}, respectively. Insight subject specifies the scope of 

content of an insight, and it corresponds to one or more 
sets of aggregate values, which can be used to quantify 
the interestingness. To facilitate intuitive understanding, 
let’s map to visual charts. Each combination of {subspace, 
breakdown, measure} corresponds to a sibling group and 
their aggregate values on the measure. The values of the 
breakdown dimension can map to x-axis values; and the 
aggregate values can map to y-axis values; while the 
subspace can map to filter. For the cases with multiple 
subspaces or multiple measures, they can map to multiple 
series of y-axis values with the same x-axis. 

Such a natural mapping to visual charts is an important 
advantage of Definition 1, given that insights are typically 
consumed via visual interfaces [8], thus enabling seamless 
integration with visual objects as the underlying object 
model. In addition, there are more advantages as follows. 
First, it is an abstraction that covers a wide range of 
subjects of specific “insights” in the literature. E.g., [9] 
automatically discovers insights with large deviation over 
a distribution, where the distribution can be properly 
modeled by Definition 1. Second, based on the feedback 
from several data science teams that we have closely 
engaged with in Microsoft, the insights derived from 
Definition 1 is satisfactory to facilitate their basic 
analytical needs.  

2.2.2 Insight Types 
We materialize different perspectives as different insight 
types. For instance, insight type “Outstanding#1” 
corresponds to the perspective of finding “the leading 
value that is outstandingly higher than the remaining 
values”. Specifying insight type is essential for further 
quantifying insight interestingness. E.g., given the sales in 
China over years, the evaluation criteria are different for 
perspectives such as trend or seasonality. 

We have developed 12 types of insights, corresponding to 
12 different perspectives commonly adopted in practice, 
such as Attribution, Change Point, Correlation, Outlier, 
Seasonality, etc. Details are available on website [15]. The 
mining framework of QuickInsights is designed to be 
extensible, and configurable (see Section 3.1.3 for details) 
to support new insight types easily.  

2.2.3 Insight Scoring 
We quantify the “interestingness” of an insight by 
assigning an appropriate score to it. Intuitively, 
interestingness of an insight is judged by two factors. First, 
the subject of the insight should be non-trivial, so that the 
insight expresses something important, e.g., we would 
like insight subject to be a best-selling brand, or a 
category that has large market share rather than being 
neglectable. Second, aggregation results of the subject 

Year OS Region Country Vendor Sales Units

2010 iOS USA United States Sony 1.1 7,032

2010 Android Asia India Amazon 1.5 10,462

2011 Windows USA United States Toshiba 2.4 12,337

2012 Android Asia China Huawei 3.7 28,556

… … … … … …



 

 

should exhibit significant differences against a baseline. 
We express the baseline as a statistical hypothesis, which 
reflects common situations formed up by majority of non-
insights (i.e., aggregation results with uninteresting 
patterns). E.g., for correlation analysis, it is desirable to 
look for two time-series instances exhibiting correlation 
against null hypothesis 𝐻0: 𝜌 = 0. Such a null hypothesis 
reflects one common situation where two time-series 
instances are independent. In this paper, we term these 
two factors as impact and significance, respectively, and 
score an insight by combining them.  

 

Figure 2. Illustration of impact and significance.  

Impact. Impact reflects the importance of the subject of 
an insight against the entire dataset. It can be determined 
by the best possible perspective for promoting the insight 
regarding any “meaningful measures”. Here we term 
these “meaningful measures” as impact-measures, and 
denote the value of impact on a specific impact-measure i 
as 𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑗𝑒𝑐𝑡)  or just 𝑖𝑚𝑝𝑎𝑐𝑡𝑖  for 
brevity. Figure 2 shows sales trends of two different 
markets when impact-measure is market share. The 
higher the market share the more important. 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 
should hold anti-monotonic condition [16] , and should be 
normalized for fairness comparison across different 
impact-measures. Anti-monotonic is necessary because it 
is compliant with common sense: if the subject of insight 
A is a superset of the subject of insight B, then impact of 
A should be no less than impact of B. [11] provides 
calculations to accommodate anti-monotonic condition 
being held by various aggregations. The corresponding 
calculations are denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) . 
Normalization is necessary for fairness comparison across 
impact-measures. Having these, we propose: 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =

 
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡.𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})
. To avoid divide-by-zero, we restrict 

the impact-measures to be measures only containing 
strictly positive values. E.g., COUNT is a valid impact-
measure; Sales or Units in Table 1 are also suitable impact-
measures. Users can specify meaningful impact-measures 
aligned with their needs. Under this restriction, 𝑖𝑚𝑝𝑎𝑐𝑡𝑖 
is well-defined and bounded within [0, 1], and we define 
impact of an insight, which seeks the impact-measure that 
best promotes insight: 

Definition 2.   𝑖𝑚𝑝𝑎𝑐𝑡 =  max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖)                           

Lemma 1. Definition 2 satisfies anti-monotonic condition 
and is bounded between 0 and 1. (Proof is in Appendix). 

Significance. Significance is evaluated on the 
aggregation values of the insight subject, and it is 
designed to reflect how significant the fact (i.e., the 
obtained aggregate values) against a baseline in a 
stochastic fashion. We express the baseline as an insight-
type-dependent null hypothesis, which reflects common 
situations formed up by majority of non-insights and 
quantify insight significance by conducting significance-
based hypothesis testing. The bellowing two charts in 
Figure 2 shows two different time series signals: the left 
one is more significant than the right one, because it 
contains certain regularities instead of pure noise. 

More specifically, in the scenario of QuickInsights, 
without knowing further knowledge of user preferences, 
we propose baseline for each type of insight based on 
common sense. Such common sense should approximate 
the distribution of possible outcome which is 
uninteresting (i.e., trivial or less valuable for data 
analysis). E.g., to calculate significance of whether there 
exists a change point on a time series instance, a 
reasonable baseline is to assume the time series to be 
relatively stable, which is compliant with common sense 
(such time series provides no value on change point 
related analysis), and can be easily formalized as:  
𝐻0: 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑁: 𝑝𝜃(𝑦𝑘|𝑦𝑘−1~𝑦1) = 𝑝𝜃0

(𝑦𝑘|𝑦𝑘−1~𝑦1) , where 
𝑝𝜃0

is a fixed probability distribution [21]. The insight 
significance takes a value within [0, 1]. The closer the 
value to 1, the more significant the insight is. Detailed 
baseline setup and significance calculations are available 
at website [15]. 

Score. By combining the two factors together, we come 
up with the final score which quantifies the overall 
“interestingness” of an insight: 

Definition 3. 𝑠𝑐𝑜𝑟𝑒𝑡  = 𝑓(𝑖𝑚𝑝𝑎𝑐𝑡) ∙ 𝑔𝑡(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒) 

Here the subscript t refers to a specific insight type, 
considering the significance calculation is insight type 
dependent. f and g are any non-negative, monotonic 
functions. Currently, we take the simplest form: 𝑠𝑐𝑜𝑟𝑒𝑡 =

𝑖𝑚𝑝𝑎𝑐𝑡 ∙ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡 

Definition 4 (Insight representation). With the above 
considerations, we represent an insight as a 5-tuple 

𝑖𝑛𝑠𝑖𝑔ℎ𝑡 ≔ {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠), 𝑡𝑦𝑝𝑒, 𝑠𝑐𝑜𝑟𝑒} 

3. INSIGHT MINING 

3.1 Mining Framework 
Overall, QuickInsights aims to achieve three design goals: 
(1) be a time-bounded mining procedure; (2) be portable 
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to commodity query engines; (3) be extensible to adapt 
new types of insights.  

Time-bounded mining procedure. The typical 
scenario of QuickInsights is one that targets interactive 
data exploration, thus it must output insights within a 
given limited time budget, e.g., 10 seconds. To effectively 
utilize the time budget, the mining procedure should try 
to explore the best possible subjects (i.e., combination of 
subspace and breakdown), where high-quality insights 
might exist. To discover insights, data queries and 
significance evaluations are performed by a set of tasks, 
where each task takes certain subspace(s) (and the 
corresponding impact of each subspace) and breakdown 
as input, and is responsible for evaluating certain types of 
insights that are applicable to the input parameters (e.g., 
time series related insights are evaluated when input 
breakdown dimension is ordinal). Therefore, a best-first 
prioritization of tasks is necessary (Section 3.1.1). 

 

Figure 3. Overall workflow of QuickInsights 

Portable to arbitrary query engines. As a general 
mining framework, QuickInsights should be portable to 
build upon arbitrary query engines such as SQL Databases, 
SQL Server Analysis Services, etc. where multi-
dimensional datasets are typically stored. Thus, an 
abstracted and general query interface layer is necessary.  

Extensible to adapt new types of insights. 
QuickInsights is designed to support new insight types 
easily. Therefore, we decouple the mining procedure into 
two parts: subject enumeration and insight’s significance 
evaluation, only insight evaluation module is responsible 
for registering new insight types (Section 3.1.3). 

Figure 3 depicts the overall workflow of QuickInsights. 
The workflow can be divided into three stages, “Search & 
Task Generation” (Stage 1), “Query & Evaluation” (Stage 
2), and “Store and Refinement” (Stage 3). The first two 
stages are executed simultaneously in a parallel fashion 
within a time budget. Once the time exceeds the time 
budget, refinement is conducted in Stage 3 and then the 
qualified insights are output. 

In Stage 1, the SubjectSearcher module tries to enumerate 
all possible subspaces. Each subspace is assigned with 
impact by using the AutoImpact module. Insight 
evaluation tasks are then generated by combining 
subspaces with any valid breakdowns that pass trivial-
insight checks (by Functional-Dependency checker). The 
generated tasks are stored in a priority queue, to be 
executed in Stage 2. The tasks associated with higher 
impacts will be assigned higher priorities. In Stage 2, the 
tasks are computed in parallel by a set of dedicated worker 
threads. The computing of tasks consists of three steps. 
First, the task with highest priority from the queue is 
fetched by a worker thread; then data query is performed 
as the next step, by conducting aggregation over all 
measures, conditioned on the task parameters. Insight 
evaluation is conducted as the last step, where the 
discovered insights (i.e., significance exceeds certain 
threshold) are stored. Both Stage 1 and Stage 2 are 
executed within a time budget. Below are the details. 

3.1.1 Best-First Prioritization 
The generated tasks are stored in a priority queue, as 
depicted in Figure 3 to facilitate best-first prioritization. 
Recall that each task has three input parameters: 
subspace(s), breakdown and impact, and we use the 
impact as priority to prioritize different tasks. According 
to Definition 3, the score of insight is monotonic to both 
impact and significance, so without knowing the 
significance (since insight evaluation has not yet been 
done), impact is useful for prioritizing and pruning tasks.   

3.1.2 Query Abstraction 
To make QuickInsights portable for general systems, an 
abstracted query interface layer is necessary. Table 2 
shows the query interface AggregationQuery, which 
builds a connection between the mining layer of 
QuickInsights and the data store. Thus, QuickInsights is 
portable as long as the underlying data store provides the 
implementation of AggregationQuery. A query via our 
query interface is semantically equivalent to a SQL query: 

“SELECT Aggr1(measure1), Aggr2(measure2), … GROUP BY 

breakdownDimension where filter = subspace”.  

Note that the efficiency of QuickInsights mainly depends 
on the efficiency of underlying query engine. Microsoft 
Power BI team has supported our query API based upon 
Analysis Service. To further improve query performance 
by leveraging data locality, we introduce a pre-fetch 
mechanism and modify the above GROUP BY clause to: 

“GROUP BY expandingDimension, breakdownDimension”. 

The aggregation results are packaged into a dictionary. 
Each item of the dictionary collects the result of each 
value in expandingDimension. Setting it to null disables 
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pre-fetching. Table 3 shows two typical query examples 
and the corresponding results. 

Table 2. Query Interface 
/* aggregate one or more measures for a subspace, group-by a breakdown dimension. 
If an expanding dimension is provided, also aggregates for the siblings of this 
subspace based on the expanding dimension. */ 
Dictionary<BasicValue, Dictionary<Measure, AggrResult>> AggregationQuery( 
    Subspace subspace, 
    Dimension expandingDimension, 
    Dimension breakdownDimension, 
    Dictionary<Measure, AggrParams> params, 
    OrderByType orderBy); 

 

Table 3. Examples of query and aggregation result 

 

3.1.3 Extensibility  
QuickInsights is designed to be extensible to support new 
types of insights easily. The extensibility of QuickInsights 
largely relies on the unified definition of insights 
(Definition 4). Specifically, since each insight subject is 
formulated as  {𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒(𝑠), 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑠)}  , thus 
the aggregation results of an insight subject can be 
represented by a common data structure, which can be 
reused for any new insight type. An example of adding a 
new insight type is depicted in Appendix. 

3.1.4 Pruning  
As depicted in Figure 3, we applied three pruning criteria 
(pruning1, 2, 3) to boost performance: pruning1 prunes 
out significant portion of search space, and pruning2 and 
pruning3 reduce the cost of insight evaluation. 

pruning1: We prune out any insights with impact 
smaller than a given threshold. An insight with impact 
below the threshold becomes less important and thus less 
interesting, so we adopt pruning1 to eliminate 
unimportant tasks. Furthermore, considering the anti-
monotonic condition of impact (Lemma 1), any 
descendant subspaces can also be discarded from the 
SubjectSearcher module safely. In current 
implementation, we set the threshold to 0.01. 

pruning2: For each insight type, we use a size-k buffer to 
keep the top-k scored insights. Considering 𝑠𝑐𝑜𝑟𝑒𝑡 =

𝑖𝑚𝑝𝑎𝑐𝑡 ∙ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑡 < 𝑖𝑚𝑝𝑎𝑐𝑡  (because significance is 
bounded within 0 and 1), so if impact of current insight 
candidate is already smaller than the score of kth insight, 
its further evaluation is saved. Furthermore, since each 
task knows what types of insight it needs to evaluate, if 
insight evaluation can be pruned on all the needed types, 
then data query can be saved and the task is discarded. 

pruning3: When a sibling group contains only one 
subspace, further insight evaluation becomes trivial 
(because this subspace is identical to its parent subspace 
and thus implies duplication), hence unnecessary. So after 

data query, if there is only one item among the sibling 
group, we avoid further insight evaluation. 

3.2 Easily Inferable Insights Elimination 
We illustrate how to improve insight quality by detecting 
and eliminating EIIs (i.e., Easily Inferable Insights) 
incurred by functional dependency (FD in short).  

3.2.1 FD Induced EII  
Definition 5 (functional dependency). A functional 
dependency FD: X → Y means that the values of Y are 
determined by the values of X, where X and Y are two sets 
of columns (i.e., dimensions or measures) [12].  

FD is a commonly existing relationship in multi-
dimensional data, e.g., in Table 1, Country → Region. FDs 
reflect certain hierarchical structure or consistent 
relationship across columns.  

Definition 6 (FD of insight subject). We pick all the 
columns that appear in an insight subject as 𝐶𝑜𝑙 ≔

{𝑠1, … , 𝑠𝑝, 𝑑, 𝑚1, … , 𝑚𝑞} , where 𝑠1~𝑠𝑝 are the dimensions 
appearing in subspace(s), 𝑑  is breakdown, and 𝑚1~𝑚𝑞 
are q measures. If ∃ 𝑋 ⊂ 𝐶𝑜𝑙, 𝑌 ⊂ 𝐶𝑜𝑙, 𝑋 ∩ 𝑌 =

∅, 𝑠. 𝑡. 𝑋 → 𝑌, we say 𝑋 → 𝑌 is a FD of this insight subject. 

Table 4. Taxonomy of trivial insights 

 

Based on Definition 6, we notice that FD of insight subject 
would bring up EIIs. 

Definition 7 (FD induced EII). An insight is called an FD 
induced EII (or EII in short) if its aggregate values exhibit 
pre-determined relationships thus providing trivially 
useful information for the purpose of data analysis. 

We carefully inspect all possible FDs incurred in insight 
subject, and come up to five forms of FD that would 
induce EIIs, as shown in Table 4 (ID1 ~ ID5). The details 
of how ID1~5 induce EII are shown in Appendix. 

3.2.2 Efficient FD Checking 
Given an insight candidate, we need to check if there 
exists FDs to satisfy any of ID1~5 in Table 4 thus to avoid 
further insight evaluation. The checking can be 
generalized as determining whether  {𝑑1~𝑑𝑖} → 𝑑𝑗  is 
held or not. On the other hand, such determination 
requires knowing the FDs that are globally held in a given 
dataset, and such FDs can be obtained from data schema 

subspace expanding breakdown params orderBy Aggregated result

{China} null Year
{Sales, SUM},

{Units, SUM}
Ascend

{China, [Sales, (2009:1.3) (…) (2016:12.3)],

[Units, (2009: 6,403) (…) (2016:13,432)]}

{China} Country Year {Sales, SUM} Ascend
{China, [Sales, (2009:1.3) (…) (2016:12.3)]}

{USA,    [Sales, (2009:2.7) (…) (2016:11.8)]}…

ID Form of Functional-Dependency Trivial insight description Example

ID1 𝑠1 , … , 𝑠𝑝 → 𝑑 Only one item in sibling group

ID2 𝑚1 , … , 𝑚𝑞 → 𝑑 Fixed x-y axis relationship

ID3 𝑑 → 𝑚1 , … , 𝑚𝑞 Fixed x-y axis relationship

ID4 𝑠1 , … , 𝑠𝑝 → 𝑚1, … , 𝑚𝑞 Flat line

ID5 𝑚1 , … , 𝑚𝑖 → 𝑚𝑗 Fixed x-y axis relationship

{Model:X5}Sales

Brand
BWM

Age

Birth Year

Age

Region 

{BirthYear:1980}

Sales (EURO)

Sales(USD) 

Height

Height Category
low medium high



 

 

or can be pre-calculated using FD mining techniques such 
as [13]. Thus, we formulate the problem as:  

Problem 1 (checking functional dependency). Given a set 
of FDs {𝑋1 → 𝑌1}, … , {𝑋𝑡 → 𝑌𝑡}, check if {𝑑1~𝑑𝑖} → 𝑑𝑗  is 
held or not. 

This problem can be solved by leveraging two axioms in 
the field of FD theory: Reflexivity and Transitivity [12]. 
Roughly, if 𝑑𝑗 ∈ {𝑑1~𝑑𝑖} , the {𝑑1~𝑑𝑖} → 𝑑𝑗  is true 

(Reflexivity). Otherwise, find 𝑋 = ⋃ {𝑋𝑖|𝑑𝑗 ∈ 𝑌𝑖}𝑖 , and 
check if {𝑑1~𝑑𝑖} → 𝑋 (Transitivity). This process repeats 
recursively until an empty set is reached. The pseudo code 
of an efficient algorithm (IsDependent) of FD checking is 
shown in Appendix due to page limit. 

Lemma 2. Time complexity of IsDependent is 𝑂(𝑙𝐷) ≪

𝑂(𝐷2). Details of the proof are available in Appendix. 

Here D is the number of columns, and 𝑙 = max
𝑖

|𝑋𝑖|, where 

|𝑋𝑖| refers to the cardinality of a set 𝑋𝑖 . In general, the FDs 
obtained from data schema describes FD relationship 
between a small set of dimensions, thus 𝑙 ≪ 𝑑.  

3.3 Batched Query & Cache 
Data query occupies the majority of computational cost of 
QuickInsights. Next, we illustrate our considerations and 
approach on query optimization to significantly save the 
computational cost. 

3.3.1 Caching 
As depicted in Figure 3, the Subject-Searcher module, the 
AutoImpact module, and Tasks issue data queries. 
Subject-Searcher uses queries to enumerate subspaces, 
AutoImpact needs query results on impact-measures to 
assign impact to each subspace, and Tasks issue queries 
for insight evaluation. These modules would generate 
duplicate queries, e.g., query {China}⊕Year can be used 
for insight evaluation, while Subject-Searcher also needs 
resultant subspaces for search space exploration, and the 
impact of resultant subspaces is obtained from 
AutoImpact by aggregating all impact-measures. Thus, 
cache mechanism is needed, and the cache unit needs to 
be designed to facilitate the requirements of these 
modules, as depicted in Figure 4. Here the cache unit is 2-
dimensional aggregation results grouped-by breakdown, 
and across all measures (both insight measures and 
impact-measures), and the corresponding lookup key for 
each cache unit is indicated by 𝑠 ⊕ 𝐷. Such granularity is 
necessary for the needs of all the modules.  

3.3.2 Smart Batching 
A typical multi-dimensional dataset contains a huge 
number of 𝑠 ⊕ 𝐷  combinations, and requires a large 

number of data queries, which would lead to significant 
performance impact. On the other hand, by inspecting the 
issued queries from QuickInsights, we find that the 
generated subspaces exhibit strong relationships with 
each other, which provides opportunity to reduce the 
number of queries. 

 

Figure 4. Example of cache unit: breakdown⊗measure 

Definition 9 (level-2 sibling group). A set of subspaces 
form a level-2 sibling group if they can be generated by a 
level-2 group-by: 𝑠 ⊕ 𝐷1 ⊕ 𝐷2. 

E.g., when we have the following three query requests: 
{China}⊕Year, {USA}⊕Year, {India}⊕Year, they can be 
covered by a level-2 group-by: {*}⊕Country⊕Year, thus 
the corresponding subspaces belong to a level-2 sibling 
group. Batching these three queries together would take 
advantage of spatial locality across multiple related 
queries in data, thus improving query performance. 

However, one problem arises from batching: higher level 
group-by would introduce additional aggregation results 
which may never be used. In the mentioned example, 
{*}⊕Country⊕Year obtains the necessary results for the 
three requests, but it also obtains results for all countries 
besides China, USA, and India. In addition, considering 
QuickInsights typically runs within a time budget, only a 
portion of a whole search space can be inspected. 
Therefore, we prefer conducting a batched query on-
demand rather than exhaustive pre-fetching in the 
beginning to mitigate the issue of querying useless 
results. 

As depicted in Table 2, query API of QuickInsights 
considers an expanding dimension as an additional group-
by for batching purpose. We notice that using the latest 
breakdown as an expanding dimension can fully leverage 
spatial locality, and pre-fetched results can also be 
effectively utilized for later tasks.  

From another perspective, column cardinality together 
with pruning1 will affect the utility of batched query. For 
example, if there are >1000 distinct values in City for 
{China}, the batched query by expanding on City 
generates 1000 subspaces, but at most 100 subspaces has 
impact > 0.01 due to the Pigeonhole Principle, thus most 
(>90%) prefetched subspaces are useless which makes this 
query very ineffective. Therefore, when the number of 

measure1 measure2 … impact-measure1 …

2009 1.1 22.43 … 14 …

2010 2.1 34.32 … 23 …

2011 3.2 53.91 … 63 …

… 0.9 17.06 … 10 …
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aggregation on all measures
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subspaces generated by a breakdown exceeds a threshold, 
we don’t use it for expanding dimension.  

With these considerations, we name our approach smart 
batching. The approach aims to reduce number of data 
queries, while the pre-fetched results are effectively 
utilized. Considering page limit, we put the examples, 
pseudocode of QuickInsights’ query logic with both cache 
and smart batching in Appendix. 

4. EVALUATION 
We evaluate the effectiveness and efficiency of 
QuickInsights quantitatively on real datasets (Section 4.1). 
We further evaluate the usefulness of QuickInsights in 
assisting data analysis through two user studies on expert 
users and non-expert users, respectively (Section 4.2). 

4.1 Evaluation on Real Datasets 
4.1.1 Setup 
Datasets. We evaluate QuickInsights on 447 real datasets. 
These multi-dimensional datasets are collected with 
assistance from partnering Microsoft teams. The datasets 
cover various domains such as sales, weather, market, 
healthcare, etc. Their scales are quite variant, with the size 
ranging from 8.8KB to 386.2MB, and the dimensionality 
varying from tens to hundreds. Some of the datasets are 
available on our website [26]. 

Environment. All experiments are conducted on a 
machine with 3.6GHz Intel Core i7-4790 processor, and 
16GB RAM. QuickInsights is deployed upon a SQL Server 
Analysis Service (SQL Server 2016 RTM, version: 
13.0.1601.5, Tabular Mode). 

Configuration. We set the configuration of 
QuickInsights as follows: #worker threads = 8; maximum 
dimensionality of explored subspace = 2 since output 
insights with high-dimensionality subspaces are less 
informative for common usages; we set COUNT as 
impact-measure for all datasets for simplicity, because 
setting different impact-measure has little affect to 
efficiency evaluation.  

4.1.2 Design 
We aim to evaluate QuickInsights from three perspectives: 
overall effectiveness, effectiveness for EIIs elimination 
and mining efficiency. To make the experimental results 
measurable, we set golden set of each dataset as the 
obtained insights from QuickInsights with time budget set 
to ∞ , denoted as 𝑂𝑖 , where i indicates the index of a 
dataset. More specifically, we set the number k of top-k 
buffers (as depicted in Figure 3, we maintain a top-k buffer 
for each type of insight) to 10, and 𝑂𝑖  is the union of 

insights from all the buffers after insight mining is 
finished with an unbounded time budget. 

Overall effectiveness. To evaluate the overall 
effectiveness of QuickInsights, we define metric 𝑐𝑜𝑣𝑖(𝑡) =
|𝑂𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂𝑖(𝑡) is the set of output insights when time 

budget is set to t. Thus 𝑐𝑜𝑣𝑖(𝑡) is the coverage of “good” 
insights of 𝑂𝑖(𝑡). 

Effectiveness of EIIs elimination. To improve the 
quality of output insights, QuickInsights exploits the FD 
checker to avoid yielding EIIs. To demonstrate the 
effectiveness of such improvement, we assess the insights 
mined when the FD checker is turned off. 

FD checker enabled vs. disabled. Among the whole 
datasets, there are 218 ones with input FDs according to 
the data schema. Evaluation of the FD checker is therefore 
conducted on this subset because the other datasets have 
no effect. We compare the results when the FD checker is 
disabled to the golden set by two metrics: 

𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡) =
|𝑂_𝐹𝐷𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑓𝑝_𝐹𝐷𝑖(𝑡) =

|𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖|

|𝑂_𝐹𝐷𝑖(𝑡)|
 

where 𝑂_𝐹𝐷𝑖(𝑡) is the set of output insights when the FD 
checker is disabled. 𝑐𝑜𝑣_𝐹𝐷𝑖(𝑡)  reflects the coverage of 
insights when the FD checker is disabled. 𝑓𝑝_𝐹𝐷𝑖(𝑡) reflects 
the estimated ratio of trivial insights in 𝑂_𝐹𝐷𝑖(𝑡). This is 
because 𝑂_𝐹𝐷𝑖(𝑡)\𝑂𝑖  indicates the set of insights being 
eliminated by golden set, which must be FD induced EIIs.  

Mining efficiency. QuickInsights exploits best-first 
prioritization and smart-batching to boost mining 
performance. Thus, the evaluation of mining efficiency 
mainly is conducted on these two techniques. We propose 
the below evaluation metrics. 

Best-first prioritization enabled vs. disabled. We implement 
a priority queue (by using impact as priority) to prioritize 
insight evaluation tasks. To assess the effectiveness of 
such a strategy, we compare the coverage of output 
insights by replacing the priority queue with a FIFO 
queue. The metric is defined as: 𝑐𝑜𝑣_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡) =
|𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡)∩𝑂𝑖|

|𝑂𝑖|
, where 𝑂_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖(𝑡)  is the set of output 

insights when best-first prioritization is disabled.  

Smart-batching enabled vs. disabled. We assess the 
efficiency improvement of smart-batching from two 
aspects: coverage when smart-batching is disabled, and 
the utilization of the cache: 

𝑐𝑜𝑣_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) =
|𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) ∩ 𝑂𝑖|

|𝑂𝑖|
, 𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑡) =

|𝐻𝑖𝑡𝑠(𝑡)|

|𝐶𝑎𝑐ℎ𝑒𝑑(𝑡)|
 

where 𝑂_𝐵𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑖(𝑡) is the set of output insights when 
smart-batching is disabled, 𝐶𝑎𝑐ℎ𝑒𝑑(𝑡)  is the set of total 



 

 

cached items (See Figure 4 for definition of cache unit), 
and 𝐻𝑖𝑡𝑠(𝑡) is the set of cached items that are utilized. 

In our experiment design, we vary time budget t from 5 
seconds to 25 seconds, and so each evaluation metric 
generates a curve with respect to time budget on a specific 
dataset. Evaluation results are analyzed by averaging on 
all datasets, and via comparison between different curves. 

4.1.3 Results 
Below are the results of our experiments. 

 

Figure 5. Average coverage by varying time budgets 

Result of overall effectiveness. The curve at top of 
Figure 5 presents the coverage of “good” insights (i.e., 
golden set insights) mined in different time budgets. Each 
data point is an average of the coverage over totally 447 
datasets. The coverage increases as more time budget is 
given, which is reasonable since more search spaces can 
be explored and evaluated, and more hard-to-find insights 
can be discovered. Moreover, the coverage ranges from 
0.6 to 0.8. For example, when the time budget is set to 5 
seconds, the coverage is 0.63, which indicates that even 
when the response time is very quick, more than 60% of 
the insights returned by QuickInsights are truly top-
scoring ones. 

Results of FD checker enabled vs. disabled. Table 5 
depicts the average coverage of output insights when the 
FD checker is disabled (third row), and ratio of the EIIs 
(fourth row). Since this evaluation is conducted on 218 
datasets that have FDs as input, we also list the 
corresponding coverage when the FD is enabled (second 
row) for comparison. As shown in Table 5, coverage of 
good insights decreased about 3% consistently when the 
FD checker is disabled. Moreover, value of 𝑓𝑝_𝐹𝐷(𝑡)  is 
around 25% when the FD checker is disabled, i.e., when 
users inspect the output insights, one out of four will be 
easily inferred. So disabling FD checker will significantly 
decrease the user experience of QuickInsights. 

Table 5. Results of disabling the FD checker 
Time budget (s)  5 10 15 20 25 

𝑐𝑜𝑣 0.49 0.57 0.62 0.65 0.67 

𝑐𝑜𝑣_𝐹𝐷(𝑡) 0.46 0.55 0.60 0.62 0.64 

𝑓𝑝_𝐹𝐷(𝑡) 0.28 0.25 0.25 0.23 0.22 

Results of best-first prioritization enabled vs. 
disabled. As depicted in Figure 5, the bottom curve 
presents the coverage of good insights when best-first 
prioritization is disabled. Compared to the top curve (with 
best-first prioritization enabled), we can see that the gain 
of the best-first prioritization is significant. Without such 
a mechanism, the insight mining procedure seems to be 
trapped into massively worthless search spaces, making 
the curve rather flat. To increase coverage to around 63%, 
it needs much more time than 25 seconds, while the same 
coverage is achieved only in 5 seconds if best-first 
prioritization is enabled. We can see that the performance 
gain by using best-first prioritization is huge. 

Results of smart-batching enabled vs. disabled. As 
depicted in Figure 5, the middle curve presents the 
coverage of good insights when smart-batching is 
disabled. Compared to the top curve (with smart-batching 
enabled), smart-batching contributes to about 10% 
coverage increase. From a performance perspective, it 
takes about 15 seconds to achieve 63% coverage (the 
dashed line in Figure 5) when smart-batching is disabled, 
which is about three times slower than when smart-
batching is enabled.  

Table 6. Cache utilization ratio 
Time budget (s)  5 10 15 20 25 

𝑐𝑎𝑐ℎ𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 38% 41% 43% 44% 44% 

Table 6 illustrates the cache utilization with varying time 
budgets, which reflects how many pre-fetched queries are 
reused in further insight evaluation. We can see that the 
ratio of utilization is relatively stable at 40%. The ratio is 
impacted by the near-timeout batched queries, which 
generate lots of unused cached items. 

4.2 User Study  
We conduct user studies to understand usefulness of 
insights generated by QuickInsights. 

4.2.1 Methodology 
QuickInsights is designed to serve both expert users and 
non-expert users. The usage scenarios and requirements 
vary among different user groups, e.g., expert users would 
like QuickInsights to aid their further data analysis and 
decision making, while non-expert users would want to 
gain a better understanding of data. Thus, we conducted 
two user studies for expert users and non-expert users. 

User study for expert users. We invite six participants 
from three business groups in Microsoft to participate in 
this user study: HR (Human Resource), IT and UR 
(University Relationship). In each group, we select two 
data analysts whose daily work is data analysis. 
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For each group, we ask the participants to provide one 
dataset of their own, since users would provide 
reasonable feedback on the datasets that they care about. 
The datasets are required to be stored in Microsoft Excel 
spreadsheets, in the form of multi-dimensional table. In 
addition, we require that the datasets have different levels 
of familiarity to the corresponding groups. Specifically, 
HR participants provide a recently-conducted survey 
dataset for which they have no idea about the content 
(Not familiar), while UR participants give us a dataset 
which they have already conducted comprehensive 
analysis (Very familiar), and IT participants give us a new 
dataset but they have conducted analysis on similar 
datasets before (Moderate). Table 7 lists the information 
of the three datasets. 

Table 7. Datasets for user study on expert users 
Dataset #row #col Familiarity Description 

HR_data 351 10 Not familiar Internal survey results on a specific HR service 

IT_data 353,686 9 Moderate  
GPU usage data of servers, collected every 10 

minutes in one month 

UR_data 1202 14 Very familiar 
Records of hired interns in recent 4 years 

 

We provide a questionnaire for each group, which 
contains 15 insights randomly selected among the 
insights obtained by running QuickInsights on the 
corresponding dataset. For each insight, we design three 
questions for scoring: 

Q1: How interesting do you feel of this insight? 

Q2: How helpful is this insight for you to understand the data 

characteristic, such as distribution, anomaly or correlation, etc.? 

Q3: To what extent do you feel interested to take follow-up 

actions, such as sharing with others, pinning to a dashboard, or 

conducting drill-down analysis? 

Specifically, Q1 targets obtain an overall impression of the 
insight from users; Q2 is designed to evaluate whether the 
insight is helpful for better data understanding or not; and 
Q3 is used to evaluate the actionability of the insight. 
Participants are asked to answer each question on a 5-
point Likert Scale from “the least interesting/helpful” (1) 
to “the most interesting/helpful” (5). In addition, we allow 
users to provide free-text comments on each insight. We 
provide a text description along with a chart to represent 
each insight. Figure 6 shows a snapshot of an example 
insight and the corresponding questions. 

Our user study is conducted by interviewing the three 
groups separately. Each session consists of three stages. 
In the first stage, each participant briefly describes his/her 
experience and the role of data analysis, and we introduce 
QuickInsights and the process of the user study. We also 
educate them how to interpret an insight from its text 
description and visual representation. In the second stage, 
participants assign scores to the questions for each 

insight. They are encouraged to provide additional 
comments as well. In the last stage, we ask participants 
about their overall feedback, and whether they would use 
QuickInsights for their analytical tasks. Each session lasts 
about one hour on average. 

 

Figure 6. Example of questions for a ChangePoint insight 

User study for non-expert users. We invite 30 
participants (18 males) to participate in this user study. 
The participants are employees or interns from Microsoft. 
They have certain data analysis needs in daily work, but 
none of them are professional data analysts. To minimize 
potential bias, we select the participants with diverse roles 
and experiences. Detailed user profiles are shown in 
Appendix.  

Table 8. Datasets for user study on non-expert users 
(275/5 means 275 rows, 5 columns) 

Dataset Schema data scale Description 

Movie 
Snowflake schema 

with 6 tables 

65 columns, largest table 

has >70,000 rows 

Worldwide movie sales from 

1985~2016 

CarSales Single table 275/5 
Car sales of different Brands, 

Models, etc. in past years 

Emission Single table 41,156/7 
The emission of CO2/SO2/NOx in 

past 25 years in USA 

Census Single table 90/6 
A census dataset mainly focuses on 

marriage status 

Since non-expert users normally do not have dedicated 
analytical tasks, we select four datasets from public 
domains, which are common, and easy-to-understand. 
Table 8 lists the information of these datasets. We 
generate insights from these datasets via Power BI (thus 
under same configuration) and present them to users. The 
study design is an easier version compared with the user 
study for expert users. Specifically, the questionnaire 
contains 10 insights randomly selected from the results of 
running QuickInsights on the corresponding dataset. For 
each insight, we only ask the participants Q1 and Q2 but 
discard Q3, since the typical scenario for non-expert users 
is knowledge discovery and data understanding. 

4.2.2 Key Findings  
We identified five key findings from the two user studies.  

Finding 1: QuickInsights demonstrates its usefulness 
for general data analysis for both two types of users.  

The expert users provided positive feedback on the overall 
satisfaction of QuickInsights. All three groups agreed that 
QuickInsights provides valuable information to aid their 
analytical tasks. In addition, some participants even 



 

 

provided “out-of-scope” feedback, such as improvements 
of visualization design, feature request of insight sharing, 
etc. This finding also indicates the effectiveness of our 
scoring function, since the insights in user study are the 
ones with highest scores. 

 

Figure 7. Statistics of scores from expert users 

  

Figure 8. Statistics of scores from non-expert users 

Figure 7 depicts the statistics of the scores from all expert 
participants. The error-bar indicates the standard 
deviation across 15 insights. The top-left chart illustrates 
the scores from HR participants. The average score on 
three questions are high and stable. The top-right chart 
illustrates the scores from IT participants, which has the 
largest deviation compared to HR or UR. In fact, the scores 
for most insights are either close to 1 (least interesting) or 
close to 5 (most interesting). The IT participants patiently 
provided comments on the insights with extreme scores, 
from which we learned that the IT analysts have very 
specific analytical tasks.  Therefore, the insights are either 
valuable or less useful. The bottom-left chart is the scores 
from the UR group. The average score given by UR 
participants is the lowest compared to the scores from HR 
and IT participants. Based on feedback, the major reason 
is that they are very familiar with the dataset, thus most 
of the lower-scored insights are compliant with their prior 
knowledge. These observations are expected since the 
typical QuickInsights scenario targets users who are not 
familiar with dataset. 

As shown in Figure 8, non-expert participants also 
provide very positive feedback on the overall satisfaction 
of QuickInsights. In addition, 11 out of 30 non-expert 
participants wrote down additional feedback, and quite a 
few pointed out that QuickInsights is really helpful on 
knowledge discovery. 

Finding 2: Certain insight types would be favored for 
some domain-specific analysis tasks. We obtained this 
finding from the user study with expert users. One typical 
task of the IT group is to monitor GPU usage of various 
service jobs running over multiple servers, to detect 
which servers are overloaded (with high GPU usage) or 
idle (with low GPU usage), and reallocate jobs 
accordingly. The insight (with ChangePoint type) shown 
in Figure 6 is valuable (with a score 5 for all three 
questions) to them, since it discovered Server44 kept 
being idle for >20 days in October, which indicated some 
unknown service issues. Moreover, the Seasonality 
insights are especially interesting to them. QuickInsights 
discovered GPU usage for a specific GPU Model exhibits 
strong seasonality pattern with period equals to 24 hours. 
Thus, the IT users would want to take follow-up actions 
to see which periods within a day had low GPU usage, so 
that additional service jobs can potentially be scheduled 
during such a period. However, any transient spikes of 
GPU usage (regarding to the Outlier insight) are 
uninteresting since they are not indicators of workload. 
One possible solution is to assign insight type-dependent 
weights, so that the insight types with higher weights 
have more chance to be mined, and with higher score. 

Finding 3: Insight subjects with certain structure 
would be less meaningful for some domain-specific 
analysis tasks. Specifically, certain dimensions, 
measures or combination are trivial. This finding 
emerged based on further feedback from the IT 
participants in the user study with expert users. For 
insights with a score equal to 1, typically their 
combinations of 𝑠 ⊕ 𝐷 are less meaningful to users. E.g., 
some insights concern a specific GPU Model (one 
dimension) breakdown by different GPU card slots 
(another dimension), which makes no sense since this is a 
fixed hardware configuration. QuickInsights should take 
this information into account, to avoid unnecessary data 
queries and insight evaluation. 

Finding 4: Prior knowledge is valuable for improving 
insight score calculation. In the user study on expert 
users, the UR participants shared with us their thoughts 
during the interview. Since they are very familiar with the 
dataset, most of the insights are compliant with their prior 
knowledge, making them less interesting. For example, 
“Computer Science is the major for most hired interns” is 
mined by QuickInsights as an insight, but it is not 
surprising to them. In contrast, the HR participants claim 
that similar insights are helpful for their understanding of 
the survey data. Since they were not familiar with the 
content of the dataset, no prior knowledge was built 
before inspecting the insights. Since QuickInsights 
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provides a general mining framework, so we can 
incorporate prior knowledge in via customized 
significance calculation.  

Finding5: Visualization and natural language 
description are important to convey insights. Based on 
the free-text comments, most of the negative feedback is 
about confusion on either the visual charts or the text 
descriptions. Comparing with expert participants, non-
expert participants are more often be confused by the 
charts or text descriptions. E.g., “the outlier does not seem 
so significant”, or “what does repeat pattern mean?”. We 
believe that future work from visualization and NLP 
communities could be very helpful and important to 
better represent and convey insights to non-expert users. 

5. RELATED WORK 
Pattern mining on multi-dimensional data. There 
exists lots of work in the literature which target mining 
various types of interesting patterns from multi-
dimensional data. Sarawagi et al. [5] aim to find 
exceptions in OLAP data cubes. Wu et al. [7] propose 
promotion analysis for business intelligence, which 
discovers highly ranked subspaces associated with a given 
promotion object. Vartak et al. [9] focus on 
recommending high-deviation patterns via visualization. 
Chen et al. [10] investigate methods for multi-
dimensional regression analysis of time series stream 
data. Their approach can be used to efficiently detect 
trends or outliers from multi-dimensional data. Palpanas 
et al. [18] provide answers to queries and find interesting 
cells in a data cube by the principal of maximum-entropy. 
Compared to these works, we attempt to propose a unified 
formulation of various types of interesting pattern as 
insights and conduct efficient insight mining via a general 
and extensible mining framework. Chen et al. [8] build a 
fact taxonomy of interesting patterns from visual 
perspective. All the facts can be formulated by the 
definition of insights.  

Interestingness measures for data mining. 
Silberschatz et al. [19] advocate using unexpectedness to 
measure the interestingness of a pattern. Unexpectedness 
patterns are interesting because they exhibit contrary to 
common knowledge and may suggest certain perspectives 
of data that require further analysis. This idea is 
conceptually compliant with our formulation of insight 
significance. In addition, we propose using impact to 
express the importance of a pattern, which is also a key 
factor contributing to the interestingness measure. Ceng 
et al. [20] identify 9 criteria to determine whether a 
pattern is interesting or not, where coverage and 
surprisingness are analogical to the impact and significance 
of QuickInsights. Coverage is a specific implementation of 

impact when COUNT is adopted as impact-measure. Tang 
et al. [27] propose composite extractors for discovering 
latent yet interesting knowledge that can be derived by 
higher-order calculations. QuickInsights can incorporate 
composite extractors by calculating impact and 
significance based on the results of composite extractors.  

OLAP and cubing. The data cube modeling has been a 
mature area to facilitate exploratory data analysis with 
lots of work such as Colliat [17], and Gray et al. [23]. 
Instead of pre-constructing data cubes, QuickInsights 
adopts a more economical way by on-demand querying 
and caching. Such an approach can avoid generating too 
many cubes which have no chance to be used for insight 
evaluation, and the query performance can be further 
improved via smart-batching, which is guided based on 
the subject searching mechanism of QuickInsights.   

Visualization recommendation. There has been much 
work [9][22][32][33][34][36][37][41][42][43] that aims to 
facilitate rapid visual data exploration by automatically 
recommending visualizations. Some recommenders, such 
as APT [32], SAGE [33] and Show Me [34], focus on 
suggestions of visual encodings. More recent work 
[9][22][36][37] also suggest what data to visualize. They 
might rank visualization candidates based on various 
statistical analysis to promote the visualizations with 
interesting patterns [35]. E.g., Voyager [36][37] suggests 
visualizations based on statistical properties. Some 
systems are designed for specific tasks and patterns. 
Profiler [39] finds anomalies. SeeDB [9] identifies charts 
that are largely deviated from a given reference. 
Zenvisage [22] targets charts that are similar to a given 
input. Some novel visual data exploration tools (e.g., 
Foresight [29], Voder [38], DataSite [28]) are developed 
based on automatic insights and visualizations. In 
comparison, QuickInsights provides a unified formulation 
of interesting patterns, and developed a systematic insight 
mining framework to automatically mine insights from 
data. QuickInsights can be leveraged by visualization 
recommendation systems to produce insightful 
visualizations that convey interesting data patterns. 

6. CONCLUSION 
We present a novel technique QuickInsights to quickly 
and automatically discover insights from multi-
dimensional data. QuickInsights proposes a systematic 
formulation of interesting patterns in terms of insights 
and conducts efficient insight mining to discover high-
quality insights. QuickInsights has been released as a 
feature of Microsoft Power BI.  
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APPENDIX 

Property of Impact 

We restrict the impact-measures to be measures only containing 
non-negative values. Paper [13] provides a set of calculations to 
accommodate anti-monotonic condition being held by various 
aggregations (e.g., top-k average for AVG). The corresponding 
calculations are denoted as 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒). thus, we 
define impact by the following two steps: 

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 =  
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗})
 

𝑖𝑚𝑝𝑎𝑐𝑡 =  max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖) 

    

Lemma. In definition 2, impact satisfies anti-monotonic 
condition, and it is bounded between 0 and 1. 

Proof: Considering the impact-measures are restricted to only 
contain non-negative values, and since 
𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒)  satisfies anti-monotonic 
condition, thus,  

𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖(𝑖𝑛𝑠𝑖𝑔ℎ𝑡. 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒) ≤ 𝑀𝑜𝑛𝑜𝐴𝑔𝑔𝑟𝑖({∗}) →

𝑖𝑚𝑝𝑎𝑐𝑡𝑖 ∈ [0,1] → 𝑖𝑚𝑝𝑎𝑐𝑡 ∈ [0,1], because every subspace is a 
subset of overall subspace {*}. 

To prove anti-monotonic condition, let S and s be two subspaces 
where 𝑠 ∈ 𝑆, then  

𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠) ≤ 𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆) ∀𝑖 → max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑠))

≤ max
𝑖

(𝑖𝑚𝑝𝑎𝑐𝑡𝑖(𝑆)) 

Complexity Analysis for FD Detection  

Lemma. Time complexity of IsDependent (as shown in Table 9) 
is 𝑂(𝑙𝐷) ≪ 𝑂(𝐷2) , here D is the number of columns, and 𝑙 =

max
𝑖

|𝑋𝑖|, where |𝑋𝑖| refers to the cardinality of a set 𝑋𝑖 .  

Proof: Similar to the analysis of graph traverse, we use a 
Boolean array inspected to record which column has been 
evaluated. Thus, each column will be evaluated at most once. 
And considering we inspect at most D columns, then we come 
up with the complexity 𝑂(𝑙𝐷). Further considering in general, the 
FDs obtained from data schema describe FD relationship 
between a small set of dimensions, thus 𝑙 ≪ 𝑑 , the proof 
concludes. 

Example of Batched Query 

For example, let a query request be {China, Android}⨁Year, and 
we know the subspace {China, Android} is generated from a 
previous query {China} ⨁ OS, then we choose OS as the 
expanding dimension rather than Country or any other 
dimensions, because all the subspaces generated by query 
{China}⨁OS have been inserted into the task queue (combined 
with all feasible breakdowns including Year), thus the query 
results expanded by OS will be useful for these tasks, but which 

is uncertain if we use other dimensions as the expanding 
dimension. 

Pseudo Code 
Table 9. Pseudo code of FD detection 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

/* check if a set of columns determine another column, given a set of  
   basicFDs */ 
IsDependent(determinantCols, col, basicFDs) 

 inspected  {} 
 return Qualify(determinantCols, col, inspected, basicFDs) 

 
/* check if a set of columns determine another column recursively */ 
Qualify(determinantCols, col, inspected, basicFDs) 
    /* reflexivity axiom */ 
    if col in determinantCols 
         return true 
    /* this column has already been inspected */ 
    if col in inspected 
         return inspected[col] 
    inspected[col]  false 

/* retrieve all the determinant sets of col. it is possible that one         
   column can be determined by multiple determinant sets */ 

 dtSets  GetAllDeterminants(col, basicFDs) 
    foreach set in dtSets 

     qualify  true 
        /* if all the columns within this set can be determined,  
         then col can be determined according to transitivity axiom */ 

     foreach newCol in set 
          if Qualify(determinantCols, newCol, inspected, basicFDs) is false 
               then qualify  false  
                    break     
     if qualify is true 
          then inspected[col]  true  
               return true      
 return false 

 

Table 10. Pseudo code of batched-query with cache 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

/* a specific query issued from QuickInsights miner layer */ 
Query(subspace, expanding, breakdown, params) 

ret  Cache.Lookup(subspace, breakdown, params) 
if ret ≠ null 

        return ret 
/* a special optimization for the case where breakdown is null: we swap  
breakdown and expanding to increase cache hit */ 
if breakdown = null and expanding ≠ null 
    newSubspace  subspace - expanding 
    ret  Cache.Lookup(newSubspace, expanding, params) 
    if ret ≠ null 
        /* in case the lookup successful, we need to re-format result */ 
        return ExtractResult(ret) 
 
/* conduct real data query */ 
queryResult  DataDriver.AggregationQuery(subspace, expanding,  
breakdown, params) 
if expanding is null 
    ret  first in queryResult 
    Cache.Add(subspace, breakdown, params, ret) 
else 
    root  subspace - expanding 
    foreach t in queryResult 
        newSubspace  root + {expanding:t.Key} 
        Cache.Add(newSubspace, breakdown, params, t.Value) 
        if newSubspace is subspace 
            ret  t.Value 
return ret 

Example of Adding A New Insight Type 

Suppose we would like to support a new insight type which is 
equivalent to the pattern depicted in [9], we first need to register 
it as a new insight type, named “HighDeviation”. Considering 
the subject of HighDeviation insight is with single subspace and 
single measure, thus only the tasks with single subspace as input 
are allowed for its evaluation, this is reflected by a single-line 
checking “case HighDeviation: return subspaces.Count==1;” in the 
method CanEvaluate in Table 11. In the Evaluation method, 
certain statistical metrics are calculated to measure the deviation 
for each individual measure, and qualified insights are output. 

Table 11. Three steps for supporting a new type of insight 

Step1: add the new insight type  
enum InsightType {…, newType, …} 
 
Step2: implement insight evaluation of the new type 
List<Insight> Evaluate(List<Dictionary<Measure, AggrResult>> aggrResults); 
 
Step3: register new insight type to task execution pre-condition 
bool CanEvaluate( 
List<Subspace> subspaces, Dimension breakdown, InsightType type); 

 



 

 

Examples of FD Induced EII 

For example, suppose there exists FD between two measures 
𝑆𝑎𝑙𝑒𝑠(𝑈𝑆𝐷) → 𝑆𝑎𝑙𝑒𝑠(𝐸𝑈𝑅𝑂) (falls into the category of ID5 in Table 
4), the corresponding values only differ by a constant exchange-
rate. These two measures will exhibit perfect correlation no 
matter breakdown by any dimension (thus the relationship is 
pre-determined) when drawn in a scatter plot, but clearly 
provides little value for analysis. The example of ID2 in Table 4 
is another case about measure height determining dimension 
Height-Category. For example, the value of Height-Category is 
calculated by measure height, by setting 𝑙𝑜𝑤 = ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 100, ℎ𝑖𝑔ℎ =

ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 1000, 𝑚𝑒𝑑𝑖𝑢𝑚 = 100 < ℎ𝑒𝑖𝑔ℎ𝑡 < 1000. Any insight describes 
height breakdown by Height-Category would become a trivial 
Outstanding No. 1 insight: “height of high is outstanding No. 1 
among all Height-Categories”, which is pre-determined no 
matter what subspace of the insight is. The details of how ID1~5 
induce EII are available at website [15] due to page limit. 

Profiles of Non-Expert Users 

To mitigate any potential bias, we select non-expert participants 
by different jobs, genders, and different familiarity with data 
analysis, as shown in Table 12.  

Table 12. Statistics of non-expert users 

 

Details of “Movie” Dataset 

 

Figure 9. Snapshot of the schema of 'Movie' Dataset 

Figure 9 shows a snapshot of the database schema of ‘Movie’ 
data. This is a real-world dataset, containing the various 
information of movie in the years from 1985 to 2016. This is a 
typical multi-dimensional dataset, which is formed by six tables, 
connected by Snowflake schema. Table 13 shows the scale of 
each table. There are in total about 60 dimensions, and almost 
every table has more than 10,000 rows. Thus the search space 
for QuickInsights is very large. 

 

Table 13. Data scale of each table 

Table Name #Dimensions #Measures #Rows 

Movies* 27 8 4740 

Movie Cast 10 1 74038 

Actors 8 2 39567 

Genres 2 1 22470 

Production Companies 2 1 22222 

Production Locations 2 1 12084 

 

When this dataset is run by Power BI, QuickInsights could 
generate quite a few insights within 20 seconds. Figure 10 shows 
nine sample insights generated by QuickInsights. We have used 
these insights to conduct the user study. The details of the user 
study are presented in Section 4.2.2.  

 

Figure 10. Snapshot of sampled insights recommended 
from Movie 

Job role Count

Researcher 17

Developer 8

UX Designer 2

IT 1

Admin 1

PM 1

Gender Count

male 18

female 12

Analysis frequency Count

Daily 5

Weekly 8

Monthly 10

Seldom 7


