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(a) SfM point cloud (top view) (b) Projected 3D points (c) Synthesized Image (d) Original Image

Figure 1: SYNTHESIZING IMAGERY FROM A SFM POINT CLOUD: From left to right: (a) Top view of a SfM reconstruction
of an indoor scene, (b) 3D points projected into a viewpoint associated with a source image, (c) the image reconstructed using
our technique, and (d) the source image. The reconstructed image is very detailed and closely resembles the source image.

Abstract

Many 3D vision systems localize cameras within a scene
using 3D point clouds. Such point clouds are often obtained
using structure from motion (SfM), after which the images
are discarded to preserve privacy. In this paper, we show,
for the first time, that such point clouds retain enough in-
formation to reveal scene appearance and compromise pri-
vacy. We present a privacy attack that reconstructs color
images of the scene from the point cloud. Our method is
based on a cascaded U-Net that takes as input, a 2D multi-
channel image of the points rendered from a specific view-
point containing point depth and optionally color and SIFT
descriptors and outputs a color image of the scene from
that viewpoint. Unlike previous feature inversion meth-
ods [46, 9], we deal with highly sparse and irregular 2D
point distributions and inputs where many point attributes
are missing, namely keypoint orientation and scale, the de-
scriptor image source and the 3D point visibility. We evalu-
ate our attack algorithm on public datasets [24, 39] and an-
alyze the significance of the point cloud attributes. Finally,
we show that novel views can also be generated thereby en-
abling compelling virtual tours of the underlying scene.

1. Introduction

Emerging AR technologies on mobile devices based on
ARCore [2], ARKit [3], 3D mapping APIs [1], and new
devices such as HoloLens [15] have set the stage for de-
ployment of devices with always-on cameras in our homes,

workplaces, and other sensitive environments. Image-based
localization techniques allow such devices to estimate their
precise pose within the scene [18, 37, 23, 25]. However,
these localization methods requires persistent storage of 3D
models of the scene which contains sparse 3D point clouds
reconstructed using images and SfM algorithms [38].

SfM source images are usually discarded to safeguard
privacy. Surprisingly, however, we show that the SfM point
cloud and the associated attributes such as color and SIFT
descriptors contain enough information to reconstruct de-
tailed comprehensible images of the scene (see Fig. 1 and
Fig. 3). This suggests that the persistent point cloud storage
poses serious privacy risks that have been widely ignored
so far but will become increasingly relevant as localization
services are adopted by a larger user community.

While privacy issues for wearable devices have been
studied [16], to the best of our knowledge, a systematic
analysis of privacy risk of storing 3D point cloud maps has
never been reported. We illustrate the privacy concerns by
proposing the problem of synthesizing color images from
an SfM model of a scene. We assume that the reconstructed
model contains a sparse 3D point cloud with optional at-
tributes such as descriptors, color, point visibility and asso-
ciated camera poses but not the source images.

We make the following contributions: (1) We intro-
duce the problem of inverting a sparse SfM point cloud
and reconstructing detailed views of the scene from arbi-
trary viewpoints. This problem differs from the previously
studied single-image feature inversion problem due to the
need to deal with highly sparse point distributions and a
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higher degree of missing information in the input, namely
unknown keypoint orientation and scale, unknown image
source of descriptors, and unknown 3D point visibilities.
(2) We present a new approach based on three neural net-
works where the first network performs visibility estima-
tion, the second network reconstructs the image and the
third network uses an adversarial framework to further re-
fine the image quality. (3) We systematically analyze vari-
ants of the inversion attack that exploits additional attributes
that may be available, namely per-point descriptors, color
and information about the source camera poses and point
visibility and show that even the minimalist representation
(descriptors only) are prone to the attack. (4) We demon-
strate the need for developing privacy preserving 3D repre-
sentations, since the reconstructed images reveal the scene
in great details and confirm the feasibility of the attack in a
wide range of scenes. We also show that novel views of the
scene can be synthesized without any additional effort and
a compelling virtual tour of a scene can be easily generated.

The three networks in our cascade are trained on 700+
indoor and outdoor SfM reconstructions generated from
500k+ multi-view images taken from the NYU2 [39] and
MegaDepth [24] datasets. The training data for all three
networks including the visibility labels were generated au-
tomatically using COLMAP [38]. Next we compare our
approach to previous work on inverting image features
[46, 9, 8] and discuss how the problem of inverting SfM
models poses a unique set of challenges.

2. Related Work

In this section, we review existing work on inverting im-
age features and contrast them to inverting SfM point cloud
models. We then broadly discuss image-to-image transla-
tion, upsampling and interpolation, and privacy attacks.

Inverting features. The task of reconstructing images from
features has been explored to understand what is encoded
by the features, as was done for SIFT features by Weinza-
epfel et al. [46], HOG features by Vondrick et al. [45] and
bag-of-words by Kato and Harada [20]. Recent work on
the topic has been primarily focused on inverting and inter-
preting CNN features [49, 48, 29]. Dosovitskiy and Brox
proposed encoder-decoder CNN architectures for inverting
many different features (DB1) [9] and later incorporated ad-
versarial training with perceptual loss functions (DB2) [8].
While DB1 [9] showed some qualitative results on inverting
sparse SIFT, both papers focused primarily on dense fea-
tures. In contrast to these feature inversion approaches, we
focus solely on inverting SIFT descriptors stored along with
SfM point clouds. While the projected 3D points on a cho-
sen viewpoint may resemble single image SIFT features,
there are some key differences. First, our input 2D point
distributions can be highly sparse and irregular, due to the

typical inherent sparsity of SfM point clouds. Second, the
SIFT keypoint scale and orientation are unknown since SfM
methods retain only the descriptors for the 3D points. Third,
each 3D point typically has only one descriptor sampled
from an arbitrary source image whose identity is not stored
either, entailing descriptors with unknown perspective dis-
tortions and photometric inconsistencies. Finally, the 3D
point visibilities are also unknown and we will demonstrate
the importance of visibility reasoning in the paper.

Image-to-Image Translation. Various methods such as
Pix2Pix [19], CycleGan [50], CoGAN [27] and related un-
supervised approaches [7, 26, 34] use conditional adversar-
ial networks to transform between 2D representations, such
as edge to color, label to color, and day to night images.
While such networks are typically dense (without holes)
and usually low-dimensional (single channel or RGB), Con-
tour2Im [5] takes sparse 2D points sampled along gradients
along with low-dimensional input features. In contrast to
our work, these approaches are trained on specific object
categories and semantically similar images. While we use
similar building blocks to these methods (encoder-decoder
networks, U-nets, adversarial loss, and perceptual loss), our
networks can generalize to arbitrary images, and are trained
on large scale indoor and outdoor SfM datasets.

Upsampling. When the input and output domains are iden-
tical, deep networks have shown excellent results on up-
sampling and superresolution tasks for images, disparity,
depth maps and active range maps [4, 28, 43, 36, 17]. How-
ever, prior upsampling methods typically focus on inputs
with uniform sparsity. Our approach differs due to the non-
uniform spatial sampling in the input data which also hap-
pens to be high dimensional and noisy since the input de-
scriptors are from different source images and viewpoints.

Novel view synthesis and image-based rendering. Deep
networks can significantly improve photorealism in free
viewpoint image-based rendering [12, 14]. Additionally,
several works have also explored monocular depth estima-
tion and novel view synthesis using U-Nets [11, 24, 31].
Our approach arguably provides similar photorealistic visu-
ally quality – remarkably, from sparse SfM reconstructions
instead of images. This is disappointing news from a pri-
vacy perspective but could be useful in other settings for
generating photorealistic images from 3D reconstructions.

CNN-based privacy attacks and defense techniques. Re-
cently, McPherson et al. [30] and Vasiljevic et al. [44]
showed that deep models could defeat existing image obfus-
cation methods. Further more, many image transformations
can be considered as adding noise and undoing them as de-
noising, and here deep networks have been quite success-
ful [47]. To defend against CNN-based attacks, attempts at
learning CNN-resistant transformations have shown some



promise [33, 10, 35, 13]. Concurrent to our work, Speciale
et al. [41] introduced the privacy preserving image-based
localization problem to address the privacy issues we have
brought up. They proposed a new camera pose estimation
technique using an obfuscated representation of the map ge-
ometry which can defend against our inversion attack.

3. Method
The input to our pipeline is a feature map generated from

a SfM 3D point cloud model given a specific viewpoint i.e.
a set of camera extrinsic parameters. We obtain this fea-
ture map by projecting the 3D points on the image plane
and associating the 3D point attributes (SIFT descriptor,
color, etc.) with the discrete 2D pixel where the 3D point
projects in the image. When multiple points project to the
same pixel, we retain the attributes for the point closest to
the camera and store its depth. We train a cascade of three
encoder-decoder neural networks for visibility estimation,
coarse image reconstruction and the final refinement step
which recovers fine details in the reconstructed image.

Visibility Estimation. Since SfM 3D point clouds are of-
ten quite sparse and the underlying geometry and topology
of the surfaces in the scene are unknown, it is not possi-
ble to easily determine which 3D points should be consid-
ered as visible from a specific camera viewpoint just us-
ing z-buffering. This is because a sufficient number of 3D
points may not have been reconstructed on the foreground
occluding surfaces. This produces 2D pixels in the input
feature maps which are associated with 3D points in the
background i.e. lie on surfaces which are occluded from
that viewpoint. Identifying and removing such points from
the feature maps is critical to generating high-quality im-
ages and avoiding visual artifacts. We propose to recover
point visibility using a data-driven neural network-based
approach, which we refer to as VISIBNET. We also evaluate
two geometric methods which we refer to as VISIBSPARSE
and VISIBDENSE. Both geometric methods however re-
quire additional information which might be unavailable.

Coarse Image Reconstructon and Refinement. Our tech-
nique for image synthesis from feature maps consists of a
coarse image reconstruction step followed by a refinement
step. COARSENET is conditioned on the input feature map
and produces an RGB image of the same width and height
as the feature map. REFINENET outputs the final color im-
age which has the same size, given the input feature map
along with the image output of COARSENET as its input.

3.1. Visibility Estimation

If we did not perform explicit visibility prediction in
our pipeline, some degree of implicit visibility reasoning
would still be carried out by the image synthesis network
COARSENET. In theory, this network has access to the input

depths and could learn to reason about visibility. However,
in practice, we found that this approach to be inaccurate,
especially in regions where the input feature maps contain
a low ratio of visible to occluded points. Qualitative exam-
ples of these failure cases are shown in Figure 5. Therefore
we explored explicit visibility estimation approaches based
on geometric reasoning as well as learning.

VisibSparse. We explored a simple geometric method that
we refer to as VISIBSPARSE. It is based on the “point splat-
ting” paradigm used in computer graphics. By considering
only the depth channel in the input, we apply a min filter
with a k × k kernel on the feature map to obtain a filtered
depth map. Here, we used k = 3 based on empirical test-
ing. Each entry in the feature map whose depth value is no
greater than 5% of the depth value in the filtered depth map
is retained as visible. Otherwise, the point is considered
occluded and the associated entry in the input is removed.

VisibDense. When the camera poses for the source im-
ages computed during SfM and the image measurements
are stored along with the 3D point cloud, it is often possible
to exploit that data to compute a dense scene reconstruc-
tion. Labatut et al. [21] proposed such a method to com-
pute a dense triangulated mesh by running space carving on
the tetrahedral cells of the 3D Delaunay triangulation of the
sparse SfM points. We used this method, implemented in
COLMAP [38] and computed 3D point visibility based on
the reconstructed mesh model using traditional z-buffering.

VisibNet. A geometric method such as VISIBDENSE can-
not be used when the SfM cameras poses and image mea-
surements are unavailable. We therefore propose a general
regression-based approach that directly predicts the visibil-
ity from the input feature maps, where the predictive model
is trained using supervised learning. Specifically, we train
an encoder-decoder neural network which we refer to as
VISIBNET to classify each input point as either “visible”
or “occluded”. Ground truth visibility labels were gener-
ated automatically by leveraging VISIBDENSE on all train,
test, and validation scenes. Using VISIBNET’s predictions
to “cull” occluded points from the input feature maps prior
to running COARSENET significantly improves the quality
of the reconstructed images, especially in regions where the
input feature map contains fewer visible points compared to
the number of points that are actually occluded.

3.2. Architecture

A sample input feature map as well as our complete net-
work architecture consisting of VISIBNET, COARSENET,
and REFINENET is shown in Figure 2. The input to our
network is an H×W ×n dimensional feature map consist-
ing of n-dimensional feature vectors with different combi-
nations of depth, color, and SIFT features at each 2D loca-
tion. Except for the number of input/output channels in the



=

VisibNet CoarseNet RefineNet

encoder decoder conv. layers

nD 
Input Tensor

z  RGB     SIFT descriptor

nD Input Visibility
Map

RGB image RGB image
(output)

Figure 2: NETWORK ARCHITECTURE: Our network has three sub-networks – VISIBNET, COARSENET and REFINENET.
The upper left shows that the input to our network is a multi-dimensional nD array. The paper explores network variants where
the inputs are different subsets of depth, color and SIFT descriptors. The three sub-networks have similar architectures. They
are U-Nets with encoder and decoder layers with symmetric skip connections. The extra layers at the end of the decoder
layers (marked in orange) are there to help with high-dimensional inputs. See the text and supplementary material for details.

first/final layers, each sub-network has the same architec-
ture consisting of U-Nets with a series of encoder-decoder
layers with skip connections. Compared to conventional U-
Nets, our network has a few extra convolutional layers at
the end of the decoder layers. These extra layers facilitate
propagation of information from the low-level features, par-
ticularly the information extracted from SIFT descriptors,
via the skip connections to a larger pixel area in the out-
put, while also helping to attenuate visual artifacts resulting
from the highly sparse and irregular distribution of these
features. We use nearest neighbor upsampling followed by
standard convolutions instead of transposed convolutions as
the latter are known to produce artifacts [32].

3.3. Optimization

We separately train the sub-networks in our architecture,
VISIBNET, COARSENET, and REFINENET. Batch normal-
ization was used in every layer, except the final one in each
network. We applied Xavier initialization and projections
were generated on-the-fly to facilitate data augmentation
during training and novel view generation after training.
VISIBNET was trained first to classify feature map points
as either visible or occluded, using ground-truth visibility
masks generated automatically by running VISIBDENSE for
all train, test, and validation samples. Given training pairs
of input feature maps Fx ∈ RH×W×N and target source
images x ∈ RH×W×3, VISIBNET’s objective is

LV (x) = −
M∑
i=1

[
Uxlog

(
(V (Fx) + 1)/2

)
+

(1− Ux)log
(
(1− V (Fx))/2

)]
i
,

(1)

where V : RH×W×N → RW×H×1 denotes a differen-
tiable function representing VISIBNET, with learnable pa-
rameters, Ux ∈ RH×W×1 denotes the ground-truth visibil-
ity map for feature map Fx, and the summation is carried
out over the set of M non-zero spatial locations in Fx.

COARSENET was trained next, using a combination of
an L1 pixel loss and an L2 perceptual loss (as in [22, 8])
over the outputs of layers relu1 1, relu2 2, and relu3 3 of
VGG16 [40] pre-trained for image classification on the Im-
ageNet [6] dataset. The weights of VISIBNET remained
fixed while COARSENET was being trained using the loss

LC = ||C(Fx)−x||1+α
3∑

i=1

||φi(C(Fx))−φi(x)||22, (2)

where C : RH×W×N → RH×W×3 denotes a differentiable
function representing COARSENET, with learnable param-
eters, and φ1 : RH×W×3 → RH

2 ×W
2 ×64, φ2 : RH×W×3 →

RH
4 ×W

4 ×128, and φ3 : RH×W×3 → RH
8 ×W

8 ×256 denote
the layers relu1 1, relu2 2, and relu2 2, respectively, of the
pre-trained VGG16 network.

REFINENET was trained last using a combination of an
L1 pixel loss, the same L2 perceptual loss as COARSENET,
and an adversarial loss. While training REFINENET, the
weights of VISIBNET and COARSENET remained fixed.
For adversarial training, we used a conditional discrimi-
nator whose goal was to distinguish between real source
images used to generate the SfM models and images syn-
thesized by REFINENET. The discriminator trained using
cross-entropy loss similar to Eq. (1). Additionally, to sta-
bilize adversarial training, φ1(R(Fx))1, φ2(R(Fx))1, and



Desc. Inp. Feat. MAE SSIM
Src. D O S 20% 60% 100% 20% 60% 100%

Si X X X .126 .105 .101 .539 .605 .631
Si X X × .133 .111 .105 .499 .568 .597
Si X × X .129 .107 .102 .507 .574 .599
Si X × × .131 .113 .109 .477 .550 .578
M X × × .147 .128 .123 .443 .499 .524

Table 1: INVERTING SINGLE IMAGE SIFT FEATURES:
The top four rows compare networks designed for differ-
ent subsets of single image (Si) inputs: descriptor (D), key-
point orientation (O) and scale (S). Test error (MAE) and
accuracy (SSIM) obtained when 20%, 60% and all the SIFT
features are used. Lower MAE and higher SSIM values are
better. The last row is for when the descriptors originate
from multiple (M) different and unknown source images.

φ3(R(Fx))1 were concatenated before the first, second, and
third convolutional layers of the discriminator as done in
[42]. REFINENET denoted as R() has the following loss.

LR =||R(Fx)− x||1 + α

3∑
i=1

||φi(R(Fx))− φi(x)||22

+ β[log(D(x)) + log(1−D(R(Fx)))].

(3)

Here, the two functions, R : RH×W×N+3 → RH×W×3

and D : RH×W×N+3 → R denote differentiable functions
representing REFINENET and the discriminator, respec-
tively, with learnable parameters. We trained REFINENET
to minimize LR by applying alternating gradient updates
to REFINENET and the discriminator. The gradients were
computed on mini-batches of training data, with different
batches used to update REFINENET and the discriminator.

4. Experimental Results
We now report a systematic evaluation of our method.

Some of our results are qualitatively summarized in Fig.
3, demonstrating robustness to various challenges, namely,
missing information in the point clouds, effectiveness of our
visibility estimation, and the sparse and irregular distribu-
tion of input samples over a large variety of scenes.

Dataset. We use the MegaDepth [24] and NYU [39]
datasets in our experiments. MegaDepth (MD) is an In-
ternet image dataset with ∼150k images of 196 landmark
scenes obtained from Flickr. NYU contains ∼400k images
of 464 indoor scenes captured with the Kinect (we only used
the RGB images). These datasets cover very different scene
content, image resolution, and generate very different dis-
tribution of SfM points and camera poses. Generally, NYU
scenes produce far fewer SfM points than the MD scenes.

Preprocessing. We processed the 660 scenes in MD and
NYU using the SfM implementation in COLMAP [38]. We

Data Inp. Feat. Accuracy
z D C 20% 60% 100%

MD

X × × .948 .948 .946
X × X .938 .943 .941
X X × .949 .951 .948
X X X .952 .952 .950

NYU

X × × .892 .907 .908
X × X .897 .908 .910
X X × .895 .907 .909
X X X .906 .916 .917

Table 2: EVALUATION OF VISIBNET: We trained four ver-
sion of VISIBNET, each with a different set of input at-
tributes, namely, z (depth), D (SIFT) and C (color) to eval-
uate their relative importance. Ground truth labels were ob-
tained with VisibDense. The table reports mean classifica-
tion accuracy on the test set for the NYU and MD datasets.
The results show that VISIBNET achieves accuracy greater
than 93.8% and 89.2% on MD and NYU respectively and is
not very sensitive to sparsity levels and input attributes.

partitioned the scenes into training, validation, and testing
sets with 441, 80, and 139 scenes respectively. All images
of one scene were included only in one of the three groups.
We report results using both the average mean absolute error
(MAE), where color values are scaled to the range [0,1].
and average structured similarity (SSIM). Note that lower
MAE and higher SSIM values indicate better results.

Inverting Single Image SIFT Features. Consider the sin-
gle image scenario, with trivial visibility estimation and
identical input to [9]. We performed an ablation study in
this scenario, measuring the effect of inverting features with
unknown keypoint scale, orientation, and multiple unknown
image sources. Four variants of COARSENET were trained,
then tested at three sparsity levels. The results are shown
in Table 1 and Figure 4. Table 1 reports MAE and SSIM
across a combined MD and NYU dataset. The sparsity per-
centage refers to how many randomly selected features were
retained in the input, and our method handles a wide range
of sparsity reasonably well. From the examples in Figure 4,
we observe that the networks are surprisingly robust at in-
verting features with unknown orientation and scale; while
the accuracy drops a bit as expected, the reconstructed im-
ages are still recognizable. Finally, we quantify the effect
of unknown and different image sources for the SIFT fea-
tures. The last row of Table 1 shows that indeed the feature
inversion problem becomes harder but the results are still re-
markably good. Having demonstrated that our work solves
a harder problem than previously tackled, we now report
results on inverting SfM points and their features.

4.1. Visibility Estimation

We first independently evaluate the performance of the
proposed VISIBNET model and compare it to the geomet-



Figure 3: QUALITATIVE RESULTS: Each result is a 3× 1 set of square images, showing point clouds (with occluded points
in red), image reconstruction and original. The first four columns (top and bottom) show results from the MegaDepth dataset
(internet scenes) and the last four columns (top and bottom) show results from indoor NYU scenes. Sparsity: Our network
handles a large variety in input sparsity (density decreases from left to right). In addition, perspective projection accentuates
the spatially-varying density differences, and the MegaDepth outdoor scenes have concentrated points in the input whereas
NYU indoor scenes have far samples. Further, the input points are non-homogeneous, with large holes which our method
gracefully fills in. Visual effects: For the first four columns (MD scenes) our results give the pleasing effect of uniform
illumination (see top of first column). Since our method relies on SfM, moving objects are not recovered. Scene diversity:
The fourth column is an aerial photograph, an unusual category that is still recovered well. For the last four columns (NYU
scenes), despite lower sparsity, we can recover textures in common household scenes such as bathrooms, classrooms and
bedrooms. The variety shows that our method does not learn object categories and works on any scene. Visibility: All scenes
benefit from visibility prediction using VISIBNET which for example was crucial for the bell example (lower 2nd column).

ric methods VISIBSPARSE and VISIBDENSE. We trained
four variants of VISIBNET designed for different subsets of
input attributes to classify points in the input feature map
as “visible” or “occluded”. We report classification accu-
racy separately on the MD and NYU test sets even though
the network was trained on the combined training set (see
Table 2). We observe that VISIBNET is largely insensitive
to scene type, sparsity levels, and choice of input attributes
such as depth, color, and descriptors. The VISIBNET vari-
ant designed for depth only has 94.8% and 89.2% mean

classification accuracy on MD and NYU test sets, respec-
tively, even when only 20% of the input samples were used
to simulate sparse inputs. Table 3 shows that when points
predicted as occluded by VISIBNET are removed from the
input to COARSENET, we observe a consistent improve-
ment when compared to COARSENET carrying both the
burdens of visibility and image synthesis (denoted as Im-
plicit in the table). While the improvement may not seem
numerically large, in Figure 5 we show insets where visual
artifacts (bookshelf above, building below) are removed.



(a) Input (b) SIFT (c) SIFT + s (d) SIFT + o (e) SIFT + s + o (f) Original

Figure 4: INVERTING SIFT FEATURES IN A SINGLE IMAGE: (a) 2D keypoint locations. Results obtained with (b) only
descriptor, (c) descriptor and keypoint scale, (d) descriptor and keypoint orientation, (e) descriptor, scale and orientation. (f)
Original image. Results from using only descriptors (2nd column) are only slightly worse than the baseline (5th column).

(a) Input (b) Pred. (VisibNet) (c) Implicit (d) VisibNet (e) VisibDense (f) Original

Figure 5: IMPORTANCE OF VISIBILITY ESTIMATION: Examples showing (a) input 2D point projections (in blue), (b) pre-
dicted visibility from VISIBNET – occluded (red) and visible (blue) points, (c–e) results from IMPLICIT (no explicit visibility
estimation), VISIBNET (uses a CNN) and VISIBDENSE (uses z-buffering and dense models), and (f) the original image.

4.2. Relative Significance of Point Attributes
We trained four variants of COARSENET, each with a

different set of the available SfM point attributes. The goal
here is to measure the relative importance of each of the at-
tributes. This information could be used to decide which
optional attributes should be removed when storing SfM
model to enhance privacy. We report reconstruction error on
the test set for both indoor (NYU) and outdoor scenes (MD)
for various sparsity levels in Table 4 and show qualitative
evaluation on the test set in Figure 6. The results indicate
that our approach is largely invariant to sparsity and capable
of capturing very fine details even when the input feature
map contains just depth, although, not surprisingly, color

and SIFT descriptors significantly improves visual quality.

4.3. Significance of RefineNet

In Figure 7 we qualitatively compare two scenes where
the feature maps had only depth and descriptors (left) and
when it had all the attributes (right). For privacy preser-
vation, these results are sobering. While Table 4 showed
that COARSENET struggles when color is dropped (sug-
gesting an easy solution of removing color for privacy),
Figure 7 (left) unfortunately shows that REFINENET recov-
ers plausible colors and improves results a lot. Of course,
REFINENET trained on all features also does better than
COARSENET although less dramatically (Figure 7 (right)).



Data Visibility MAE SSIM
Est. 20% 60% 100% 20% 60% 100%

MD

Implicit .201 .197 .195 .412 .436 .445
VisibSparse .202 .197 .196 .408 .432 .440

VisibNet .201 .196 .195 .415 .440 .448
VisibDense .201 .196 .195 .417 .442 .451

NYU

Implicit .121 .100 .094 .541 .580 .592
VisibSparse .122 .100 .094 .539 .579 .592

VisibNet .120 .098 .092 .543 .583 .595
VisibDense .120 .097 .090 .545 .587 .600

Table 3: IMPORTANCE OF VISIBILITY ESTIMATION: Both
sub-tables show results obtained using IMPLICIT i.e. no
explicit occlusion reasoning where of burden of visibility
estimation implicitly falls on COARSENET, VisibNet and
the geometric methods VISIBSPARSE and VISIBDENSE.
Lower MAE and higher SSIM values are better.

Data Inp. Feat. MAE SSIM
z D C 20% 60% 100% 20% 60% 100%

MD

X × × .258 .254 .253 .264 .254 .250
X × X .210 .204 .202 .378 .394 .403
X X × .228 .223 .221 .410 .430 .438
X X X .201 .196 .195 .414 .439 .448

NYU

X × × .295 .290 .289 .244 .209 .197
X × X .148 .121 .111 .491 .528 .546
X X × .207 .179 .171 .493 .528 .539
X X X .121 .099 .093 .542 .582 .594

Table 4: EFFECT OF POINT ATTRIBUTES: Performance of
four networks designed for different sets of input attributes
– z (depth), D (SIFT) and C (color), on MD and NYU. Input
sparsity is simulated by applying random dropout to input
samples during training and testing.

z z + D z + C z + D + C orig

Figure 6: EFFECT OF POINT ATTRIBUTES: Results ob-
tained with different attributes. Left to right: depth [z],
depth + SIFT [z + D], depth + color [z + C], depth + SIFT
+ color [z + D + C] and the original image. (see Table 4).

4.4. Novel View Synthesis

Our technique can be used to easily generate realistic
novel views of the scene. While quantitatively evaluating

z + D z + D + C

Figure 7: IMPORTANCE OF REFINENET: (Top row)
COARSENET results. (Bottom Row) REFINENET results.
(Left) Networks use depth and descriptors (z + D). (Right)
Networks use depth, descriptor and color (z + D + C).

Figure 8: NOVEL VIEW SYNTHESIS: Synthesized images
from virtual viewpoints in two NYU scenes [39] helps to
interpret the cluttered scenes (see supplementary video).

such results is more difficult (in contrast to our experiments
where aligned real camera images are available), we show
qualitative results in Figure 8 and generate virtual tours
based on the synthesized novel views1. Such novel view
based virtual tours can make scene interpretation easier for
an attacker even when the images contain some artifacts.

5. Conclusion
In this paper, we introduced a new problem, that of in-

verting a sparse SfM point cloud and reconstructing color
images of the underlying scene. We demonstrated that sur-
prisingly high quality images can be reconstructed from the
limited amount of information stored along with sparse 3D
point cloud models. Our work highlights the privacy and
security risks associated with storing 3D point clouds and
the necessity for developing privacy preserving point cloud
representations and camera localization techniques, where
the persistent scene model data cannot easily be inverted to
reveal the appearance of the underlying scene. This was
also the primary goal in concurrent work on privacy pre-
serving camera pose estimation [41] which proposes a de-
fense against the type of attacks investigated in our paper.
Another interesting avenue of future work would be to ex-
plore privacy preserving features for recovering correspon-
dences between images and 3D models.

1see the video in the supplementary material.
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A. Implementation Details
In the supplementary material we describe our network

architecture and the training procedure in more details.

A.1. Architecture

Our network architecture consists of three sub-networks
– VISIBNET, COARSENET and REFINENET. The input to
our network is an H × W × n dimensional feature map
where at each 2D location in the feature map where there is
a valid sample, we have one n-dimensional feature vector.
This feature vector is obtained by concatenating different
subsets of depth, color, and SIFT features which are associ-
ated with each 3D point in the SfM point cloud. Except for
the number of input/output channels in the first/final layers,
each sub-network has the same architecture, that of a U-Net
with an encoder and a decoder and with skip connections
between the layers in the encoder and decoder networks at
identical depths. In contrast to conventional U-Nets, where
the decoder directly generates the output, in our network,
the output of the decoder is passed through three convolu-
tional layers in sequence to obtain the final output.

More, specifically, the architecture of the encoder is
CE256 - CE256 - CE256 - CE512 - CE512 - CE512, where CEN de-
notes a convolutional layer with N kernels of size 4×4 and
stride equal to 2 followed by an addition of a bias, batch
normalization, and a ReLU operation.

The architecture of the decoder is CD512 - CD512 - CD512 -
CD256 - CD256 - CD256 - C128 - C64 - C32- C3, where CDN de-
notes nearest neighbor upsampling by a factor of 2 followed
by a convolutional layer with N kernels of size 3 × 3 and
a stride equal to 1, followed by an addition of a bias, batch
normalization, and a ReLU operation. CN layers are the
same as CDN layers but without the upsampling operation.
In the final layer of the decoder, the ReLU is replaced with
a tanh non-linearity. In REFINENET, all ReLU operations
are replaced by leaky ReLU operations in all the layers of
the decoder network. In VISIBNET, the final layer of the
decoder has 1 kernel instead of 3.

Our discriminator used for adversarial training of
REFINENET has the following architecture – CA256 - CA256 -
CA256 - CA512 - CA512 - CA512 - FC1024 - FC1024 - FC1024 - FC2,
where CAN denotes a convolutional layer with N kernels

of size 3 × 3 and stride equal to 1 followed by a 2 × 2
max pooling operation followed by an addition of a bias,
batch normalization, and a leaky ReLU operation. FCN
denotes a fully connected layer with N nodes followed
by an addition of a bias, and a leaky ReLU operation. In
the final layer, the leaky ReLU is replaced by a softmax
function.

A.2. Optimization

We used the Adam optimizer with β1 = 0.9, β2 = 0.999,
ε = 1e−8 and a learning rate of 0.0001 for training all
networks. Images with resolution 256 × 256 pixels were
used as input to the network during training. However, the
trained network was used to process images at a resolution
of 512 × 512 pixels. During training, we resized each im-
age such that the smaller dimension of the resized image
was randomly assigned to either 296, 394, or 512 pixels, af-
ter which we applied a random 2D cropping to the resized
image to obtain a 256 × 256 image which was the actual
input to our network. We used Xavier initialization for all
the parameters of our network.

B. Additional Results
We now present qualitative results to show that our net-

work is robust to 2D input which is very sparse. Figure A1
shows two example results. Three images are synthesized
on randomly selected 20%, 60% and 100% of all the pro-
jected 3D points for the scenes. Despite the high simulated
2D sparsity in the input, the output images are quite inter-
pretable. Figure A2 shows some failure examples.

Supplementary Video. Finally, we encourage the reader
to view the supplementary video which makes it easier to
visualize the qualitative results shown in the main paper.
For two scenes, where the SfM camera poses are available,
we show that we can reconstruct the source video by run-
ning our method on a frame by frame basis with the camera
poses for the source images. Finally, we show results of
synthesizing images from novel camera viewpoints. Such
results can be used to create virtual tours of the scene, thus
making it easier to reveal and the appearance, layout and
geometry of the scene.



(a) Sparse Input (20%) (b) Using 20% (c) Using 60% (d) Using all (e) Original Images

Figure A1: EVALUATING ROBUSTNESS TO SPARSITY: Two sets of images synthesized using our complete pipeline, by
running VISIBNET, COARSENET and REFINENET. From left to right: (a) Simulated sparse inputs to our networks. Here,
only 20% of the 3D points in the respective SfM models were used. Image synthesized using our method using (b) 20% of
the points, (c) 60% of the points, (d) all the points and (e) the original source images. Even when the inputs are extremely
sparse, most of the contents of the synthesized images can be easily recognized.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure A2: FAILURE EXAMPLES: (a) Dense points on the building in the background overwhelms a few sparse points in the
foreground on the base of the statue. VISIBNET in this case incorrectly predicts that the building is visible and this causes the
base of the statue to disappear completely in the synthesized image. (b) A similar artifact for a different scene. (c) Parallel
straight lines are sometimes poorly handled, such as the lines on the vertical pillars of the monument. (d) The complex
occlusions in the architectural structure produce artifacts where the occluded surfaces and the occluders are fused into each
other. (e) Straight lines are often reconstructed as curved or bent (f–g) Low sample density in the input common in indoor
scenes results in blurry and wavy edges. (h) Finally, spurious 3D points may cause our method to hallucinate structures such
as the dark line on the wall which is not actually there.


