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Abstract

Posterior sampling for reinforcement learning (PSRL) is an effective method for
balancing exploration and exploitation in reinforcement learning. Randomised
value functions (RVF) can be viewed as a promising approach to scaling PSRL.
However, we show that most contemporary algorithms combining RVF with neural
network function approximation do not possess the properties which make PSRL
effective, and provably fail in sparse reward problems. Moreover, we find that
propagation of uncertainty, a property of PSRL previously thought important for ex-
ploration, does not preclude this failure. We use these insights to design Successor
Uncertainties (SU), a cheap and easy to implement RVF algorithm that retains key
properties of PSRL. SU is highly effective on hard tabular exploration benchmarks.
Furthermore, on the Atari 2600 domain, it surpasses human performance on 38
of 49 games tested (achieving a median human normalised score of 2.09), and
outperforms its closest RVF competitor, Bootstrapped DQN, on 36 of those.

1 Introduction

Perhaps the most important open question within reinforcement learning is how to effectively balance
exploration of an unknown environment with exploitation of the already accumulated knowledge
(Kaelbling et al., 1996; Sutton et al., 1998; Busoniu et al., 2017). In this paper, we study this in the
classic setting where the unknown environment is modelled as a Markov Decision Process (MDP).

Specifically, we focus on developing an algorithm that combines effective exploration with neural
network function approximation. Our approach is inspired by Posterior Sampling for Reinforcement
Learning (PSRL; Strens, 2000; Osband et al., 2013). PSRL approaches the exploration/exploitation
trade-off by explicitly accounting for uncertainty about the true underlying MDP. In tabular settings,
PSRL achieves impressive results and close to optimal regret (Osband et al., 2013; Osband & Van Roy,
2016). However, many existing attempts to scale PSRL and combine it with neural network function
approximation sacrifice the very aspects that make PSRL effective. In this work, we examine several
of these algorithms in the context of PSRL and:

1. Prove that a previous avenue of research, propagation of uncertainty (O’Donoghue et al.,
2018), is neither sufficient nor necessary for effective exploration under posterior sampling.

2. Introduce Successor Uncertainties (SU), a cheap and scalable model-free exploration algo-
rithm that retains crucial elements of the PSRL algorithm.

3. Show that SU is highly effective on hard tabular exploration problems.
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4. Present Atari 2600 results: SU outperforms Bootstrapped DQN (Osband et al., 2016) on
36/49 and Uncertainty Bellman Equation (O’Donoghue et al., 2018) on 43/49 games.

2 Background

We use the following notation: for X a random variable, we denote its distribution by PX . Further, if
f is a measurable function, then f(X) follows the distbution f#PX (the pushforward of PX by f ).

We consider finite MDPs: a tuple (S,A, T ), where S is a finite state space, A a finite action space,
and T : S × A → P(S × R) a transition probability kernel mapping from the state-action space
S ×A to the set of probability distributions P(S ×R) on the product space of states S and rewards
R ⊂ R; R is assumed to be bounded throughout. For each time step t ∈ N, the agent selects an
action At by sampling from a distribution specified by its policy π : S → P(A) for the current state
St, and receives a new state and reward (St+1, Rt+1) ∼ T (St, At). This gives rise to a Markov
process (St, At)t≥0 and a reward process (Rt)t≥1. The task of solving an MDP amounts to finding
a policy π? which maximises the expected return E(

∑∞
τ=0 γ

τRτ+1) with γ ∈ [0, 1).

Crucial to many so called model-free methods for solving MDPs is the state-action value function
(Q function) for a policy π: Qπt := Et(

∑∞
τ=t γ

τ−tRτ+1) = Et(Rt+1) + γEt(Qπt+1) , where Et is
used to denote an expectation conditional on (Sτ , Aτ )τ≤t. Model-free methods use the recursive
nature of the Bellman equation to construct a model Q̂π : S ×A → R, which estimates Qπt for any
given (St = s,At = a), through repeated application of the Bellman operator Tπ : RS×A → RS×A:

(TπQ̂)(s, a) = E(S′,R′)∼T (s,a)[R′ + γEA′∼π(S′)Q̂(S′, A′)] . (1)

Since Tπ is a contraction on RS×A with a unique fixed point Q̂π, that is TπQ̂π = Q̂π, the iterated
application of Tπ to any initial Q̂ ∈ RS×A yields Q̂π. The expectations in equation (1) can be
estimated via Monte Carlo using experiences (s, a, r, s′) obtained through interaction with the MDP.
A key challenge is then in obtaining experiences that are highly informative about the optimal policy.

A simple and effective approach to collecting such experiences is PSRL, a model-based algorithm
based on two components: (i) a distribution over rewards and transition dynamics PT̂ obtained using
a Bayesian modelling approach, treating rewards and transition probabilities as random variables;
and (ii) the posterior sampling exploration algorithm (Thompson, 1933; Dearden et al., 1998) which
samples T̂ ∼ PT̂ , computes the optimal policy π̂ with respect to the sampled T̂ , and follows π̂ for
the duration of a single episode. The collected data are then used to update the PT̂ model, and
the whole process is iterated until convergence.

While PSRL performs very well on tabular problems, it is computationally expensive and does not
utilise any additional information about the state space structure (e.g. visual similarity when states
are represented by images). A family of methods called Randomised Value Functions (RVF; Osband
et al., 2014) attempt to overcome these issues by directly modelling a distribution over Q functions,
PQ̂, instead of over MDPs, PT̂ . Rather than acting greedily with respect to a sampled MDP as in
PSRL, the agent then acts greedily with respect to a sample Q̂ ∼ PQ̂ drawn at the beginning of each
episode, removing the main computational bottleneck. Since a parametric model is often chosen for
PQ̂, the switch to Q function modelling also directly facilitates use of function approximation and
thus generalisation between states.

3 Exploration under function approximation

Many exploration methods, including (Osband et al., 2014, 2016; Moerland et al., 2017; O’Donoghue
et al., 2018; Azizzadenesheli et al., 2018), can be interpreted as combining the concept of RVF with
neural network function approximation. While the use of neural network function approximation
allows these methods to scale to problems too complex for PSRL, it also brings about conceptual
difficulties not present within PSRL and tabular RVF methods. Specifically, because a Q function is
defined with respect to a particular policy, constructing PQ̂ requires selection of a reference policy
or distribution over policies. Methods that utilise a distribution over reference policies typically
employ a bootstrapped estimator of the Q function as we will discuss in more depth later. For
now, we focus on methods that employ a single reference policy which commonly interleave two
steps: (i) inference of PQ̂πi for a given policy πi using the available data (value prediction step);
(ii) estimation of an improved policy πi+1 based on PQ̂πi (policy improvement step). While a
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Figure 1: Binary tree MDP of size L. States S = {s0, . . . , s2L} are one-hot encoded; actions
A = {a1, a2} are mapped to movements {UP, DOWN} according to a random mapping drawn
independently for each state. Reward of one is obtained after reaching s2L and zero otherwise. States
with odd indices and s2L are terminal.

common policy improvement choice is πi+1 : s 7→ EPQ̂πi [G(Q̂)(s)], methods vary greatly in how
they implement value prediction. To gain a better insight into the value prediction step, we examine
its idealised implementation: Suppose we have access to a belief over MDPs, PT̂ (as in PSRL),
and want to compute the implied distribution PQ̂π for a single policy π. The intuitive (albeit still
computationally expensive) procedure is to: (i) draw T̂ ∼ PT̂ ; and (ii) repeatedly apply the Bellman
operator Tπ to an initial Q̂ for the drawn T̂ until convergence. Denoting by Fπ: T̂ 7→ Q̂π the map
from T̂ to the corresponding Q̂π for a policy π, the distribution of resulting samples is PQ̂π = Fπ#PT̂ .

This idealised value prediction step motivates, for example, the Uncertainty Bellman Equation
(UBE; O’Donoghue et al., 2018). O’Donoghue et al. argue that to achieve effective exploration, it is
necessary that the uncertainty about each Q̂π(s, a), quantified by variance, is equal to the uncertainty
about the immediate reward and the next state’s Q value. This requirement can be formalised as
follows:

Definition 1 (Propagation of uncertainty). For a given distribution PT̂ and policy π, we say that
a model PQ̂π propagates uncertainty according to PT̂ if for each (s, a) ∈ S ×A and p = 1, 2

EPQ̂π [Q̂π(s, a)p] = EFπ#PT̂ [Q̂π(s, a)p] = EPT̂
{

[E(R′,S′)∼T̂ (s,a)R
′+EA′∼π(S′)F

π(T̂ )(S′, A′)]p
}
.

In words, propagation of uncertainty requires that the first two moments behave consistently under
application of the Bellman operator.

Propagation of uncertainty is a desirable property when using Upper Confidence Bounds (UCB; Auer,
2002) for exploration, since UCB methods rely only on the first two moments of PQ̂π . However,
propagation of uncertainty is not sufficient for effective exploration under posterior sampling. We
show this in the context of the binary tree MDP depicted in figure 1. To solve the MDP, the agent
must execute a sequence of L uninterrupted UP movements. In the following proposition, we show
that any algorithm combining factorised symmetric distributions with posterior sampling (e.g. UBE)
will solve this MDP with probability of at most 2−L per episode, thus failing to outperform a uniform
exploration policy. Importantly, the sizes of marginal variances have no bearing on this result,
meaning that propagation of uncertainty on its own does not preclude this failure mode.

Proposition 1. Let |A| > 1, and PQ̂ be a factorised distribution, i.e. for Q̂ ∼ PQ̂, Q̂(s, a) and
Q̂(s′, a′) are independent, ∀(s, a) 6= (s′, a′), with symmetric marginals. Assume that for each s ∈ S ,
the marginal distributions of {Q̂(s, a) : a ∈ A} are all symmetric around the same value cs ∈ R.
Then the probability of executing any given sequence of L actions under π̂ ∼ G#PQ̂ is at most 2−L.

Propagation of uncertainty is furthermore not necessary for posterior sampling. To see this, first note
that for any given PQ̂π , the posterior sampling procedure only depends on the induced distribution
over greedy policies, i.e. the pushforward of PQ̂π by the greedy operator G. This means that from
the point of view of posterior sampling, two Q function models are equivalent as long as they induce
the same distribution over greedy policies. In what follows, we formalise this equivalence relationship
(definition 2), and then show that each of the induced equivalence classes contains a model that
does not propagate uncertainty (proposition 2), implying that posterior sampling does not rely on
propagation of uncertainty.

Definition 2 (Posterior sampling policy matching). For a given distribution PT̂ and a policy π, we say
that a model PQ̂π matches the posterior sampling policy implied by PT̂ if G#PQ̂π = (G ◦ Fπ)#PT̂ .
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Proposition 2. For any distribution PT̂ and policy π such that the variance VFπ#PT̂ [Q̂π(s, a)] is
greater than zero for some (s, a), there exists a distribution PQ̂π which matches the posterior sampling
policy (definition 2), but does not propagate uncertainty (definition 1), according to PT̂ .

We conclude by addressing a potential criticism of proposition 1, i.e. that the described issues may be
circumvented by initialising expected Q values to a value higher than the maximal attainable Q value
in given MDP, an approach known as optimistic initialisation (Osband et al., 2014). In such case,
symmetries in the Q function may break as updates move the distribution towards more realistic
Q values. However, when neural network function approximation is used, the effect of optimistic
initialisation can disappear quickly with optimisation (Osband et al., 2018). In particular, with
non-orthogonal state-action embeddings, Q value estimates may decrease for yet unseen state-action
pairs, and estimates for different state-action states can move in tandem. In practice, most recent
models employing neural network function approximation do not use optimistic initialisation (Osband
et al., 2016; Azizzadenesheli et al., 2018; Moerland et al., 2017; O’Donoghue et al., 2018).

4 Successor Uncertainties

We present Successsor Uncertainties, an algorithm which both propagates uncertainty and matches
the posterior sampling policy. As our work is motivated by PSRL, we focus on the use with posterior
sampling, leaving combination with other exploration algorithms for future research.

4.1 Q function model definition

Suppose we are given an embedding function φ : S×A → Rd, such that for all (s, a), ‖φ(s, a)‖2 = 1
and φ(s, a) ≥ 0 elementwise, and EtRt+1 = 〈φt, w〉 for some w ∈ Rd. Denote φt = φ(St, At).
Then we can express Qπt as an inner product of w and ψπt = Et[

∑∞
τ=t γ

τ−tφτ ], the (discounted)
expected future occurrence of each φ(s, a) feature under a policy π, as follows:

Qπt = Et
∞∑
τ=t

γτ−tRτ+1 = Et
∞∑
τ=t

γτ−t〈φτ , w〉 =
〈
Et
∞∑
τ=t

γτ−tφτ , w

〉
= 〈ψπt , w〉 , (2)

where the second equality follows from the tower property of conditional expectation and the third
from the dominated convergence theorem combined with the unit norm assumption.

The quantity ψπt is known in the literature as the successor features (Dayan, 1993; Barreto et al.,
2017). Noting that ψπt = φt + γ Etψπt+1, an estimator of the successor features, ψ̂π , can be obtained
by applying standard temporal difference learning techniques. The other quantity involved, w, can
be estimated by regressing embeddings of observed states φt onto the corresponding rewards. We
perform Bayesian linear regression to infer a distribution over rewards, using N (0, θI) as the prior
over w and N (〈φ,w〉, β) as the likelihood, which leads to posterior N (µw,Σw) over w with known
analytical expressions for both µw and Σw. This induces posterior distribution over Q̂πSU given by

Q̂πSU ∼ N (Ψ̂πµw, Ψ̂πΣw(Ψ̂π)>) , (3)

where Ψ̂π = [ψ̂π(s, a)]>(s,a)∈S×A. This is our Successor Uncertainties (SU) model for the Q function.

The final element of the SU model is the selection of a sequence of reference policies (πi)i≥1 for
which the Q function model is learnt. We follow O’Donoghue et al. (2018) in constructing these
iteratively as πi+1(s) = Eπ̂∼G#PQ̂πi

[π̂(s)].

4.2 Properties of the model

The non-diagonal covariance matrix of the SU Q function model (see equation (3)) means that SU
does not suffer from the shortcomings of previous methods with factorised posterior distributions
described in proposition 1. Moreover, note that Q̂πSU ∼ Fπ#PT̂ for the MDP model PT̂ composed of
a delta distribution concentrated on empirical transition frequencies, and the Bayesian linear model
for rewards (assuming convergence of successor features, i.e. ψ̂π = ψπ). SU thus both propagates
uncertainty and matches the posterior sampling policy according to this choice of PT̂ .

However, due to its use of a point estimate for the transition probabilities, SU may underestimate
Q function uncertainty, and a good model of transition probabilities which scales beyond tabular
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settings can lead to improved performance. Furthermore, SU estimates PQ̂πi+1 for a single policy,
which we choose to be πi+1(s) = Eπ̂∼G#PQ̂πi

[π̂(s)]. This approach may not adequately capture the
uncertainty over π̂ implied by PQ̂πi . We expect that incorporation of this uncertainty, or an improved
method of choosing πi+1, may further improve the SU algorithm.

4.3 Neural network function approximation

One of the main assumptions we made so far is that the embedding function φ is known a priori. This
section considers the scenario where φ is to be estimated jointly with the other quantities using neural
network function approximation. For reference, the pseudocode is included in appendix C.

Let φ̂ : S ×A → Rd+ be the current estimate of φ, (st, at) the state-action pair observed at step t, rt+1
the reward observed after taking action at in state st. Suppose we want to estimate the Q function
of some given policy π, and denote φ̂t := φ̂(st, at), ψ̂t := ψ̂π(st, at). We propose to jointly learn φ̂
and ψ̂ by enforcing the known relationships between φt, ψπt and EtRt+1:

minφ̂,ψ̂,ŵ ‖ψ̂t − φ̂t − γ (ψ̂t+1)†‖2
2︸ ︷︷ ︸

successor feature loss

+ |〈ŵ, φ̂t〉−rt+1|2︸ ︷︷ ︸
reward loss

+ |〈ŵ, ψ̂t〉−γ(〈ŵ, ψ̂t+1〉)†− rt+1|2︸ ︷︷ ︸
Q value loss

(4)

in expectation over the observed data {(st, at, rt+1st+1) : t = 0, . . . , N} with at+1 ∼ π(st+1);
φ̂t, ψ̂t ∈ Rd+, ‖φ̂t‖2 = 1,∀t, are respectively ensured by the use of ReLU activations and explicit
normalisation. The ŵ ∈ Rd are the final layer weights shared by the the reward and the Q value
networks. Quantities superscripted with † are treated as fixed during optimisation.

The need for the successor feature and reward losses follows directly from the definition of the SU
model. We add the explicit Q value loss to ensure accuracy of Q value predictions. Assuming that
there exists a (ReLU) network that achieves zero successor feature and reward loss, the added Q value
loss has no effect. However, finding such an optimal solution is difficult in practice and empirically
the addition of the Q value loss improves performance. Our modelling assumptions cause all
constituent losses in equation (4) to have similar scale, and thus we found it unnecessary to introduce
weighting factors. Furthermore, unlike in previous work utilising successor features (Kulkarni
et al., 2016; Machado et al., 2017, 2018), SU does not rely on any auxiliary state reconstruction or
state-transition prediction tasks for learning, which simplifies implementation and greatly reduces
the required amount of computation.

We employ the neural network output weights ŵ in prediction of the mean Q function, and use
the Bayesian linear model only to provide uncertainty estimates. In estimating the covariance matrix
Σw, we decay the contribution of old data-points, Σ̂w = (ζNθ−1I + β−1∑N

i=0 ζ
N−iφ̂iφ̂

>
i )−1 , ζ ∈

[0, 1], so as to counter non-stationarity of the learnt state-action embeddings φ̂ .

4.4 Comparison to existing methods

We discuss two popular classes of Q function models compatible with neural network function
approximation: methods relying on Bayesian linear Q function models and methods based on
bootstrapping. We omit variational Q-learning methods such as (Gal, 2016; Lipton et al., 2018), as
conceptual issues with these algorithms have already been identified in an illuminating line of work
by Osband et al. (2016, 2018).

Bayesian linear Q function models encompass our SU algorithm, UBE (O’Donoghue et al., 2018) im-
plemented with value function approximation, Bayesian Deep Q Networks (BDQN; Azizzadenesheli
et al., 2018), and a range of other related work (Levine et al., 2017; Moerland et al., 2017). The algo-
rithms within this category tend to use a Q function model of the form Q̂π(s, a) = 〈φ̂πs , wa〉, where
φ̂πs are state embeddings and wa ∼ Pwa are weights of a Bayesian linear model. The embeddings φ̂πs
are produced by a neural network, and are usually optimised using a temporal difference algorithm
applied to Q values. However, these methods do not enforce any explicit structure within the embed-
dings φ̂πs which would be required for posterior sampling policy matching, and prevent these methods
from falling victim to proposition 1. SU can thus be viewed as a simple and computationally cheap
alternative fixing the issues of existing Bayesian linear Q function models.

Bootstrapped DQN (Osband et al., 2016, 2018) is a model which consists of an ensemble of K
standard Q networks, each initialised independently and trained on a random subset of the observed
data. Each network is augmented with a fixed additive prior network, so as to ensure the ensemble
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distribution does not collapse in sparse environments. If all networks within the ensemble are trained
to estimate the Q function for a single policy π, then Bootstrapped DQN both propagates uncertainty
and matches the posterior sampling policy for a distribution over MDPs formed by the mixture over
empirical MDPs corresponding to each subsample of the data. In practice, Bootstrapped DQN does
not assume a single policy π and instead each network learns for its corresponding greedy policy.
Bootstrapped DQN is, however, more computationally expensive: its performance increases with
the size of the ensemble K, but so does the amount of computation required. Our experiments show
that SU is much cheaper computationally, and that despite using only a single reference policy, it
manages to outperform Bootstrapped DQN on a wide range of exploration tasks (see section 5).

5 Tabular experiments

We present results for: (i) the binary tree MDP accompanied by theoretical analysis showing how
SU succeeds and avoids the pitfalls identified in proposition 1; (ii) a hard exploration task proposed
by Osband et al. (2018) together with the Boostrapped DQN algorithm which SU outperforms by
a significant margin.1 We also provide an analysis explaining why some of the previously discussed
algorithms perform well on seemingly similar experiments present in existing literature.

5.1 Binary tree MDP

We study the behaviour of SU and its competitors on the binary tree MDP introduced in figure 1.
Figure 2 shows the empirical performance of each algorithm as a function of the tree size L. Evidently,
both BDQN and UBE fail to outperform a uniform exploration policy. For UBE, this is a consequence
of proposition 1, and the similarly poor behaviour of BDQN suggests it may suffer from an analogous
issue. In contrast, SU and Bootstrapped DQN are able to succeed on large binary trees despite the
very sparse reward structure and randomised action effects. However, Bootstrapped DQN requires
approximately 25 times more computation than SU to approach similar levels of performance due to
the necessity to train a whole ensemble of Q networks.
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Figure 2: Median number of episodes required to learn the optimal policy on the tree MDP. Blue
points indicate all 5 seeds succeeded within 5000 episodes, orange indicates only some of the runs
succeeded, and red all runs failed. Dashed lines correspond to the median for a uniform exploration
policy. Note the reduced size of the x-axis for BDQN and UBE.

The next proposition and its proof provide intuition for the success of SU on the tree MDP. The proof
is based on a lemma stated just after the proposition (see appendix B.1 for formal treatment).
Proposition 3 (Informal statement). Assume the SU model with: (i) fixed one-hot state-action
embeddings φ, (ii) uniform exploration thus far, (iii) successor representations learnt to convergence
for a uniform policy. Let sk for 2 ≤ k < 2L, even, be a state visited N times thus far. Then
the probability of selecting UP in sk, given UP was selected in s0, s2, . . . , sk−2, is greater than one
half with probability greater than 1− εN , where εN decreases exponentially with N .

Lemma 4 (Informal statement). Under the SU model Q̂ ∼ PQ̂π for the uniform policy π, the proba-
bility that the greedy policy π̂ = G(Q̂) selects UP in sk, given UP was selected in s0, s2, . . . , sk−2, is
greater than one half if there exists an even 0 ≤ j < k such that

Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) .

1Code for tabular experiments: djanz.org/successor_uncertainties/tabular_code
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Sketch proof of proposition 3. Under SU Q̂(sj , UP) = r̂(sj , UP)+. . .+ρQ̂(sk, UP)+ρQ̂(sk, DOWN)
with ρ = 2−( k−j2 ) the probability of getting from sj to sk under the uniform policy. Note that
Q̂(sj , UP) and Q̂(sk, DOWN) only share the Q̂(sk, DOWN) = r̂(sk, DOWN) term, whereas Q̂(sk, UP)
and Q̂(sj , UP) share r̂(sj , UP), . . . , r̂(sp, DOWN), where sp is the state with the highest index seen
so far. Thus covariance between Q̂(sk, UP) and Q̂(sj , UP) is higher than that between Q̂(sk, DOWN)
and Q̂(sj , UP) with high probability (at least 1− εN ), and the result follows from lemma 4.

Proposition 3 implies that (at least under the simplifying assumption of prior exploration being
uniform) SU is likely to assign higher probability to Q functions for which a greedy policy leads
towards the furthest visited state (cf. the role of the state sp in the sketch proof). This is a strategy
actively aimed for in exploration algorithms such as Go-Explore where the agent uses imitation
learning to return to the furthest discovered states (Ecoffet et al., 2019).

5.2 Chain MDP from (Osband et al., 2018)

We present results on the chain environment introduced by Osband et al. (2018), described in detail
in appendix C.1. Osband et al. describe their MDP as being “akin to looking for a piece of hay in a
needle-stack” and state that it “may seem like an impossible task”. Figure 3 shows the scaling for
Successor Uncertainties and Bootstrap+Prior for this problem. Learning time T scales empirically as
O(L2.5) for SU, versus O(L3) for Bootstrap+Prior (as reported in Osband et al., 2018).
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Figure 3: Learning time T for SU and Bootstrap+Prior for a range of problem sizes L on the chain
MDP. Curve for SU is log10 T = 2.5 log10 L−0.95. Curve for Bootstrap+Prior is taken from figure 8
in (Osband et al., 2018).

5.3 On the success of BDQN in environments with tied actions

We briefly address prior results in the literature where BDQN is seen solving problems seemingly
similar to our binary tree MDP with ease (as in, for example, figure 1 of Touati et al., 2018).
The discrepancy occurs because previous work often does not randomise the effects of actions
(for example Osband et al., 2016; Plappert et al., 2018; Touati et al., 2018), i.e. if a1 leads UP
in any state sk, then a1 leads UP in all states. We refer to this as the tied actions setting. In the
following proposition, we show that MDPs with tied actions are trivial for BDQN with strictly
positive activations (e.g. sigmoid). We offer a similar result for ReLU in appendix B.2.

Proposition 5. Let Q̂(s, a) = 〈φ(s), wa〉 be a Bayesian Q function model with φ(s) = ϕ(U1s) ∈ Rd,
1s a one-hot encoding of s, and ϕ a strictly positive activation function (e.g. sigmoid) applied
elementwise. Then sampling independently from the prior wa ∼ N (0, σ2

wI), Uhs ∼ N (0, σ2
u) solves

a tied action binary tree of size L in T ≤ −[log2(1− 2−d)]−1 median number of episodes.

Proof. Define ∆ := wUP − wDOWN and observe UP is selected if Q̂(s, UP)− Q̂(s, DOWN) =
〈φ(s), wUP − wDOWN〉 > 0. By strict positivity of ϕ, the probability that UP is always selected

P
[L−1⋂
j=0
{Q̂(s2j , UP)>Q̂(s2j , DOWN)}

]
≥P
[L−1⋂
j=0
{〈φ(s2j),∆〉>0} | ∆>0

]
P(∆>0) = P(∆ > 0) ,

where ∆ > 0 is to be interpreted elementwise. As ∆ ∼ N (0, 2σ2
wI), P(∆ > 0) = 2−d for all L.
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Figure 4: Bars show the difference in human normalised score between SU and Bootstrap DQN (top),
UBE (middle) and DQN (bottom) for each of the 49 Atari 2600 games. Blue indicates SU performed
better, red worse. SU outperforms the baselines on 36/49, 43/49 and 42/49 games respectively.
Y-axis values have been clipped to [−2.5, 2.5].

A single layer BDQN with one neuron can thus solve a tied action binary tree of any size L in one
episode (median) while completely ignoring all state information. That such an approach can be
successful implies tied actions MDPs generally do not make for good exploration benchmarks.

6 Atari 2600 experiments

We have tested the SU algorithm on the standard set of 49 games from the Arcade Learning Environ-
ment, with the aim of showing that SU can be scaled to complex domains that require generalisation
between states. We use a standard network architecture as in (Mnih et al., 2015; Van Hasselt et al.,
2016) endowed with an extra head for prediction of φ̂ and one-step value updates. More detail on our
implementation, network architecture and training procedure can be found in appendix C.2.2

SU obtains a median human normalised score of 2.09 (averaged over 3 seeds) after 200M training
frames under the ‘no-ops start 30 minute emulator time’ test protocol described in (Hessel et al.,
2018). Table 1 shows we significantly outperform competing methods. The raw scores are reported
in table 2 (appendix), and the difference in human normalised score between SU and the competing
algorithms for individual games is charted in figure 4. Since Azizzadenesheli et al. (2018) only report
scores for a small subset of the games and use a non-standard testing procedure, we do not compare
against BDQN. Osband et al. (2018), who introduce Bootstrap+Prior, do not report Atari results; we
thus compare with results for the original plain Bootstrapped DQN (Osband et al., 2016) instead.

Table 1: Human normalised Atari scores. Superhuman performance is the percentage of games on
which each algorithm surpasses human performance (as reported in Mnih et al., 2015).

Algorithm Human normalised score percentiles Superhuman
25% 50% 75% performance %

Successor Uncertainties 1.06 2.09 5.95 77.55%
Bootstrapped DQN 0.76 1.60 5.16 67.35%
UBE 0.38 1.07 4.14 51.02%
DQN + ε-greedy 0.50 1.00 3.41 48.98%

7 Conclusion

We studied the Posterior Sampling for Reinforcement Learning algorithm and its extensions within the
Randomised Value Function framework, focusing on use with neural network function approximation.
We have shown theoretically that exploration techniques based on the concept of propagation of uncer-
tainty are neither sufficient nor necessary for posterior sampling exploration in sparse environments.
We instead proposed posterior sampling policy matching, a property motivated by the probabilistic
model over rewards and state transitions within the PSRL algorithm. Based on the theoretical insights,

2Code for Atari experiments: djanz.org/successor_uncertainties/atari_code
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we developed Successor Uncertainties, a randomised value function algorithm that avoids some of
the pathologies present within previous work. We showed empirically that on hard tabular examples,
SU significantly outperforms competing methods, and provided theoretical analysis of its behaviour.
On Atari 2600, we demonstrated Successor Uncertainties is also highly effective when combined
with neural network function approximation.

Performance on the hardest exploration tasks often benefits greatly from multi-step temporal dif-
ference learning (Precup, 2000; Munos et al., 2016; O’Donoghue et al., 2018) which we believe is
the most promising direction for improving Successor Uncertainties. Since modification of existing
models to incorporate Successor Uncertainties is relatively simple, other standard techniques used
within model-free reinforcement learning like (Schaul et al., 2015; Wang et al., 2016) can be leveraged
to obtain further gains. This paper thus opens many exciting directions for future research which we
hope will translate into both further performance improvements and a more thorough understanding
of exploration in modern reinforcement learning.

Acknowledgements

We thank Matej Balog and the anonymous reviewers for their helpful comments and suggestions. Jiri
Hron acknowledges the support by a Nokia CASE Studentship.

References
Auer, P. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine

Learning Research, 3(Nov):397–422, 2002.

Azizzadenesheli, K., Brunskill, E., and Anandkumar, A. Efficient Exploration through Bayesian
Deep Q-Networks. arXiv preprint arXiv:1802.04412, 2018.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver, D. Successor
features for transfer in reinforcement learning. In Advances in neural information processing
systems (NIPS), 2017.

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. Reinforcement learning and dynamic
programming using function approximators. CRC press, 2017.

Dayan, P. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 5(4):613–624, 1993.

Dearden, R., Friedman, N., and Russell, S. J. Bayesian Q-Learning. In AAAI/IAAI, pp. 761–768.
AAAI Press / The MIT Press, 1998.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new approach for
hard-exploration problems, 2019.

Gal, Y. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B.,
Azar, M. G., and Silver, D. Rainbow: Combining Improvements in Deep Reinforcement Learning.
In AAAI Conference on Artificial Intelligence, 2018.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. Reinforcement learning: A survey. Journal of
artificial intelligence research, 4:237–285, 1996.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. Deep successor reinforcement learning.
arXiv preprint arXiv:1606.02396, 2016.

Levine, N., Zahavy, T., Mankowitz, D. J., Tamar, A., and Mannor, S. Shallow updates for deep
reinforcement learning. In Advances in Neural Information Processing Systems (NIPS), 2017.

9



Lipton, Z. C., Li, X., Gao, J., Li, L., Ahmed, F., and Deng, L. BBQ-Networks: Efficient Exploration
in Deep Reinforcement Learning for Task-Oriented Dialogue Systems. In AAAI Conference on
Artificial Intelligence, 2018.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro, G., and Campbell, M. Eigenoption
discovery through the deep successor representation. arXiv preprint arXiv:1710.11089, 2017.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-based exploration with the successor
representation. arXiv preprint arXiv:1807.11622, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

Moerland, T. M., Broekens, J., and Jonker, C. M. Efficient exploration with double uncertain value
networks. arXiv preprint arXiv:1711.10789, 2017.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. Safe and efficient off-policy reinforce-
ment learning. In Advances in Neural Information Processing Systems (NIPS), 2016.

O’Donoghue, B., Osband, I., Munos, R., and Mnih, V. The Uncertainty Bellman Equation and
Exploration. In International Conference on Machine Learning (ICML), 2018.

Osband, I. and Van Roy, B. On lower bounds for regret in reinforcement learning. arXiv preprint
arXiv:1608.02732, 2016.

Osband, I., Russo, D., and Van Roy, B. (More) efficient reinforcement learning via posterior sampling.
In Advances in Neural Information Processing Systems, 2013.

Osband, I., Van Roy, B., and Wen, Z. Generalization and exploration via randomized value functions.
arXiv preprint arXiv:1402.0635, 2014.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep exploration via bootstrapped DQN. In
Advances in neural information processing systems (NIPS), 2016.

Osband, I., Aslanides, J., and Cassirer, A. Randomized prior functions for deep reinforcement
learning. In Advances in Neural Information Processing Systems, 2018.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P.,
and Andrychowicz, M. Parameter space noise for exploration. In International Conference on
Learning Representations (ICLR), 2018.

Precup, D. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty
Publication Series, 2000.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Strens, M. A Bayesian framework for reinforcement learning. In Conference on Machine Learning
(ICML), 2000.

Sutton, R. S., Barto, A. G., et al. Reinforcement learning: An introduction. MIT press, 1998.

Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Touati, A., Satija, H., Romoff, J., Pineau, J., and Vincent, P. Randomized value functions via
multiplicative normalizing flows. arXiv preprint arXiv:1806.02315, 2018.

Van Hasselt, H., Guez, A., and Silver, D. Deep Reinforcement Learning with Double Q-Learning. In
AAAI Conference on Artificial Intelligence, 2016.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. Dueling Network
Architectures for Deep Reinforcement Learning. In International Conference on Machine Learning
(ICML), 2016.

10


