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ABSTRACT
As the number and variety of smart devices increase, users
may use myriad devices in their daily lives and the online
activities become highly fragmented. Building an accurate
user identity becomes a difficult and important problem for
advertising companies. The task for the CIKM Cup 2016
Track 1 was to find the same user cross multiple devices.
This paper discusses our solution to the challenge. It is
mainly comprised of three parts: comprehensive feature en-
gineering, negative sampling, and model selection. For each
part we describe our special steps and demonstrate how the
performance is boosted. We took the second prize of the
competition with an F1-score of 0.41669.
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1. INTRODUCTION
With the rapid development of smart devices, users now

have myriad choices to connect to the Internet for daily ac-
tivities. A user may do shopping with his/her smart phone,
primary work on a laptop, and watch movies on a tablet.
Unless a service supports persistent user identities (e.g. Face-
book Login), the same user on different devices is viewed
independently. It results in companies having to deal with
weak user identities at device level. To perform sophisti-
cated user profiling especially for online advertising, it is
important to link the same users across multiple devices and
integrate his/her digital traces together.

At the Conference on Information and Knowledge Man-
agement (CIKM) 2016, the Data-Centric Alliance (DCA)
provided a dataset for cross-device entity linking challenge1.
The dataset contained an anonymized browse log for a set of
userIDs representing the same user across multiple devices.
For each browse log, DCA provided the obfuscated site URL

1https://competitions.codalab.org/competitions/11171
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Table 1: Statistics of the provided dataset

Statistics Value
#user 339,405

#fid 14,148,535
max.#fid per user 2000
min.#fid per user 2
avg.#fid per user 196.8

#URL level-1 230,297
#URL level-2 1,435,418
#URL level-3 2,725,823
#URL level-4 4,644,424

#matched pairs for training 506,136
#matched pairs to predict 215,307

and HTML title. Some of the linked users were released as
the training set. The participants need to identify the re-
maining matching user across multiple devices. Submissions
were evaluated using F1 measure (a harmonic mean of pre-
cision and recall).

In this paper, we describe our solution which placed 2nd
at the competition. We formulated the task as a binary
classification problem. Generally, it is simple, intuitive, and
extremely effective. The three most essential parts are the
feature engineering, negative sampling, and model selection.
The framework is shown in Figure 1. Feature engineering is
usually the most important factor for a data mining model.
To achieve a satisfying score, we have designed comprehen-
sive features from different levels. For the majority of data
mining competitions, gradient boosted machine is the best
single model and the ensemble of various models can fur-
ther improve performance. We also consider this tip but
conduct ensemble in a different way: we use the gradient
boosted decision tree as the core classification model and
use the logistic regression model to filter candidates. Since
the complete candidate set is N × N which is too large in
space, we have to do negative sampling. We find that the
choice of negative instances significantly influences the per-
formance of the model.

The remainder of this paper is organized as follows. In
Section 2 we briefly review the data set. Then we describe
our feature engineering approach in Section 3. In Section 4
and 5 we discuss our negative sampling algorithm and model
selection, respectively. The online judging is presented in
Section 6, followed by the conclusion in Section 7.

2. DATASET OVERVIEW
There are four data files in total provided for the competi-
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Figure 1: The framework of our solution.

tion. The first one is facts.json which contains users’ brows-
ing logs. Each browsing log contains a list of events for a
specific user, including fid(which can be regarded as an event
ID), timestamp, and user id. All the IDs are anonymized.
Another two files contains the mapping from an fid to the
URL and HTML title, respectively. The last file offers a
set of matching user IDs for training. The basic statis-
tics of the dataset are showns in Table 1. We denote URL
level as the length of the path, e.g., ”bing.com” is level-1,
”bing.com/images” is level-2.

3. FEATURE ENGINEERING
We formulated the user-matching task as a binary clas-

sification problem. Since feature engineering is usually the
most important part for data mining projects, we designed
comprehensive features based on the browsing logs. Each
instance is a pair of users with label 1 if the user pair is a
match and label 0 if not. The feature set can be divided into
three pillars as follows:

3.1 General Similarity
We assume that if two activity traces on two devices be-

long to the same user, then the traces will share some com-
mon websites or be similar in content. Thus, we design gen-
eral similarity metrics from the perspective of words, events,
URLs, and time:
DocSim: For each user we collect a bag of words from the
title of HTML the user has visited. Based on this bag of
words we calculate the words’ weight in terms of TF-IDF
and regard it as the user’s document profile. For two users,
their document similarity (DocSim) is measured as the co-
sine similarity between the document profiles:

wu
i =

ni∑
k nk

× log
|{docj}|

|{docj : ni ∈ docj}|
(1)

wu =< wu
0 , w

u
1 , ..., w

u
m > (2)

DocSim(u, v) =
wu ·wv

‖wu‖‖wv‖ (3)

FidSim: Similar to DocSim, however here we regard each
event ID as a word and calculate the similarity based on the
event document profiles.
URLSim: Similar to DocSim, however here we regard each
URL as a word and calculate the similarity based on the
URL document profiles. Since we consider 4 kinds of URL
levels as shown in Table 1, we get 4 values from URLSim.
FidComCnt,URLComCnt: We count the number of com-
mon fid and URLs between the two users.
HourCor: We assume that users may have some tempo-
ral patterns in their online behaviors. For example, some
users are active at midnight, while some users get up early
in the morning. Thus we calculate the Pearson correlation
coefficient based on the time distribution of two users:

HourCor(u, v) =

∑24
i=1(tui − tu)(tvi − tv)√∑24

i=1(tui − tu)2
√∑24

i=1(tvi − tv)2
(4)

HourCE: Consider the same concern with HourCor, but
here we use cross entropy as the metrics:

HourCE(u, v) = −
24∑
i=1

tui log tvi (5)

DayCor: Similar to HourCor, but here we calculate the
Pearson correlation coefficient based on day distribution (from
Monday to Sunday).
DayCE: Similar to HourCE, but here we calculate the cross
entropy based on day distribution (from Monday to Sun-
day).
MonthCor,MonthCE: Similar to HourCor and HourCE
but from the point of month.
FirstDateGap,LastDateGap: The interval between the
first/last dates of the two users, respectively.
OverlapDay: We count the number of dates both the two
users are active.
Skewness: The ratio of shorter lifespan to longer lifespan:

Skewness(u, v) =
Min(lifespan(u), lifespan(v))

Max(lifespan(u), lifespan(v))
(6)



Table 2: Top 10 key URLs and their lift ratio.

URL (level-1) RatioLift

426ddb4efe252937/9db45ace43b3eb9c 5,686,956
449c90845cf62b1f/b82caf660250833b 3,913,043
449c90845cf62b1f/77cc413057b22ef2 3,600,000
c0420384841e47d/16e720804d7385cb 2,739,130
449c90845cf62b1f/3cdf5b4cf0263a82 2,647,826
449c90845cf62b1f/1054834d358b06a2 2,647,826
09b0bf29d5bc1c1b/e0e89a73c6372042 2,478,260
5b67fb0f24569987/080473dc068d169c 2,269,565
09b0bf29d5bc1c1b/ac4f7a44715b4762 2,230,434
967a94aa9df5ac93/16e720804d7385cb 1,995,652

3.2 Key URLs
The above feature pillar is called General Similarity be-

cause they are coarse-grained. For example, we calculate
the number of mutual URLs between user u and user v,
but we don’t know which particular URLs they are. Visit-
ing bing.com is commonly happening among different users,
while a common visit to a personal homepage strongly indi-
cates a user matching. To this end, we plan to design more
fine-grained features in this pillar which can describe what
kind of URLs the two users share. We find that there are
some URLs that appear more often in positive pairs than
negative pairs. We assume that those URLs are key URLs
that can differentiate matching users from dis-matching users.
In order to find out those URLs, for each URL h we calculate
the ratio of the probabilities that it appears simultaneously
in a matching user pair to that in a random user pair:

RatioLift(h) =

|{#matching pairs containing h}|
|{#matching pairs}|

|{#random pairs containing h}|
|{#random pairs}|

(7)

Table 2 lists the top 10 key URLs. We can observe that
these URLs are much more likely to appear in positive pairs
than in negative pairs. There are about 5000 URLs with
lift ratio above 2000. We categorize key URLs into 7 groups
by the lift ratio: top 100, top 1000, top 2000, top 3000, top
4000, top 5000, and the others. For each user pair we count
the number of key URLs in each group as features.

3.3 Footprints
We plan to design further fine-grained features in this pil-

lar. We want to include the detailed activities of the users
and meanwhile avoid overfitting.
KeyURLDist: We sort the key URLs by their lift ratio
and divide the top 4000 key URLs into 40 buckets, with
each bucket containing 100 URLs. For each user-user pair,
we count the number of their common URLs in each bucket
respectively.
TopURLHit: Since the top URLs shows an extremely high
probability of matching users, in this feature, we use a 500-
dimension indicator vector to record whether the top 500
key URLs exist in the common space of the two users.
TemporalDist: In the General Similarity pillar, we calcu-
late the Pearson correlation similarity and cross entropy be-
tween two users’ temporal (hour/day/month) distributions.
Here we use the original temporal distributions as features.
For example, for features in hour granularity, we use a 24-
dimension vector to record the hourly activity amount.

3.4 Feature Evaluation

Algorithm 1 Iterative Negative Sampling

Input: U, M, n and k
Output: S

model← NULL
for i = 0→ k − 1 do

S← ∅
for u ∈ U do

if model = NULL then
Randomly sample n users from U and add
the n pairs to S

else
Select top n

2
users from U according to the

model and add to S
Randomly sample n

2
users from U and add to

S
end if

end for
S← S ∪M
re-train model based on S

end for
return S

Table 3: Performance evaluation with feature incremen-
tation. Row General-Sim means using feature pillar 1
only. +Key URLs mean using feature General-Sim and Key
URLs. Finally +Footprints means use all the three feature
pillars.

features AUC Recall Precision F1
General-Sim 0.8786 0.4029 0.4958 0.4445
+Key URLs 0.8810 0.4091 0.5034 0.4513
+Footprints 0.9383 0.5613 0.6906 0.6193

We reserve 1000 users from the training file as our local
validation set2. There are 3076 matching pairs in the lo-
cal validation set. Table 3 shows how the performance is
improved when we add more fine-grained features. Adding
footprints features significantly improves all the evaluation
metrics, which demonstrate that fine-grained features play
an essential role in user profiling. Table 4 lists the top 10
most important features according to the build-in feature
evaluation functionality of gradient boosting machine [4]. It
further demonstrates that the footprint features carry the
most discriminative information.

4. NEGATIVE SAMPLING
There are a total of 339,405 unique users in the browse log,

where the number of users in the training set is 240,732. As
described in the last section, for each instance (user-user
pair), we extract 621 features. We randomly output 10,000
instances and found that the file size is about 17.74MB. In
this way, enumerating the whole user-user pairs will result in
57,951,895,824 instances in the training file, which requires
about 100TB in space. Thus we have to do negative in-
stances sampling. We denote U as the user set, M as the
matching pairs, S to be the sampled training instances. We

2A common practice is that we need to generate k validation
sets in order to perform significance test on experimental
results. Due to time limit we just skip this step.
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Figure 2: Performance comparison among SVM, Logistic Regression, Shallow Neural Network, and Gradient Boosted Decision
Tree.

Table 4: Top 10 most important features.

Feature Name Split Gain
KeyURLDist02 1.0
HourCorrelation 0.4499

FidSim 0.4246
KeyURLDist01 0.4221
URLSim Level-1 0.3478
TopURLHit10 0.3183
KeyURLDist00 0.3137

OverlapDay 0.2910
KeyURLDist07 0.2494
KeyURLDist08 0.2389

Table 5: Performance evaluation for iterative negative sam-
pling algorithm.

Sampling method AUC Recall Precision F1
Random 0.8433 0.4195 0.4301 0.4247

INS 0.9383 0.5613 0.6906 0.6193

propose an iterative negative sampling algorithm which is
shown in Algorithm 1. We use logistic regression as the ker-
nel model for instances selection due to its computational
efficiency.

In Algorithm 1, n is usually small, in our case we set
n = 10. There are some tricks to selecting top n

2
users for

each specific user u. We don’t need to go through all the
240,732 users. E.g., we can randomly pick up 1000 users
and select the top n

2
users for u. Then we iterate for 10

times. During the competition we put enough patient to
compute all the 240,732 users for each user u. We run the
program in parallel on 9 machines and one iteration costs
about 20 hours. In this condition, one iteration is enough
to achieve good performance. We compare the performance
of randomly sampling and our proposed negative sampling
algorithm, the results are shown in Table 5.

5. MODEL SELECTION
We compare the performance of several models, includ-

ing Gradient Boosted Decision Tree (GBDT) [4], Logistic
Regression (LR), Shallow Neural Network (SNN), and SVM
(with linear kernel). Figure 2 showns the results, from which
we can observe that GBDT significantly outperforms the
other three models. It is in accordance with expectation
because gradient boosting machine is the state-of-the-art
classification model as reported from most of data mining

Table 6: Performance of GBDT without and with LR filter-
ing.

Model AUC Recall Precision F1
No LR filtering 0.7864 0.3551 0.4046 0.3782

With LR filtering 0.9383 0.5613 0.6906 0.6193

Table 7: Top 5 teams on final leader board.

Rank F1 Precision Recall
1 0.42038 0.39875 0.44449
2 0.41669 0.39444 0.44160
3 0.41370 0.40042 0.42790
4 0.40168 0.36591 0.44520
5 0.36110 0.33227 0.39540

competitions3.
A golden rule for achieving the top rank in data mining

competitions is that we need to train various models and
make ensembles [9, 7]. However, it is usually time consuming
to find an optimal way to ensemble. We didn’t join the com-
petition until the last week of the end of the competition. So
we propose a simple but turns out to be efficient way to en-
semble: from the training data we train two model, LR and
GBDT. We use the LR model to select 100 candidates for
each user in the test set. After this we can get a smaller test
set. Then we use the GBDT model to make predictions on
the smaller test set. Table 6 shows that this simple approach
greatly improves the accuracy of the prediction. One pos-
sible explanation is that there are many negative instances
which non-linear (tree) model such as GBDT could not dif-
ferentiate from positive instances. However, linear models
like logistic regression happens to work well on this part.
Being aware of this, the results shown in Figure 2 are unfair
to LR because for the test set we already apply LR to select
top 100 candidates in order to reduce the test space. Due
to time limits we did not spend more effort on the model
ensemble. However, the aforementioned result implies that
there are still opportunities to make improvements.

6. ONLINE EVALUATION
Every time we make improvements to local evaluations,

the corresponding online F1-score also improves. It indi-
cates that our framework does not cause overfitting and the
local test set is extracted appropriately. There are a total
of 215,307 true pairs in the test set. One small trick is that

3https://www.kaggle.com/wiki/PastSolutions



Algorithm 2 Select Instances for Submission

Input: predicted test pairs T, and parameters n, k, r.
Output: submission set P

P← ∅
Add top n pairs from T to P
for each user u do

for i = 0→ k − 1 do
retrieve the i-th top predicted user v for u
if Ranking(T, 〈u, v〉) < n× r then

Add 〈u, v〉 to P if not exists
end if

end for
end for
return P

since F1-score is a trade-off between recall and precision, we
don’t need to submit too many predicted instances in order
to achieve a peak F1 score. We only included about 100,000
instances in our final submission file. The final post pro-
cessing algorithm is shown in Algorithm 2. Besides top n
pairs, for each user in the test set we also select the top k
candidates whose global rank is not far-away from n. We
ended up with 2nd place on the leader board. Table 7 lists
the top 5 teams’ scores. The top 3 teams’ final scores are
very close.

7. CONCLUSION
In this paper, we describe our solution for the CIKM Cup

2016 User Linking Challenge at which we took the second
place of the competition. It has three primary componnets
that we focus on: the feature engineering, negative sam-
pling, and model selection. Since time was limited when our
approach was conceived, there are still many possible ap-
proaches which we have not tried yet. For example, learning-
to-rank [2] is a promising approach to this competition; and
we can also apply other ensemble methods such as stacking.

8. RELATED WORK
The topic of CIKM Cup 2016 (track 1) is very similar

to the ICDM Cup 20154:Drawbridge Cross-Device Connec-
tions, except that the two events provide different types of
data for mining. Among the winning solutions[10, 6, 3],
learning-to-rank and binary classification are the two most
popular paradigms. [10] points out that learning-to-rank is
more suitable for cross-device linking problem because for
each entity, we don’t need the absolute value of its probabil-
ity in matching with another entity, instead what we need
is the relative ranking according the target entity. [3] com-
bines several techniques, such as semi-surpervised learning
and bagging, to further boost the performance. Since it is
not feasible to generate a full entity-to-entity pair set, down-
sampling is used by all the winning solutions. However, they
down-sample the candidates by some particular rules. In
this paper, we propose a negative sampling method which
selects candidates iteratively with a weak learner.

Cross-device user matching is also related to link predic-
tion [8, 1, 11]. From the graph-thoretical perspective, users
can be regarded as nodes and a user-matching can be mod-
eled as an edge between the two corresponding nodes. Thus

4https://www.kaggle.com/c/icdm-2015-drawbridge-cross-
device-connections

the task is to predict the missing links in the graph. [5]
surveys several well studied link mining tasks and methods.
In this paper, we model the task as a binary classification
problem for simplicity. In the next steps we will study how
to make breakthroughs using graph models.
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