
CROSSBOW: Scaling Deep Learning with Small Batch Sizes
on Multi-GPU Servers

Alexandros Koliousis†, Pijika Watcharapichat], Matthias Weidlich‡,
Luo Mai†, Paolo Costa], Peter Pietzuch†

†Imperial College London ‡Humboldt-Universität zu Berlin]Microsoft Research

{a.koliousis, luo.mai, prp}@imperial.ac.uk, {pijika.watcharapichat, paolo.costa}@microsoft.com,
matthias.weidlich@hu-berlin.de

ABSTRACT
Deep learning models are trained on servers with many GPUs, and
training must scale with the number of GPUs. Systems such as
TensorFlow and Caffe2 train models with parallel synchronous
stochastic gradient descent: they process a batch of training data at
a time, partitioned across GPUs, and average the resulting partial
gradients to obtain an updated global model. To fully utilise all
GPUs, systems must increase the batch size, which hinders statistical
efficiency. Users tune hyper-parameters such as the learning rate to
compensate for this, which is complex and model-specific.

We describe CROSSBOW, a new single-server multi-GPU sys-
tem for training deep learning models that enables users to freely
choose their preferred batch size—however small—while scaling
to multiple GPUs. CROSSBOW uses many parallel model replicas
and avoids reduced statistical efficiency through a new synchronous
training method. We introduce SMA, a synchronous variant of model
averaging in which replicas independently explore the solution space
with gradient descent, but adjust their search synchronously based on
the trajectory of a globally-consistent average model. CROSSBOW
achieves high hardware efficiency with small batch sizes by poten-
tially training multiple model replicas per GPU, automatically tuning
the number of replicas to maximise throughput. Our experiments
show that CROSSBOW improves the training time of deep learning
models on an 8-GPU server by 1.3–4× compared to TensorFlow.

PVLDB Reference Format:
A. Koliousis, P. Watcharapichat, M. Weidlich, L. Mai, P. Costa, and P.
Pietzuch. CROSSBOW: Scaling Deep Learning with Small Batch Sizes on
Multi-GPU Servers. PVLDB, 12(11): 1399–1413, 2019.
DOI: https://doi.org/10.14778/3342263.3342276

1. INTRODUCTION

“If batch size could be made arbitrarily large [...], then
training is amenable to standard weak scaling approaches.
However, if the training [...] is restricted to small batch
sizes, then we will need to find other algorithmic and
architectural approaches to their acceleration.”
– J. Dean, D. Patterson and C. Young [14], March 2018

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342276

Deep learning has revolutionised many application fields, including
computer vision [35, 18], speech recognition [19, 68] and natural
language processing [31]. The training of deep learning models is
expensive: it takes roughly half a month to reproduce the state-of-
the-art accuracy for the ImageNet challenge on a single NVIDIA
Titan X GPU [16]. To reduce training time, systems exploit data
parallelism across many GPUs to speed up training [38, 20, 13].
Consequently multi-GPU servers have become widely available:
a new 10-GPU server with NVIDIA Pascal GPUs costs less than
$40,000 [48], and public cloud providers offer GPU server instances
with up to 16 GPUs [2].

Users expect training time to go down with the number of GPUs
in a server. Scaling the training process is challenging though
because it requires a system to fully utilise the parallelism of all
GPUs without introducing bottlenecks. Existing systems, including
TensorFlow [1], MXNet [9], CNTK [59], and Caffe2 [28], use
parallel synchronous stochastic gradient descent (S-SGD) [34]
for training: input batches of training data are partitioned across
GPUs. Each GPU then updates its local model replica before a
synchronisation operation calculates a new global model for the
training of the next input batch.

To utilise many GPUs effectively, S-SGD must therefore use
a large batch size. The batch size typically grows linearly with
(1) the number of GPUs, and (2) the performance of each GPU.
In practice, batch sizes of 64,000 are now not uncommon [27].
With large batch sizes though, statistical efficiency [71] of the
training process reduces [33, 41]. As the per-GPU model replicas
synchronise less frequently in relation to the processed training data,
the converge rate decreases, which in turn increases the time-to-
accuracy until the trained model reaches a target accuracy. Users try
to compensate for this reduction in statistical efficiency by increasing
the learning rate [16], or adjusting the batch size adaptively [62].
These techniques, however, require model-specific tuning and do
not fundamentally solve the problem but eventually fail for very
large batch sizes [14, 27, 16]. Given these implications of large
batches, users prefer to use small batches when possible [41].

The goal of our work is to explore how to design a deep learning
system that effectively trains with small batch sizes, i.e. between 2
and 32 [41], while still scaling to many GPUs. The starting point
for our design is that, on each GPU, we simply train a model replica
with a small batch size. This introduces two challenges, which we
address in the paper: (i) how to synchronise this potentially large
number of model replicas without adversely affecting statistical
efficiency; and (ii) how to ensure that the hardware resources of each
GPU are fully utilised, thus achieving high hardware efficiency?

We describe the design and implementation of CROSSBOW, a
new single-server multi-GPU deep learning system that decreases
time-to-accuracy when increasing the number of GPUs, irrespective

https://doi.org/10.14778/3342263.3342276
https://doi.org/10.14778/3342263.3342276

of the batch size. The design of CROSSBOW makes the following
new contributions:
(1) Synchronous model averaging (SMA). CROSSBOW uses SMA,
a new synchronisation approach that synchronises model replicas in
a scalable fashion with a low reduction in statistical efficiency. In
SMA, multiple parallel learners each train their own model replica
independently. Learners access a global average model to coordinate:
they adjust their trajectories with an update proportional to their
divergence from the average model. The average model thus reaches
better minima faster than individual learners. All replicas, including
the average model, are updated after each learner processes a single
batch, and all accesses to the average model are strongly consistent.
(2) Auto-tuning the number of learners. With a small batch size,
a single learner may not fully utilise the resources of a GPU. CROSS-
BOW therefore places multiple concurrent learners on the same GPU.
The number of learners per GPU is tuned automatically. During
training, CROSSBOW increases the number of learner until there
is no increase in training throughput, i.e. the maximum hardware
efficiency has been reached. It then uses the number of learners that
resulted in peak throughput.
(3) Concurrent task engine. CROSSBOW has a task scheduler that
dynamically schedules learners that process the next batch on the
first available GPU. The scheduler issues learning and synchronisa-
tion tasks concurrently in order to prevent the synchronisation per-
formed by SMA from becoming a bottleneck. CROSSBOW achieves
this by breaking the global synchronisation barrier of SMA into a
hierarchical tree: each learner synchronises using a local copy of the
average model that resides on its GPU; and local models synchronise
across GPUs. The local and global synchronisation operations
have optimised implementations according to their communication
scopes (e.g. using all-reduce [60]). They also overlap with the
forward and backwards error propagation of learners.

In our experimental evaluation, we show that, when training
ResNet-50 with 2 model replicas per GPU and a batch size of
16, CROSSBOW reaches a given target accuracy 1.5× faster than
TensorFlow. Training with multiple model replicas per GPU reduces
time-to-accuracy by 1.9× for ResNet-32, by 4.2× for VGG-16, and
by 2.7× for LeNet, respectively. SMA improves statistical efficiency
with multiple model replicas by up to 1.6×; while the task engine
of CROSSBOW improves hardware efficiency by up to 1.8×.

The rest of the paper is organised as follows: §2 discusses the
challenges when scaling the training by increasing the batch size; §3
introduces CROSSBOW’s synchronous model averaging approach
with independent learners; §4 describes the design and implementa-
tion of the CROSSBOW task engine; §5 presents out experimental
results; §6 surveys related work; and §7 concludes.

2. SCALING DEEP LEARNING
Deep learning models, e.g. multi-layer convolutional neural net-

works [36], have been shown to achieve high accuracy for many
image or speech classification problems [18, 3]. Since increasing
the amount of training data and the number of model parameters
improves their accuracy [18, 13], deep learning models require
training approaches that exploit the parallelism of modern hardware.

2.1 Mini-batch gradient descent
Supervised training of deep learning models uses labelled sam-

ples, split into training and test data. A model gradually “learns” to
predict the labels of training data by adjusting its model parameters
based on the error. It usually takes several passes (or epochs) over
the training data to minimise the prediction error. The test data is
used to measure the model accuracy on previously unseen data. The

most important metric is test accuracy, which measures the ability
of the model to make predictions when deployed “in the wild”.

More formally, let w be a vector of model parameters (weights),
and `x(w) be a loss function that, given w, measures the difference
between the predicted label of a sample (x, y) and the ground truth y.
The training problem is to find a w∗ that minimises the average loss
over all training data. In today’s systems, this is achieved using
stochastic gradient descent (SGD) [56, 4, 5], an iterative training
algorithm that adjusts w based on a few samples at a time:

wn+1 = wn − γn∇`Bn(wn) (1)

where γn is the learning rate in the n-th iteration of the algorithm,
Bn is a mini-batch of b training samples, and∇` is the gradient of
the loss function, averaged over the batch samples:

∇`Bn(wn) =
1

b

∑
x∈Bn

∇`x(wn) (2)

It is common to augment Eq. (1) with momentum, a technique
known to accelerate the convergence of deep learning models [63].
Using momentum, the training process favours gradients that descent
in directions known to improve accuracy from previous iterations.
The iterative training algorithm with momentum becomes:

wn+1 = wn − γn∇`Bn(wn) + µ(wn − wn−1) (3)

where µ is the momentum parameter and wn−wn−1 denotes the
algorithm’s previous search direction.

Gradient back-propagation [57] is used to compute the model
gradients when weights are spread across multiple layers. This is
done in two steps: (i) an input batch propagates forward through
the layers to compute the predicted label. This is compared with
the ground-truth label associated with each sample in the batch,
measuring the error; and (ii) the error propagates backwards from
layer to layer in reverse order. The error is used to compute the
gradient for the weights in each layer, and the weights can then be
updated incrementally by applying Eq. (3).

When training a deep learning model, the goal is to reduce the
time to reach a target level of test accuracy (time-to-accuracy). Two
factors affect the time-to-accuracy: (i) the number of iterations that
a training algorithm such as SGD requires to find a solution with
a given test accuracy (statistical efficiency); and (ii) the execution
time of each iteration (hardware efficiency).

2.2 Training with GPUs
GPU architectures are well suited for increasing the hardware

efficiency of the training process. A GPU is a many-core processor
that is designed for high processing throughput. It features thousands
of cores, which are simple floating-point arithmetic units. Arranged
in groups, cores form tens of streaming multi-processors (SMs).
Multiple threads can execute the same instruction per cycle on
different data, such as a training sample or a weight.

When training a deep learning model on a GPU, a batch of training
data B (or, during the backwards phase, its error) is transformed via
a series of matrix or vector floating-point operations (e.g. B×w) as
it propagates from one layer to the next. GPUs can perform more
floating-point operations per weight read than a CPU, thus achieving
more model updates per second [32].

Programs for the GPU are kernels, which can be executed in
a blocking or non-blocking fashion. Complex multi-layer deep
learning models may comprise of hundreds of kernels. Kernels are
executed in-order as part of a GPU stream, which is a queue of
device work. A GPU can have more than one stream, which allows
kernels to execute concurrently. Modern GPUs support events,

GP
U

 1
GP

U
 2

Compute
gradient

Compute
gradient

Iteration N Iteration N + 1

…

…

Compute
gradient

Compute
gradient

…

Compute
average

Aggregate
gradients

Update
replica

Update
replica

Batch Batch

Figure 1: Parallel S-SGD with two GPUs (Each GPU reads
half a batch and computes a gradient based on its local model replica.
Training does not proceed to the next batch until all replicas have
been updated with the aggregate value of the computed gradients.)

which are a publish/subscribe mechanism to synchronise across
different streams, without having to stall the entire GPU pipeline.

Copying input data from CPU to GPU memory over the PCIe
bus is typically assisted by a copy engine on the GPU, which
runs independently from the GPU’s compute engine that schedules
kernels. Systems therefore hide the latency of communication
by overlapping communication with computation tasks (e.g. using
NVIDIA’s Collective Communication Library (NCCL) [46]).

A server can have multiple GPUs, and GPU-to-GPU data trans-
fers use the PCIe bus or exploit a fast direct interconnect such
as NVIDIA’s NVLink bridge [47]. The GPUs in a server are
interconnected in a topology with varying bandwidth: e.g. in a
two-socket multi-GPU server, the GPUs may form a binary tree in
which each GPU pair is connected to a PCI switch, and two pairs
are connected with a PCI host bridge, attached to a CPU socket.

2.3 Parallel synchronous gradient descent
Current parallel training approaches distribute the gradient com-

putation across multiple GPUs, but differ in how they synchro-
nise the gradients. The prevailing training algorithm is parallel
synchronous SGD (S-SGD) [34]. It requires all GPUs to have a
consistent view of the n-th version of the model before the (n+1)-
th iteration starts: (i) at each iteration, S-SGD partitions a batch
equally across GPUs; (ii) each GPU computes a partial gradient
from a batch partition and the latest model version; (iii) GPUs then
coordinate to merge partial gradients into an aggregate gradient
(according to Eq. (2)); and (iv) the aggregate gradient is used to
update the models (according to Eq. (3)) before the next iteration.

Figure 1 shows the execution of S-SGD on a two-GPU server.
Each GPU has a local model replica in its memory, which is used
to compute the partial gradients. The GPUs coordinate so that the
same aggregate gradient is applied to all local replicas ensuring
consistency: a GPU collects partial gradients, averages them, and
then disseminates the result.

S-SGD can be combined with a parameter server (PS) archi-
tecture [38] that synchronises GPUs against a centralised entity.
The gradients can also be partitioned and sent to multiple PSs for
aggregation and updating of a sharded model.

To address stragglers during gradient computation or synchro-
nisation, researchers have proposed an asynchronous variant of
SGD (A-SGD) [7]. In A-SGD, a GPU progresses to the next
iteration immediately after its partial gradient was added to the
aggregate gradient, and uses the value accumulated thus far to
update its model replica. This leads to stale gradients and hard-to-
understand asynchrony, making it difficult to train complex neural
network models such as ResNet effectively. In contrast, S-SGD
has better convergence properties, which is why it has become the

de-facto standard for the training of deep neural networks [16, 27].
We therefore also focus on synchronous training.

2.4 Challenges in scaling training

“Training with large mini-batches is bad for your health.
More importantly, it’s bad for your test error. Friends
don’t let friends use mini-batches larger than 32.”

–Y. LeCun (@ylecun), April 2018

The batch size is a critical parameter when training with parallel
S-SGD: if the batch is too small, the GPU is not fully utilised
because the communication overhead to move data to and from
the GPU dominates. In parallel training, the (aggregate) batch
size must therefore increase linearly with the number of GPUs,
resulting in a constant batch size per GPU; otherwise, the overall
throughput scales poorly. This effect can be seen in the plot of
hardware efficiency in Figure 2a. It shows the relative throughput
speed-up when training a model with TensorFlow as we increase the
number of GPUs. If the aggregate batch size remains constant (e.g.
64), the throughput does not increase linearly because the batch size
per GPU decreases (e.g. with 8 GPUs the batch per GPU is just 8).
In contrast, if we increase the aggregate batch size (e.g. to 512 or
1,024 for 8 GPUs), thus maintaining a constant batch size per GPU,
we observe a linear speed-up. The same phenomenon holds when
considering the time per epoch. Figure 2b shows that large batch
sizes reduce the time for a complete pass over the training data.

While the above shows that large batch sizes are ideal to ensure
high hardware efficiency, they exhibit poor statistical efficiency [41],
which is expressed as the number of epochs required to converge
to a given accuracy (ETA). This is shown in the plot of statistical
efficiency in Figure 2c: as the batch size increases, TensorFlow
requires more epochs to converge. The reasons are twofold: (1) with
large and redundant training datasets (as it is often the case), small
batches ensure faster training because only few batches are sufficient
to capture the dimensionality of the problem space and converge
quickly to good solutions [37, 5]; (2) a small batch size leads to
“noisier” gradient updates, which widen the exploration of the loss
landscape, making it more likely to find better solutions with a
higher test accuracy [22, 21, 33, 26]

This trade-off between hardware and statistical efficiency is par-
ticularly detrimental in parallel training. While increasing the batch
size increases the throughput linearly with the number of GPUs,
beyond a certain threshold (e.g. 256 in Figure 2c), the number of
epochs increases super-linearly, thus preventing a linear reduction
of training time. This effect remains when using a parameter
server (PS) architecture to implement S-SGD: with a sharded model,
large batch sizes are also necessary for high hardware efficiency.

A typical solution to mitigate this issue and compensate for
the loss of statistical efficiency with larger batch sizes is hyper-
parameter tuning, e.g. dynamically adjusting the batch size as well as
other hyper-parameters, such as the learning rate and the momentum,
during the training process. In particular, it has been observed that,
as long as the ratio between the learning rate and the batch size
remains constant, training may be improved by varying the batch
size [26, 62, 16, 22]. This only holds when the learning rate remains
relatively small though [16].

While hyper-parameter tuning can achieve quasi-linear scaling
of the training time for large networks such as ResNet-50 on up
to 1,024 GPUs [16, 62, 27], it requires a time-consuming model-
specific methodology, which is often beyond the reach of non-
experts and cannot be applied easily to new models or hardware
architectures. In some cases, even with hyper-parameter tuning, it is
hard to scale training time on multiple GPUs: a recent study from

 1

 2

 4

 8

 1 2 4 8

S
p

e
e

d
-u

p

g

64
128
256
512

1024

(a) Hardware efficiency

 0

 10

 20

 30

 40

 64 128 256 512 1024

E
p

o
c
h

 t
im

e
 (

s
e

c
)

Images processed per update

g = 1
g = 2
g = 4
g = 8

(b) Time per epoch

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024

E
p

o
c
h

s
 t

o
 8

0
%

 t
e

s
t

a
c
c
u

ra
c
y

Images processed per update

TensorFlow

(c) Statistical efficiency

Figure 2: Trade-off between hardware and statistical efficiency (The figures shows (a) the speed-up with an increasing number of
GPUs when varying the batch size; (b) the corresponding epoch time; and (c) the number of epochs to reach a target accuracy of 80% when
varying the batch size. The model trained is ResNet-32 with TensorFlow.)

Le
ar

n
e

r
1

Le
ar

n
e

r
2

Compute
gradient

Update
replica

Compute
gradient

Iteration N Iteration N + 1

Batch

…

…

Compute
gradient

Update
replica

Compute
gradient

Batch

…

Compute
average

Synchronous
Model Averaging

Update
replica

Batch

Batch

Update
replica

Figure 3: Parallel training with two learners (Each learner
independently trains a model replica. The replica is updated based
on the locally computed gradients as well as corrections derived
through model averaging.)

Google Brain [61] shows that convolutional networks exhibit only
limited scaling with batch sizes larger than 64 and, for recurrent neu-
ral networks, e.g. long short-term memory (LSTM), the threshold
seems to be even lower (16) [61].

A general approach for scaling S-SGD on multiple GPUs there-
fore remains an open challenge due to the conflicting impact of large
batch sizes on hardware and statistical efficiency. In the next section,
we show how CROSSBOW addresses this problem by leveraging
a new synchronisation approach among fully-utilised GPUs, thus
achieving high GPU throughput without sacrificing converge speed.

3. SYNCHRONOUS MODEL AVERAGING
WITH LEARNERS

Our approach relies on the concept of a learner, which indepen-
dently trains a model replica for a given input batch (§3.1). Having
many independent learners requires careful synchronisation in order
to achieve high statistical efficiency. We introduce a new algorithm,
named synchronous model averaging (SMA), that consolidates the
model updates computed by many learners (§3.2). After that, we
discuss how to train multiple learners per GPU (§3.3) and how to
determine the number of learners to use (§3.4).

3.1 Independent learners
Parallel S-SGD imposes tight synchronisation when processing

partitioned batches. The gradients computed based on all model
replicas are aggregated, and the obtained result is incorporated by all
replicas. After each iteration, before the computation of gradients
for the next batch begins, all replicas are therefore the same.

Our idea is to introduce more diversity into the learning process
based on the notion of a learner. A learner is an entity that trains
a single model replica independently with a given batch size. The

Correction

Trajectory of
central average
model z

Trajectory of
replica w1

Initial
Model

Trajectory of
replica w2

Iterations of learner 1

Iterations of learner 2

i-1.1

i-1.2

i-1.3

i-2.1

i-2.2 i-2.3

Figure 4: Intuition behind SMA (Two replicas w1 and w2 are
trained by two learners. Their model updates are incorporated in a
central average model z. Based on the latter, corrections for w1 and
w2 are derived and applied after each iteration.)

rationale for this abstraction is that it decouples the batch size from
the degree of parallelism in the learning process. Each learner can
process a batch of small size to achieve high statistical efficiency,
while the number of learners offers a way to achieve high hardware
efficiency. Figure 3 shows two learners, each being assigned a differ-
ent complete batch. A learner computes a gradient and immediately
updates its replica based on the gradient. It then continues with
the gradient computation for the next batch. To prevent learners
from diverging, each learner also applies a correction to its model,
which is incorporated synchronously as part of the next update of
the replica. As we explain in the next section, corrections penalise
local replicas when deviating from the consensus among all replicas.

In contrast with parallel S-SGD, model replicas with learners
evolve independently because they are not reset to a single global
model after each batch. Unlike asynchronous learning approaches [55,
45, 71], each replica is corrected in each iteration to maintain the
convergence of the learning process. Learners enable us to achieve
both high statistical efficiency and hardware efficiency, avoiding the
trade-off between then faced by existing approaches.

3.2 SMA algorithm
To synchronise the local models of learners, we propose syn-

chronous model averaging (SMA), a new algorithm based on model
averaging [51, 50, 58]. SMA consolidates the model updates of
learners by maintaining a central average model. We illustrate
the idea behind SMA in Figure 4. Starting with the initial model,
two learners train replicas, w1 and w2, with distinct batches. Once
the learners have computed the gradients and updated their local
replicas, the updates are applied to a central average model.

A challenge for SMA is that, since learners are independent, they
explore different local minima during training and therefore would
diverge over time. As a solution, SMA uses the average model to
compute corrections for each learner, thus ensuring that they follow

input : w0, an initial model;
w1 . . .wk, k model replicas trained by k learners;
B, a set of batches;
γ, a learning rate parameter;
µ, a momentum parameter;

output : z, the trained model.

// Initialise central average model and its previous version
1 z← w0 ;
2 zprev ← ∅ ;

3 while target accuracy not reached ∧ |B| ≥ k do
// i-th iteration of the learning algorithm

4 c1, . . . , ck ← ∅, . . . , ∅ ;
5 for j ∈ {1, . . . , k} do

// j-th learner in the i-th algorithm iteration
6 Bj ← select(B) ; // Select batch for learner j
7 B← B \ {Bj} ; // Remove the batch
8 gj ← γ∇`Bj (wj) ; // Gradient for replica j

9 cj ← α(wj − z) ; // Correction for replica j

10 wj ← wj − gj − cj ; // Update replica j

// Update central average model
11 z′ ← z ;
12 z← z+

∑k
j=1 cj + µ(z− zprev) ;

13 zprev ← z′;

Algorithm 1: Synchronous model averaging (SMA)

the trajectory of the central average model (see Figure 4). Intuitively,
a correction represents a penalty for disagreeing with the consensus
in the previous iteration, and pulls the model replica of a learner
toward the average value over all replicas [6]. Eventually all replicas
will agree on the optimality of the central average model.

When the variance of all gradients is low, prior approaches that
use corrections either postpone them [73] or compute them using an
inconsistent view of the central average model [40]. In contrast, SMA
applies corrections synchronously at every iteration. This avoids
introducing any error in the stochastic process when corrections are
applied and therefore accelerates convergence.

A desirable property of model averaging is that the asymptotic
variance of the central average model decays faster (at an optimal
rate [50]) than the variance of individual replicas, improving conver-
gence over S-SGD. While model averaging reduces variance, it is
known that it is ineffective at forgetting the initial weights [25, 15].

To discard initial weights faster, SMA introduces momentum
(see §2.1). Unlike prior work that only applies momentum to
individual model replicas [73, 39], SMA incorporates the directions
of model weights into the updates to the central average model:
updates in directions of persistent descent are kept; those in other
directions are cancelled or diminished. SMA uses Polyak’s mo-
mentum method [49] because, compared to Nesterov’s accelerated
gradient [44], it fits model averaging better: the update to the central
average model is computed by all learners based on current positions
and not estimated ones [63].

Existing solutions either refrain from using averaging initially,
starting at later iterations [25] or vary the contribution of each
correction over time [73]. Both require model-specific parameter
tuning [50], which SMA’s use of momentum avoids.

We formalise the SMA algorithm in Alg. 1. It takes as input a
model, initialised as w0, a set of k model replicas w1 . . .wk that
are managed by k learners, a set of batches B, along with two
hyper-parameters: the learning rate γ and the momentum µ. Upon
termination, the algorithm returns the trained model.

First SMA initialises the central average model z and a reference

Learner

Replica …

Reference
Model

Learner

Learner

Replica

GPU

Learner

Replica …

Central
Average
Model

Learner

Learner

Replica

Learner

Replica …

Reference
Model

Learner

Learner

Replica

GPUGPU

Synchronous

Model Averaging

Direct application of
model difference

Figure 5: Synchronising multiple learners per GPU (SMA
is applied for one reference model per GPU; further local learners
incorporate differences of their replicas and the reference model.)

to a previous version of it, zprev (lines 1–2). It defines an iterative
learning process (lines 3–13) that terminates when the target accu-
racy has been reached by the central average model z or there are
insufficient batches available.

In each iteration, a learner j proceeds as follows: (i) it selects
a batch Bj (line 6) and, using the batch and its replica wj , the
learner computes a gradient gj (as in Eq. 1) under the given learning
rate (line 8); (ii) it computes a correction cj as the difference
between the replica wj and the central average model z where
α ≈ 1/k is a constant (line 9); and (iii) the model replica wj is then
updated by applying the gradient gj and the correction cj (line 10).

The iteration completes with an update to the central average
model z (line 12). This update is twofold: (i) it includes the
corrections derived for all the k model replicas assigned to the
independent learners, which represent the current differences of the
replicas with respect to z; and (ii) a second component exploits
the configured momentum and the previous version of the central
average model zprev to accelerate convergence by maintaining the
direction of gradients [19]. In the i-th iteration of SMA, zprev is the
model at the beginning of the (i−1)-th iteration.

Similar to most parallel training approaches [34, 73], SMA ben-
efits from an online adaptation of hyper-parameters. Based on the
accuracy observed after each iteration, the learning rate (parameter γ
in Alg. 1) may be reduced step-wise to overcome oscillation of the
trained model and improve accuracy [37]. Such adaptation can be
realised by updating γ directly in each iteration in SMA. For example,
when training ResNet-50, it is common to reduce the learning rate
twice, at the 30th and 60th epochs [18], which are chosen empirically
based on the accuracy observed after each iteration.

With SMA, however, oscillatory behaviour is observed on the
central average model, whereas a change in the learning rate affects
the training of each model separately. Since SMA does not reset all
models in each iteration, the accuracy may not necessarily improve
each time the learning rate changes. When detecting such a situation,
we therefore restart SMA: Alg. 1 is executed again with the latest
version of the central average model z as the new initial model w0.

Overall, SMA offers the benefits of small-batch training through
model averaging that improves test accuracy at scale. Its use of
synchronous corrections makes training insensitive to different non-
convex models because frequent and consistent corrections reduce
gradient variance faster than asynchronous ones when the number
of learners increases. Its use of momentum on the central average
model accelerates convergence with many learners, compensating
for the adverse effect of lower variance at the start of training.

3.3 Training multiple learners per GPU
When selecting a small batch size for training to achieve high

statistical efficiency, training a single model replica may not saturate
all GPU resources. Learners decouple the processing of a batch
from the available hardware, permitting the execution of multiple

input : τ , a throughput threshold parameter;

1 l1, . . . , lm ← 1, . . . , 1 ; // Number of learners for each of m GPUs
2 t′1, . . . , t

′
m ← 0, . . . , 0 ; // Throughput observed earlier for the m GPUs

3 while SMA executes do
4 for g ∈ {1, . . . ,m} do

// Observe learning throughput of g-th GPU
5 t← get-current-throughput(g);

// Adapt number of learners for g-th GPU
6 if t− t′g > τ then lg ← lg + 1 ;
7 else if t < t′g ∧ lg > 1 then lg ← lg − 1 ;
8 t′g ← t ;

Algorithm 2: Selecting the number of learners per GPU

learners per GPU. With a small batch size (e.g. 2), dozens of learners
can run concurrently on a multi-GPU server.

Given a potentially large number of learners, we take advantage
of the fact that some learners reside on the same GPU and access
shared memory, which is at least an order of magnitude faster than
PCIe for inter-GPU communication. Rather than aggregating all
differences in a single step, we therefore separate synchronisation
on the intra-GPU and inter-GPU level.

We organise synchronisation as illustrated in Figure 5. While
hierarchical synchronisation has been put forward in many contexts,
CROSSBOW exploits such a scheme for intra-GPU as well as inter-
GPU synchronisation of model replicas. To synchronise the learners
executing on a single GPU, one learner is chosen to manage a
reference model. Each learner then computes the difference between
its model replica and the local reference model. This difference is
then applied to the respective replica. At the global level, the SMA
algorithm is executed. It uses one of the local reference models as
the central average model (z in Alg. 1); all other reference models
(one per GPU) are the replicas incorporated into the model averaging
process (wj in Alg. 1).

3.4 Choosing the number of learners
The number of learners per GPU or, put differently, the number

of model replicas to be trained in parallel, is an important parameter.
It must be chosen carefully for a given batch size: when training
too few replicas, a GPU is under-utilised, wasting resources; when
training too many, the execution of otherwise independent learners
is partially sequentialised on a GPU, leading to a slow-down.

We propose to tune the number of learners per GPU based on the
training throughput at runtime. Unlike existing approaches to auto-
tuning that target hyper-parameters such as the learning rate and the
momentum, this enables adaptive control of the number of model
replicas per GPU. By observing the number of processed batches per
second, we detect under- and over-utilisation of a GPU. As described
in Alg. 2, we initially use a single learner per GPU (line 1). For
each GPU, we then consider the learning throughput (lines 4–8):
if a significant increase in throughput is observed, i.e. the increase
is a above a predefined tolerance threshold τ , a new learner is
added to the respective GPU (line 6). Upon observing a decrease in
throughput, we reduce the number of learners again (line 7).

Changing the number of learners is also beneficial in terms of
statistical efficiency. Having initially few learners reduces the
noise of stochastic gradients, fostering convergence of the reference
models and thus the central average model. Eventually, though,
this hampers the optimality of convergence as a smaller part of the
loss space is explored.1 By increasing the parallelism gradually,

1Similar observations have been made regarding dynamic changes
of the batch size [62] and learning rates [16].

Learn.
stream

Learn.
stream

Sync.
stream

Learn.
stream

Learn.
stream

Sync.
stream

G
PU

 1
G

PU
 N

Auto-
tuner Dataflow

Task scheduler

Data pre-
processor

Input batches

Task manager

Dataset 2

Data pre-
processor
Data pre-

processors

<Multiple threads>

Model replicas

Learn. streams

1

3

5 4

Figure 6: CROSSBOW design

we avoid this issue. Intuitively, a small initial number of learners
allows the central average model to reach the neighbourhood of
the solution quickly, which is then comprehensively explored with
increased training parallelism.

4. CROSSBOW SYSTEM DESIGN
To support the training of deep learning models using SMA, the

design of CROSSBOW has several unique features:
(1) Since we train multiple learners per GPU, CROSSBOW must
share GPUs efficiently. CROSSBOW executes learners concurrently
on a GPU by scheduling each to run on a separate GPU stream.
(2) We decide on the number of learners per GPU at runtime. The
design of CROSSBOW must support changing the number of learners
per GPU dynamically based on the available GPU resources.
(3) SMA synchronises all learners when they access the central
average model. The design of CROSSBOW must implement this
global synchronisation operation efficiently, and exploit concurrency
during synchronisation to avoid bottlenecks.

Next we introduce the main component of CROSSBOW’s design in
§4.1. Based on the above requirements, we then describe hows tasks
execute (§4.2) and are scheduled (§4.3), and how the number of
learners is tuned dynamically (§4.4). We finish with an explanation
of memory management in §4.5.

4.1 System overview
Figure 6 shows the main components of CROSSBOW:

(1) The data pre-processors read the training dataset into memory
and arrange samples into batches, possibly after some transforma-
tions such as image decoding and cropping.
(2) The task manager controls the pools of model replicas, input
batches and learner streams. It handles task completion events
originating from the GPUs.
(3) The task scheduler assigns learning tasks to GPUs based on the
available resources. It also triggers synchronisation operations at
the end of each iteration.
(4) The auto-tuner monitors the training throughput and creates
new learners on a GPU on-demand.

Figure 6 shows how CROSSBOW executes an iteration of SMA:
the data pre-processors populate the input batch pool with pointers
to data, one complete batch at a time (step 1). The task scheduler
checks if a model replica and a co-located learner stream are avail-
able (step 2) and then schedules a learning task (step 3). Upon
completion, the task manager handles the event and returns the
learner stream and the model replica to the pool (step 4). It also

G
PU

 1
G

PU
 2

Learn.
stream

Sync.
stream

Learn.
stream

Learn.
stream

Sync.
stream

Learn.
stream

	⇌ 𝛿 𝑤 ⇌

Σ 		𝑧

𝛿

⇌ 𝛿 𝑤 ⇌ 𝛿

⇌ 𝛿 𝑤 ⇌

Σ 𝑧

𝛿

⇌ 𝛿 𝑤 ⇌ 𝛿

	⇌

𝛿

𝑤

𝑧

Σ

Learning task

Local synchronization task

Global synchronization task

Update local model replica

Update average model

Iteration N Iteration N+1

a b

c

d

e

g

f

…

Figure 7: Dataflow graph on 2 GPUs with 2 learners each
(The figure shows how tasks are scheduled on streams during two
successive iterations of SMA, separated by a dashed line; solid lines
are data dependencies between tasks.)

frees up a slot in the input batch pool, to be populated by one of the
data pre-processors (step 1). The auto-tuner monitors the rate at
which learning tasks complete and interrupts the training by adding
a new learner (step 5).

4.2 Task execution
CROSSBOW trains a deep learning model by executing a dataflow

graph, as shown in Figure 7. The dataflow graph consists of a set of
learning tasks interleaved with synchronisation tasks. CROSSBOW
represents the processing layers of a deep learning model as a graph
of operators (e.g. a convolution or a matrix multiplication). A
learning task encapsules multiple operators (see a). It takes as
input a batch of training samples and a model replica and outputs a
gradient. The task scheduler executes a learning task on any of the
learner streams available on the GPU on which the replica used by
that learning task resides.

Synchronisation tasks can be local or global: (i) a local synchro-
nisation task computes the difference between a model replica and
the central average model (see b). It uses the difference, together
with the gradient of the corresponding learning task, to update the
model replica. There is one local synchronisation tasks per replica
on the same learner stream as the corresponding learning task;
(ii) a global synchronisation task aggregates all local differences
to update the central average model (see c). CROSSBOW allocates
one average model replica per GPU, and uses a separate stream, the
synchronisation stream, to execute global synchronisation tasks.

Placing a global execution barrier between the synchronisation
and all preceding learning tasks would be expensive: it would block
the task scheduler and delay the GPUs already waiting for tasks to
complete. Instead, the task scheduler overlaps the synchronisation
tasks from one iteration with the learning tasks of the next.

When overlapping tasks, the task scheduler considers data depen-
dencies between tasks (see d). The horizontal direction in the figure
represents time, and the vertical direction a spatial GPU partitioning
based on streams. A line connecting two tasks denotes that the task
on the right cannot start until the one on the left has completed.

Within an iteration, all local synchronisation tasks can execute
concurrently (see e). They only require read-only access to the

central average model in order to compute the difference from each
model replica. The local synchronisation tasks, however, depend on
the average model being updated consistently on each GPU by the
global synchronisation tasks of the previous iteration.

Global synchronisation tasks can also execute concurrently within
an iteration (see §3.3). The intra-GPU operations of a global
synchronisation task execute as soon as their dependency to a local
synchronisation task is satisfied (see d). The inter-GPU operations
are implemented as a collective all-reduce primitive [60]. All-reduce
creates a ring topology in which each GPU exchanges data partitions
with its peers. A GPU reduces the partition data that it receives by
combining it with its own, and eventually every GPU holds the
final aggregated data. As a result, all-reduce evenly distributes the
computation of the update for the average model among the GPUs.

The global synchronisation tasks in one iteration can execute
concurrently with the learning tasks in the next (see f). Once the
local synchronisation tasks have completed, each replica is updated.
Now the task scheduler can issue the next learning task to the learner
stream without waiting for other tasks to complete (see g).

4.3 Task scheduling
In each iteration of SMA, the task scheduler schedules one learn-

ing task for each model replica in the pool, followed by synchro-
nisation tasks. As the task manager returns newly-updated model
replicas to the pool, the task scheduler schedules further learning
tasks and associates the next batch with a model replica on a first-
come, first-served basis. Compared to round-robin scheduling, as
used by PyTorch [52] or TensorFlow [1], this improves hardware
efficiency because the task scheduler does not wait for a given replica
to become available. After an assignment, the task scheduler hands
the learning task over to one of its worker threads, in particular,
one that runs on the same socket as the task’s designated GPU.
The worker thread issues the task to one of the GPU’s streams as a
sequence of kernels. All kernel calls to the GPU are non-blocking,
and the thread returns immediately to schedule the next task.

A challenge for the task scheduler is to ensure that tasks that
can run concurrently are executed concurrently by a GPU. As there
are multiple streaming multi-processors (SMs) per GPU with no
shared resources among them, a GPU can execute multiple tasks
concurrently by assigning them to different sets of SMs. This
favours our approach of training with small batch sizes because
the kernels of a learning task usually require few SMs. As a
solution, the task scheduler assigns concurrent tasks to different
GPU streams, which enables the GPU to make efficient internal
scheduling decisions: tasks submitted to the same stream execute in
issue order; tasks on different streams may execute concurrently. A
worker thread issues the task’s kernels to its assigned streams, along
with any event generators or handlers.

The task scheduler uses GPU events to preserve data dependencies
between submitted tasks. If there is a dependency between tasks τ1
and τ2, the scheduler submits an event generator after τ1 completes
and an event handler before τ2 begins. When the event generator
on τ1’s stream executes, it signals τ2’s handler that all preceding
tasks on that stream, τ1 included, have completed; when the event
handler on τ2’s stream executes, all subsequent tasks on that stream
block until it receives a signal from τ1’s event generator. Analogous
to the task scheduler, the task manager also uses multiple threads to
handle task completion events in parallel, returning model replicas
return to the pool in a timely manner.

A challenge when scheduling multiple learning tasks on the
GPU is that their computational load varies both within and across
operators. As a result, the GPU scheduler achieves varying degrees
of concurrency across learning tasks, and training throughout does

Table 1: Deep learning benchmarks and datasets used

Model Dataset Input size (MB) # Ops Model
size (MB)

LeNet MNIST 179 24 4.2
ResNet-32 CIFAR-10 703 267 1.8
VGG-16 CIFAR-100 703 121 57.3
ResNet-50 ILSVRC 2012 1,073,375 384 97.5
ResNet-101 ILSVRC 2012 1,073,375 758 169.9

not scale linearly with the number of learners: some operators may
run in parallel while others may block until sufficient resources
become available. Since CROSSBOW cannot control how the GPU
scheduler schedules operator kernels, it uses multiple threads to
submit kernels. This enables the GPU scheduler to consider multiple
kernels together and thus achieve better packing with lower variance.

4.4 Tuning learners
The auto-tuner changes the number of learners per GPU at

runtime without prior knowledge of the trained model (e.g. the
number and computational complexity of each model layer) or the
training environment (e.g. the number and capability of each GPU).
To this end, it implements the adaptation procedure introduced in
§3.4 and formalised in Alg. 2.

The auto-tuner measures the training throughput by considering
the rate at which learning tasks complete, as recorded by the task
manager. As defined in Alg. 2, the number of learners per GPU is
then increased or decreased based on the observed change in training
throughput. Note that, on a server with homogeneous GPUs, the
auto-tuner may measure only the throughput of a single GPU to
adapt the number of learners for all GPUs.

The auto-tuner initiates the creation of a new learner after the
learning and synchronisation tasks of the current iteration have
been scheduled. Adding a learner to a GPU requires allocating a
new model replica and a corresponding learner stream. The auto-
tuner places temporarily a global execution barrier between two
successive iterations (step f in Figure 7), avoiding overlap with
other tasks. The new model replica is initialised with the latest value
of the average model. The auto-tuner also locks the resources pools,
preventing access by the task scheduler or manager, while they are
being resized.

Even for large models, such as ResNet-50, auto-tuning completes
within milliseconds. The main overhead comes from the memory
allocation and the initialisation of the model weights. Since model
weights and their gradients are kept in contiguous memory, a single
allocation call suffices.

4.5 Memory management
Data pre-processors transfer the input data from CPU to GPU

memory using direct memory access (DMA). They write the pre-
processed training samples to a page-aligned, page-locked circular
buffer whose memory range is registered to the GPU’s address space.
This memory can be read directly by the GPU with higher band-
width than unregistered, pageable memory. The buffer size must
accommodate at least one input batch per learner (i.e. enough for a
complete iteration of SMA). CROSSBOW uses double buffering to
create a pipeline between data pre-processors and the task scheduler.
When the pre-processors stall the pipeline because it takes more
time to prepare the data on the CPU than to process it on a GPU,
some or all of the input data transformations are scheduled on the
GPUs as a preamble to each learning task.

Deep learning models require more memory to store the output
of their dataflow operators than the model itself. For example,

the ResNet-50 model is 97.5 MB in size but consumes 7.5 GB of
memory to store the outputs from 384 operators. The memory
requirement scales linearly with the batch size, as well as the number
of learners. CROSSBOW must therefore reduce the memory footprint
of each learner when training multiple of them per GPU.

CROSSBOW, similar to TensorFlow [1], MxNet [9] and Super-
Neurons [66], devises an offline memory plan to reuse the output
buffers of operators using reference counters. During initialisation,
CROSSBOW traverses the operators of a learning task. When visiting
an operator, it considers preceding operators and reuses an output
buffer if the reference count is zero; otherwise it assumes that a new
output buffer must be created. To account for data dependencies, it
then decrements the reference counter of the operator’s inputs and
increments the counters of the operator’s output. Such an offline
plan reduces the memory footprint of a learner by up to 50% because
outputs are mostly reused during the backwards phase.

The above approach cannot be used in CROSSBOW directly.
Replicating the offline plan for each learner would lead to over-
allocation of memory, when executing multiple learners per GPU.
CROSSBOW exploits that, in practice, not all instances of the same
operator would execute concurrently. This enables the sharing of
some of the output buffers among learners on the same GPU using an
online memory plan. For each operator, the task scheduler maintains
a pool of output buffer pointers to GPU memory. Pools are shared by
all learners on the same GPU. At runtime, when the task scheduler
considers an operator for execution, it reuses the first available buffer
in the output buffer pool; if none are available, it allocates a new one.
The task scheduler increments the reference counter of the operator’s
output according to its data dependencies and issues the kernel on a
stream. When the operator completes, the task manager decrements
the reference counter of the operator’s input and output buffers. A
buffer with zero references returns to the pool, and it can be reused
by other learning tasks. When neither a complete model replica
nor a complete learning task fits into GPU memory, CROSSBOW
could exploit related work on handling large models [54, 12] or
large operator outputs [24].

5. EVALUATION
In this section, we evaluate the performance of our CROSSBOW

prototype when training on a multi-GPU server. We begin by
comparing its behaviour against TensorFlow [1] using five deep
learning macro-benchmarks, as we vary the number of GPUs and
the number of learners per GPU (§5.2). Next, we assess the impact
of CROSSBOW’s core features through a set of micro-benchmarks:
we explore the benefits of executing multiple learners per GPU in
terms of statistical and hardware efficiency (§5.3); and we measure
the ability of the auto-tuning mechanism to identify the best number
of learners per GPU (§5.4) and the impact of the model averaging
used in SMA (§5.5). Finally, we quantify the efficiency of the
synchronisation task implementation (§5.6).

5.1 Experimental set-up
Experiments are conducted on a server with two Intel Xeon E5-

2650 v3 2.3 GHz CPUs (20 CPU cores in total) and 256 GB of RAM.
The server has 8 NVIDIA GeForce GTX Titan X (Pascal) GPUs,
each with 3,072 cores and 12 GB of RAM, connected via PCIe 3.0
(×16). It runs Linux kernel 4.4 with the NVIDIA driver 367.57 and
CUDA 8.0 with the cuDNN 6.0 library. We also use another server
with 8 NVIDIA Tesla V100 (Volta) GPUs, each with 5,120 cores,
640 Tensor cores, and 16 GB of RAM, connected in a mesh topology
with NVLink.

As a baseline, we use TensorFlow version 1.4 (1.13 on the Volta
GPUs). When deployed on more than one GPU, TensorFlow uses

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

A
c
c
u
ra

c
y
 (

%
)

Epochs

γ = 0.1, µ = 0.9, d = 10
-4

Test
Training

(a) ResNet-50

 0

 20

 40

 60

 80

 100

 0 30 60 90

A
c
c
u
ra

c
y
 (

%
)

Epochs

γ = 0.1*, µ = 0.9, d = 10
-4

Training
Test

(b) ResNet-101

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

A
c
c
u
ra

c
y
 (

%
)

Epochs

γ = 0.1, µ = 0.9, d = 10
-4

Training
Test

(c) ResNet-32

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

A
c
c
u
ra

c
y
 (

%
)

Epochs

γ = 0.1, µ = 0.9, d = 5·10
-4

Training
Test

(d) VGG

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

A
c
c
u
ra

c
y
 (

%
)

Epochs

γ = 0.001, µ = 0.9, d = 10
-4

Training
Test

(e) LeNet

Figure 8: TensorFlow’s convergence over epochs (Test and training accuracy over epochs for a given learning rate γ, momentum µ,
and weight decay d. In TensorFlow, ResNet-101 uses the linear scaling rule [16]. The red lines show our test accuracy targets.)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8

T
T

A
(8

8
%

)
(s

e
c
)

g

TensorFlow

512

256

256

128

Crossbow (m=1)256

256

256
64

Crossbow

64

64

64
64

4

3

2
2

(a) ResNet-32

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

1 2 4 8

T
T

A
(6

9
%

)
(s

e
c
)

g

TensorFlow

256

128 64

32

Crossbow (m=1)

256

256

256

256

Crossbow

256

256

128

256

3

2

2

2

(b) VGG

 0

 5

 10

 15

 20

 25

 30

8

T
T

A
(5

3
%

)
(h

o
u
rs

)

g

TensorFlow

32

Crossbow (m=1)

32

Crossbow

16

2

(c) ResNet-50

 0

 10

 20

 30

 40

 50

 60

8

T
T

A
(5

3
%

)
(h

o
u
rs

)

g

TensorFlow

32

Crossbow (m=1)

32

Crossbow

32

1

(d) ResNet-101

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1

T
T

A
(9

9
%

)
(s

e
c
)

g

TensorFlow

4

Crossbow (m=1)

4

Crossbow

2

2

(e) LeNet

Figure 9: Time-to-accuracy for five deep-learning models (Numbers on top of the bars report the batch size per GPU that achieved
that accuracy; numbers inside the CROSSBOW bars report the best number of model replicas per GPU.)

parallel synchronous SGD (§2.3): GPUs have an identical replica
of the model and, after each iteration, they exchange the computed
gradients using NCCL’s all-reduce. Each GPU is managed by a
dedicated thread on the CPU, and TensorFlow allocates one stream
for computation and one for data transfers. In Crossbow, SMA is
used (§3.2), and GPUs exchange model differences (rather than
gradients) through NCCL. Each GPU then updates its reference
model copy with the accumulated difference in a consistent manner.

We compare performance using TensorFlow’s suite of bench-
marks [64] shown in Table 1. We select a mix of models, repre-
senting different sizes and shapes of networks. This includes both
small (LeNet), large (ResNet-50) and very large networks (ResNet-
101) as well as deep and low-dimension networks (ResNet-32)
and shallow and high-dimension ones (VGG). To enable a fair
comparison, we configure both systems with the same data augmen-
tation, model variable initialisation and hyper-parameter settings.
Following common practices, the learning rate in ResNet-32 is
multiplied by 0.1 at epochs 80 and 120 [18]; the learning rate in
VGG is halved every 20 epochs [65].

In our experiments, we vary two main parameters: the batch size
per learner (b) and the number of model replicas (m). Our main
metric is the time-to-accuracy TTA (x), defined as the time taken
for the median test accuracy of the last 5 epochs to be equal or above
a given threshold x. For each of the four deep learning models, we
choose different thresholds based on the highest accuracy reached
by TensorFlow in our set-up. According to the results in Figure 8,
we select the following thresholds: 99% (LeNet), 88% (ResNet-32),
69% (VGG-16), 53% (ResNet-50) and 74.9% (ResNet-101). Higher
accuracies can be achieved by leveraging dynamic hyper-parameter
tuning. As discussed in §2.4, these techniques, however, are model-
and architecture-specific and lack generality. In contrast, the goal
of our evaluation is to compare the different approaches underlying
CROSSBOW and TensorFlow under uniform settings.

5.2 Scalability
We begin by comparing the performance of CROSSBOW and

TensorFlow when scaling the number of GPUs. Figure 9 shows
the performance of CROSSBOW and TensorFlow for the five deep
learning models. For ResNet-32 and VGG (Figures 9a and 9b), we
change the number of GPUs from 1 to 8; for ResNet-50 (Figure 9c)

and ResNet-101 (Figure 9d), we show the results for 8 GPUs only
due to the long time required to train with few GPUs (e.g. with
1 GPU, TensorFlow takes more than 5 days for training ResNet-50);
for LeNet (Figure 9e), we only run the experiment with 1 GPU
because, given the small model size, training on multiple GPUs
leads to a higher training time due to the synchronisation overhead.

First we consider the performance of CROSSBOW when using
only one learner per GPU, i.e. m=1 (black bar in Figure 9). In
this configuration, for ResNet-32 and VGG, CROSSBOW achieves a
performance comparable or slightly worse than TensorFlow when
training on a small number of GPUs (1 or 2). The reason is that both
ResNet and VGG are relatively compute-intensive models. With
few learners, the synchronisation overhead is limited and, hence,
the benefits of SMA (§3) and the fast task scheduling (§4.3) are less
relevant. As we increase the number of GPUs to 4 or 8, the number
of learners and the amount of synchronisation among them increases
proportionally. The results now highlight the higher performance
of SMA compared to TensorFlow’s S-SGD scheme, with up to a
72% reduction in TTA for VGG with 8 GPUs (and 7% for ResNet-
32, respectively). A similar improvement shows for ResNet-50
in Figure 9c and ResNet-101 in Figure 9d: CROSSBOW achieves an
18% reduction in TTA in both networks (8 GPUs).

Notably, when training VGG, TensorFlow scales poorly with the
number of GPUs. Increasing from 2 to 4 GPUs does not noticeably
reduce TTA and with 8 GPUs the TTA almost doubles. The reasons
are twofold: (i) our batch size exploration shows that the best TTA
is achieved with an (aggregate) batch size of 256, which means
that, with 8 GPUs, the batch size per GPU is only 32, leading to
under-utilisation; and (ii) with more GPUs, the communication and
synchronisation costs increase, degrading performance.

CROSSBOW offers a benefit even when training on a single
GPU (one learner in total) if the model is not compute-intensive.
For LeNet, each learning task takes less than 1 ms (compared
to ∼220 ms for ResNet-50) and, hence, the scheduling overhead
becomes critical. By leveraging its efficient task scheduler, CROSS-
BOW yields a significant TTA reduction (43%) compared to Tensor-
Flow with one learner (see Figure 9e).

Thus far, we have focused on a CROSSBOW configuration with
m=1. A key advantage of CROSSBOW is its ability to increase

 70

 75

 80

 85

 90

 0 100 200 300 400 500T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Time (sec)

g = 8

TensorFlow
Crossbow (m=1)
Crossbow (m=2)

 70

 75

 80

 85

 90

 0 300 600 900 1200 1500T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Time (sec)

g = 1

TensorFlow
Crossbow (m=1)
Crossbow (m=4)

(a) ResNet-32

 50

 55

 60

 65
 69

 0 500 1000 1500 2000 2500T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Time (sec)

g = 8

TensorFlow
Crossbow (m=1)
Crossbow (m=2)

 50

 55

 60

 65
 69

 0 500 1000 1500 2000 2500T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Time (sec)

g = 1

TensorFlow
Crossbow (m=1)
Crossbow (m=3)

(b) VGG

 0
 20
 40
 60
 80

 100

 0 5 10 15 20 25 30T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

Time (h)

g = 8

TensorFlow
Crossbow

(c) ResNet-101

Figure 10: Convergence over time

hardware efficiency without affecting statistical efficiency by adding
more learners per GPU (m>1). In this case, CROSSBOW signifi-
cantly improves performance even with few GPUs. For ResNet-32,
CROSSBOW with m=4 achieves a 46% TTA reduction with 1 GPU
and a 24% TTA reduction with m=2 and 8 GPUs; for VGG, the re-
duction is 10% for 1 GPU and 77% for 8 GPUs. Similar benefits with
m=2 also show for ResNet-50 (33% TTA reduction, corresponding
to 5 hours) and LeNet (63% TTA reduction). As explained in §3,
m>1 increases the GPU throughput without necessitating a larger
batch size that would affect statistical efficiency. For ResNet-50,
CROSSBOW with m=2 uses a small batch size of b=16 compared
to an aggregate batch size of 32×8=256 for TensorFlow (64 and
1,024 for ResNet-32, respectively).

While we choose to use the highest accuracy reached by Tensor-
Flow as the threshold x in the TTA (x) metric, similar improvements
hold for other accuracy thresholds. In Figure 10, we plot TTA over
time for ResNet-32 and VGG with 1 and 8 GPUs and for ResNet-101
with 8 GPUs only due to the high computation time. CROSSBOW
achieves high accuracy within a few minutes: with 8 GPUs, it takes
92 seconds to exceed a 80% accuracy for ResNet-32 compared
to 252 seconds for TensorFlow—a 63% TTA reduction. Similarly,
CROSSBOW achieves a 74% TTA reduction for VGG. This indicates
that SMA converges quickly to a region containing good minima.
Due to its large size, for ResNet-101, it is not possible to fit more
than one learner per GPU. As shown in Figure 10c, even in this
case, CROSSBOW outperforms TensorFlow due to its more efficient
synchronisation algorithm and optimised implementation, especially
until epoch 30, where gradient variance amongst learners is high.

5.3 Statistical and hardware efficiency
CROSSBOW with m>1 outperforms TensorFlow because it can

increase hardware efficiency without negatively impacting statistical
efficiency. As discussed in §2.4, Tensorflow must increase the batch
size to improve hardware efficiency but this comes at the cost of
reduced statistical efficiency. In contrast, CROSSBOW uses the
number of learners m as an additional control parameter to increase
hardware efficiency without having to resort to larger batch sizes.

We show this in Figure 11 by plotting the GPU utilisation for
TensorFlow and CROSSBOW as we increase the batch size. With

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512

G
P

U
 U

ti
l.
 (

%
)

Batch size, b

TensorFlow
Crossbow (m=1)
Crossbow (m=2)
Crossbow (m=4)

Figure 11: GPU utilisation for TensorFlow and CROSS-
BOW for various batch sizes (This experiment uses ResNet-32.)

a batch size of 64, TensorFlow is unable to fully saturate the GPU
(utilisation is 68%), and it must resort to a batch size of at least 512
to achieve nearly full utilisation. As we showed in Figure 2c, this
comes at a cost of reduced statistical efficiency, resulting in a larger
number of epochs for convergence. By increasing the number of
learners per GPU, CROSSBOW fully utilises the GPUs even for small
batch sizes: for b=64 with m=4 learners, CROSSBOW utilises 97%
of the GPU (74% for m=2, respectively).

In Figures 12 and 13, we show how hardware and statistical
efficiency, and the resulting TTA, are affected by m when using
1 and 8 GPUs, respectively. We only report the results for ResNet-
32 (b=64) but similar trends hold for the other models. Compared
to the experiments in Figure 9a, we lower the target accuracy for
TTA to 80% as otherwise the results would be skewed by the change
in the learning rate at epoch 80 (see §5.1).

When training with 1 GPU, using m=4 increases the throughput
by a factor of 1.4× compared to the case with a single learner (Fig-
ure 12a) because the multiple learners fully utilise a GPU. Inter-
estingly, this improves statistical efficiency as well—the number
of epochs required to converge drop from 30 (m=1) to 14 (m=4)
(see Figure 12b). This is because multiple model replicas can ex-
plore a larger portion of the space in parallel while the average model
can reduce the variance among them, thus requiring fewer epochs to
find good minima. As a result of the higher hardware and statistical
efficiencies, the TTA is also reduced by 3.2× (Figure 12c).

In contrast, the behaviour with 8 GPUs is somewhat different.
Whilem=2 yields higher throughput (1.3×), increasing the number
of learners to m=4 does not further improve the throughput (Fig-
ure 13a). The reason is that, with 8 GPUs and 4 learners per GPU,
the overall number of learners is 32, which introduces a signifi-
cant amount of synchronisation overhead. In terms of statistical
efficiency (Figure 13b), increasing the number of learners to m=2
does not significantly affect the number of epochs to converge but
increasing it further leads to reduced statistical efficiency—with
32 learners in total, there is not enough stochastic noise in the
training process, which makes it harder for the average model to
escape bad minima. In this case, m=2 represents the best trade-off
because it allows for higher hardware efficiency without noticeably
worsening statistical efficiency. Indeed, this configuration reduces
training time by 1.3× (Figure 13c).

These results show that increasing the number of learners per
GPU is beneficial to reduce the training time. However, identifying
the correct number of learners is crucial to achieving the best
performance, as we show next.

5.4 Selecting the number of learners
To select the number of learners per GPU m, CROSSBOW pro-

gressively increases m until the throughput (expressed as images
processed per second) stops improving (see §3.4). To validate this
approach, Figure 14 shows the TTA and throughput achieved for

 0

 1

 2

 3

 4

 5

Crossbow
m = 1

Crossbow
m = 2

Crossbow
m = 4

TensorFlowT
h
ro

u
g
h
p
u
t
(1

0
3
 i
m

a
g
e
s
/s

)

(a) Hardware efficiency

 0

 10

 20

 30

 40

 50

 60

Crossbow
m = 1

Crossbow
m = 2

Crossbow
m = 4

TensorFlow

E
p
o
c
h
s
 t
o
 8

0
%

 t
e
s
t
a
c
c
u
ra

c
y

(b) Statistical efficiency

 0

 200

 400

 600

 800

 1000

 1200

Crossbow
m = 1

Crossbow
m = 2

Crossbow
m = 4

TensorFlow

T
T

A
(8

0
%

)
(s

e
c
)

(c) Time to accuracy

Figure 12: Trade-off between hardware and statistical efficiency with 1 GPU (This experiment uses ResNet-32 and b=64.)

 0

 5

 10

 15

 20

Crossbow
m = 1

Crossbow
m = 2

Crossbow
m = 4

TensorFlowT
h
ro

u
g
h
p
u
t
(1

0
3
 i
m

a
g
e
s
/s

)

(a) Hardware efficiency

 0

 10

 20

 30

 40

 50

 60

Crossbow
m = 1

Crossbow
m = 2

Crossbow
m = 4

TensorFlow
E

p
o
c
h
s
 t
o
 8

0
%

 t
e
s
t
a
c
c
u
ra

c
y

(b) Statistical efficiency

 0

 50

 100

 150

 200

 250

 300

 350

 400

Crossbow
m = 1

Crossbow
m = 2

Crossbow
m = 4

TensorFlow

T
T

A
(8

0
%

)
(s

e
c
)

(c) Time to accuracy

Figure 13: Trade-off between hardware and statistical efficiency with 8 GPUs (This experiment uses ResNet-32 and b=64.)

 0

 100

 200

 300

 400

 500

 1 2 3 4 5
 0

 20

 40

 60

 80

 100

T
T

A
(8

8
%

)
(s

e
c
)

T
h
ro

u
g
h
p
u
t
Im

p
ro

v
e
m

e
n
t
(%

)

m

g = 8
TTA

86%
82%

 0%

 0

 400

 800

 1200

 1600

 2000

 0

 20

 40

 60

 80

 100

Y

X

g = 1
TTA

(a) ResNet-32 (b=64)

 0

 400

 800

 1200

 1600

 2000

 1 2 3 4
 0

 20

 40

 60

 80

 100

T
T

A
(6

9
%

)
(s

e
c
)

T
h
ro

u
g
h
p
u
t
Im

p
ro

v
e
m

e
n
t
(%

)

m

g = 8
TTA

55%

 0%

 0

 1000

 2000

 3000

 4000

 5000

 0

 20

 40

 60

 80

 100

Y

X

g = 1
TTA

(b) VGG (b=256)

Figure 14: Varying the number of models (This experiment
uses the same batch sizes as Figure 9. The best number of models
(i.e. minimising TTA) is the one that saturates training throughput.)

increasing values of m when training ResNet-32 and VGG with
1 and 8 GPUs, respectively.

For ResNet-32, we observe that, with 1 GPU, the throughput
grows until m=4 and then decreases; with 8 GPU, the throughput
improves until m=2 and then remains relatively constant for m>2.
As predicted by our auto-tuning technique, the lowest TTA is
achieved with m=4 for 1 GPU and m=2 for 8 GPUs, respectively.
Similarly, for VGG, the throughput plateaus at m=3 for 1 GPU
and m=2 for 8 GPUs, respectively, which correspond to the lowest
values of TTA. This demonstrates the ability of CROSSBOW’s auto-
tuning technique to identify quickly the correct number of learners
in order to minimise TTA.

5.5 Synchronisation model
Now we compare the performance of SMA when training ResNet-

32 against existing synchronisation algorithms, namely Hogwild!
(Hogwild) [55] and Elastic Averaging SGD (EA-SGD) [73].

Figure 15 shows that SMA outperforms Hogwild by 1.8× with
1 GPU and m=4 and by 1.5× with 8 GPUs and m=2 (16 learn-
ers). This is because, in Hogwild, learners do not synchronise
when they update their GPU-resident reference model, and as a

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 2 4 8
T

T
A

(8
8
%

)
S

lo
w

-d
o
w

n
g

SMA (No momentum)
SMA (No restart)

EAM-SGD
Hogwild!

Figure 15: Comparison of SMA with EAM-SGD and Hog-
wild! in CROSSBOW (This experiment uses ResNet-32.)

result they compute gradients using a stale model. This effect
is less pronounced with more GPUs because the synchronisation
overheads limit staleness. SMA also significantly reduces the TTA
compared to EA-SGD (by 1.1× with 1 GPU and by 1.4× with
8 GPUs, respectively). The gap increases with the number of GPUs
because the more learners are used, the lower the (asymptotic)
variance of the average model becomes, making it hard to escape
from local minima. Therefore, without including momentum, the
average model converges more slowly. In addition, SMA restarts the
averaging process when the learning rate changes to avoid oscillating
behaviour (see §3.2), which also contributes to a lower TTA.

To assess the individual impact of each of these two factors, we
include in the figure two variants of SMA: one that does not use
momentum on the central average model, SMA(No momentum), and
one that does not restart the synchronisation algorithm, SMA(No
restart). The results show that both optimisations are needed, with
momentum providing the greater benefit.

CROSSBOW synchronises the different replicas with the average
model in each iteration. The authors of EA-SGD propose to synchro-
nise every τ>1 iterations to reduce the communication overhead.
We study the impact of this optimisation on CROSSBOW in Figure 17.
While less frequent synchronisation (τ>1) increases the overall
throughput (up to 31% for τ=4 compared to τ=1), it negatively
affects convergence speed, resulting in a higher TTA (53% longer
with τ=4 compared to τ=1). Therefore, we always use τ=1.

5.6 Synchronisation efficiency
In the above experiments, we focused on the algorithmic benefits

of the SMA synchronisation approach. Now, instead, we want to

 0

 5

 10

 15

 20

 25

 30

1 2 4T
h
ro

u
g
h
p
u
t
(1

0
3
 i
m

g
/s

)

m

τ = 1
τ = 2
τ = 3
τ = ∞

Figure 16: Effect of syn-
chronisation frequency on
H/W efficiency in CROSSBOW
(This experiment uses ResNet-32
and ě=8.)

 0

 100

 200

 300

 400

 500

 1 2 3 4
 0

 5

 10

 15

 20

 25

T
T

A
(8

8
%

)
(s

e
c
)

T
h
ro

u
g
h
p
u
t
(1

0
3
 i
m

g
/s

)

τ

TTA

Figure 17: Effect of synchro-
nisation frequency on time-
to-accuracy in CROSSBOW
(This experiment uses ResNet-32,
ě=8 and m=2.)

understand the performance of our synchronisation implementation.
Similar to Figure 17, we conduct an experiment in which we measure
the throughput achieved by CROSSBOW for increasing values of τ,
including also the case with no synchronisation at all. Since we are
only interested in the performance aspect, we do not report the TTA
(we have already shown that τ=1 yields the shortest TTA). The
goal of this experiment is rather to observe the increase in through-
put as we reduce the synchronisation frequency. The rationale is
that, if synchronisation incurred a high cost, the throughput would
drastically increase as we reduce the amount of synchronisation.

Contrary to this expectation, the results in Figure 16 show that
throughput is only marginally higher, growing from 15,500 images/s
with τ=1 to 18,500 images/s with no synchronisation at all (20%)
withm=1 (27% form=4, respectively). This indicates that CROSS-
BOW’s synchronisation implementation is well-optimised and intro-
duces only a modest overhead.

6. RELATED WORK
Training with multiple GPUs. Machine learning systems use data
parallelism, model parallelism, or a mix or both (see DistBelief [13]
and, more recently, FlexFlow [29]) to decrease training time. Ten-
sorFlow [1], PyTorch [52], MXNet [9], CNTK [59] and Caffe2 [16]
exploit data parallelism by default and use S-SGD as their de-facto
training algorithm. S-SGD, however, couples the batch size and the
number of GPUs. To compensate for the loss of statistical efficiency
incurred by large batch sizes, users tune other hyper-parameters
using techniques such as auto-tuning [70, 27], scaling [34] and
warming up [16, 34] the learning rate, auto-tuning the batch size [62],
auto-tuning the momentum [72] and others. The effectiveness of
these tuning techniques is problem-specific [14], and users invest
substantial time to find a scalable set-up [27]. CROSSBOW explores
a different direction by decoupling the batch size and the number of
GPUs. It provides a design for a task engine that can fully utilise a
multi-GPU server even when the batch size is small.
Increasing GPU utilisation. There are proposals to improve the
hardware utilisation of machine learning systems using cooperative
scheduling. ModelBatch [43] and NVIDIA’s Multi-Process Service
train multiple deep learning models on a GPU in a cooperative man-
ner, but the problem of model synchronisation remains unresolved.
Litz [53] explores the scheduling of training and synchronisation
tasks on CPUs, but its lack of GPU support makes it ineffective
for deep learning. Ray [42] trains deep learning models using
cooperative GPU tasks but only shares GPUs using time-sharing.
In contrast, CROSSBOW provides efficient concurrent execution
of learning and synchronisation tasks on GPUs, which is the key
to achieve high hardware efficiency when training deep learning
models with small batch sizes.
Asynchronous training. Prior work also attempts to improve hard-
ware utilisation using asynchronous SGD [7], often at the expense

of statistical efficiency [8]. Hogwild! [55] and Dogwild! [45] do not
specify data dependencies between learning and synchronisation
tasks: all workers access a central model concurrently, leading to
higher training throughput. To compensate for the loss in statistical
efficiency, DimmWitted [71] coordinates parallel replicas in a CPU-
oriented NUMA architecture. Each NUMA node has its own model
replica shared by its cores. Within a node, cores update a shared
replica asynchronously. In contrast to these efforts, CROSSBOW
follows a synchronous training approach and therefore does not
compromise statistical efficiency with stale updates.
Model averaging was originally proposed as an asynchronous
method to distribute training. Polyak-Ruppert’s averaged SGD [51,
50, 58] first demonstrated that an average model can asymptotically
converge faster to a solution than the individual model replicas
used to compute it. In practice, it is difficult to find this asymp-
totic region [69], especially with models that have complex loss
spaces [10]. To improve the statistical efficiency of model averaging,
recent studies [6, 39] propose to use the average model to correct the
trajectory of model replicas, but the effectiveness of this approach
was shown only for non-deep-learning problems.

In deep learning, elastic averaging SGD (EA-SGD) [73] uses the
average model to correct model replicas occasionally, keeping the
communication cost low. Asynchronous decentralised SGD (AD-
SGD) [40] further reduces server communication traffic by requiring
each replica to perform model averaging with only one worker per
iteration. Compared to these techniques, SMA is a synchronous
algorithm that shares and maintains a consistent view of the central
average model across all learners in each iteration. SMA further
improves the statistical efficiency of model averaging by adopting
momentum (see §3.2) to correct the average model. Upon changes
to the hyper-parameters during training, SMA also restarts the aver-
aging process to preserve statistical efficiency.
Distributed training. When scaling the training of deep learning
models in distributed clusters, a parameter server (PS) [38] de-
sign is the de-facto approach. In contrast to CROSSBOW, which
improves the training performance with small batch sizes on a
single multi-GPU server, PS-based systems address the challenges
of using a cluster for distributed learning, including the handling
of elastic and heterogeneous resources [23, 30], the mitigation of
stragglers [13, 11, 17], the acceleration of synchronisation using
hybrid hardware [12], and the avoidance of resource fragmentation
using collective communication [67, 60, 27]. Similar to prior model
averaging systems [73], CROSSBOW could adopt a PS design to
manage its average model in a distributed deployment. We view the
distribution of CROSSBOW as future work.

7. CONCLUSIONS
CROSSBOW improves hardware efficiency when training with the

preferred batch size, however small, with a low loss of statistical
efficiency. It trains multiple model replicas on the same GPU, tuning
their number automatically as to maximise training throughput.
Despite training many more model replicas compared to existing
approaches, CROSSBOW avoids reduced statistical efficiency using
SMA. The latter is a new training algorithm in which replicas
independently explore the solution space with gradient descent,
but adjust their search synchronously based on the trajectory of a
globally-consistent central average model. Our experimental results
show that CROSSBOW shortens the time-to-accuracy during training
by up to 4× compared to TensorFlow. CROSSBOW is available at:
https://github.com/lsds/Crossbow.
Ackwnoledgements. This material is based upon work partially
supported by Google Cloud and Huawei.

https://github.com/lsds/Crossbow

8. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al.
TensorFlow: A System for Large-Scale Machine Learning. In
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[2] Amazon EC2 Instance Types, 2017.
https://aws.amazon.com/ec2/instance-types/.

[3] S. Ö. Arik, M. Chrzanowski, A. Coates, G. Diamos,
A. Gibiansky, Y. Kang, X. Li, J. Miller, J. Raiman,
S. Sengupta, and M. Shoeybi. Deep Voice: Real-time Neural
Text-to-Speech. arXiv:1702.07825 [cs.CL], Feb. 2017.

[4] L. Bottou. On-line Learning and Stochastic Approximations.
In D. Saad, editor, On-line Learning in Neural Networks,
pages 9–42. Cambridge University Press, New York, NY,
USA, 1998.

[5] L. Bottou, F. Curtis, and J. Nocedal. Optimization Methods
for Large-Scale Machine Learning. SIAM Review,
60(2):223–311, 2018.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, Jan. 2011.

[7] S. Chaturapruek, J. C. Duchi, and C. Ré. Asynchronous
Stochastic Convex Optimization: The Noise Is in the Noise
and SGD Don't Care. In 28th International Conference on
Neural Information Processing Systems (NIPS), 2015.

[8] J. Chen, R. Monga, S. Bengio, and R. Józefowicz. Revisiting
Distributed Synchronous SGD. arXiv:1604.00981 [cs.LG],
Apr. 2016.

[9] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. MXNet: A Flexible and
Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv:1512.01274 [cs.DC], Dec. 2015.

[10] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and
Y. LeCun. The Loss Surfaces of Multilayer Networks. In 18th
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2015.

[11] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei,
W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P.
Xing. Exploiting Bounded Staleness to Speed Up Big Data
Analytics. In 2014 USENIX Annual Technical Conference
(ATC), 2014.

[12] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing.
GeePS: Scalable Deep Learning on Distributed GPUs with a
GPU-specialized Parameter Server. In 11th European
Conference on Computer Systems (EuroSys), 2016.

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. aurelio Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le,
and A. Y. Ng. Large Scale Distributed Deep Networks. In 25th
International Conference on Neural Information Processing
Systems (NIPS), 2012.

[14] J. Dean, D. Patterson, and C. Young. A New Golden Age in
Computer Architecture: Empowering the Machine-Learning
Revolution. IEEE Micro, 38(2):21–29, Mar. 2018.

[15] A. Defossez and F. Bach. Averaged Least-Mean-Squares:
Bias-Variance Trade-offs and Optimal Sampling Distributions.
In 18th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2015.

[16] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.

Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour. arXiv:1706.02677 [cs.CV], June 2017.

[17] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing. Addressing the
Straggler Problem for Iterative Convergent Parallel ML. In 7th
ACM Symposium on Cloud Computing (SoCC), 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. arXiv:1512.03385 [cs.CV], Dec. 2015.

[19] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
and B. Kingsbury. Deep Neural Networks for Acoustic
Modeling in Speech Recognition: The Shared Views of Four
Research Groups. IEEE Signal Processing Magazine,
29(6):82–97, Nov. 2012.

[20] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More Effective
Distributed ML via a Stale Synchronous Parallel Parameter
Server. In 26th International Conference on Neural
Information Processing Systems (NIPS), 2013.

[21] S. Hochreiter and J. Schmidhuber. Flat Minima. Neural
Computation, 9(1):1–42, Jan. 1997.

[22] E. Hoffer, I. Hubara, and D. Soudry. Train Longer, Generalize
Better: Closing the Generalization Gap in Large Batch
Training of Neural Networks. In 30th International
Conference on Neural Information Processing Systems
(NIPS), 2017.

[23] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo,
and J. Cheng. FlexPS: Flexible Parallelism Control in
Parameter Server Architecture. PVLDB, 11(5):566–579, 2018.

[24] A. Jain, A. Phanishayee, J. Mars, L. Tang, and
G. Pekhimenko. Gist: Efficient Data Encoding for Deep
Neural Network Training. In 45th Annual International
Symposium on Computer Architecture (ISCA), 2018.

[25] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and
A. Sidford. Parallelizing Stochastic Gradient Descent for
Least Squares Regression: Mini-batching, Averaging, and
Model Misspecification. Journal of Machine Learning
Research, 18(223):1–42, 2018.

[26] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer,
Y. Bengio, and A. J. Storkey. Three Factors Influencing
Minima in SGD. arXiv:1711.04623 [cs.LG], Nov. 2017.

[27] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu.
Highly Scalable Deep Learning Training System with
Mixed-Precision: Training ImageNet in Four Minutes.
arXiv:1807.11205 [cs.LG], July 2018.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional Architecture for Fast Feature Embedding. In
22nd ACM International Conference on Multimedia (MM),
2014.

[29] Z. Jia, S. Lin, C. R. Qi, and A. Aiken. Exploring Hidden
Dimensions in Accelerating Convolutional Neural Networks.
In 35th International Conference on Machine Learning
(ICML), 2018.

[30] J. Jiang, B. Cui, C. Zhang, and L. Yu. Heterogeneity-Aware
Distributed Parameter Servers. In 2017 ACM International
Conference on Management of Data (SIGMOD), 2017.

[31] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu,
Z. Chen, N. Thorat, F. Viégas, M. Wattenberg, G. Corrado,
M. Hughes, and J. Dean. Google’s Multilingual Neural
Machine Translation System: Enabling Zero-Shot Translation.

https://aws.amazon.com/ec2/instance-types/

Transactions of the Association for Computational Linguistics,
5:339–351, 2017.

[32] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.
In-Datacenter Performance Analysis of a Tensor Processing
Unit. In 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

[33] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and
P. T. P. Tang. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. arXiv:1609.04836
[cs.LG], Sept. 2016.

[34] A. Krizhevsky. One Weird Trick for Parallelizing
Convolutional Neural Networks. arXiv:1404.5997 [cs.NE],
Apr. 2014.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
25th International Conference on Neural Information
Processing Systems (NIPS), 2012.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-Based Learning Applied to Document Recognition.
Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998.

[37] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller. Efficient
BackProp, pages 9–50. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998.

[38] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
Distributed Machine Learning with the Parameter Server. In
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[39] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient
Mini-batch Training for Stochastic Optimization. In 20th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2014.

[40] X. Lian, W. Zhang, C. Zhang, and J. Liu. Asynchronous
Decentralized Parallel Stochastic Gradient Descent. In 35th
International Conference on Machine Learning (ICML), 2018.

[41] D. Masters and C. Luschi. Revisiting Small Batch Training for
Deep Neural Networks. arXiv:1804.07612 [cs.LG], Apr. 2018.

[42] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A Distributed Framework for Emerging AI
Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[43] D. Narayanan, K. Santhanam, and M. Zaharia. Accelerating
Model Search with Model Batching. In 1st Conference on
Systems and Machine Learning (SysML), SysML ’18, 2018.

[44] Y. Nesterov. A Method of Solving a Convex Programming
Problem with Convergence Rate O(1/k2). Soviet
Mathematics Doklady, 27:372–376, 1983.

[45] C. Noel and S. Osindero. Dogwild! – Distributed Hogwild for
CPU and GPU. Distributed Machine Learning and Matrix
Computations NIPS 2014 Workshop, 2014.

[46] NVIDIA Collective Communications Library (NCCL), 2018.
https://developer.nvidia.com/nccl.

[47] NVLink Fabric Multi-GPU Processing, 2018.
https://www.nvidia.com/en-us/data-center/nvlink/.

[48] Octoputer 4U 10-GPU Server with Single Root Complex for
GPU-Direct, 2018. https://www.microway.com/product/
octoputer-4u-10-gpu-server-single-root-complex/.

[49] B. Polyak. Some Methods of Speeding up the Convergence of
Iteration Methods. USSR Computational Mathematics and
Mathematical Physics, 4:1–17, Dec. 1964.

[50] B. Polyak. New Stochastic Approximation Type Procedures.
Avtomatica i Telemekhanika, 7(7):98–107, Jan. 1990.

[51] B. Polyak and A. Juditsky. Acceleration of Stochastic
Approximation by Averaging. SIAM Journal on Control and
Optimization, 30(4):838–855, 1992.

[52] PyTorch, 2018. https://pytorch.org.
[53] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson,

and E. P. Xing. Litz: Elastic Framework for
High-Performance Distributed Machine Learning. In 2018
USENIX Annual Technical Conference (ATC), 2018.

[54] C. Qin, M. Torres, and F. Rusu. Scalable Asynchronous
Gradient Descent Optimization for Out-of-core Models.
PVLDB, 10(10):986–997, 2017.

[55] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. In 24th International Conference on Neural
Information Processing Systems (NIPS), 2011.

[56] H. Robbins and S. Monro. A Stochastic Approximation
Method. Ann. Math. Statist., 22(3):400–407, Sept. 1951.

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
Internal Representations by Error Propagation. In D. E.
Rumelhart, J. L. McClelland, and C. PDP Research Group,
editors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1, pages 318–362. MIT
Press, Cambridge, MA, USA, 1986.

[58] D. Ruppert. Efficient Estimators from a Slowly Convergent
Robbins-Monro Process. Technical Report 781, School of
Operations Research and Industrial Enginnering, Cornell
University, Ithaka, New York 14853-7501, Feb. 1988.

[59] F. Seide and A. Agarwal. CNTK: Microsoft’s Open-Source
Deep-Learning Toolkit. In 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), 2016.

[60] A. Sergeev and M. D. Balso. Horovod: Fast and Easy
Distributed Deep Learning in Tensor Flow. arXiv:1802.05799
[cs.LG], Feb. 2018.

[61] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein,
R. Frostig, and G. E. Dahl. Measuring the Effects of Data
Parallelism on Neural Network Training. arXiv:1811.03600
[cs.LG], Nov. 2018.

[62] S. L. Smith, P. Kindermans, and Q. V. Le. Don’t Decay the
Learning Rate, Increase the Batch Size. arXiv:1711.00489
[cs.LG], Nov. 2017.

[63] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
Importance of Initialization and Momentum in Deep Learning.
In 30th International Conference on Machine Learning
(ICML), 2013.

[64] TensorFlow Benchmarks, 2018.
https://github.com/tensorflow/benchmarks.

[65] VGG16 models for CIFAR-10 and CIFAR-100 using Keras,
2018. https://github.com/geifmany/cifar-vgg.

[66] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and
T. Kraska. Superneurons: Dynamic GPU Memory
Management for Training Deep Neural Networks. In 23rd
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2018.

[67] P. Watcharapichat, V. L. Morales, R. C. Fernandez, and
P. Pietzuch. Ako: Decentralised Deep Learning with Partial
Gradient Exchange. In 7th ACM Symposium on Cloud
Computing (SoCC), 2016.

[68] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer,

https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.microway.com/product/octoputer-4u-10-gpu-server-single-root-complex/
https://www.microway.com/product/octoputer-4u-10-gpu-server-single-root-complex/
https://pytorch.org
https://github.com/tensorflow/benchmarks
https://github.com/geifmany/cifar-vgg

A. Stolcke, D. Yu, and G. Zweig. The Microsoft 2016
Conversational Speech Recognition System.
arXiv:1609.03528 [cs.CL], Jan. 2017.

[69] W. Xu. Towards Optimal One Pass Large Scale Learning with
Averaged Stochastic Gradient Descent. arXiv:1107.2490
[cs.LG], Dec. 2011.

[70] Y. You, I. Gitman, and B. Ginsburg. Large Batch Training of
Convolutional Networks. arXiv:1708.03888 [cs.CV], Sept.

2017.
[71] C. Zhang and C. Ré. DimmWitted: A Study of Main-memory

Statistical Analytics. PVLDB, 7(12):1283–1294, 2014.
[72] J. Zhang and I. Mitliagkas. YellowFin and the Art of

Momentum Tuning. arXiv:1706.03471 [stat.ML], June 2017.
[73] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning

with Elastic Averaging SGD. In 28th International Conference
on Neural Information Processing Systems (NIPS), 2015.

	Introduction
	Scaling Deep Learning
	Mini-batch gradient descent
	Training with GPUs
	Parallel synchronous gradient descent
	Challenges in scaling training

	Synchronous Model Averaging with Learners
	Independent learners
	SMA algorithm
	Training multiple learners per GPU
	Choosing the number of learners

	Crossbow System Design
	System overview
	Task execution
	Task scheduling
	Tuning learners
	Memory management

	Evaluation
	Experimental set-up
	Scalability
	Statistical and hardware efficiency
	Selecting the number of learners
	Synchronisation model
	Synchronisation efficiency

	Related Work
	Conclusions
	References

