
Towards Automated Infographic Design:
Deep Learning-based Auto-Extraction of Extensible Timeline

Zhutian Chen, Yun Wang, Qianwen Wang, Yong Wang, and Huamin Qu

2002

2006

2010
Brazil 2-0 Germany. A 

beautiful match.

Italy 1 – 1 France. OMG Zidane 
head-butted Materazzi!

Spain 1-0 Netherlands. 
What a pity for Netherlands.

2014

2018

Germany 1-0 Argentina. 
Wonderful game.

France 4-2 Croatia. Very 
exciting for so many goals.

2014

2015

2016
The first year of my Ph.D. 
Everything is wonderful!

My first submission to VIS 
has been accepted…

My second submission to 
VIS has been accepted 

Again!

Font

Font

Font

Icon Icon

Icon

Font

Font

Font

2014

2015

2016
The first year of my Ph.D. 
Everything is wonderful!

My first submission to VIS 
has been accepted…

My second submission to 
VIS has been accepted 

Again!

am am

amet

et

et

em

at
at

at

emem

Fig. 1: An automated approach to extract an extensible timeline template from a bitmap image. a) Original bitmap image; b) Content
understanding including global and local information of the timeline; c) Extensible template contains editable elements and their
semantic roles; d) New timeline (with mock-up colors) automatically generated with updated data.

Abstract—Designers need to consider not only perceptual effectiveness but also visual styles when creating an infographic. This
process can be difficult and time consuming for professional designers, not to mention non-expert users, leading to the demand for
automated infographics design. As a first step, we focus on timeline infographics, which have been widely used for centuries. We
contribute an end-to-end approach that automatically extracts an extensible timeline template from a bitmap image. Our approach
adopts a deconstruction and reconstruction paradigm. At the deconstruction stage, we propose a multi-task deep neural network
that simultaneously parses two kinds of information from a bitmap timeline: 1) the global information, i.e., the representation, scale,
layout, and orientation of the timeline, and 2) the local information, i.e., the location, category, and pixels of each visual element on
the timeline. At the reconstruction stage, we propose a pipeline with three techniques, i.e., Non-Maximum Merging, Redundancy
Recover, and DL GrabCut, to extract an extensible template from the infographic, by utilizing the deconstruction results. To evaluate the
effectiveness of our approach, we synthesize a timeline dataset (4296 images) and collect a real-world timeline dataset (393 images)
from the Internet. We first report quantitative evaluation results of our approach over the two datasets. Then, we present examples of
automatically extracted templates and timelines automatically generated based on these templates to qualitatively demonstrate the
performance. The results confirm that our approach can effectively extract extensible templates from real-world timeline infographics.

Index Terms—Automated Infographic Design, Deep Learning-based Approach, Timeline Infographics, Multi-task Model

1 INTRODUCTION

Graphic designers have been producing infographics in a variety of
fields, such as advertisement, business presentation, and journalism, be-
cause of their effectiveness in spreading information [20,52]. To inform
data context and engage audiences, infographics are often embellished
with icons, shapes, and images in various styles [26]. However, cre-
ating infographics is demanding. Designers should consider not only
perceptual effectiveness but also aesthetics, memorability, and engage-
ment [9, 19]. Researchers have introduced design tools [26, 52, 55]
to alleviate the burden of infographics creation by automating some
processes (e.g., visual encoding). However, these tools require users
to manually initialize most of the design (e.g., drawing graphical ele-
ments). The process remains difficult and time-consuming, especially
for laymen, leading to the demand for automated infographic design.

Using templates is an effective approach to enable automated info-

• Z. Chen, Q. Wang, Yong Wang and H. Qu are with Hong Kong University of
Science and Technology. E-mail: {zhutian.chen, qwangbb,
ywangct}@connect.ust.hk, huamin@cse.ust.hk.

• Y. Wang is with Microsoft Research. E-mail: wangyun@microsoft.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

graphic design, which has been widely used in commercial software,
such as Microsoft PowerPoint and Adobe Illustrator. These systems
can automatically generate infographics by plugging in data to a design
template. Although easy to use, these systems typically only provide
limited types of templates with default styles, which leads to a lack of
diversity. By contrast, many infographics “in the wild” with diverse
styles can only be accessed as images in a bitmap format. If users want
to follow the styles of these bitmap infographics, they have to manually
create their own infographics, which is difficult and tedious.

In this work, we investigate the methods of automatically extract-
ing an extensible template from a bitmap infographic. Compared to
editable templates, extensible templates contain not only the editable
elements but also the semantic roles of these elements, which enable the
automatic extension with updated data. Previous works [38,39] attempt
to extract visual encodings and color mappings from chart images based
on rules and machine learning (ML) methods, by utilizing the legends,
axes, plot areas, and common layouts. However, the content of info-
graphics can be unstructured and manifold. This makes it challenging
to analyze infographic images and extract extensible templates from
them. As a first step towards automated infographic design, we focus
on the timeline infographics, which have been widely used for centuries
and whose design space has been extensively studied [10].

Automatically extracting an extensible template from a bitmap time-
line infographic is non-trivial. Particularly, two obstacles stand in the
way. First, it is challenging to interpret a bitmap timeline infographic au-



tomatically. Understanding the content of the infographic is necessary
for automating the extraction. However, the elements in an infographic
can be distributed in any place with any style (e.g., shapes, colors, and
sizes, etc.) It is difficult for a machine to interpret the infographic
that can only be accessed in pixels. Second, it is intricate to convert a
bitmap infographic to be extensible automatically. An understanding of
a timeline infographic is not enough for using it as a template. Even if
the machine has already obtained structural information of the timeline
(e.g., type, orientation, and categories and locations of its elements),
how to convert the timeline to an extensible template remains unclear,
not to mention the information could be incorrect.

To address these challenges, we propose a novel end-to-end approach
for automatically extracting an extensible template from a bitmap time-
line infographic. Our approach adopts a deconstruction and reconstruc-
tion paradigm. We address the first challenge at the deconstruction
stage. We propose a multi-task deep neural network (DNN) that si-
multaneously parses two kinds of information from a timeline image:
global and local information. Global information includes the represen-
tation, scale, layout, and orientation of the timeline. Local information
includes the location, category, and pixels of each visual element on
the timeline. These two kinds of information provide a panorama of the
timeline. We tackle the second challenge at the reconstruction stage.
By utilizing the deconstruction results, we propose a pipeline with three
techniques, i.e., Non-Maximum Merging, Redundancy Recover, and DL
GrabCut, to extract an extensible template from the infographic. The
output can be used to generate new timelines with updated data.

To evaluate our approach, we synthesize a timeline dataset with
4296 labeled images and collect a real-world timeline dataset from the
Internet. We report quantitative evaluations of the two stages over the
two datasets. We then present examples of automatically extracted tem-
plates with various visual styles and timelines automatically generated
based on these templates to qualitatively demonstrate the eperformance.
The results confirm that our approach can effectively extract extensible
templates from real-world timeline infographics. Finally, we discuss
lessons learned and future opportunities.

Our primary contribution is an automated approach to extracting
extensible templates from bitmap infographic timelines. The approach
consists of 1) a multi-task DNN that automatically deconstructs bitmap
timeline infographics and 2) a pipeline that automatically reconstructs
extensible templates. We evaluate our approach with quantitative evalu-
ations and qualitatively demonstrate its effectiveness with examples.

2 RELATED WORKS

This section introduces prior studies that are most relevant to our work,
including automated visualization design, computational interpretation
of visualization, and deep learning-based object detection.

2.1 Automated Visualization Design
Automated visualization design systems aim at producing visual en-
codings for given input data based on both the criteria summarized by
experts (e.g., Bertin [8], Cleveland and McGill [13]) and constraints
defined by users [37]. Prior work on automated visualization design
can be classified into two general categories based on how the criteria
are derived: rule-based and learning-based approaches.

Mackinlay’s APT system [34] is a pioneering example that enumer-
ates, filters, and ranks visualizations using expressiveness and percep-
tual effectiveness criteria. It was extended by SAGE [42], BOZ [50],
and ShowMe [35] with additional considerations of data properties,
low-level perceptual tasks, and candidate groupings. Recent systems
like Voyager and Voyager 2 [53, 54] have further recommended data
transformation (e.g., normalization) in addition to visual encodings.

Foregoing explicit rules, researchers have recently designed learning-
based systems that directly learn visualization designs from visualiza-
tion corpora. DeepEye [33] applies ML models and design rules to
determine whether a visualization is “good” or “bad” and recommends
the “good” candidates. Data2Vis [14] uses a Recurrent Neural Network
to automatically translate JSON-encoded datasets to Vega-lite [45] spec-
ifications. Draco [37] learns weights between hard and soft constraints
that represent users’ requirements and design guidelines. VizML [21]

trains a fully-connected neural network to predict design choices based
on input data. Although we also aim for automated design, these sys-
tems, however, cannot be adapted to infographics. They focus mainly
on recommending visual encodings for the input data (e.g., how to
encode data using visual channels). By contrast, designing infographics
requires additional attention to visual styles (e.g., how to embellish
the visualization with shapes and icons), which are omitted in these
systems. In this regard, our work is inherently different from them.

2.2 Computational Interpretation of Visualization
Computational interpretation of visualization seeks to enable machines
to understand the content of visualization images (e.g., data, styles,
and visual encodings). According to the targets, prior methods can be
divided into two categories: for charts and for infographics.

A general pipeline when interpreting a chart is first to identify the
type of the chart via classifications, then detect elements (e.g., marks
or text) in the chart, and finally extract the underlying information
(e.g., data or visual encodings). As a pioneer, Savva et al. introduced
ReVision [46], in which the graphical and textual features are fed into
a support vector machine (SVM) model for a chart type classification.
ReVision then localizes the marks and extracts data from pie and bar
charts by using a carefully designed multi-steps method based on image
processing and heuristics. Siegel et al. [48] extended the method of
ReVision to handle line charts. They developed a convolutional neural
network (CNN) for the chart classification and designed a heuristic
approach to use legend information for data extraction. Recently Kafle
et al. [23] have used a deep dual-network model to directly parse the
data from bar charts without heuristic rules. Instead of extracting
the data of charts, Poco and Heer [38] aimed to recover the visual
encodings. To complete the task successfully, they proposed a state-of-
the-art approach to interpreting the text in a multi-stage pipeline, which
combines ML and heuristics methods. Building on this, Poco et al. [39]
further explored the color mapping extraction of visualization images.

Apart from charts, researchers have explored the computational inter-
pretation of infographics. Bylinskii et al. [12] used fully convolutional
networks (FCNs) to predict the visual saliency of an infographic. Bylin-
skii et al. [11] also applied DNNs to select representative textual and
visual elements from an infographic automatically. On the basis of
several deep learning models, Kembhavi et al. [25] designed a multi-
stage approach to parse the relationships among elements in diagrams
in science textbooks. More recent research investigated using DNNs
to detect UI components in mobile apps [31] and icons in infograph-
ics [36]. Although these methods enable computational understanding
of an infographic from certain perspectives, the information they inter-
pret cannot be used to reconstruct an extensible template (e.g., how to
change or extend the content of an infographic is unknown). We take a
first step towards the interpretation of infographics for an automated
design purpose. Unlike using multiple models and handcrafted features,
our approach uses one end-to-end DNN to complete the interpretation.

2.3 Deep Learning-based Object Detection
To extracting an extensible template, we need to understand each object
on it. We achieve this goal with deep learning-based object detection.
Object detection is a computer vision (CV) task whose goal is to localize
each object using a bounding box (i.e., where) and classify its category
(i.e., what). Deep learning-based object detection methods can either be
one-stage [30, 32, 40] or multi-stage [16, 17, 24, 41]. One-stage models
directly predict objects’ bounding box and category without involving
intermediate tasks. YOLO [40] is a representative one-stage model that
divides the image into small cells and predicts bounding boxes for each
cell. One-stage models have the advantage of fast detection in real time,
which affects accuracy. By contrast, multi-stage models can predict
accurately, but are often less time efficient. Multi-stage models, such
as RCNN [17], usually first propose a manageable number of candidate
regions (region proposals) that may contain objects. If an object exists
within, then they will predict its bounding box and category. Time
consumption is not our first priority, so we base our work on a multi-
stage model. Mask R-CNN [24] is a leading multi-stage model in
several benchmarks. It can further predict the pixels of an object within



its bounding box (i.e., Instance Segmentation). We extend Mask R-
CNN to interpret not only the information of objects (i.e., local) but also
that of the entire timeline infographic (i.e., global). To the best of our
knowledge, we are the first to adopt this kind of instance segmentation
networks to deal with the infographics interpretation problem.

3 PROBLEM STATEMENT

This section introduces the background of timeline infographics and
the problem, overview of the proposed approach, and the datasets.

3.1 Background

Fig. 2: Given a bitmap timeline infographic, we seek to extract its
extensible template automatically.

Timeline infographics have been recently investigated by Brehmer
et al. [10]. We briefly describe the insights from them as follows:
• Timeline Data. A timeline presents interval event data (i.e., a se-

quence of events), which is different from continuous quantitative
time-series data. A timeline infographic for storytelling usually has
a small underlying dataset because the storyteller is assumed to have
already distilled the narrative points from the raw dataset.

• Timeline Design. A timeline can be described as a combination of
three dimensions, namely, representation, scale, and layout. The
combination can be used as the type of timelines. No more than
five options are available for each dimension (Table 1). Besides,
only 20 out of 100 combinations of these options are viable. These
dimensions indicate how the events are organized in a timeline. For
example, events are placed along a straight line in a linear repre-
sentation, which is the most common way to represent a timeline.
Typically, an event is visually encoded by a graphical mark, such
as the rectangles in Fig. 2. The position of this mark is used to en-
code the occurred time of the event. Extra annotations (e.g., text or
icons) are added, commonly adjacent to the event mark, to depicts
the details of an event.

Table 1: The design dimensions to depict a timeline from [10]

Design Options

Representation Linear, Radial, Grid, Spiral, Arbitrary
Scale Chronological, Relative, Logarithmic,

Sequential, Sequential + Interim Duration
Layout Unified, Faceted, Segmented,

Faceted + Segmented

In practice, infographic timelines are widely spread in the form
of bitmap images. However, they are not easy to reproduce. Given
a bitmap timeline, we aim to extract its extensible template (Fig. 2)
automatically. To this end, two requirements should be fulfilled:
• Parse the content. The machine should first parse the content of the

image. A computational understanding of an image can be repre-
sented as a structural information, which is necessary for an automa-
tion process. However, the infographic image can only be accessed in
pixels, which is a byte array with the shape of width×height×RGB.
A process is required to take the bitmap image as input and output
its structural information.

• Construct the template. With the structural information of the im-
age as a basis, the machine should be able to construct an extensible
template out of it automatically. The template should contain detail
information (e.g., position, color, font, and shape) of the elements to
be reused and the elements to be updated. Given the image and its

structural information, another process should be involved to extract
such types of detail information.

3.2 Approach Overview
To fulfill the two requirements above, we design a two-step approach,
starting from defining the input and output of each step.

Deconstruction. The goal of the first step (Fig. 1a and Fig. 1b)
is to parse structural information from the input, a bitmap timeline
infographic I. For the output, we define two kinds of information,
namely, the global one G and the local one L. The global information
is about the entire timeline, including its three dimensions mentioned
in Table 1 and its orientation. The local information is about each
individual element, including its category (what), location (where), and
the pixel-wise mask (which pixels). Therefore, the ideal process of the
first step can be formulated as a mapping function f :

f : I→ (G,L) (1)

We propose to approximate f using a DNN model h ≈ f with a
set of parameters Θ. This set of parameters Θ can be learned from
a corpus C = {(Ii : (Gi,Li))}n

i=1, where each entry (Ii : (Gi,Li)) is a
bitmap image associated with its global and local information. Hence,
we can obtain the output via (G,L) = h(I|Θ).

Reconstruction. To reconstruct the extensible template, a function
g should take the bitmap infographics I and its global and local informa-
tion G, L as the input, and return the detail information about elements
to be reused Er (e.g., the rectangle and circle marks in Fig. 2a) and
elements to be updated Eu (e.g., the text and icons in Fig. 2a), i.e.,

g : (I,G,L)→ (Er,Eu) (2)

E is a set of elements, each of which is represented as a set of at-
tributes, i.e., E = {ei := (a1,a2, ...,am)}n

i=1. According to G and L, we
can infer attributes of elements in Er and Eu, such as size, shape, color,
position, and offset to others. We highlight the necessary attributes
for enabling extensible templates. For Er, the essential attribute is
the graphical marks to be reused (e.g., the rectangle marks in Fig. 2a).
Hence, we need to segment the pixels of Er from the original image.
As for Eu, the attributes related to the font (e.g., font family, size, color,
etc.) must be identified to maintain the styles of the updated content. In
addition, we note that the outputs from h may not be perfect, reducing
the quality of the outputs of g. Thus, g should be smart enough to
correct errors in G and L as much as possible.

Considering these issues, we design a heuristic-based pipeline, with
three novel techniques, as g to automatically output Er and Eu.

3.3 Datasets

Fig. 3: Categories of elements in a timeline infographic. The event
mark, annotation mark, and main body can be reused, while others
need to be updated.

We use two datasets to train the model h and evaluate our approach.
The first one (referred to as D1) is a synthetic dataset. We extended
TimelineStoryteller (TS) [5], a timeline authoring tool, to generate
D1, covering all types of timelines. The second dataset (referred to as
D2) consists of real-world timelines, collected from Google Image [4],
Pinterest [6], and FreePicker [3] by using the search keywords timeline
infographic and infographic timeline. D2 has more diverse styles,
especially for marks, and it covers the most common types of timelines.



Fig. 4: Example timelines from: a) a synthetic dataset D1, which shows two different scales, and b) a real-world dataset D2, which shows two
different orientations.

The resolutions of images are in the range of [512,3880]× [512,4330].
To scope this work, we focus on timelines that have less than 20 events
and whose events have the same number and types of annotations (e.g.,
text and icon). We also exclude the titles, footnotes, and legends.

Table 2: The number of annotations per category of each dataset.

Dataset #Event #Event #Annot. #Annot. #Annot. #Main
Mark Text Mark Text Icon Body

D1 83498 61324 4030 60036 - -
D2 2318 2305 2227 2937 1497 1340

Collection. For D1, TS allows us to generate timeline images with
various visual encodings and styles. We generated timeline images us-
ing nine embedded datasets of TS to cover the design space of timelines.
To increase diversity, we randomly modified the timeline orientation,
the style of graphical marks (including color, size, and shape), texts
(font, size, color, offset to others), and the background (color) in a
curated range that guarantee the viability of the timeline. We created
9592 timelines in this process.

For D2, we implemented crawlers to download the search results.
The crawling process was manually monitored and stopped when 10
consecutive return results are not timelines. We collected 1138 time-
lines in this process. Following, four of the coauthors separately re-
viewed all the timelines to remove the repeated and problematic in-
stances, such as images with heavy watermarks or with low resolutions
(i.e., smaller than 512× 512), and timelines that out of the scope of
this work. They obtained 412 remaining timelines. The scale of D2
is consistent with manually collected visualization datasets in similar
research [10, 38, 39]. Among the five representations in Table 1, radial,
grid, or spiral representations appear only 19/412 (4.6%) timelines,
whereas the rest 393 timelines are with linear or arbitrary representa-
tions. This ratio is consistent with [10] (23/263, 8.7%). Considering
the scarce number of the radial, grid, or spiral representations, we
excluded them in D1 and D2 and focused on the more common linear
and arbitrary representations.

Labeling. To identify the categories of elements in a timeline, four
of the coauthors independently reviewed all the timelines in D1 and
D2. Each of them iteratively summarized a set of mutually exclusive
categories that can be used to depict elements in a timeline infographic.
Gathering the reviews resulted in six categories (Fig. 3). We explain
the details of these categories in the supplemental material.

Each timeline in D1 was then converted from SVG to bitmap format
and annotated with its representation, scale, layout, and orientation. We
also analyzed the SVG and the bitmap to generate the annotations for
each element in a timeline, including its category (from the label sets
in Fig. 3), bounding box (referred to as bbox), and pixel-wise mask
(referred to as mask). For each timeline in D2, we manually annotated
its representation, scale, layout, and orientation, as well as the category,
bbox, and mask of each element, by using our annotation tool that is
built on Microsoft PowerPoint. Finally, D1 contains 4296 timelines,
whereas D2 contains 393. Figure 4 and Table 2 present samples and
statistics of these timelines, respectively.

4 DECONSTRUCTION

Parsing bitmap timeline infographics to extract structural information
is difficult due to the absence of fixed rules for the styles and layouts of
timeline elements. We achieve this goal from two perspectives, global
and local. In contrast with prior studies [38,48] that extracted structural
information from charts using different methods in multiple steps, we
use a DNN to extract structural information in one shot.

4.1 Parsing Global Information
Our dataset comprises 10 types of timelines. The type, i.e., the combina-
tion of the three dimensions in Table 1, is necessary for constructing an
extensible template. In addition to the type of timeline, the orientation,
which could be horizontal, vertical, and others, is equally indispensable
for the template. As type and orientation only involve a few discrete
choices, we can identify them through classification.

Taking into account that CNN models have shown excellent capabil-
ity in chart classification [22,38,48], we propose a CNN-based classifier
to recognize the type and orientation of a timeline.

Fig. 5: Initial architecture to parse the global information. After ex-
tracting the feature map of an image, two FC layers are used to classify
its type and orientation.

Many CNN architectures have been proposed (e.g., AlexNet [27],
GoogLeNet [51]). We use ResNeXt [56] (Fig. 5a) to extract the fea-
tures of a timeline infographic, since ResNeXt achieves state-of-the-art
performance in many CV tasks. It takes a 3-channel image (i.e., RGB)
as input and output a feature map with 2048 channels. We then use two
siblings fully connected (FC) layers (Fig. 5b) as Class heads to predict
the timeline’s type and orientation based on the feature map.

4.2 Parsing Local Information
After parsing the global information, the machine should further extract
the local information of the timeline. We have defined six categories of
elements (Fig. 3) in a timeline. We need to detect each element in the
timeline (where and what) and segment it from others (which pixels).

To tackle these tasks, a possible solution is to solve them one by
one using well-established methods. For example, we can use sliding
windows [28] to localize elements, then employ SVM to determine the
category of the element within, and lastly segment the element from
the image. This multi-step solution can be effective and has been used
in previous works [22, 25, 38, 48]. However, given the ad-hoc nature,
extending this solution to other scenarios is challenging. Therefore, we
prefer to adopt a unified method to complete all tasks.

Considering that we have already extracted the feature maps of
the infographic in Sect. 4.1, we propose to reuse these feature maps,



which contain rich information of the image. Specifically, we extend the
classification model in Fig. 5 by adding components for object detection
to parse the local information. We achieve this extension using Mask
R-CNN [24], a leading architecture that can detect objects and predict
their pixel masks. By this means, our model can simultaneously finish
all five tasks (i.e., two global and three local) in one shot. The complete
architecture is depicted in Fig. 6. We successfully train this multi-task
learning model and achieve a good performance.

Fig. 6: Complete architecture to parse both global and local information
simultaneously. Apart from the components in Fig. 5, we add more
components (in green color) to parse local information.

In the architecture (Fig. 6), we first extend ResNeXt with Feature
Pyramid Network [29] (FPN). FPN is a top-down architecture that can
build semantically strong feature maps at multiple scales using the
feature maps from ResNeXt. FPN makes our model scale-invariant
and able to handle images of vastly different resolution. We then
feed the feature maps from the ResNeXt-FPN into a Region Proposal
Network [41] (RPN) to localize elements in a timeline. RPN is an
FCN that simultaneously predicts element locations (i.e., by bbox)
and objectness scores (i.e., whether there is an object within the bbox)
in an image. These element location hypotheses are then be used to
extract regions of interest (RoIs) from the feature maps. Each RoI is
normalized to a fixed size using a RoIAlign layer and then passed to
two heads, namely, a Box head and a Mask head. The Box head uses
two sibling FC layers to classify the category and regress the bbox of
the element. The Mask head uses an FCN for predicting the pixels of
the element within the bbox. Additional details on the architecture and
training process are presented in the supplemental material.

4.3 Validation
Our model is implemented using Pytorch [7] with two types of CNN
backbone, namely, ResNeXt-50 (R50) and ResNeXt-101 (R101), fol-
lowing the standard configurations [56]. R50 has 50 layers, which
is more lightweight and easier to train, while R101 has 101 layers,
which performs better in CV tasks at the cost of efficiency and is more
difficult to train. We trained these two implementations of our model
using D1 and D2 together. We randomly split the images in D1 and D2
into 9 : 1 such that no testing sample is in the training set. To increase
the diversity of the training data, we conduct several data augmenta-
tion strategies, including random horizontal or vertical flip, random
90-degree rotations (the labels are updated accordingly), and random
color channels swap. Finally, the number of training samples for one
epoch is 33760. We evaluated models trained with 10 epochs on the two
datasets separately. We first report the performance of parsing global
information and then report the average precision (AP) on parsing local
information. Reported numbers are averaged over 10 independent runs.

Parsing Global Information. To access the performance of our
model on the two classification tasks (i.e., 10 classes of timeline type
and 3 classes of orientation), we calculate the precision, recall and
F1-score. Table 3 presents the results.

Table 3: Classification of timeline types and orientations.

Dataset /
Backbone

Type Orientation

Pre.% Rec.% F1% Pre.% Rec.% F1%

D1 / R50 99.1 99.1 99.1 100.0 100.0 100.0
D1 / R101 99.5 99.5 99.5 100.0 100.0 100.0
D2 / R50 88.7 86.4 87.5 97.7 97.1 97.4
D2 / R101 92.2 90.9 91.5 97.7 97.1 97.4

Both implementations achieve good performance on D1 and D2. As
expected, R101 has a better performance on D1 and D2 than R50. The
classification of type on D2 performs worse than that on D1, which is
largely due to the more diversity and small size of D2. Nevertheless,
F1-score is still higher than 90% when using R101.

Fig. 7: AP.

Parsing Local Information. To evaluate the
performance of parsing local information, we
use the metrics in COCO challenge [1]. COCO
is a large-scale object detection and segmenta-
tion dataset that contains more than 330K im-
ages with high-quality annotations. It uses AP
metrics [15] to access the three tasks (i.e., what,
where, and which pixels) together. Basically, AP
is a measure of precision-recall tradeoff calcu-
lated using all possible confidence level that is
represented by the classification score associated with each predicted
bbox. Intuitively, AP is the area under the precision-recall curve (Fig. 7).
To calculate the precision and recall at a confidence level, we first need
to calculate the intersection over union (IoU) between each predicted
bbox Bp and its corresponding ground truth Bgt by IoU =

area(Bp∩Bgt )
area(Bp∪Bgt )

.
If the IoU exceeds a threshold (e.g., 0.5), the prediction is considered as
a true positive; otherwise a false positive. We can then further calculate
the precision and recall over all confidence level to draw the curve.

Table 4: Average Precision of parsing local information.

Dataset /
Backbone

BBox Mask

AP50:95 AP50 AP75 AP50:95 AP50 AP75

D1 / R50 79.0 93.6 88.0 79.8 96.4 91.6
D1 / R101 81.9 93.9 89.1 79.9 96.9 91.1
D2 / R50 53.4 79.3 61.8 56.9 80.1 61.6
D2 / R101 56.4 81.7 64.9 59.1 82.5 65.1

COCO∗ 39.8 62.3 43.4 37.1 60.0 39.4
*A state-of-the-art performance on COCO dataset reported by [24].

Table 4 presents the AP of our model on the two datasets. The higher
the AP, the better it is. We provide state-of-the-art performance on
COCO reported by He et al. [24] as a background, due to the lack of
benchmarks. AP50:95 is the average AP over different IoU, from 0.5 to
95 with step 0.05. AP75 and AP50 is the AP calculated at IoU = 0.75
and IoU = 0.5, respectively. The larger the IoU, the stricter the metric
will be. As indicated in Table 4, our model achieves high AP on bbox
detection and pixel segmentation on D1. This result is because the
overall diversity of D1 is limited, the size of D1 is big enough in terms
of its diversity, and the auto-generated annotations of D1 are perfect
for enabling effective learning. By contrast, D2 has more diversity,
a smaller size, and imperfect annotations in comparison with that of
D1, leading to a decrease in performance. Nevertheless, our model
still achieves an acceptable performance on D2, considering the state-
of-the-art performance on COCO. We further discuss the annotation
perfectness of D2 in Sect. 5.5.



5 RECONSTRUCTION

Fig. 8: The reconstruction pipeline: a) uses NMM and RR to eliminate
repeated and fix failed detections, respectively; b) uses DL GrabCut
and text recognition to collect the elements to be reused and updated,
respectively; c) the final outputs can be depicted by a specification.

After interpreting a timeline infographic, the next problem is how to
automatically extract an extensible template from it. We achieve this
by a reconstruction pipeline (Fig. 8) that exploits the outputs from the
previous step. Our pipeline first eliminates the repeated bboxes using
Non-Maximum Merging (NMM), and then infers the missing elements
using Redundancy Recovery (RR). Next, DL GrabCut is employed to
extract high-quality graphical marks for reuse. Finally, the font of event
text and annotation text is identified using a publicly available API. A
quantitative validation confirms the effectiveness of our pipeline.

5.1 Eliminate Repeated BBoxes: Non-Maximum Merging

Fig. 9: Eliminate repeated bboxes: a) NMS keeps the bbox with the
highest confidence and removes the others; b) NMM merges bboxes to
the one with the highest confidence and the largest area.

Multiple predicted bboxes may exist on one object, such as the
two bboxes in Fig. 9a. A commonly used method to remove repeated
bboxes for natural images is Non-Maximum Suppression (NMS) [17].
NMS iteratively eliminates bboxes whose confidence score (i.e., the
classification score) are less than a predefined threshold. For instance,
in Fig. 9a, with a threshold of 0.8, NMS will eliminate the pink bbox
with 0.58 and output the red one. However, for infographics, a part of an
object may still be a “complete” object, which hinders the effectiveness
of NMS. For example, in Fig. 9b, the mark in the steel blue bbox and
the part of it in the deep blue bbox are both valid annotation marks. In
such case, each of the two bboxes will be assigned a high confidence
score (e.g., 1.0). Therefore NMS cannot eliminate the repeated box.

Therefore, we design NMM to eliminate repeated bboxes. Specif-
ically, for bboxes with the same category, we rank them using the
confidence score plus the area (normalize to [0,1]). For the top 1 bbox,
we merge other bboxes that overlap with it and exceed a IoU threshold
to form a union bbox. This process is repeated until all overlapping
boxes are merged. Fig. 9b shows the boxes before and after NMM.
In practice, we apply both NMS and NMM separately and then check
the consistency of the shapes between the resulted bboxes and other
non-repeated bboxes. The most consistent results are kept.

5.2 Fix Failed Detections: Redundancy Recovery
Our model may miss elements (i.e., false negative) or detect elements
with wrong categories (i.e., false positive). To fix these failed detections,
we leverage the redundant information of timelines (e.g., each event
has the same type of annotations). Specifically, for the elements in a
timeline, we first group them along the timeline orientation into clusters,
each of which represents an event. Then, we use the statistics of clusters
to verify and attempt to fix failed detections.

Incorrectly classified elements. Some elements in an infographic
can be classified into wrong categories. For example, a short annotation
text with a fancy font can be incorrectly classified as an annotation icon.
We adopt a voting mechanism to attempt to fix these misclassifications.
For instance, if more than half of the events contain annotation text, then
an annotation icon, whose bbox has the same shape as these annotation
texts, of an event should be classified as an annotation text. Given
an event can have multiple annotation texts, we restrict that only the
annotation texts with the consistent shape of bbox can vote for each
other. This rule is also applied to other categories.

Missing elements. We also use a similar voting mechanism to infer
the undetected elements. For example, in Fig. 8a, more than half of the
events have an event text. Thus, for the event without an event text (i.e.,
the event in 2015), we assume it should have an event text. By using
heuristic rules, we can estimate the bbox (i.e., x, y, width, height) of its
event text based on those of other event texts.

5.3 Elements to be Reused
For an extensible template, certain elements must be reused via segmen-
tation from the infographic image. Our model can predict the pixels
(i.e., mask) of each element for the segmentation. However, the quality
of these predicted pixels (Fig. 10b) may not be accurate enough for
template generation.

Fig. 10: DL model “interacts” with GrabCut by using the bbox and
mask: a) the bbox and mask predicted by our model; b) the predicted
mask is coarse; c) the refined result from DL GrabCut.

To tackle this issue, we use the outputs from the model (Fig. 10a) as
the input to GrabCut [43] algorithm. GrabCut is an interactive segmen-
tation algorithm that has been widely used in production tools, such
as Microsoft PowerPoint. It performs well especially when the back-
ground and foreground are not similar and the edges of the foreground
are crisp, which is a good fit for our scenario. To segment an element,
GrabCut needs a bbox around the target element as an input. Then, the
user can further refine the segmentation results by drawing strokes to
mark the probable foreground and background area.

Our idea is to automate this process using the outputs of the model
to imitate the user interactions. For each predicted element, we use
its bbox as the bbox drew by human and its mask as the user’s strokes
to refine the segmentation. By this means, we leverage the semantic
information from the DL model and the advantage of GrabCut on image
processing to obtain high-quality masks (Fig. 10c).

5.4 Elements to be Updated
Among the six categories of elements, three categories of elements
need to be updated, namely, event text, annotation text, and annotation
icon. Annotation icon can be updated by directly using new icons,
whereas event text and annotation text should maintain the same styles
with the original infographic, including their font family, color, and
size. To identify the font family, we use Font Identifier powered by
Fontspring Matcherator [2]. The font size and color can be calculated
and extracted from the pixels of the text in the bitmap image. Some
annotation text contains title and body text. We heuristically identify
the text with the larger font size as the title and the smaller one as the
body. To improve the extensibility of the template, we further use OCR
engine (i.e., Tesseract [49]) to recognize the content of event text to
infer the visual encodings of the timeline following the method in [38].
The final outputs can be depicted using a structural document (Fig. 11).



Fig. 11: The extensible template can be organized in a reusable docu-
ment. The bbox is a tuple of (top, le f t,width,height). The mask is a
byte array with shape width×height.

5.5 Validation
To evaluate the effectiveness of our pipeline, we reuse the R101 trained
in Sect. 4.3. We are interested in two aspects of our pipeline: whether
it can correct the failed detections and whether it can refine the segmen-
tation results. We only test our pipeline on D2, because the prediction
results on D1 are good enough to skip the steps that we want to access.

To obtain prediction outputs, we select the confidence level per
category based on the precision-recall curve calculated in Sect. 4.3. We
calculate the precision and recall of the predictions with IoU at 0.5 and
0.75. We then apply our pipeline on the predictions and calculate the
gains of precision and recall on each step. We expected the following:

• NMM can improve the precision of bbox and mask predictions as
it removes a few false positives.

• RR can improve the precision and recall of bbox and mask predic-
tion as it increases the number of true positives.

• DL GrabCut can improve the precision and recall of mask predic-
tion as it improves the quality of masks.

Table 5 presents the gains on precision and recall after each step. The
gains at IoU 0.5 are close to those at IoU 0.75, which means the gains
from the reconstruction pipeline are strict and stable. As expected, the
NMM shows a gain on the precision of bboxes and masks predictions.
We also observe a small gain on recall. The analysis results indicate
that such small gain is attributed to the merging results increasing the
number of true positives in some cases (e.g., two false positives become
one true positive after merging). Moreover, RR shows a gain on the
recall of bboxes and masks predictions. These results confirm that our

technique can correct some failed predictions (i.e wrong and missing).

Table 5: Gains come from Reconstruction at IoU 0.5 and 0.75.

BBox Mask

Pre50 Rec50 Pre75 Rec75 Pre50 Rec50 Pre75 Pre50

Raw 82.9 80.8 74.0 72.1 85.7 81.5 75.8 72.2
+NMM +2.3 +1.0 +2.3 +0.8 +1.9 +0.6 +1.8 +0.3
+RR +1.6 +2.5 +1.6 +2.3 +2.3 +2.1 +2.3 +2.0
+DLGC 0.0 0.0 0.0 0.0 -2.8 -5.5 -4.1 -3.8

Total 86.8 84.1 77.9 75.4 84.0 78.4 75.9 71.0

Fig. 12: The error from the imperfect label. a) an annotation mark and
b) its manually labeled mask; c) the predicted mask of the annotation
mark; d) the refined result from DL GrabCut.

A surprising finding is the decrease in the precision and recall of
mask predictions. Our investigation reveals that this decrease is due to
the imperfect labels. Figures 12a and 12b show an annotation mark and
its label. Figure 12c presents the prediction result and Fig. 12d shows
the result refined by DL GrabCut. The manually labeled mask encapsu-
lates the graphical mark with empty spaces and a border. Meanwhile,
the result from DL GrabCut perfectly matches the graphical mark but
not the label. Thus, even the result from DL GrabCut is of high quality,
it can also be changed from a true positive to a false positive, leading
to a decrease in precision and recall. Hence, we manually compare the
segmentation results of each element before and after using DL Grab-
Cut to verify its effectiveness. The comparison confirms the usefulness
of DL GrabCut in the pipeline.

6 EXTRACTED RESULTS AND GENERATED EXAMPLES

Example extracted results are shown in Fig. 13. High-resolution results
can be found in the supplemental material. Our approach can extract
templates from not only the timelines with linear representations (e.g.,
horizontal Fig. 13b and 13d, and vertical Fig. 13e and 13g), but also
those with arbitrary representations (Fig. 13a, 13c, and 13f). Figure 13d
shows that our approach is not affected by the background image.

Fig. 13: Example results from D2. We visualize the final predicted category, bbox, and mask of each element, following the color legend in Fig. 3.
We use gray-scale images for a clear demonstration. The original images and extra results can be checked in the supplemental material.



To present a usage example of these extensible templates, we further
implement a timeline renderer by extending TS [5], an open-source
tool that allows users to generate timelines for their data automatically.
It embeds a collection of heuristics to render timelines based on the
timeline representation, scale, and layout chosen by users. Currently,
TS provides a set of default styles (e.g., using rectangles as event
marks). We reuse and extend the heuristics in the tool and adapt it
to our templates, thus enabling generations of embellished timeline
infographics. We also add some heuristic rules for effectively using
marks in templates, such as looping through the marks when the number
of events exceeds that of the marks. We present two examples to
illustrate the generation process.

Fig. 14: A default timeline generated for the data in a) is shown in b).
The result of applying the template from Fig. 13a is presented in c).

• Generating timeline reusing graphical elements. In this example,
we reuse the graphical elements in Fig. 13a to generate a new timeline
(Fig. 14c) for the Chinese dynasties data (Fig. 14a). To achieve this,
we first use TS to render the data with default styles (Fig. 14b). The
template is then applied to the default timeline and the underlying
data. Specifically, we first substitute marks in Fig. 14b (e.g., the rect-
angles and red circles) with the marks in the template (e.g., event and
annotation marks), which are segmented from the existing timeline.
The margin and position of each mark are also updated accordingly.
Then, the event content is rendered at the position corresponding to
each event mark using the font from the template (i.e., annotation
text). Next, the time of each event is rendered, though it has not been
visualized in Fig. 14b, since it exists in the data and the template has
slots for the event text. Finally, the icon (i.e., the Chinese character)
in the data is displayed in the bbox of the annotation icon for each
event. This whole process is finished programmatically and automat-
ically by enumerating and binding the data to the template, as we
have the semantic role (i.e., the category) of elements in the template.

Fig. 15: a) A timeline generated by using the template from Fig. 13b.
b) The result of applying the representation from Fig. 13f to a).

• Generating timeline reusing representations. In this example,
we reuse the representation in Fig. 13f to generate a new timeline
(Fig. 15b) for mock-up data. To this end, we first render a timeline

(i.e., Fig. 15a) using the graphical elements from Fig. 13b, following
the same process mentioned above. The arbitrary representation
extracted from Fig. 13f is then reused in Fig. 15b. Specifically, we
enumerate events in Fig. 15a and place them one by one according
to the position (represented by bbox) of elements in Fig. 13f. Finally,
two events are adjusted to be vertical after the generation process.

7 DISCUSSION

In this section, we first share the lessons learned from our study, which
outline the need for human-ML collaborative authoring tool and graph-
ical image-driven deep learning. Then, we discuss how our work can
serve as a basis for future research and acknowledge the limitations.

7.1 Human-ML Collaborative Authoring Tool
Efforts have been made to aid visualization authoring by using ML. As
a pioneering work, ReVision [46] uses SVM and multiple rule-based
methods (i.e., computational interpretation) to parse the global and
local information of bitmap charts. This information is used to help
users to redesign problematic charts. Although ReVision successfully
decomposes charts, its rules limit its extendibility to tackle more com-
plex visualizations (e.g., infographics). In recent years, given the rapid
advances in DL, it is gradually possible to use data-driven models rather
than rule-based methods to interpret charts and even infographics. In
this work, we explore this direction and contribute a unified model to
successfully parse timeline infographics.

Note that our approach aims to use automation to assist, not replace,
human designers in the visualization design. We realize that it is
important to keep the human in the design process. This is not only
because it is difficult to get a perfect model, but also because the
design process is creative and subjective, and thus can hardly be fully
automatic. First, human interactions can steer the model and refine the
model’s results. For example, although we design several automatic
post-processing steps to enhance the overall performance of our model,
the user can further adjust the model (e.g., the confidence level) for
the desired output. Furthermore, the human should be at the center
of visualization authoring, while the ML model should assist, rather
than replace, the designer. For instance, the generated results of our
approach can aid users as stepping stones to initialize the visualization,
instead of being the final designs. However, designing human-ML
collaborative authoring tools that go beyond asking designers to refine
the model results remains underexplored. We envision how to design
authoring tools seamlessly integrate imperfect ML models into the
design process as an important research direction.

7.2 Graphical Image-Driven Deep Learning
The DL revolution is driven by tasks on natural images. However, the
specificity of graphical images (e.g., charts and infographics) leads to
requirements that cannot be easily fulfilled by models designed for
natural images. We share the lessons learned from our study and hope
to inspire more future work on the fundamental designs of DL models.

Translation invariance vs. translation variance In some cases,
our model cannot distinguish event marks from annotation marks, when
they look identical. Although our reconstruction pipeline can fix such
incorrect classification in most cases by using Redundancy Recovery,
we note that this issue is caused by a key feature of CNNs, namely,
translation invariance. Translation invariance [18] enables a CNN to
recognize an object wherever it is displayed in an image. This feature
is important in recognizing natural elements (e.g., a cat should always
be classified as “cat” wherever it is displayed). However, it is difficult
to handle graphical images, as some graphical elements are translation-
invariant while others are translation-variant. For instance, in a bar
chart image, the bars in the plot area should always be classified as
“bar mark”, which requires translation invariance; by contrast, text
labels’ roles are usually determined by their positions (e.g., “y-axis
label” at the left and “x-axis label” at the bottom) and thus requires
translation variance. A possible solution to this problem is to learn
and recognize relationships among elements. Capsule network [44] is
a network structure that can learn the relationships among elements.
Further investigation is required to adapt it to graphical images.



High-level semantics vs. low-level semantics Our network can
predict the pixel-wise masks of elements, but their quality is far from
perfect. The problem is rooted in the difference between natural and
graphical elements. In general, natural elements do not have crisp
edges. Thus, most of the models are designed to use low-resolution,
semantically-strong features for improved detection, while the precision
of segmentation is compromised. By contrast, graphical elements
require precise segmentation because of their crisp edges, while high-
level semantics are still necessary for detection. This demands a high-
resolution, semantically strong features, which is non-trivial to attain.
One possible future direction is to use various features for various
purposes: low-resolution, semantically strong features for detection;
and high-resolution, semantically weak features for segmentation.

Fig. 16: The animals can be correctly identified as timeline elements.

Single vs. hybrid Another difference between natural and graphical
images is that graphical images can comprise natural elements and
graphical elements. For example, in an infographic, a common practice
is to show objects with photos and annotate them with graphical shapes.
Such kind of hybrid components requires a model that considers the
characteristics of natural and graphical elements. However, some of
these characteristics may lead to conflict design requirements, and
result in challenges in design models. Although our datasets do not
include natural elements, we are interested in the performance of our
model on timelines contain graphical and natural elements. Thus, we
randomly substitute some graphical marks with photos of animals and
then feed them to our model. The results show that our model can
still correctly classify the categories of these animals (Fig. 16). We
regard this performance as a benefit of the pre-trained network. Future
research is needed to further understand the generality of these cases.

7.3 Future Work
We propose an end-to-end approach to automatically extract extensible
templates from infographic timelines. This work is only a starting point
towards automated infographic design. Here, we discuss some promis-
ing opportunities that can facilitate the design process of infographics.

From timeline to the others. Although our approach focuses on
infographic timelines, it can be generalized to other cases. First, our
model can be extended to more than 10 types of timelines once a larger
and more diverse dataset is available. The ability of our model to parse
infographics mainly depends on the training dataset rather than the
rules. Furthermore, the two tasks, namely, parsing the global and local
information of a visualization, are not specific to timeline infographics
but applicable to other types of visualizations. For example, previous
research [38, 46] on charts decomposition also contains similar steps
to parse the global and local information. Given that our model is
data-driven, it is possible to train the model using other types of visu-
alizations, thereby extending the model to a broader scenario. Finally,
besides facilitating visualization authoring, the templates can be used to
make static infographics interactive, e.g., using the parsed information
to support selection and filtering of elements. The parsed information
can also be used for other applications, such as indexing of infographics,
retargeting of visual styles, and infographics content analysis.

To sum up, the generalizability of our model is limited by the train-
ing data. Generally speaking, DNN models, no matter supervised or
unsupervised, require a large amount of training data to achieve high
prediction accuracy. For the scenarios where annotated datasets are
unavailable, our model has limited applicability. We plan to extend the
application scenarios of our approach in the future.

From hybrid to purely learning-based. Although our approach
utilizes a heuristic pipeline, it can be improved by substituting the
pipeline with a DL model. Our work shows that after extracting the
features of an input image, we can decode different image information
(e.g., global and local information) by using multi-functional heads.
Given that an extensible template can be represented by a structural
document (similar to Vega specifications), a potential improvement is
to use a recurrent neural network (RNN) to decode the feature maps and
directly output extensible templates. Recently, Dibia and Demiralp [14]
showed the possibility of translating a JSON-encoded data into Vega-
lite specification by using a RNN. Research in CV field also presents
models that take images as inputs and return textual data as outputs. The
related work suggests the potential to extend our model to an end-to-end
model, which takes infographic images as inputs and directly outputs
templates. We consider this area as an important future direction.

From template-based to freeform. Lastly, our model shows the
ability to learn and understand the content of infographic images. This
characteristic indicates several potential directions to facilitate the de-
sign process. For example, we can use a trained model to interpret a
sketch or materials (e.g., data, icons, and textual description) from users
and recommend infographic templates. Another step in this direction is
to design mixed initiative authoring systems, including automatically
completing or generating designs on the basis of users’ input.

7.4 Limitations
We acknowledge the limitations of our study. First, our datasets are
rather limited while the generalizability of our model mainly depends
on the data. However, collecting high-quality infographic datasets is
not an easy task considering the manual labeling efforts. We plan to
open source 1 our datasets and labeling tools for the community and
collect larger-scale infographic datasets in the future. Second, given our
work is not aimed at high metric values, we did not optimize our model
with bells and whistles, including multi-scale train/test, OHEM [47],
and other techniques. Outside the scope of this work, we expect that
such improvement skills are applicable to our model. Third, although
our approach can automatically extract templates from infographic
timelines, its performance can be further improved by involving users’
refinements. For example, we can integrate our approach to infographic
authoring tools and thus allow users to interactively refine extracted
results. A separate limitation is that the learning process is a ’blackbox’,
which calls for investigations on the learning process. Finally, when ap-
plying our approach for some purposes (e.g., reusing graphical elements
or overall layouts), we suggest that users should note the copyright
issue, which is complicated and depends on the law varying among
countries, the purpose of usage (e.g., commercial vs. noncommercial),
the degrees of the redesign, etc.

8 CONCLUSION

We contribute an automated approach to extract extensible templates
from bitmap infographic timelines. A multi-task DNN is presented to
understand and deconstruct bitmap timeline infographics, by classifying
the types and orientations of timelines and detecting and segmenting
elements on timelines; from these results, a heuristic pipeline is used to
reconstruct extensible templates. The extensible templates can be used
to automatically generate timeline infographics with updated data. The
quantitative experiments and example results confirm the effectiveness
and usefulness of our approach. We share lessons learned from our
study which make us notice the needs of graphical image-driven deep
learning. We also discuss how our work can be extended towards
automated infographics design in future researches.

ACKNOWLEDGMENTS

The authors wish to thank Weiwei Cui for valuable feedback on this
project, Sikai Cai, Zicheng Xu, Kun Xie for assistance in labeling
the dataset, as well as the anonymous reviewers for their valuable
comments. This work is partially supported by a grant from MSRA
(code: MRA19EG02).

1https://chenzhutian.org/auto-infog-timeline



REFERENCES

[1] Common objects in context. http://cocodataset.org.
[2] FontsSring font matcherator. https://www.fontspring.com/

matcherator.
[3] FreePik. https://www.freepik.com.
[4] Google image. https://www.google.com/imghp.
[5] Microsoft TimelineStoryteller. https://timelinestoryteller.com/
app/.

[6] Pinterest. https://www.pinterest.com.
[7] Pytorch. https://pytorch.org.
[8] J. Bertin. Semiology of Graphics. University of Wisconsin Press, 1983.
[9] M. A. Borkin, Z. Bylinskii, N. W. Kim, C. M. Bainbridge, C. S. Yeh,

D. Borkin, H. Pfister, and A. Oliva. Beyond Memorability: Visualization
Recognition and Recall. IEEE TVCG, 22(1):519–528, 2016.

[10] M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Timelines
Revisited: A Design Space and Considerations for Expressive Storytelling.
IEEE TVCG, 23(9):2151–2164, 2017.

[11] Z. Bylinskii, S. Alsheikh, S. Madan, A. Recasens, K. Zhong, H. Pfister,
F. Durand, and A. Oliva. Understanding Infographics through Textual and
Visual Tag Prediction. CoRR, abs/1709.09215, 2017.

[12] Z. Bylinskii, N. W. Kim, P. O’Donovan, S. Alsheikh, S. Madan, H. Pfister,
F. Durand, B. Russell, and A. Hertzmann. Learning Visual Importance for
Graphic Designs and Data Visualizations. In Proc. UIST, pages 57–69.
ACM, 2017.

[13] W. S. Cleveland and R. McGill. Graphical Perception: Theory, Experi-
mentation, and Application to the Development of Graphical Methods. J.
Am. Stat. Assoc., pages 531–554, 1984.

[14] V. Dibia and Ç. Demiralp. Data2Vis: Automatic Generation of Data
Visualizations Using Sequence to Sequence Recurrent Neural Networks.
CoRR, abs/1804.03126, 2018.

[15] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes Challenge: A Retro-
spective. Springer IJCV, 111(1):98–136, 2015.

[16] R. Girshick. Fast R-CNN. In Proc. ICCV, pages 1440–1448. IEEE, 2015.
[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich Feature Hierarchies

for Accurate Object Detection and Semantic Segmentation. In Proc. CVPR,
pages 580–587. IEEE, 2014.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[19] S. Haroz, R. Kosara, and S. L. Franconeri. ISOTYPE Visualization:
Working Memory, Performance, and Engagement with Pictographs. In
Proc. CHI, pages 1191–1200. ACM, 2015.

[20] L. Harrison and K. Reinecke. Infographic Aesthetics: Designing for the
First Impression. In Proc. CHI, pages 1187–1190. ACM, 2015.

[21] K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. VizML: A
Machine Learning Approach to Visualization Recommendation. In Proc.
CHI, page 128. ACM, 2019.

[22] D. Jung, W. Kim, B. Lee, B. Kim, and J. Seo. ChartSense: Interactive Data
Extraction from Chart Images. In Proc. CHI, pages 6706–6717. ACM,
2017.

[23] K. Kafle, B. Price, S. Cohen, and C. Kanan. DVQA: Understanding Data
Visualizations via Question Answering. In Proc. CVPR, pages 5648–5656.
IEEE, 2018.

[24] Kaiming, He and Georgia, Gkioxari and Piotr, Dollar and Ross, Girshick.
Mask R-CNN. In Proc. ICCV, pages 2980–2988. IEEE, 2017.

[25] A. Kembhavi, M. Salvato, E. Kolve, M. Seo, H. Hajishirzi, and A. Farhadi.
A Diagram is Worth a Dozen Images. In Proc. ECCV, pages 235–251.
Springer, 2016.

[26] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,
and H. Pfister. Data-Driven Guides : Supporting Expressive Design for
Information Graphics. IEEE TVCG, 23(1):491–500, 2017.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classification
with Deep Convolutional Neural Networks. In Proc. NIPS, pages 1106–
1114, 2012.

[28] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond Sliding Win-
dows: Object Localization by Efficient Subwindow Search. In Proc. CVPR.
IEEE, 2008.

[29] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie.
Feature Pyramid Networks for Object Detection. In Proc. CVPR, pages
936–944. IEEE, 2017.

[30] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense
Object Detection. In Proc. ICCV, pages 2999–3007. IEEE, 2017.

[31] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. Learning
Design Semantics for Mobile Apps. In Proc. UIST, pages 569–579. ACM,
2018.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-y. Fu, and A. C.
Berg. SSD : Single Shot MultiBox Detector. In Proc. ECCV, pages 21–37.
Springer, 2016.

[33] Y. Luo, X. Qin, N. Tang, and G. Li. DeepEye: Towards Automatic Data
Visualization. In Proc. ICDE, pages 101–112. IEEE, 2018.

[34] J. Mackinlay. Automating the Design of Graphical Presentations of Rela-
tional Information. ACM TOG, 5(2):110–141, 1987.

[35] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic
Presentation for Visual Analysis. IEEE TVCG, 13(6):1137–1144, 2007.

[36] S. Madan, Z. Bylinskii, M. Tancik, A. Recasens, K. Zhong, S. Alsheikh,
H. Pfister, A. Oliva, and F. Durand. Synthetically Trained Icon Proposals
for Parsing and Summarizing Infographics. CoRR, abs/1807.10441, 2018.

[37] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco. IEEE TVCG, 25(1):438–448,
2019.

[38] J. Poco and J. Heer. Reverse-Engineering Visualizations: Recovering
Visual Encodings from Chart Images. CGF, 36(3):353–363, 2017.

[39] J. Poco, A. Mayhua, and J. Heer. Extracting and Retargeting Color
Mappings from Bitmap Images of Visualizations. IEEE TVCG, 24(1):637–
646, 2018.

[40] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. In Proc. CVPR, pages
779–788. IEEE, 2016.

[41] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Network. In Proc. NIPS, pages
91–99, 2015.

[42] S. F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive Graphic
Design Using Automatic Presentation Knowledge. In Proc. CHI, page
207. ACM, 1994.

[43] C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: Interactive Fore-
ground Extraction Using Iterated Graph Cuts. ACM TOG, 23(3):309–314,
2004.

[44] S. Sabour, N. Frosst, and G. Hinton. Dynamic Routing between Capsules.
In Proc. NIPS, pages 3859–3869, 2017.

[45] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite :
A Grammar of Interactive Graphics. IEEE TVCG, 23(1):341–350, 2018.

[46] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
ReVision: Automated Classification, Analysis and Redesign of Chart
Images. In Proc. UIST, pages 393–402. ACM, 2011.

[47] A. Shrivastava, A. Gupta, and R. B. Girshick. Training Region-based
Object Detectors with Online Hard Example Mining. In Proc. CVPR,
pages 761–769. IEEE, 2016.

[48] N. Siegel, Z. Horvitz, R. Levin, S. Divvala, and A. Farhadi. FigureSeer:
Parsing Result-Figures in Research Papers. In Proc. ECCV, pages 664–680.
Springer, 2016.

[49] R. Smith. An Overview of the Tesseract OCR Engine. In Proc. ICDAR,
pages 629–633. IEEE, 2007.

[50] C. STEPHEN M. Task-Analytic Approach to the Automated Design of
Graphic Presentations. ACM TOG, 10(2):111–151, 1991.

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going Deeper with Convolutions. In
Proc. CVPR, pages 1–9. IEEE, 2015.

[52] Y. Wang, H. Zhang, H. Huang, X. Chen, Q. Yin, Z. Hou, D. Zhang, Q. Luo,
and H. Qu. InfoNice: Easy Creation of Information Graphics. In Proc.
CHI, page 335. ACM, 2018.

[53] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager : Exploratory Analysis via Faceted Browsing of Visual-
ization Recommendations. IEEE TVCG, 22(1):649–658, 2016.

[54] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2 : Augmenting Visual
Analysis with Partial View Specifications. In Proc. CHI, pages 2648–2659.
ACM, 2017.

[55] H. Xia, N. Henry Riche, F. Chevalier, B. De Araujo, and D. Wigdor.
DataInk: Direct and Creative Data-Oriented Drawing. In Proc. CHI, page
223. ACM, 2018.

[56] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated Residual
Transformations for Deep Neural Networks. In Proc. CVPR, pages 5987–
5995. IEEE, 2017.

http://cocodataset.org
https://www.fontspring.com/matcherator
https://www.fontspring.com/matcherator
https://www.freepik.com
https://www.google.com/imghp
https://timelinestoryteller.com/app/
https://timelinestoryteller.com/app/
https://www.pinterest.com
https://pytorch.org
http://www.deeplearningbook.org

	Introduction
	Related Works
	Automated Visualization Design
	Computational Interpretation of Visualization
	Deep Learning-based Object Detection

	Problem Statement
	Background
	Approach Overview
	Datasets

	Deconstruction
	Parsing Global Information
	Parsing Local Information
	Validation

	Reconstruction
	Eliminate Repeated BBoxes: Non-Maximum Merging
	Fix Failed Detections: Redundancy Recovery
	Elements to be Reused
	Elements to be Updated
	Validation

	Extracted Results and Generated Examples
	Discussion
	Human-ML Collaborative Authoring Tool
	Graphical Image-Driven Deep Learning
	Future Work
	Limitations

	Conclusion

