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Abstract

In this work we address the problem of finding reliable
pixel-level correspondences under difficult imaging condi-
tions. We propose an approach where a single convolu-
tional neural network plays a dual role: It is simultane-
ously a dense feature descriptor and a feature detector.
By postponing the detection to a later stage, the obtained
keypoints are more stable than their traditional counter-
parts based on early detection of low-level structures. We
show that this model can be trained using pixel correspon-
dences extracted from readily available large-scale SfM re-
constructions, without any further annotations. The pro-
posed method obtains state-of-the-art performance on both
the difficult Aachen Day-Night localization dataset and the
InLoc indoor localization benchmark, as well as competi-
tive performance on other benchmarks for image matching
and 3D reconstruction.

1. Introduction

Establishing pixel-level correspondences between im-
ages is one of the fundamental computer vision problems,
with applications in 3D computer vision, video compres-
sion, tracking, image retrieval, and visual localization.

Sparse local features [6–8, 13, 14, 19, 30, 32–34, 50, 55,
56,60,65] are a popular approach to correspondence estima-
tion. These methods follow a detect-then-describe approach
that first applies a feature detector [7,13,19,30,32,34,50,65]
to identify a set of keypoints or interest points. The detec-
tor then provides image patches extracted around the key-
points to the following feature description stage [6–8, 14,
30, 33, 55, 56, 60, 65]. The output of this stage is a compact
representation for each patch. Sparse local features offer
a set of advantages: Correspondences can be matched effi-
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Figure 1: Examples of matches obtained by the D2-Net
method. The proposed method can find image correspondences
even under significant appearance differences caused by strong
changes in illumination such as day-to-night, changes in depiction
style or under image degradation caused by motion blur.

ciently via (approximate) nearest neighbor search [37] and
the Euclidean distance. Sparse features offer a memory ef-
ficient representation and thus enable approaches such as
Structure-from-Motion (SfM) [21,53] or visual localization
[26, 47, 58] to scale. The keypoint detector typically con-
siders low-level image information such as corners [19] or
blob-like structures [30, 32]. As such, local features can
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often be accurately localized in an image, which is an im-
portant property for 3D reconstruction [17, 53].

Sparse local features have been applied successfully un-
der a wide range of imaging conditions. However, they typ-
ically perform poorly under extreme appearance changes,
e.g., between day and night [71] or seasons [46], or in
weakly textured scenes [59]. Recent results indicate that
a major reason for this observed drop in performance is the
lack of repeatability in the keypoint detector: While local
descriptors consider larger patches and potentially encode
higher-level structures, the keypoint detector only consid-
ers small image regions. As a result, the detections are
unstable under strong appearance changes. This is due to
the fact that the low-level information used by the detec-
tors is often significantly more affected by changes in low-
level image statistics such as pixel intensities. Neverthe-
less, it has been observed that local descriptors can still be
matched successfully even if keypoints cannot be detected
reliably [46, 59, 62, 71]. Thus, approaches that forego the
detection stage and instead densely extract descriptors per-
form much better in challenging conditions. Yet, this gain
in robustness comes at the price of higher matching times
and memory consumption.

In this paper, we aim at obtaining the best of both worlds,
i.e., a sparse set of features that are robust under challenging
conditions and efficient to match and to store. To this end,
we propose a describe-and-detect approach to sparse local
feature detection and description: Rather than performing
feature detection early on based on low-level information,
we propose to postpone the detection stage. We first com-
pute a set of feature maps via a Deep Convolutional Neural
Network (CNN). These feature maps are then used to com-
pute the descriptors (as slices through all maps at a specific
pixel position) and to detect keypoints (as local maxima of
the feature maps). As a result, the feature detector is tightly
coupled with the feature descriptor. Detections thereby
correspond to pixels with locally distinct descriptors that
should be well-suited for matching. At the same time, us-
ing feature maps from deeper layers of a CNN enables us to
base both feature detection and description on higher-level
information [69]. Experiments show that our approach re-
quires significantly less memory than dense methods. At
the same time, it performs comparably well or even better
under challenging conditions (c.f . Fig. 1) such as day-night
illumination changes [46] and weakly textured scenes [59].
Our approach already achieves state-of-the-art performance
without any training. It can be improved further by fine-
tuning on a large dataset of landmark scenes [27].

Naturally, our approach has some drawbacks too: Com-
pared to classical sparse features, our approach is less effi-
cient due to the need to densely extract descriptors. Still,
this stage can be done at a reasonable efficiency via a single
forward pass through a CNN. Detection based on higher-
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(a) detect-then-describe (b) detect-and-describe

Figure 2: Comparison between different approaches for fea-
ture detection and description. Pipeline (a) corresponds to dif-
ferent variants of the two-stage detect-then-describe approach. In
contrast, our proposed pipeline (b) uses a single CNN which ex-
tracts dense features that serve as both descriptors and detectors.

level information inherently leads to more robust but less
accurate keypoints – yet, we show that our approach is still
accurate enough for visual localization and SfM.

2. Related Work

Local features. The most common approach to sparse fea-
ture extraction – the detect-then-describe approach – first
performs feature detection [7, 19, 30, 32, 34] and then ex-
tracts a feature descriptor [7, 9, 25, 30, 45] from a patch
centered around each keypoint. The keypoint detector is
typically responsible for providing robustness or invariance
against effects such as scale, rotation, or viewpoint changes
by normalizing the patch accordingly. However, some of
these responsibilities might also be delegated to the descrip-
tor [68]. Fig. 2a illustrates the common variations of this
pipeline, from using hand-crafted detectors [7,19,30,32,34]
and descriptors [7,9,25,30,45], replacing either the descrip-
tor [6,55,56] or detector [50,70] with a learned alternative,
or learning both the detector and descriptor [39,65]. For ef-
ficiency, the feature detector often considers only small im-
age regions [65] and typically focuses on low-level struc-
tures such as corners [19] or blobs [30]. The descriptor
then captures higher level information in a larger patch
around the keypoint. In contrast, this paper proposes a sin-
gle branch describe-and-detect approach to sparse feature
extraction, as shown in Fig. 2b. As a result, our approach
is able to detect keypoints belonging to higher-level struc-
tures and locally unique descriptors. The work closest to
our approach is SuperPoint [13] as it also shares a deep rep-
resentation between detection and description. However,
they rely on different decoder branches which are trained
independently with specific losses. On the contrary, our
method shares all parameters between detection and de-
scription and uses a joint formulation that simultaneously
optimizes for both tasks. Our experiments demonstrate that
our describe-and-detect strategy performs significantly bet-



ter under challenging conditions, e.g., when matching day-
time and night-time images, than the previous approaches.

Dense descriptor extraction and matching. An alterna-
tive to the detect-then-describe approach is to forego the
detection stage and perform the description stage densely
across the whole image [10, 15, 49, 53]. In practice, this
approach has shown to lead to better matching results
than sparse feature matching [46, 59, 71], particularly un-
der strong variations in illumination [71]. This identifies
the detection stage as a significant weakness in detect-then-
describe methods, which has motivated our approach.

Image retrieval. The task of image retrieval [3, 18, 38,
41,61,62] also deals with finding correspondences between
images in challenging situations with strong illumination or
viewpoint changes. Several of these methods start by dense
descriptor extraction [3,38,61,62] and later aggregate these
descriptors into a compact image-level descriptor for re-
trieval. Works most related to our approach are [38,61]: [38]
develops an approach similar to ours, where an attention
module is added on top of the dense description stage to
perform keypoint selection. However, their method is de-
signed to produce only a few reliable keypoints as to reduce
the false positive matching rate during retrieval. Our experi-
ments demonstrate that our approach performs significantly
better for matching and camera localization; [61] implic-
itly detects a set of keypoints as the global maxima of all
feature maps, before pooling this information into a global
image descriptor. [61] has inspired us to detect features as
local maxima of feature maps.

Object detection. The proposed describe-and-detect ap-
proach is also conceptually similar to modern approaches
used in object detection [29, 42, 43]. These methods also
start by a dense feature extraction step, which is followed
by the scoring of a set of region proposals. A non-maximal-
suppression stage is then performed to select only the most
locally-salient proposals with respect to a classification
score. Although these methods share conceptual similari-
ties, they target a very different task and cannot be applied
directly to obtain pixel-wise image correspondences.

This work builds on these previous ideas and proposes a
method to perform joint detection and descriptions of key-
points, presented next.

3. Joint Detection and Description Pipeline
Contrary to the classical detect-then-describe ap-

proaches, which use a two-stage pipeline, we propose to
perform dense feature extraction to obtain a representation
that is simultaneously a detector and a descriptor. Because
both detector and descriptor share the underlying represen-
tation, we refer to our approach as D2. Our approach is
illustrated in Fig. 3.

The first step of the method is to apply a CNN F on

the input image I to obtain a 3D tensor F = F(I), F ∈
Rh×w×n, where h×w is the spatial resolution of the feature
maps and n the number of channels.

3.1. Feature Description

As in other previous work [38,44,59], the most straight-
forward interpretation of the 3D tensor F is as a dense set
of descriptor vectors d:

dij = Fij:,d ∈ Rn , (1)

with i = 1, . . . , h and j = 1, . . . , w. These descriptor vec-
tors can be readily compared between images to establish
correspondences using the Euclidean distance. During the
training stage, these descriptors will be adjusted such that
the same points in the scene produce similar descriptors,
even when the images contain strong appearance changes.
In practice, we apply an L2 normalization on the descriptors
prior to comparing them: d̂ij = dij/‖dij‖2.

3.2. Feature Detection

A different interpretation of the 3D tensor F is as a col-
lection of 2D responses D [61]:

Dk = F::k, D
k ∈ Rh×w , (2)

where k = 1, . . . , n. In this interpretation, the feature ex-
traction function F can be thought of as n different feature
detector functions Dk, each producing a 2D response map
Dk. These detection response maps are analogous to the
Difference-of-Gaussians (DoG) response maps obtained in
Scale Invariant Feature Transform (SIFT) [30] or to the cor-
nerness score maps obtained in Harris’ corner detector [19].
In our work, these raw scores are post-processed to select
only a subset of locations as the output keypoints. This pro-
cess is described next.

Hard feature detection. In traditional feature detectors
such as DoG, the detection map would be sparsified by per-
forming a spatial non-local-maximum suppression. How-
ever, in our approach, contrary to traditional feature detec-
tors, there exist multiple detection mapsDk (k = 1, . . . , n),
and a detection can take place on any of them. Therefore,
for a point (i, j) to be detected, we require:

(i, j) is a detection ⇐⇒ Dk
ij is a local max. in Dk ,

with k = argmax
t

Dt
ij .

(3)

Intuitively, for each pixel (i, j), this corresponds to select-
ing the most preeminent detector Dk (channel selection),
and then verifying whether there is a local-maximum at po-
sition (i, j) on that particular detector’s response map Dk.
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Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(i) local descriptors dij are simply obtained by traversing all the n feature maps Dk at a spatial position (i, j); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores sij are computed from a soft local-maximum score α and a ratio-to-maximum score per descriptor β.

Soft feature detection. During training, the hard detection
procedure described above is softened to be amenable for
back-propagation. First, we define a soft local-max. score

αkij =
exp

(
Dk
ij

)
∑

(i′,j′)∈N (i,j) exp
(
Dk
i′j′

) , (4)

where N (i, j) is the set of 9 neighbours of the pixel (i, j)
(including itself). Then, we define the soft channel selec-
tion, which computes a ratio-to-max. per descriptor that
emulates channel-wise non-maximum suppression:

βkij = Dk
ij

/
max
t
Dt
ij . (5)

Next, in order to take both criteria into account, we maxi-
mize the product of both scores across all feature maps k to
obtain a single score map:

γij = max
k

(
αkijβ

k
ij

)
. (6)

Finally, the soft detection score sij at a pixel (i, j) is ob-
tained by performing an image-level normalization:

sij = γij

/∑
(i′,j′)

γi′j′ . (7)

Multiscale Detection. Although CNN descriptors have a
certain degree of scale invariance due to pre-training with
data augmentations, they are not inherently invariant to
scale changes and the matching tends to fail in cases with a
significant difference in viewpoint.

In order to obtain features that are more robust to scale
changes, we propose to use an image pyramid [2], as typi-
cally done in hand-crafted local feature detectors [28,30,32]
or even for some object detectors [16]. This is only per-
formed during test time.

Given the input image I , an image pyramid Iρ contain-
ing three different resolutions ρ = 0.5, 1, 2 (corresponding
to half resolution, input resolution, and double resolution)
is constructed and used to extract feature maps F ρ at each

resolution. Then, the larger image structures are propagated
from the lower resolution feature maps to the higher resolu-
tion ones, in the following way:

F̃ ρ = F ρ +
∑
γ<ρ

F γ . (8)

Note that the feature maps F ρ have different resolutions. To
enable the summation in (8), feature maps F γ are resized to
the resolution of F ρ using bilinear interpolation.

Detections are obtained by applying the post-processing
described above to the fused feature maps F̃ ρ. In order to
prevent re-detecting features, we use the following response
gating mechanism: Starting at the coarsest scale, we mark
the detected positions; these masks are upsampled (nearest
neighbor) to the resolutions of the next scales; detections
falling into marked regions are then ignored.

4. Jointly optimizing detection and description
This section describes the loss, the dataset used for train-

ing, and provides implementation details.

4.1. Training loss

In order to train the proposed model, which uses a single
CNN F for both detection and description, we require an
appropriate loss L that jointly optimizes the detection and
description objectives. In the case of detection, we want
keypoints to be repeatable under changes in viewpoint or
illumination. In the case of description, we want descriptors
to be distinctive, so that they are not mismatched. To this
end, we propose an extension to the triplet margin ranking
loss, which has been successfully used for descriptor learn-
ing [6, 35], to also account for the detection stage. We will
first review the triplet margin ranking loss, and then present
our extended version for joint detection and description.

Given a pair of images (I1, I2) and a correspondence
c : A ↔ B between them (where A ∈ I1, B ∈ I2),
our version of the triplet margin ranking loss seeks to mini-
mize the distance of the corresponding descriptors d̂(1)

A and
d̂
(2)
B , while maximizing the distance to other confounding



descriptors d̂
(1)
N1

or d̂
(2)
N2

in either image, which might ex-
ist due to similarly looking image structures. To this end,
we define the positive descriptor distance p(c) between the
corresponding descriptors as:

p(c) = ‖d̂(1)
A − d̂

(2)
B ‖2 , (9)

The negative distance n(c), which accounts for the most
confounding descriptor for either d̂(1)

A or d̂(2)
B , is defined as:

n(c) = min
(
‖d̂(1)

A − d̂
(2)
N2
‖2, ‖d̂(1)

N1
− d̂

(2)
B ‖2

)
, (10)

where the negative samples d
(1)
N1

and d
(2)
N2

are the hardest
negatives that lie outside of a square local neighbourhood
of the correct correspondence:

N1 = argmin
P∈I1

‖d̂(1)
P − d̂

(2)
B ‖2 s.t. ‖P −A‖∞ > K , (11)

and similarly for N2. The triplet margin ranking loss for a
margin M can be then defined as:

m(c) = max
(
0,M + p(c)2 − n(c)2

)
. (12)

Intuitively, this triplet margin ranking loss seeks to enforce
the distinctiveness of descriptors by penalizing any con-
founding descriptor that would lead to a wrong match as-
signment. In order to additionally seek for the repeatability
of detections, an detection term is added to the triplet mar-
gin ranking loss in the following way:

L(I1, I2) =
∑
c∈C

s
(1)
c s

(2)
c∑

q∈C s
(1)
q s

(2)
q

m(p(c), n(c)) , (13)

where s(1)c and s(2)c are the soft detection scores (7) at points
A and B in I1 and I2, respectively, and C is the set of all
correspondences between I1 and I2.

The proposed loss produces a weighted average of the
margin terms m over all matches based on their detection
scores. Thus, in order for the loss to be minimized, the most
distinctive correspondences (with a lower margin term) will
get higher relative scores and vice-versa - correspondences
with higher relative scores are encouraged to have a similar
descriptors distinctive from the rest.

4.2. Training Data

To generate training data on the level of pixel-wise corre-
spondences, we used the MegaDepth dataset [27] consisting
of 196 different scenes reconstructed from 1,070,468 inter-
net photos using COLMAP [51, 54]. The authors provide
camera intrinsics / extrinsics and depth maps from Multi-
View Stereo for 102,681 images.

In order to extract the correspondences, we first consid-
ered all pairs of images with at least 50% overlap in the

sparse SfM point cloud. For each pair, all points of the sec-
ond image with depth information were projected into the
first image. A depth-check with respect to the depth map
of the first image was run to remove occluded pixels. In
the end, we obtained 327,036 image pairs. This dataset was
split in a validation dataset with 18,149 image pairs (from
78 scenes, each with less than 500 image pairs) and a train-
ing dataset from the remaining 118 scenes.

4.3. Implementation details

The VGG16 architecture [57], pretrained on Ima-
geNet [12] and truncated after the conv4 3 layer, was used
to initialize the feature extraction network F .

Training. The last layer of the dense feature extractor
(conv4 3) was fine-tuned for 50 epochs using Adam [24]
with an initial learning rate of 10−3, which was further di-
vided by 2 every 10 epochs. A fixed number (100) of ran-
dom image pairs from each scene are used for training at
every epoch in order to compensate the scene imbalance
present in the dataset. For each pair, we selected a ran-
dom 256 × 256 crop centered around one correspondence.
We use a batch size of 1 and make sure that the training
pairs present at least 128 correspondences in order to obtain
meaningful gradients.

Testing. At test time, in order to increase the resolution
of the feature maps, the last pooling layer (pool3) from F
with a stride of 2 is replaced by an average pooling layer
with a stride of 1. Then, the subsequent convolutional lay-
ers (conv4 1 to conv4 3) are replaced with dilated con-
volutions [22] with a rate of 2, so that their receptive field
remains unchanged. With these modifications, the obtained
feature maps have a resolution of one fourth of the input
resolution, which allows for more tentative keypoints and a
better localization. The position of the detected keypoints is
improved using a local refinement at feature map level fol-
lowing the approach used in SIFT [30]. The descriptors are
then bilinearly interpolated at the refined positions.

Our implementation will be available at https://
github.com/mihaidusmanu/d2-net.

5. Experimental Evaluation

The main motivation behind our work was to develop a
local features approach that is able to better handle chal-
lenging conditions. Firstly, we evaluate our method on a
standard image matching task based on sequences with il-
lumination or viewpoint changes. Then, we present the
results of our method in two more complex computer vi-
sion pipelines: 3D reconstruction and visual localization.
In particular, the visual localization task is evaluated under
extremely challenging conditions such as registering night-
time images against 3D models generated from day-time

https://github.com/mihaidusmanu/d2-net
https://github.com/mihaidusmanu/d2-net
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Hes. det. + RootSIFT 6.7K 2.8K
HAN + HN++ [35, 36] 3.9K 2.0K
LF-Net [39] 0.5K 0.2K
SuperPoint [13] 1.7K 0.9K
DELF [38] 4.6K 1.9K
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D2 MS (ours) 4.9K 1.7K
D2 SS Trained (ours) 6.0K 2.5K
D2 MS Trained (ours) 8.3K 2.8K

Figure 4: Evaluation on HPatches [5] image pairs. For each method, the mean matching accuracy (MMA) as a function of the matching
threshold (in pixels) is shown. We also report the mean number of detected features and the mean number of mutual nearest neighbor
matches. Our approach achieves the best overall performance after a threshold of 6.5px, both using a single (SS) and multiple (MS) scales.

imagery [46, 48] and localizing images in challenging in-
door scenes [59] dominated by weakly textured surfaces and
repetitive structures. Qualitative examples of the results of
our method are presented in Fig. 1. Please see the supple-
mentary material for additional qualitative examples.

5.1. Image Matching

In a first experiment, we consider a standard image
matching scenario where given two images we would like
to extract and match features between them. For this exper-
iment, we use the sequences of full images provided by the
HPatches dataset [5]. Out of the 116 available sequences
collected from various datasets [1, 5, 11, 23, 33, 63, 67], we
selected 108.1 Each sequence consists of 6 images of pro-
gressively larger illumination (52 sequences without view-
point changes) or viewpoint changes (56 sequences without
illumination changes). For each sequence, we match the
first against all other images, resulting in 540 pairs.

Evaluation protocol. For each image pair, we match the
features extracted by each method using nearest neighbor
search, accepting only mutual nearest neighbors. A match is
considered correct if its reprojection error, estimated using
the homographies provided by the dataset, is below a given
matching threshold. We vary the threshold and record the
mean matching accuracy (MMA) [33] over all pairs, i.e., the
average percentage of correct matches per image pair.

As baselines for the classical detect-then-describe strat-
egy, we use RootSIFT [4, 30] with the Hessian Affine key-
point detector [32], a variant using a learned shape estimator
(HesAffNet [36] - HAN) and descriptor (HardNet++ [35] -
HN++2), and an end-to-end trainable variant (LF-Net [39]).
We also compare against SuperPoint [13] and DELF [38],
which are conceptually more similar to our approach.

Results. Fig. 4 shows results for illumination and view-
point changes, as well as mean accuracy over both condi-
tions. For each method, we also report the mean number
of detected features and the mean number of mutual nearest

1We left out sequences with an image resolution beyond 1200× 1600
pixels as not all methods were able to handle this resolution.

2HardNet++ was trained on the HPatches dataset [5].

neighbor matches per image. As can be seen, our method
achieves the best overall performance for matching thresh-
olds of 6.5 pixels or more.

DELF does not refine its keypoint positions - thus, de-
tecting the same pixel positions at feature map level yields
perfect accuracy for strict thresholds. Even though power-
ful for the illumination sequences, the downsides of their
method when used as a local feature extractor can be seen
in the viewpoint sequences. For LF-Net, increasing the
number of keypoints to more than the default value (500)
worsened the results. However, [39] does not enforce that
matches are mutual nearest neighbors and we suspect that
their method is not suited for this type of matching.

As can be expected, our method performs worse
than detect-then-describe approaches for stricter matching
thresholds: The latter use detectors firing at low-level blob-
like structures, which are inherently better localized than
the higher-level features used by our approach. At the same
time, our features are also detected at the lower resolution
of the CNN features.

We suspect that the inferior performance for the se-
quences with viewpoint changes is due to a major bias in
our training dataset - roughly 90% of image pairs have a
change in viewpoint lower than 20◦ (measured as the angle
between the principal axes of the two cameras).

The proposed pipeline for multiscale detection improves
the viewpoint robustness of our descriptors, but it also adds
more confounding descriptors that negatively affect the ro-
bustness to illumination changes.

5.2. 3D Reconstruction

In a second experiment, we evaluate the performance of
our proposed describe-and-detect approach in the context
of 3D reconstruction. This task requires well-localized fea-
tures and might thus be challenging for our method.

For evaluation, we use three medium-scale internet-
collected datasets with a significant number of different
cameras and conditions (Madrid Metropolis, Gendarmen-
markt and Tower of London [64]) from a recent local fea-
ture evaluation benchmark [52]. All three datasets are small
enough to allow exhaustive image matching, thus avoiding



the need for using image retrieval.

Evaluation protocol. We follow the protocol defined
by [52] and first run SfM [51], followed by Multi-View
Stereo (MVS) [54]. For the SfM models, we report the
number of images and 3D points, the mean track lengths
of the 3D points, and the mean reprojection error. For the
MVS models, we report the number of dense points. Except
for the reprojection error, larger numbers are better. We use
RootSIFT [4, 30] (the best perfoming method according to
the benchmark’s website) and GeoDesc [31], a state-of-the-
art trained descriptor3 as baselines. Both follow the detect-
then-describe approach to local features.

Results. Tab. 1 shows the results of our experiment. Over-
all, the results show that our approach performs on par
with state-of-the-art local features on this task. This shows
that, even though our features are less accurately localized
compared to detect-then-describe approaches, they are suf-
ficiently accurate for the task of SfM as our approach is still
able to register a comparable number of images.

Our method reconstructs fewer 3D points due to the
strong ratio test filtering [30] of the matches that is per-
formed in the 3D reconstruction pipeline. While this fil-
tering is extremely important to remove incorrect matches
and prevent incorrect registrations, we noticed that for our
method it also removes an important number of correct
matches (20%–25%)4, as the loss used for training our
method does not take this type of filtering into account.

5.3. Localization under Challenging Conditions

The previous experiments showed that our approach per-
forms comparable with the state-of-the-art in standard ap-
plications. In a final experiment, we show that our approach
sets the state-of-the-art for sparse features under two very
challenging conditions: Localizing images under severe il-
lumination changes and in complex indoor scenes.

Day-Night Visual Localization. We evaluate our approach
on the Aachen Day-Night dataset [46, 48] in a local recon-
struction task [46]: For each of the 98 night-time images
contained in the dataset, up to 20 relevant day-time im-
ages with known camera poses are given. After exhaustive
feature matching between the day-time images in each set,
their known poses are used to triangulate the 3D structure
of the scenes. Finally, these resulting 3D models are used
to localize the night-time query images. This task was pro-
posed in [46] to evaluate the perfomance of local features in
the context of long-term localization without the need for a
specific localization pipeline.

We use the code and evaluation protocol from [46] and
report the percentage of night-time queries localized within

3In contrast to [31], we use the ratio test for matching with the threshold
suggested by the authors - 0.89.

4Please see the supplementary material for additional details.

#Reg. # Sparse. Track Reproj. # Dense
Dataset Method Images Points Length Error Points

Madrid RootSIFT [4, 30] 500 116K 6.32 0.60px 1.82M
Metropolis GeoDesc [31] 495 144K 5.97 0.65px 1.56M
1344 images D2 MS (ours) 501 84K 6.33 1.28px 1.46M

D2 MS trained (ours) 495 144K 6.39 1.35px 1.46M

Gendarmen- RootSIFT [4, 30] 1035 338K 5.52 0.69px 4.23M
markt GeoDesc [31] 1004 441K 5.14 0.73px 3.88M
1463 images D2 MS (ours) 1053 250K 5.08 1.19px 3.49M

D2 MS trained (ours) 965 310K 5.55 1.28px 3.15M

Tower of RootSIFT [4, 30] 804 239K 7.76 0.61px 3.05M
London GeoDesc [31] 776 341K 6.71 0.63px 2.73M
1576 images D2 MS (ours) 785 180K 5.32 1.24px 2.73M

D2 MS trained (ours) 708 287K 5.20 1.34px 2.86M

Table 1: Evaluation on the Local Feature Evaluation Bench-
mark [52]. Each method is used for the 3D reconstruction of each
scene and different statistics are reported. Overall, our method
obtains a comparable performance with respect to SIFT and its
trainable counterparts, despite using less well-localized keypoints.

a given error bound on the estimated camera position and
orientation. We compare against upright RootSIFT descrip-
tors extracted from DoG keypoints [30], HardNet++ de-
scriptors with HesAffNet features [35, 36], DELF [38], Su-
perPoint [13] and DenseSfM [46]. DenseSfM densely ex-
tracts CNN features using VGG16, followed by dense hier-
archical matching (conv4 then conv3).

For all methods with a threshold controlling the num-
ber of detected features (i.e. HAN + HN++, DELF, and
SuperPoint), we employed the following tuning methodol-
ogy: Starting from the default value, we increased and de-
creased the threshold gradually stopping as soon as the re-
sults started declining. Stricter localization thresholds were
considered more important than looser ones. We reported
the best results each method was able to achieve.

As can be seen from Fig. 5, our approach performs better
than all baselines, especially for strict accuracy thresholds
for the estimated pose. Our sparse feature approach even
outperforms DenseSfM, even though the later is using sig-
nificantly more features (and thus time and memory). The
results clearly validate our describe-and-detect approach as
it significantly outperforms detect-then-describe methods in
this highly challenging scenario. The results also show that
the lower keypoint accuracy of our approach does not pre-
vent it from being used for applications aiming at estimating
accurate camera poses.

Indoor Visual Localization. We also evaluate our ap-
proach on the InLoc dataset [59], a recently proposed
benchmark dataset for large-scale indoor localization. The
dataset is challenging due to its sheer size (∼10k database
images covering two buildings), strong differences in view-
point and / or illumination between the database and query
images, and changes in the scene over time.

For this experiment, we integrated our features into two
variants of the pipeline proposed in [59], using the code re-
leased by the authors. The first variant, Direct Pose Es-
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Upright RootSIFT [30] 11.3K 36.7 54.1 72.5 81.6
DenseSfM [46] 7.5K / 30K 39.8 60.2 84.7 99.0
HAN + HN++ [35, 36] 11.5K 39.8 61.2 77.6 88.8
SuperPoint [13] 6.6K 42.8 57.1 75.5 86.7
DELF [38] 11K 38.8 62.2 85.7 98.0
D2 SS (ours) 7K 41.8 66.3 85.7 98.0
D2 MS (ours) 11.4K 43.9 67.3 87.8 99.0
D2 SS Trained (ours) 14.5K 44.9 66.3 88.8 100
D2 MS Trained (ours) 19.3K 44.9 64.3 88.8 100

Figure 5: Evaluation on the Aachen Day-Night dataset [46, 48]. We report the percentage of images registered within given error
thresholds. Our approach improves upon state-of-the art methods by a significant margin under strict pose thresholds.

Localized queries (%)
Method 0.25m 0.5m 1.0m

Direct PE - Aff. RootSIFT [4, 30, 32] 18.5 26.4 30.4
Direct PE - D2 MS (ours) 27.7 40.4 48.6

Sparse PE - Aff. RootSIFT – 5MB 21.3 32.2 44.1
Sparse PE - D2 MS (ours) – 15MB 35.0 48.6 62.6
Dense PE [59] – 44MB 35.0 46.2 58.1

Sparse PE - Aff. RootSIFT + Dense PV 29.5 42.6 54.5
Sparse PE - D2 MS + Dense PV (ours) 38.0 54.1 65.4
Dense PE + Dense PV (= InLoc) [59] 41.0 56.5 69.9

InLoc + D2 MS (ours) 43.2 61.1 74.2

Table 2: Evaluation on the InLoc dataset [59]. Our method out-
performs SIFT by a large margin in both Direct PE and Sparse PE
setups. It also outperforms the dense matching Dense PE method
when used alone, while requiring less memory during pose esti-
mation. By a combined approach of D2 and InLoc we obtained a
new state-of-the art on this dataset.

timation (PE), matches features between the query im-
age and the top-ranked database image found by image re-
trieval [3] and uses these matches for pose estimation. In the
second variant, Sparse PE, the query is matched against the
top-100 retrieved images, and a spatial verification [40] step
is used to reject outliers matches. The query camera pose
is then estimated using the database image with the largest
number of verified matches.

Tab. 2 compares our approach with baselines from [59]:
The original Direct / Sparse PE pipelines are based on
affine covariant features with RootSIFT descriptors [4, 30,
32]. Dense PE matches densely extracted CNN descrip-
tors between the images (using guided matching from the
conv5 to the conv3 layer in a VGG16 network). As
in [59], we report the percentage of query images localized
within varying thresholds on their position error, consider-
ing only images with an orientation error of 10◦ or less. We
also report the average memory usage of features per image.
As can be seen, our approach outperforms both baselines.

In addition to Dense PE, the InLoc method proposed
in [59] also verifies its estimated poses using dense informa-
tion (Dense Pose Verification (PV)): A synthetic image is
rendered from the estimated pose and then compared to the

query image using densely extracted SIFT descriptors. A
similarity score is computed based on this comparison and
used to re-rank the top-10 images after Dense PE. Only this
baseline outperforms our sparse feature approach, albeit at
a higher computational cost. Combining our approach with
Dense PV also improves performance, but not to the level
of InLoc. This is not surprising, given that InLoc is able
to leverage dense data. Still, our results show that sparse
methods can perform close to this strong baseline.

Finally, by combining our method and InLoc, we were
able to achieve a new state of the art — we employed a pose
selection algorithm using the Dense PV scores for the top
10 images of each method. In the end, 182 Dense PE poses
and 174 Sparse PE (using D2 MS) poses were selected.

6. Conclusions
We have proposed a novel approach to local feature ex-

traction using a describe-and-detect methodology. The de-
tection is not done on low-level image structures but post-
poned until more reliable information is available, and done
jointly with the image description. We have shown that our
method surpasses the state-of-the-art in camera localization
under challenging conditions such as day-night changes and
indoor scenes. Moreover, even though our features are less
well-localized compared to classical feature detectors, they
are also suitable for 3D reconstruction.

An obvious direction for future work is to increase the
accuracy at which our keypoints are detected. This could
for example be done by increasing the spatial resolution of
the CNN feature maps or by regressing more accurate pixel
positions. Integrating a ratio test-like objective into our loss
could help to improve the performance of our approach in
applications such as SfM.
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Supplementary material

This supplementary material provides the following ad-
ditional information: Section A details how we chose the
threshold for Lowe’s ratio test [30] used for the 3D recon-
structions in Section 5.2 in the paper. As mentioned in Sec-
tion 4.3 in the paper, Section B provides implementation
details on the architecture. In addition, the section also eval-
uates another backbone architecture (ResNet [20]). Sec-
tion C provides additional details on the loss function used
to train our method. Section D shows qualitative examples
for the matches found with our approach on the InLoc [59]
and Aachen Day-Night [46, 48] datasets.

A. Impact of the ratio test on D2 features

Throughout our experiments on the local feature evalua-
tion benchmark [52], we noticed that Lowe’s ratio test [30]
plays an important role because it significantly reduces the
number of wrong registrations due to repetitive structures
and semantically similar scenes.

In order to find an adequate ratio threshold for our fea-
tures, we employ Lowe’s methodology [30]: we compute
the probability density functions (PDFs) of correct and in-
correct matches with respect to the ratio test threshold.
However, contrary to Lowe’s evaluation, we considered
only mutual nearest neighbors during the matching process.

Our evaluation was done on the entire HPatches [5]
image pairs dataset consisting of 580 pairs from 116 se-
quences (57 with illumination changes and 59 with view-
point changes). A match is considered correct if its pro-
jection error, estimated using the homographies provided
by the dataset, is below 4 pixels - the default threshold in
COLMAP [51, 54] during geometric verification and bun-
dle adjustment. To take into account the possible errors in
annotations and to have a clear separation between correct
and incorrect matches, the threshold for incorrect matches
is set to 20 pixels. Matches with projection errors between 4
and 20 pixels are therefore discarded during this evaluation.

Figure 6 shows the two PDFs. As can be seen, the D2
features do not work too well with ratio filtering because
the mean ratio of correct matches is close to the one of in-
correct matches. Still, we used thresholds of 0.90 for the
off-the-shelf descriptors and 0.95 for the fine-tuned ones,
which filter out 79.9% and 74.4% of incorrect matches, re-
spectively. Unfortunately, these thresholds also discard a
significant amount of correct matches (23.3% and 21.9%,
respectively) which can have a negative impact on the num-
ber of registered images and sparse points.

In practice, we suggest not using the ratio test for cam-
era localization under difficult conditions (e.g. day-night,
indoors). For 3D reconstruction, using the threshold sug-
gested above and / or increasing the minimum number of
inlier matches required for an image pair to be considered
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Figure 6: Ratio PDFs for D2 multi-scale features. PDF in terms
of ratio on the full HPatches [5] image pairs dataset for the D2
off-the-shelf and fine-tuned features. There is no clear separation
between the mean ratios of correct and incorrect matches as in the
case of SIFT [30].

during Structure-from-Motion (SfM) should be sufficient to
avoid most wrong registrations. Please note that, in the
second case, the geometric verification can be significantly
slower as RANSAC needs to handle a larger outlier ratio.

B. Details of the backbone architecture

For the feature extraction network F , we used a VGG16
network pretrained on the ImageNet dataset [12], truncated
after the conv4 3 layer, as detailed in Section 4.3 of the
paper. In addition, as also detailed in Section 4.3, we use a
different image and feature resolution during training com-
pared to testing. In particular, during testing, we take ad-
vantage of dilated convolutions [22, 66] to increase the res-
olution of the feature maps - this is not done in training due
to memory limitations. More detailed descriptions of the
network architectures during the training and testing phases
are provided in Tables 3 and 4, respectively.

We additionally assess the choice of the network used for
feature extraction, by performing a comparison between the
chosen VGG16 [57] architecture and ResNet50 [20] (which



Layer Stride Dilation ReLU Resolution

input (256× 256) - 3 ch. ×1

conv1 1 - 3× 3, 64 ch. 1 1 X ×1
conv1 2 - 3× 3, 64 ch. 1 1 X ×1
pool1 - 2× 2, max. 2 1 ×1/2

conv2 1 - 3× 3, 128 ch. 1 1 X ×1/2
conv2 2 - 3× 3, 128 ch. 1 1 X ×1/2
pool2 - 2× 2, max. 2 1 ×1/4

conv3 1 - 3× 3, 256 ch. 1 1 X ×1/4
conv3 2 - 3× 3, 256 ch. 1 1 X ×1/4
conv3 3 - 3× 3, 256 ch. 1 1 X ×1/4
pool3 - 2× 2, max. 2 1 ×1/8

conv4 1 - 3× 3, 512 ch. 1 1 X ×1/8
conv4 2 - 3× 3, 512 ch. 1 1 X ×1/8
conv4 3 - 3× 3, 512 ch. 1 1 ×1/8

Table 3: Training architecture. During training, we use the de-
fault VGG16 [57] architecture up to conv4 3, and fine-tune the
last layer (conv4 3).

is the state of the art backbone architecture used in vari-
ous other works). We evaluate them on the HPatches image
pairs dataset using the same evaluation protocol that is de-
scribed in Section 5.1 of the main paper.

For both architectures, we used weights trained on
ImageNet [12]. In the case of ResNet50, the network
was truncated after conv4 6 (following the approach in
DELF [38]). At this point in the architecture, the resolution
is 1/16th of the input resolution and the descriptors are 1024-
dimensional. However, in the case of the original VGG16,
the output after conv4 3 has 1/8th of the input resolution
and 512 channels. In order to account for this difference in
resolution, we use dilated convolutions (also sometimes re-
ferred to as “atrous convolutions”) to increase the resolution
for the ResNet50 network. In addition, dilated convolutions
are applied to both networks to further increase the feature
resolution to 1/4th of the input resolution. For simplicity,
only single-scale features are considered in this compari-
son.

The results can be seen in Figure 7. Dilated convolu-
tions [22,66] increase the number of detections and the per-
formance of D2 features especially in the case of viewpoint
changes. The ResNet50 features also benefit from dilated
convolutions and the increase in the resolution. However,
although ResNet50 features seem slightly more robust to
illumination changes and are able to outperform VGG16
features for thresholds larger than 6.5 pixels, they are less
robust to viewpoint changes. Overall, ResNet50 features
obtain worse results in this evaluation which motivated our
decision to use VGG16.

1We noticed that ReLU has a significant negative impact on the off-the-
shelf descriptors, but not on the fine-tuned ones. Thus, we report results
without ReLU for the off-the-shelf model and with ReLU for the fine-tuned
one.

Layer Stride Dilation ReLU Resolution

input (∼ 1200× 1600) - 3 ch. ×1

conv1 1 - 3× 3, 64 ch. 1 1 X ×1
conv1 2 - 3× 3, 64 ch. 1 1 X ×1
pool1 - 2× 2, max. 2 1 ×1/2

conv2 1 - 3× 3, 128 ch. 1 1 X ×1/2
conv2 2 - 3× 3, 128 ch. 1 1 X ×1/2
pool2 - 2× 2, max. 2 1 ×1/4

conv3 1 - 3× 3, 256 ch. 1 1 X ×1/4
conv3 2 - 3× 3, 256 ch. 1 1 X ×1/4
conv3 3 - 3× 3, 256 ch. 1 1 X ×1/4

pool3 - 2× 2, avg. 1 1 ×1/4

conv4 1 - 3× 3, 512 ch. 1 2 X ×1/4
conv4 2 - 3× 3, 512 ch. 1 2 X ×1/4

conv4 3 - 3× 3, 512 ch. 1 2 1 ×1/4

Table 4: Testing architecture. At test time, we slightly modify
the training architecture: the last pooling layer pool3 is replaced
by an average pooling with a stride of 1 and the following convo-
lutional layers are dilated by a factor of 2. This maintains the same
receptive field but offers higher resolution feature maps.

C. Details of the training loss

This section gives more insight into the loss L that we
used for fine-tuning the conv4 3 layer of the VGG16 net-
work. In particular, in Figure 8 we explain in more detail
the in-image-pair negative mining expressed in Equations
(10) and (11) of the paper.

The parameter K controls the size of the neighbourhood
from where negative samples are not selected. For a value
of K = 0, all feature map pixels apart from the consid-
ered correspondence c : A ↔ B are considered as possi-
ble negatives. In this case, a value of the margin loss m(c)
lower than M (p(c) < n(c)) signifies that A and B would
be matched using mutual nearest neighbors. This is due
to the symmetric negative selection. However, in practice,
this is too restrictive since adjacent pixels have a signifi-
cant overlap in their receptive field so the descriptors can be
very close. Since the receptive field at the conv4 3 level
is around 65 × 65 pixels at the input resolution, we choose
a value of K = 4 at the feature map level, which enforces
that potential negatives have less than 50% spatial overlap.

Another parameter of the training loss is the margin M .
Since the descriptors are L2 normalized, the squared dis-
tance between two descriptors is guaranteed to be lower
than 4. We have settled forM = 1 as in previous work [35].
It is worth noting that, due to the the negative mining
scheme, this margin is rarely reached, i.e., the detection
scores continue to be optimized.

Figure 9 shows the soft detection scores before and af-
ter fine-tuning. As expected, some salient points have
increased scores, while repetitive structures are weighted
down. Even though most of our training data is from out-
doors scenes, these observations seem to translate well to
indoors images too.
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Figure 7: Evaluation of different backbone architectures on the HPatches image pairs. The original networks are in bold - the others
were obtained by removing the stride of the deepest layers and adding dilations to the subsequent ones. Dilated convolutions offer more
keypoints and better performance in viewpoint sequences. VGG16 outperforms ResNet50 by a significant margin even at a similar feature
map resolution.

Figure 8: In-image-pair negative mining procedure. For each
correspondence c : A ↔ B, the negative sample is chosen be-
tween the hardest negative of A in I2 (N2) or of B in I1 (N1).
Since adjacent pixels at feature map level have overlapping recep-
tive fields in the input image, the negative descriptor is chosen to
be at least K pixels away from the ground-truth correspondence.

D. Qualitative examples

Figures 10 and 11 show examples from the InLoc [59]
dataset: firstly, we show a few good matches in challeng-
ing conditions (significant viewpoint changes and texture-
less areas) and then we illustrate the main failure modes
of D2 features on indoors scenes (repeated objects / pat-
terns). Figure 12 shows some example matches on the dif-
ficult scenes from the Aachen Day-Night [46, 48] camera
localization challenge.

References
[1] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup

Pedersen. Interesting interest points. IJCV, 97(1):18–35,
2012. 6

[2] Edward H. Adelson, Charles H. Anderson, James R. Bergen,
Peter J. Burt, and Joan M. Ogden. Pyramid methods in image
processing. RCA engineer, 29(6):33–41, 1984. 4

[3] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-
jdla, and Josef Sivic. NetVLAD: CNN architecture for

weakly supervised place recognition. In Proc. CVPR, 2016.
3, 8

[4] Relja Arandjelovic and Andrew Zisserman. Three things ev-
eryone should know to improve object retrieval. In Proc.
CVPR, 2012. 6, 7, 8

[5] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-
tian Mikolajczyk. HPatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In Proc. CVPR,
2017. 6, 9

[6] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian
Mikolajczyk. Learning local feature descriptors with triplets
and shallow convolutional neural networks. In Proc. BMVC.,
2016. 1, 2, 4

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF:
Speeded Up Robust Features. In Proc. ECCV, 2006. 1, 2

[8] Matthew Brown, Gang Hua, and Simon Winder. Discrim-
inative Learning of Local Image Descriptors. IEEE PAMI,
33(1):43–57, 2011. 1

[9] Michael Calonder, Vincent Lepetit, Christoph Strecha, and
Pascal Fua. BRIEF: Binary robust independent elementary
features. In Proc. ECCV, 2010. 2

[10] Christopher B. Choy, JunYoung Gwak, Silvio Savarese, and
Manmohan Chandraker. Universal Correspondence Net-
work. In NIPS, 2016. 3

[11] Kai Cordes, Bodo Rosenhahn, and Jörn Ostermann. Increas-
ing the accuracy of feature evaluation benchmarks using dif-
ferential evolution. In IEEE Symposium on Differential Evo-
lution (SDE), 2011. 6

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proc. CVPR, 2009. 5, 9, 10

[13] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperPoint: Self-Supervised Interest Point Detec-
tion and Description. In CVPR Workshops, 2018. 1, 2, 6, 7,
8

[14] Jingming Dong and Stefano Soatto. Domain-size pooling in
local descriptors: DSP-SIFT. In Proc. CVPR, 2015. 1

[15] Mohammed E. Fathy, Quoc-Huy Tran, M. Zeeshan Zia, Paul
Vernaza, and Manmohan Chandraker. Hierarchical Metric
Learning and Matching for 2D and 3D Geometric Corre-
spondences. In Proc. ECCV, 2018. 3

[16] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester,
and Deva Ramanan. Object detection with discriminatively



trained part-based models. IEEE PAMI, 32(9):1627–1645,
2010. 4

[17] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and
robust multiview stereopsis. IEEE PAMI, 32(8):1362–1376,
2010. 2

[18] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Lar-
lus. End-to-End Learning of Deep Visual Representations
for Image Retrieval. IJCV, 124(2):237–254, 2017. 3

[19] Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proceedings of the Alvey Vision Confer-
ence, 1988. 1, 2, 3

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, 2016. 9

[21] Jared Heinly, Johannes L. Schönberger, Enrique Dunn, and
Jan-Michael Frahm. Reconstructing the World* in Six Days
*(As Captured by the Yahoo 100 Million Image Dataset). In
Proc. CVPR, 2015. 1

[22] Matthias Holschneider, Richard Kronland-Martinet, Jean
Morlet, and Ph Tchamitchian. A real-time algorithm for
signal analysis with the help of the wavelet transform. In
Wavelets, Time Frequency Methods and Phase Space, pages
286–297. 1990. 5, 9, 10

[23] Nathan Jacobs, Nathaniel Roman, and Robert Pless. Con-
sistent temporal variations in many outdoor scenes. In Proc.
CVPR, 2007. 6

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. ICLR, 2015. 5

[25] Stefan Leutenegger, Margarita Chli, and Roland Siegwart.
BRISK: Binary robust invariant scalable keypoints. In Proc.
ICCV, 2011. 2

[26] Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal
Fua. Worldwide Pose Estimation using 3D Point Clouds. In
Proc. ECCV, 2012. 1

[27] Zhengqi Li and Noah Snavely. MegaDepth: Learning single-
view depth prediction from internet photos. In Proc. CVPR,
2018. 2, 5

[28] Tony Lindeberg. Scale-space theory: A basic tool for analyz-
ing structures at different scales. Journal of applied statistics,
21(1-2):225–270, 1994. 4

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. SSD: Single shot multibox detector. In Proc. ECCV,
2016. 3

[30] David G. Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60(2):91–110, 2004. 1, 2, 3, 4,
5, 6, 7, 8, 9

[31] Zixin Luo, Tianwei Shen, Lei Zhou, Siyu Zhu, Runze Zhang,
Yao Yao, Tian Fang, and Long Quan. GeoDesc: Learning lo-
cal descriptors by integrating geometry constraints. In Proc.
ECCV, 2018. 7

[32] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine
invariant interest point detectors. IJCV, 60(1):63–86, 2004.
1, 2, 4, 6, 8

[33] Krystian Mikolajczyk and Cordelia Schmid. A performance
evaluation of local descriptors. IEEE PAMI, 27(10):1615–
1630, 2005. 1, 6

[34] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid,
Andrew Zisserman, Jiri Matas, Frederik Schaffalitzky, Timor
Kadir, and Luc Van Gool. A comparison of affine region
detectors. IJCV, 65(1):43–72, 2005. 1, 2

[35] Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovic,
and Jiri Matas. Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss. In NIPS, 2017. 4, 6, 7,
8, 10

[36] Dmytro Mishkin, Filip Radenović, and Jiři Matas. Repeata-
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Image Off-the-shelf Trained

Figure 9: Soft detection scores for different scenes before and after fine-tuning. White represents low soft-detection scores while red
signifies higher ones. The training lowers the soft-detection scores on repetitive structures (e.g. ground, floor, walls) while it enhances the
score on more distinctive points. This shown by the increased contrast of the trained soft-detection maps with respect to their off-the-shelf
counterparts.



Figure 10: Examples of correctly matched image pairs from
the InLoc [59] dataset. Our features are robust to significant
changes in viewpoint as it can be seen in the first example. In
textureless areas, our features act as an object matcher - corre-
spondences are found between the furniture of different scenes.
Sometimes, matches are even found across windows on nearby
buildings.

Figure 11: Failure cases from the InLoc [59] dataset. Even
though they are visually correct, the matches sometimes put in cor-
respondence identical objects from different scenes. Another typ-
ical error case is due to repeated patterns (e.g. on carpets) which
yield a significant number of inliers.



Figure 12: Examples of correctly matched image pairs from the Aachen Day-Night [46,48] dataset. Our features consistently provide
a significant number of good matches between images with strong illumination changes. The first two image pairs come from scenes where
no other method was able to register the night-time image. For the last two, DELF [38] was the only other method that succeeded.


