Compacting the Uncompactable!

VESH Compacting Memory Management For C/C++ Applications

Emery Berger UMass Amherst / MSR

with Bobby Powers, David Tench, & Andrew McGregor University of Massachusetts Amherst http://libmesh.org [PLDI 2019]

Lyrics by JOE DARIEN Music by MITCH LEIGH

Reconquer all of Spain!

Lyrics by JOE DARIEN Music by MITCH LEIGH

Reconquer all of Spain!

Lyrics by JOE DARIEN Music by MITCH LEIGH

Reconquer Malloc all of Spain!

OS Page ("Spain")

Live objects (malloc'd)

¿Compacción?

¿Compacción?

Brian W. Kernighan . Dennis M. Ritchie

PRINTER HALL FORTHWISE SCHOOL

The Swift Programming Language

Swift 5 Edition

[Lattner, 2016]

Why not a tracing GC?

- Native interoperability with unmanaged code
- Deterministic destruction provides:
 - No "finalizer problems" like resurrection, threading, etc.
 - Deterministic performance: can test/debug performance stutters
- Performance:
 - GC use ~3-4x more memory than ARC to achieve good performance
 - Memory usage is very important for mobile and cloud apps
 - Incremental/concurrent GCs slow the mutator like ARC does

Quantifying the Performance of Garbage Collection vs. Explicit Memory Management Matthew Hertz, Emery D. Berger. OOPSLA'05

- Native interoperability with unmanaged code
- Deterministic destruction provides:
 - No "finalizer problems" like resurrection, threading, etc.
 - Deterministic performance: can test/debug performance stutters

Performance:

- GC use ~3-4x more memory than ARC to achieve good performance
- Memory usage is very important for mobile and cloud apps
- Incremental/concurrent GCs slow the mutator like ARC does

Brian W. Kernighan . Dennis M. Ritchie

PRINTER HALL DOFT WHILE DOWN

HENDOE HALL DOFTMAKE BOH

The Swift Programming Language

Swift 5 Edition

redis

Brian W. Kernighan . Dennis M. Ritchie

PRODUCE MALE DOFTMARK DOW

The Swift Programming Language

Swift 5 Edition

redis

¡Compacción!

Compaction In Action

\$ cc -o yolo main.cc \$ strip yolo


```
$ cc -o yolo main.cc
$ strip yolo
$ ./yolo
```

0xDEADC000

No way to precisely distinguish pointers from integers

\$ cc -o yolo main.cc \$ strip yolo \$./yolo

No way to precisely distinguish pointers from integers


```
union tiny
 int * ptr;
 uintptr_t flag;
tiny x;
// initialize
x.ptr = new int;
// set flag true
x.flag |= 1;
```

MESH

Compaction without Relocation for C/C++

No code changes No recompilation

LD PRELOAD and go

17% heap size reduction

< 1% performance overhead

-default jemalloc-Mesh

- —jemalloc + activedefrag
- -Mesh
- no compaction

5x reduction in time spent compacting

Meshing: compaction without (virtual!) relocation

Pages are **Meshable** when they:

Hold objects of the same size class

Pages are **Meshable** when they:

- Hold objects of the same size class
- Have non-overlapping object offsets

Mark virtual page read-only

Virtual

Physical

Copy

offsets)

(maintaining

Physical

Update page tables with mmap, memfd, MAP SHARED

Mark virtual page read/write

Virtual

Physical

Worst Case:

low occupancy, non-meshable pages

Worst Case: many low occupancy, non-meshable

pages

Standard allocators

malloc (256) — Standard allocators

malloc(256)—

malloc(256)-

Mesh uses randomization to ensure live objects are uniformly distributed

Regular allocation patterns are real

— Mesh — Mesh (no rand)

How to randomize allocation?

Random probing:

```
while true:
   if rand_off().is_free:
     return rand_off
```


malloc(256)

Random probing:

```
while true:
   if rand_off().is_free:
     return rand off
```


malloc(256)-

Random probing:

```
while true:
   if rand_off().is_free:
     return rand off
```


malloc(256)

Random probing:

```
while true:
   if rand_off().is_free:
     return rand off
```


(DieHard [Berger & Zorn 2006])

Random probing fast in expectation *iff page* occupancy is low

but this is at odds with minimizing heap size!

Shuffle Vector: Fast randomized allocation + full page utilization

Shuffle Vector: Fast randomized allocation

load

Thread-local shuffle vector

Shuffle Vector: Fast randomized allocation

load

0 1 2 3

Thread-local shuffle vector

All Pages Meshable

Finding pages to Mesh

Problem: Find meshing that releases maximum number of pages

Run in the free() slowpath At most once every 100 ms Treat each size class independently

Problem: Find meshing that releases the maximum number of pages

MinCliqueCover

MinCliqueCover

(NP-Complete)

BUT! Randomness ensures we can get away with solving simpler graph problem (Matching)

Wrinkle: building this graph would require RAM + time

SplitMesher: approximates Matching without materializing meshing graph

Set of partially full pages

Pairs of meshable pages

Iterate, comparing a[i] to b[i]

loop, comparing a[i] to b[(i+1)%len]

Remove found match

Continue

SplitMesher: approximates Matching without materializing meshing graph

O(n/q) time

(q is the global probability of spans meshing)

SplitMesher: approximates Matching without materializing meshing graph

O(n/q) time

(q is the global probability of spans meshing)

1/2* approximation w.h.p.

- —jemalloc + activedefrag
- -Mesh
- no compaction

Time Since Program Start (seconds)

redis + MESH

17% heap size reduction

< 1% performance overhead

-default jemalloc-Mesh

Ruby Compaction for Free

— Mesh — Mesh (no rand)

http://LIBMESH.org

¡Compacción sin Relocación! (compaction without relocation)

