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e Why not a tracing GC?

* Native interoperability with unmanaged code

« Deterministic destruction provides:
- No “finalizer problems” like resurrection, threading, etc.
- Deterministic performance: can test/debug performance stutters
« Performance:
- GC use ~3-4x more memory than ARC to achieve good performance
- Memory usage is very important for mobile and cloud apps
- Incremental/concurrent GCs slow the mutator like ARC does




Native interoperability with unmanaged code
Deterministic destruction provides:

- No “finalizer problems” like resurrection, threading, etc.
- Deterministic performance: can test/debug performance stutters
Performance:

- GC use ~3-4x more memory than ARC to achieve good performance
- Memory usage is very important for mobile and cloud apps

- Incremental/concurrent GCs slow the mutator like ARC does
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Compaction In Action

References

OS Pége

Live objects
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S cc -o yolo mailn.cc
S strip yolo
S «J/yoelo 0XDEADCO000

|

No way to precisely 0xBEEFC000

distinguish pointers :]
from integers




union tiny

{
int x ptr;

uintptr_t flag;

}s

tiny Xx:
// 1nlitialize
X.ptr = new 1int;

// set flag true
x.flag |= 1;



Compaction without
M ESH Relocation for C/C++
NO code changes

NO recompllation
LD PRELOAD and go



17% heap size reduction

< 1% performance overhead
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redis

Compaction time

1.5

95X reduction in
time spent
compacting




Meshing: compaction without
(virtual!) relocation



Pages are Meshable when they:

 Hold objects of the same size class




Pages are Meshable when they:

 Hold objects of the same size class
* Have non-overlapping object offsets
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Meshing

Mark virtual
4" page read-only
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Physical




Meshing

....................... ll

Physical

Copy
(maintaining
offsets)




Meshing

Virtual

Physical

. Update
page tables
with mmap,

memfd,
MAP SHARED




Meshing
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Mark virtual
- page read/write
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Meshing

Virtual
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Meshing

No virtual
.. addresses
- changed!

Virtual




Worst Case:

low occupancy,
non-meshable
pages




Worst Case:
many

low occupancy,
non-meshable
pages
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Mesh uses randomization to
ensure live objects are uniformly
distributed
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Regular allocation patterns are real
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How to randomize allocation?”




Random probing:

while True:?
1f rand off () .1s free:
return rand off




malloc (2560)

Random probing:

while true:
1f rand off ( .1s free:
return rand off




malloc (256)

Random probing:

while true:
1f rand off () .1s free:
return rand off




malloc (2560)

Random probing:

while true:
1f rand off () .1s free: .

return rand off

(DieHard [Berger & Zorn 2006])




Random probing fast in
expectation iff page
occupancy is low

but this is at odds with
minimizing heap size!




Shuffle Vector:
Fast randomized
allocation + full page utilization




Shuffle Vector:
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Shuffle Vector:
Fast randomized
allocation

load

Page

Thread-local shuffle vector
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Finding pages to Mesh




Problem: FiInd meshing that releases
maximum number of pages

Run in the free () slowpath

At most once every 100 ms
Treat each size class independently




Problem: FiInd meshing that releases
the maximum number of pages

Page ..

Pagescan . .......-»
be meshed




MinCliqueCover




MinCliqueCover

(NP-Complete)

BUT! Randomness ensures we can get
away with solving simpler graph problem
(Matching)




Wrinkle: building this graph would
require RAM + time




SplitMesher: approximates Matching
without materializing meshing graph

Set of partially full pages Pairs of meshable pages

—»







lterate, comparing ali] to bli]




loop, comparing ali] to b[(i+1)%len]

—







Remove found match

s




Continue

—




SplitMesher: approximates Matching
without materializing meshing graph

O(n/q) time

(g is the global probability of spans meshing)




SplitMesher: approximates Matching
without materializing meshing graph

O(n/qg) time

(g is the global probability of spans meshing)

1/2* approximation w.h.p.
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17% heap size reduction

< 1% performance overhead
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Ruby Compaction for Free
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iCompaccion sin Relocacion!
(compaction without relocation)




