Compacting the Uncompactable!

M Es Compacting Memory Management
For C/C++ Applications

Emery Berger

UMass Amherst /MSR

with Bobby Powers, David Tench, & Andrew McGregor
University of Massachusetts Amherst

| e e womy //' : 1 A ~ ..\,.[. -~ . g
Nttp://libmesh.org

[PLDI 2019]

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

Reconhquer
all of Spain!

The Impossible Dream
(The Quest)

Reconhquer

e all of Spain!

= TA

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

Recohauer Malloc
all of Spain!

MALLOC
TEEN

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC”
s

The Impossible Dream
(The Quest)

(malloc)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC-
s

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC '

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC-
X

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC

-y TA

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC

-y /—if’A

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC
TN

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC-

3 TA

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC
TN

The Impossible Dream
(The Quest)

Lyrics by JOE DARIEN
Music by MITCH LEIGH

MALLOC”

-y /—if"k

on!

iFragmentac

(“Spain”)

OS Page

v

ts (malloc’d)

|ec

D

Live O

iFragmentacion!

OS Pages

)
)
O
L4
L
O
O
=
-

iFragmentacio

OS Pages

Live objects

iFragmentacion!

OS Pages
O(log 13x!

[Robson °77]

Live objects

ion?

Compacc

¢

OS Pages

) 13x!
[Robson ’77]

O(log

)
)
O
oS
LD
O
O
=
-

ccompaccion?

OS Pages

Live objects

THE

¥
b

RAMMIN(

LAN(

.|
b

PROG

K

UA(

8
£l

1* Dennis M. Ritc

‘ha

Kerni

W

pBrian

\
\

I

\
;

4

|

—y T
. b,
™
]
\ -
| 0
| U
p L B M
A
)

|

{

j
| -~
|

{

THE

PROGRAMMING
LANGUAGE

Brian W. Kerpighan « Deonis M. Ritchie

BIARNE STROUSTRUP

The Swift
Programming
Language

Swift 5 Edition

[

THE

C

PROGRAMMING . [Lattner, 2016]
e Why not a tracing GC?

* Native interoperability with unmanaged code

« Deterministic destruction provides:
- No “finalizer problems” like resurrection, threading, etc.
- Deterministic performance: can test/debug performance stutters
« Performance:
- GC use ~3-4x more memory than ARC to achieve good performance
- Memory usage is very important for mobile and cloud apps
- Incremental/concurrent GCs slow the mutator like ARC does

Native interoperability with unmanaged code
Deterministic destruction provides:

- No “finalizer problems” like resurrection, threading, etc.
- Deterministic performance: can test/debug performance stutters
Performance:

- GC use ~3-4x more memory than ARC to achieve good performance
- Memory usage is very important for mobile and cloud apps

- Incremental/concurrent GCs slow the mutator like ARC does

THE

The Swift
PROGRAMMING _
LANGUAGE Programming
Language

Swift 5 Edition

Brian W. Kerpighan « Deonis M. Ritchie

FPOURTH EDITION

’

BIARNE STROUSTRUP ®

THE

The Swift
PROGRAMMING :
LANGUAGE Programming
Language

Swift 5 Edition

Brian W. Kermighan ¢ Dennis M. Ritchie

»

The Swift
Programming
Language

Swift 5 Edition

PROGRAMMING
LANGUAGE

Brian W. Kernighan » Dennis M. Ritchie

’

BJARNE STROUSTRUP 3

™

Ken Arnold « James Gosling

The C#
Programming
Language

Third Edition

Anders Mejlsberg
Mads Torgersen
Scott Wiltamuth

Petor Golde

JavaScript:

The Good Parts

ORE'LLY. w’_ PRESS M avghon Cmaifond

Ken Arnold « James Gosling

Programmin
Language .

Third Edition

B
" The Good Parts
&

Anders Me|lsberg
Mads Torgersen
Scott Wiltamuth

Potor Golde

OREILLY" YAHCO! Press el Corrciind

iCompaccion!

Compaction In Action

References

OS Pége

Live objects

lo main.cc

S cc -0 yo

S strip volo

S cc -0 yolo main.cc
S strip yolo
S ./yolo 0xDEADCO00

[

No way to precisely 0xBEEFC000

distinguish pointers]
from integers

S cc -o yolo mailn.cc
S strip yolo
S «J/yoelo 0XDEADCO000

|

No way to precisely 0xBEEFC000

distinguish pointers :]
from integers

union tiny

{
int x ptr;

uintptr_t flag;

}s

tiny Xx:
// 1nlitialize
X.ptr = new 1int;

// set flag true
x.flag |= 1;

Compaction without
M ESH Relocation for C/C++
NO code changes

NO recompllation
LD PRELOAD and go

17% heap size reduction

< 1% performance overhead

800+

, l
2 600 - , ,W '
> Ay
< 400 -
2 200/
a4
0 | :
0 50 100

Time Since Program Start (seconds)

—default jemalloc—Mesh

—jemalloc + activedefrag

—Mesh
— NO compaction

0 1 2 3 4 5 6
Time Since Program Start (seconds)

redis

Compaction time

1.5

95X reduction in
time spent
compacting

Meshing: compaction without
(virtual!) relocation

Pages are Meshable when they:

 Hold objects of the same size class

Pages are Meshable when they:

 Hold objects of the same size class
* Have non-overlapping object offsets

©
S
=
>

Physical

Meshing

Mark virtual
4" page read-only

....................... ll

Physical

Meshing

....................... ll

Physical

Copy
(maintaining
offsets)

Meshing

Virtual

Physical

. Update
page tables
with mmap,

memfd,
MAP SHARED

Meshing

4

Mark virtual
- page read/write

Virtual

Physical

Meshing

Virtual

S S S 'l Physical

Physical page
| 4" 'returned to OS

— e B3 |

Meshing

No virtual
.. addresses
- changed!

Virtual

Worst Case:

low occupancy,
non-meshable
pages

Worst Case:
many

low occupancy,
non-meshable
pages

Standard
allocators

malloc (256)

Standard
allocators

malloc (256)

Standard
allocators

malloc (256)

Standard
allocators

Mesh uses randomization to
ensure live objects are uniformly
distributed

RSS (MiB)

[—— N W)
P S =,
o= = =
! 1 [

o
-

Regular allocation patterns are real

1 2
Time Since Program Start (seconds)

— Mesh — Mesh (no rand)

How to randomize allocation?”

Random probing:

while True:?
1f rand off () .1s free:
return rand off

malloc (2560)

Random probing:

while true:
1f rand off (.1s free:
return rand off

malloc (256)

Random probing:

while true:
1f rand off () .1s free:
return rand off

malloc (2560)

Random probing:

while true:
1f rand off () .1s free: .

return rand off

(DieHard [Berger & Zorn 2006])

Random probing fast in
expectation iff page
occupancy is low

but this is at odds with
minimizing heap size!

Shuffle Vector:
Fast randomized
allocation + full page utilization

Shuffle Vector:
Fast randomized
allocation

load

Page

[[11

Thread-local shuffle vector

Shuffle Vector:
Fast randomized
allocation

load

Page

Thread-local shuffle vector

All
Pages

Meshable

Finding pages to Mesh

Problem: FiInd meshing that releases
maximum number of pages

Run in the free () slowpath

At most once every 100 ms
Treat each size class independently

Problem: FiInd meshing that releases
the maximum number of pages

Page ..

Pagescan-»
be meshed

MinCliqueCover

MinCliqueCover

(NP-Complete)

BUT! Randomness ensures we can get
away with solving simpler graph problem
(Matching)

Wrinkle: building this graph would
require RAM + time

SplitMesher: approximates Matching
without materializing meshing graph

Set of partially full pages Pairs of meshable pages

—»

lterate, comparing ali] to bli]

loop, comparing ali] to b[(i+1)%len]

—

Remove found match

s

Continue

—

SplitMesher: approximates Matching
without materializing meshing graph

O(n/q) time

(g is the global probability of spans meshing)

SplitMesher: approximates Matching
without materializing meshing graph

O(n/qg) time

(g is the global probability of spans meshing)

1/2* approximation w.h.p.

—jemalloc + activedefrag:

—Mesh
— NO compaction

300 -

...........

0 1 2 3 4 5 6
Time Since Program Start (seconds)

é redis + MESH

Insert time Compaction time
2 1.5

1.5

Insert time
Compaction time

0.5

0.5

Default Mesh Default Mesh

17% heap size reduction

< 1% performance overhead

800~

, (

22 600 - . ,W '
> A
< 400 -
> :
% 200-

0= : 1

0 50 100

Time Since Program Start (seconds)

—default jemalloc—Mesh

Ruby Compaction for Free

RSS (MiB)
— W
S S S
S & &

O
-

1 2
Time Since Program Start (seconds)

-

— Mesh — Mesh (no rand)

Nttp:// LIBMESH .0rg

iCompaccion sin Relocacion!
(compaction without relocation)

