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ABSTRACT

Adversarial domain-invariant training (ADIT) proves to be ef-
fective in suppressing the effects of domain variability in acoustic
modeling and has led to improved performance in automatic speech
recognition (ASR). In ADIT, an auxiliary domain classifier takes in
equally-weighted deep features from a deep neural network (DNN)
acoustic model and is trained to improve their domain-invariance
by optimizing an adversarial loss function. In this work, we pro-
pose an attentive ADIT (AADIT) in which we advance the domain
classifier with an attention mechanism to automatically weight the
input deep features according to their importance in domain classi-
fication. With this attentive re-weighting, ADDIT can focus on the
domain normalization of phonetic components that are more sus-
ceptible to domain variability and generates deep features with im-
proved domain-invariance and senone-discriminativity over ADIT.
Most importantly, the attention block serves only as an external com-
ponent to the DNN acoustic model and is not involved in ASR,
so AADIT can be used to improve the acoustic modeling with any
DNN architectures. More generally, the same methodology can im-
prove any adversarial learning system with an auxiliary discrimina-
tor. Evaluated on CHiME-3 dataset, the AADIT achieves 13.6%
and 9.3% relative WER improvements, respectively, over a multi-
conditional model and a strong ADIT baseline.

Index Terms— adversarial learning, attention, domain-invariant
training, neural network, automatic speech recognition

1. INTRODUCTION

The deep neural network (DNN) based acoustic models have been
widely used in automatic speech recognition (ASR) and have
achieved extraordinary performance improvement [1, 2, 3]. How-
ever, the performance of a multi-conditional acoustic model trained
with speech data from a variety of environments, speakers, micro-
phone channels, etc. is still affected by the spectral variations in
each speech unit caused by the inter-domain variability [4]. Re-
cently, adversarial learning [5] has effectively improved the noise
robustness of the DNN acoustic model for ASR [6, 7, 8] or that of
the deep embeddings for speaker verification [9] by using gradient
reversal layer network [10] or domain separation network [11]. Sim-
ilar idea has also been applied to reduce the effect of inter-speaker
[12, 13], inter-language [14] and inter-dialect [15] variability in
acoustic modeling that is trained with speech from multiple speak-
ers, multiple dialects or multiple languages. We name all the above
approaches adversarial domain-invariant training (ADIT) by refer-
ring to each speaker, environment, language, etc. that contributes to
the condition-variability of the training data a domain.

To perform ADIT, an additional DNN domain classifier is intro-
duced and is jointly trained with the multi-conditional DNN acous-
tic model to simultaneously optimize the primary task of minimiz-

ing the senone classification loss and the secondary task of mini-
maximizing the domain classification loss. Through this adversarial
multi-task learning procedure, a shared feature extractor is learned
as the bottom layers of the DNN acoustic model that maps the in-
put speech frames from different domains into domain-invariant and
senone-discriminative deep hidden features, so that further senone
classification is based on representations with the domain factor al-
ready normalized out. After ADIT, only the DNN acoustic model
is used to generate word transcription for test data from unseen do-
main through one-pass online decoding [12]. The domain classifier
is not used in ASR. In this work, we focus on improving the domain
classifier in ADIT to generate deep features with increased domain-
invariance without changing the DNN acoustic model.

In ADIT, the sequence of deep features generated by the feature
extractor are weighted equally before taken as the input to the do-
main classifier. In fact, the deep features corresponding to different
phonetic components are affected nonuniformly by domain variabil-
ity and show different domain-discriminativity to the domain clas-
sifier. To improve ADIT, we introduce an attention mechanism to
allow the domain classifier to attend to different positions in time of
deep feature sequence with nonuniform weights. The weights are au-
tomatically and dynamically determined by the attention mechanism
according to the importance of the deep features in domain classi-
fication. We call this method attentive adversarial DIT (AADIT).
With AADIT, the domain classifier induces attentive reversal gradi-
ents that emphasize on the domain normalization of more domain-
discriminative deep features, improving the domain invariance of the
acoustic model and thus the ASR performance over ADIT.

Self-attention [16] is a new technique to improve encoder-
decoder end-to-end models [17, 18, 19]. It is used in [20] to enhance
the performance of the generative adversarial network [5] by gen-
erating images based on cues from all feature locations. To the
best of our knowledge, we introduce, for the first time, the attention
mechanism only as an auxiliary component to the external of a DNN
acoustic model to reduce the domain variability and improve ASR
performance. Note that, similar to the domain classifier, the aux-
iliary attention block does not participate in the ASR decoding, so
the proposed AADIT framework can be widely applied to acoustic
model with any DNN architectures. AADIT can also improve the
robustness in knowledge transferring for T/S learning [21, 22] as in
[8]. More generally, the same methodology can be used to enhance
the capability of the discriminators in any generative adversarial
network [5] or gradient reversal layer network [10] for improved
domain [10, 23] and speaker [24] adaptation, speech enhancement
[25, 26, 27], speech synthesis [28, 29], voice conversion [30],
speaker verification [9], image generation [5, 31] and translation
[32], etc.

We perform AADIT to suppress speaker and environment vari-
abilities of the DNN acoustic model and thus to improve ASR. We
explore two types of local attention mechanisms: additive attention



and dot-product attention for AADIT and investigate the effect of
attention window size, key/query dimension, positional encoding
and multi-head attention on the ASR performance. Evaluated on
CHiME-3 dataset, AADIT of DNN acoustic model achieves 13.6%
and 9.3% relative word error rate (WER) improvements over the
multi-conditional model and ADIT, respectively.

2. ADVERSARIAL DOMAIN-INVARIANT TRAINING

ADIT aims at reducing the variances of hidden and output unit
distributions of the DNN acoustic model that are caused by the
inherent inter-domain variability in the speech signal. To achieve
domain-robustness, one solution is to learn a domain-invariant and
senone-discriminative deep hidden feature in the DNN acoustic
model through adversarial multi-task learning and make senone pos-
terior predictions based on the learned deep feature. In order to do
so, we need a sequence of speech frames X = {x1, . . . ,xT },xt ∈
R
rx , t = 1, . . . , T , a sequence of senone labels Y = {y1, . . . , yT },

yt ∈ R aligned with X and a sequence of domain labels D =
{d1, . . . , dT }, dt ∈ R aligned with X. We view the first few layers
of the acoustic model as a feature extractor networkMf with param-
eters θf that maps input speech frames X from different domains to
intermediate deep hidden features F = {f1, . . . , fT }, ft ∈ Rrf and
the upper layers of the acoustic model as a senone classifierMy with
parameters θy that maps the deep features F to the senone posteriors
p(s|ft; θy), s ∈ S as follows:

My(ft) =My(Mf (xt)) = p(s|xt; θf , θy). (1)

We further introduce a domain classifier network Md which
maps the deep features F to the domain posteriors p(u|ft; θd),
u ∈ U as follows:

Md(Mf (xt)) = p(u|xt; θf , θd), (2)

where u is one domain in the set of all domainsU. To make the deep
features F domain-invariant, the distributions of F from different
domains should be as close to each other as possible. Therefore,
we jointly train Mf and Md with an adversarial objective, in which
θf is adjusted to maximize the frame-level domain classification loss
Ldomain while θd is adjusted to minimize Ldomain below:

Ldomain(θf , θd) = −
1

T

T∑
t=1

log p(dt|ft; θd)

= − 1

T

T∑
t=1

∑
u∈U

1[u = dt] logMd(Mf (xt)), (3)

where 1[·] is the indicator function which equals to 1 if the condi-
tion in the squared bracket is satisfied and 0 otherwise. This min-
imax competition will first increase the discriminativity of Md and
the domain-invariance of the deep features generated by Mf , and
will eventually converge to the point where Mf generates extremely
confusing deep features that Md is unable to distinguish.

At the same time, we want to make F senone-discriminative by
minimizing the cross-entropy senone classification loss between the
predicted senone posteriors and the senone labels below:

Lsenone(θf , θy) = −
1

T

T∑
t=1

log p(yt|xt; θf , θy)

= − 1

T

T∑
t=1

∑
s∈S

1[s = yt] logMy(Mf (xt)). (4)

In ADIT, the acoustic model network and the condition classifier
network are trained to jointly optimize the primary task of senone
classification and the secondary task of domain classification with
an adversarial objective function.

3. ATTENTIVE ADVERSARIAL DOMAIN-INVARIANT
TRAINING

In ADIT, the mini-maximization of the domain classification loss
(Eq. (3)) plays an important role in normalizing the intermediate
deep feature F against different domains. However, the domain clas-
sification loss is still computed from a sequence of equally-weighted
deep features. In fact, not all deep features are equally affected
by domain variability and provide identical domain-discriminative
information to the domain classifier. For example, deep features
extracted from voiced frames are more domain-discriminative than
those from the silence; deep features aligned with vowels are in gen-
eral more susceptible to domain variability than those with conso-
nants. To address this problem, we introduce an attention mach-
anism to dynamically and automatically adjust the weights for the
deep features in order to put more emphasis on the domain normal-
ization of more domain-discriminiative deep features and therefore
enhance the overall domain-invariance of the deep features. The
acoustic model with such a domain-invariant deep feature is ex-
pected to achieve improved ASR performance over ADIT.

In the proposed AADIT, we use soft local (time-restricted) [33,
34] self-attention [16] because it is more suitable for ASR where
the input sequence consists of a relatively large number of speech
frames. The local attention we adopt selectively focuses on a small
window of context centered at the current time and can jointly attend
different points in time with different weights. Specifically, for each
deep feature ft at time t, the keys are the projections of deep features
in an ra dimensional space within the attention window of size L+
R + 1, i.e., Kt = {kt−L, . . . ,kt, . . . ,kt+R}, and the query qt is
the projection of ft in the ra dimensional space, i.e.,

kt = Wkft (5)
qt = Wqft, (6)

where Wk is a ra by rf key projection matrix, Wq is a ra by rf
query projection matrix and L and R are the length of left and right
context, respectively in the attention window. The attention proba-
bility at of each current frame ft against all the context deep fea-
tures in the attention window, i.e., Vt = {ft−L, . . . , ft, . . . , ft+R},
is computed by normalizing the similarity scores et,τ ∈ R between
the query qt and each key kτ in the window Kt, i.e.,

at,τ =
exp(et,τ )∑t+R

τ ′=t−L exp(et,τ ′)
, (7)

where τ = t − L, . . . , t, . . . , t + R and at,τ ∈ R is the [τ − (t −
L)]th dimension of the attention probability vector at ∈ RL+R+1.
The similarity scores et,τ can be computed in two different ways
according to the type of attention mechanism applied:
• Dot-product attention

et,τ =
k>τ qt√
ra

, (8)

• Additive attention

et,τ = g> tanh(kτ + qt + b), (9)

where g ∈ R
ra is a column vector, b ∈ R

ra is the bias
column vector.



Therefore, a context vector ct is formed at each time t as a weighted
sum of the deep features in the attention window Vt with the atten-
tion vector at serving as the combination weights, i.e.,

ct =

t+R∑
τ=t−L

at,τ fτ . (10)

As shown in Fig. 1, we view the entire attention process described in
Eq.(5) to Eq.(10) as a single attention function Ma(·) with param-
eters θa = {Wk,Wq,g,b} which takes in the sequence of deep
features F as the input and outputs the sequence of context vectors
C = {c1, . . . , cT }, ct ∈ Rra , i.e., ct =Ma(ft).

Fig. 1. The framework of attentive adversarial domain-invariant
training (AADIT) of the acoustic models. Only the DNN acoustic
model consisting of Mf and My (on the left) are used for ASR on
test data. Ma and Md are discarded after AADIT.

The domain classifier Md then takes in the context vector ct as
the input to predict the frame-level domain posteriors for u ∈ U.

p(u|xt; θf , θa, θd) =Md(ct) =Md(Ma(ft))

=Md(Ma(Mf (xt))). (11)

To make the deep features F domain-invariant, Mf , Ma and
Md are jointly trained with an adversarial objective, in which
θf is adjusted to maximize the frame-level domain classification
loss Ldomain(θf , θa, θd) while θa and θd are adjusted to minimize
Ldomain(θf , θa, θd) below:

Ldomain(θf , θa, θd) = −
1

T

T∑
t=1

log p(dt|xt; θf , θa, θd)

= − 1

T

T∑
t=1

∑
u∈U

1[u = dt] logMd(Ma(Mf (xt))). (12)

In AADIT, the acoustic model network, the condition classifier
network and attention function are trained to jointly optimize the pri-
mary task of senone classification and the secondary task of domain

classification with an adversarial objective function as follows

(θ̂f , θ̂y) = argmin
θy,θf

Lsenone(θf , θy)− λLdomain(θf , θ̂a, θ̂d), (13)

(θ̂a, θ̂d) = argmin
θa,θd

Ldomain(θ̂f , θa, θd), (14)

where λ controls the trade-off between Lsenone and Ldomain, and
θ̂y, θ̂f , θ̂a and θ̂d are the optimized parameters.

The parameters are updated as follows via back propagation with
stochastic gradient descent:

θf ← θf − µ
[
∂Lsenone

∂θf
− λ∂Ldomain

∂θf

]
, (15)

θa ← θa − µ
∂Ldomain

∂θa
, (16)

θd ← θd − µ
∂Ldomain

∂θd
, (17)

θy ← θy − µ
∂Lsenone

∂θy
, (18)

where µ is the learning rate. Note that the negative coefficient−λ in
Eq. (15) induces attentive reversal gradient that maximizesLdomain in
Eq. (3) to make the deep feature domain-invariant. For easy imple-
mentation, a gradient reversal layer is introduced as in [10], which
acts as an identity transform in the forward propagation and multi-
plies the gradient by −λ during the backward propagation.

Note that only the optimized DNN acoustic model consisting of
Mf and My on the left side of Fig. 1 is used for ASR on test data.
The attention block Ma and domain classifer Md (on the right) are
discarded after AADIT.

We further extend the keys, queries and values with a one-hot
encoding of the relative positions versus the current time in an atten-
tion window as in [34] and compute the attention vectors based on
the extended representations. We also introduce a multi-head atten-
tion as in [16] by projecting the deep featuresH times to getH keys
and queries in H different spaces. Note that the dimension of pro-
jection space for each attention head is oneH th of that in single-head
attention to keep the number of parameters unchanged.

4. EXPERIMENTS

We perform AADIT of a multi-conditional acoustic model to sup-
press the speaker variability (AADIT-S) and environment variability
(AADIT-E) for robust ASR.

4.1. Baseline System

As the baseline system, we first train a long short-term memory
(LSTM)- hidden Markov model (HMM) acoustic model [35, 36, 37]
using multi-conditional training data of CHiME-3 [38]. The
CHiME-3 dataset incorporates Wall Street Journal (WSJ) corpus
sentences spoken under four challenging noisy environments, i.e,
on buses, in cafes, in pedestrian areas, at street junctions and one
clean environment, i.e., in booth, recorded using a 6-channel tablet.
The real far-field noisy speech from the 5th microphone channel in
CHiME-3 development data set is used for testing. A standard WSJ
5K word 3-gram language model is used for decoding.

We train the baseline LSTM acoustic model with 9137 clean and
9137 noisy training utterances of CHiME-3 dataset by using cross-
entropy criterion. The 29-dimensional log Mel filterbank features to-
gether with 1st and 2nd order delta features (totally 87-dimensional)



for both the clean and noisy utterances are extracted as in [39]. The
features are fed as the input to the LSTM after global mean and vari-
ance normalization. The LSTM has four 1024-dimensional hidden
layers. Each hidden layer is followed by a 512-dimensional projec-
tion layer. The output layer of the LSTM has 3012 output units cor-
responding to 3012 senone labels. The multi-style LSTM acoustic
model achieves 19.23% WER on the noisy test data.1

4.2. Adversarial Domain-Invariant Training

We further perform ADIT to reduce the speaker variability (ADIT-
S) and environment variability (ADIT-E) of the baseline multi-
conditional LSTM with 9137 noisy training utterances in CHiME-3.
The Mf is initialized with the first P layers of the LSTM and My is
initialized with the rest (7− P ) hidden layers plus the output layer.
P indicates the position of the deep hidden feature in the acoustic
model. For ADIT-S, the speaker classifierMd is a feedforward DNN
with 3 hidden layers and 512 hidden units for each layer. The output
layer of Md has 87 units predicting the posteriors of 87 speakers
in the training set. For ADIT-E, Md is an environment classifier
with the same architecture as in ADIT-S except for the 5 output
units predicting 5 environments in CHiME-3. Mf , My and Md are
jointly trained with an adversarial multi-task objective as described
in Section 2. P and λ are fixed at 4 and 0.5 in our experiments. The
ADIT-S and ADIT-E LSTM acoustic models achieve 18.40% and
18.31% WER on the real test data, respectively, which are 4.3% and
4.8% relative improvements over the multi-conditional baseline.

4.3. Attentive Adversarial Domain-Invariant Training

We further perform AADIT-S and AADIT-E with the same training
data as ADIT. Mf , My and Md have exactly the same architectures
as the ones for ADIT in Section 4.2 expect that Md has only one
hidden layer to keep the number of parameters similar as that of
ADIT. P and λ are also fixed at 4 and 0.5 for all the experiments.

L+R+ 1 15 21 25 31
WER 17.89 17.63 17.89 18.07

Table 1. The ASR WER (%) of AADIT-S with addative attention
of LSTM acoustic models for different sizes of attention window
(L+R+ 1) on real development set of CHiME-3.

We first investigate the impact of attention window sizeL+R+1
on the ASR WER via AADIT-S with additive attention in Table 1.
In this work, we only use symmetric attention window with L =
R. We fix the key and query dimension ra at 512. The WER be-
gins to decrease when window size is larger than 21, so we choose
L = R = 10 for the following experiments. Then we explore the
effect of different key and query dimensions ra on the ASR perfor-
mance through AADIT-S with addative attention in Table 2. The
WER first decreases until reaching the minimum at ra = 512 and
then increases as ra grows larger. Therefore, we fix ra at 512 for the
following experiments. Note that, by setting ra = 512, the number
of learnable parameters are kept roughly the same as in ADIT.

Further, we perform AADIT-S and AADIT-E with both additive
and dot-product attentions and summarize the WER results for dif-
ferent type of domains in Table 3. We see that AADIT-S achieves

1Note that our experimental setup does not achieve the state-of-the-art
performance on CHiME-3 (e.g., we did not perform beamforming, sequence
training or use recurrent neural network language model for decoding.) since
our goal is to simply verify the improved capability of AADIT in reducing
inter-domain variability over ADIT.

ra 256 512 1024 2048
WER 18.53 17.63 18.01 18.19

Table 2. The ASR WER (%) of AADIT-S with addative attention of
LSTM acoustic models for different dimensions of keys and values
(ra) on real development set of CHiME-3.

17.63% WER with additive attention which is 8.3% and 4.2% rela-
tively improved over baseline multi-conditional LSTM and ADIT-S,
respectively. AADIT-E performs significantly better than AADIT-S
with a WER of 16.61% when using dot-product attention, which is
13.6% and 9.3% relatively improved over baseline multi-conditional
model and ADIT-E, respectively. Dot-product attention performs
similar to additive attention for AADIT.

System Attention
Type

Domain
Speaker Environment

MC - 19.23 19.23
ADIT - 18.40 18.31

AADIT AD 17.63 16.82
DP 17.67 16.61

AADIT + PE AD 17.57 16.68
DP 17.37 16.94

MH AADIT AD 17.33 17.10
DP 17.25 16.97

Table 3. The ASR WERs (%) of multi-conditional (MC) LSTM
acoustic models, ADIT, single-head AADIT, single-head AADIT
with positional encoding (PE) and multi-head (MH) AADIT on real
development set of CHiME-3. Both the additive (AD) and dot-
product (DP) attentions are used for each AADIT system.

We also investigate the effect of positional encoding on AADIT.
In Table 3, positional encoding does not consistently improve the
AADIT, so we do not use it for the following experiments. We fur-
ther perform AADIT with multi-head additive and dot-product atten-
tions. The number of heads is fixed at 8 and the key/query dimen-
sion for each head is 512/8 = 64. We observe that the multi-head
AADIT-S only slightly improves the WER of single-head one, and
multi-head AADIT-E does not further improve the WER. Consider-
ing the significantly better WER with less computational cost, we
suggest using single-head AADIT-E for robust ASR.

5. CONCLUSIONS

We advance the domain classifier of ADIT with an attention mecha-
nism to re-weight the deep features in a DNN acoustic model accord-
ing to their importance in domain classification. With AADIT, the
deep features more susceptible to domain variability are normalized
with more emphasis and therefore, the overall domain-invariance of
the acoustic model is greatly enhanced. The attention mechanism
only serves as an auxiliary component to the external of the acous-
tic model that does not participate in ASR and thus can improve the
DNN acoustic model with any architectures.

Evaluated on CHiME-3 dataset, the single-head AADIT achieves
13.6% and 9.3% relative WER gains over a multi-conditional LSTM
acoustic model and a strong ADIT baseline, respectively. AADIT-
E performs significantly better than AADIT-S. Teh additive and
dot-product attentions achieve similar ASR performance. WERs
of AADIT do not improve significantly with additional positional
encoding and multi-head self-attention.
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