Real-time Single-channel Speech Enhancement with Recurrent Neural Networks

Yangyang (Raymond) Xia

Mentored by Sebastian Braun

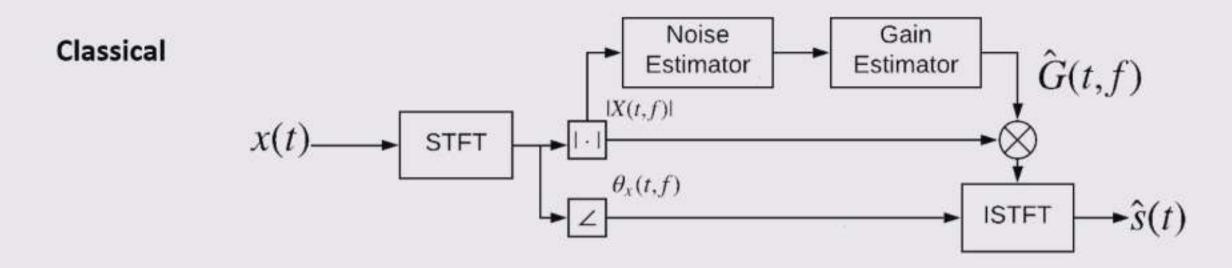
MSR Audio and Acoustics Research Group

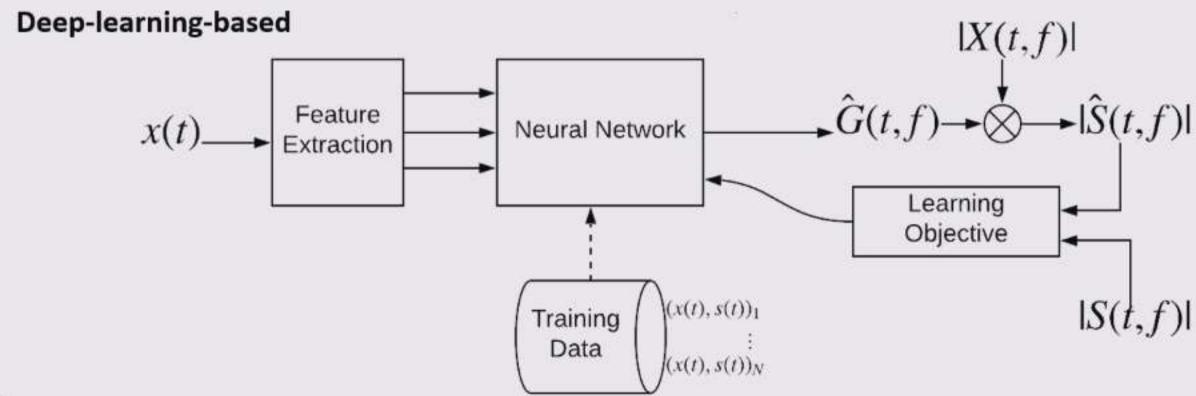
Outline

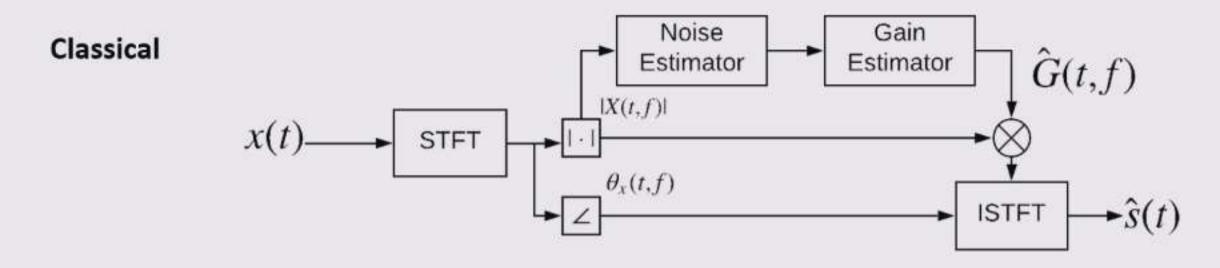
- Introduction to Single-channel Speech Enhancement
 - · Classical signal processing vs. Deep learning
 - · Considerations for online processing
- Our Method
 - Feature Representations
 - Learning Machines
- * Tearnient de la company de l

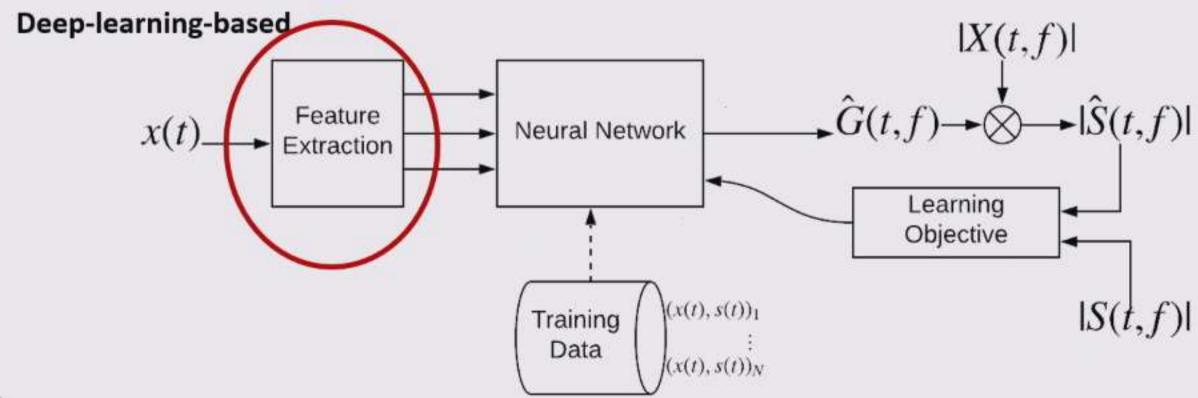
Single-channel Speech Enhancement (SE)

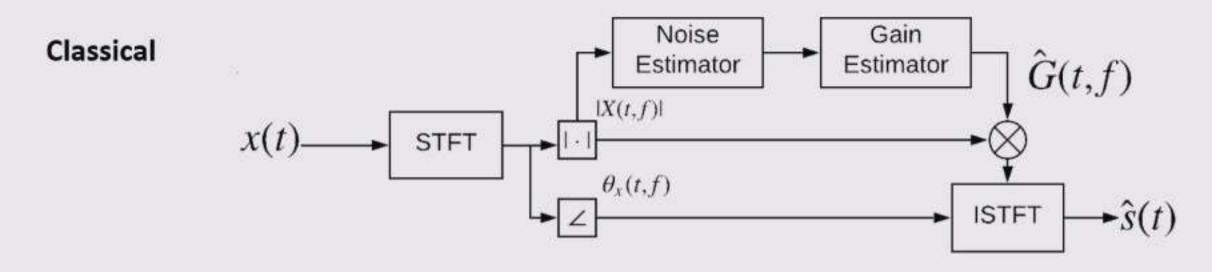
- Assumptions
 - Noisy speech = Speech + Noise
 - Noise attributes change slower than speech
- Goals
 - Suppress noise
 - Retain speech
 - Improve human or/and machine perception
- Our goal: enhancing speech quality for human listeners

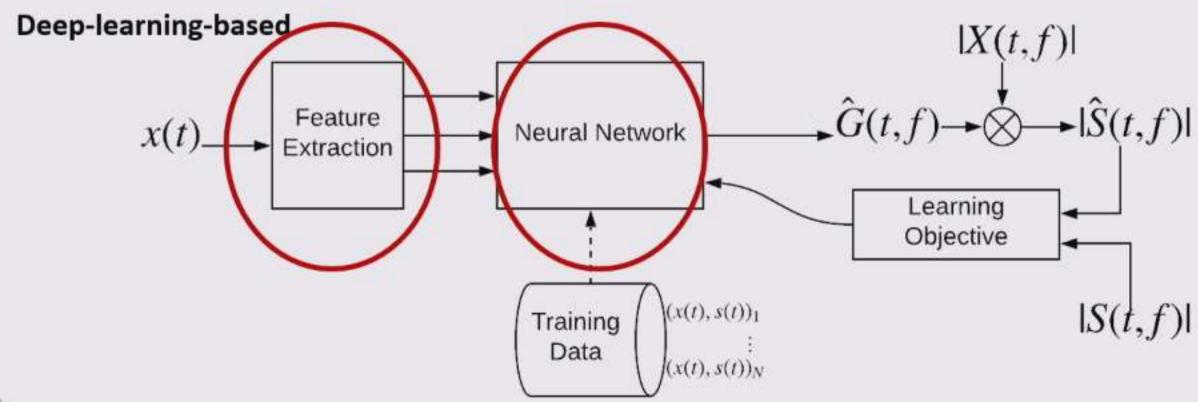


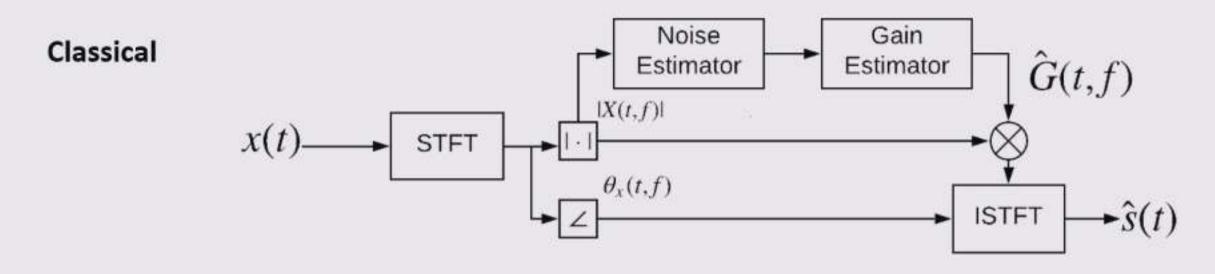


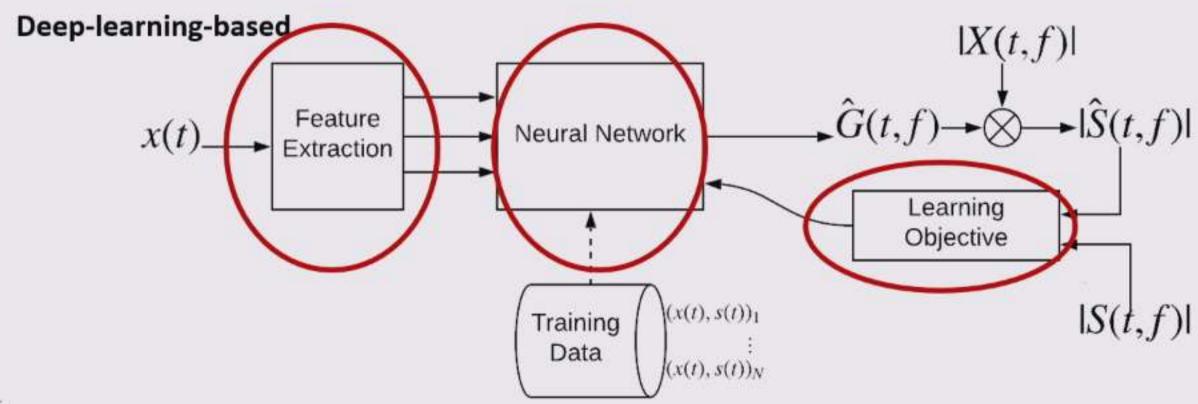


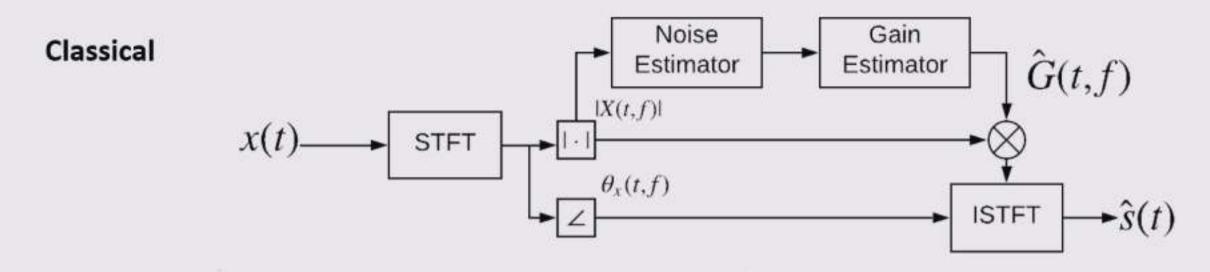


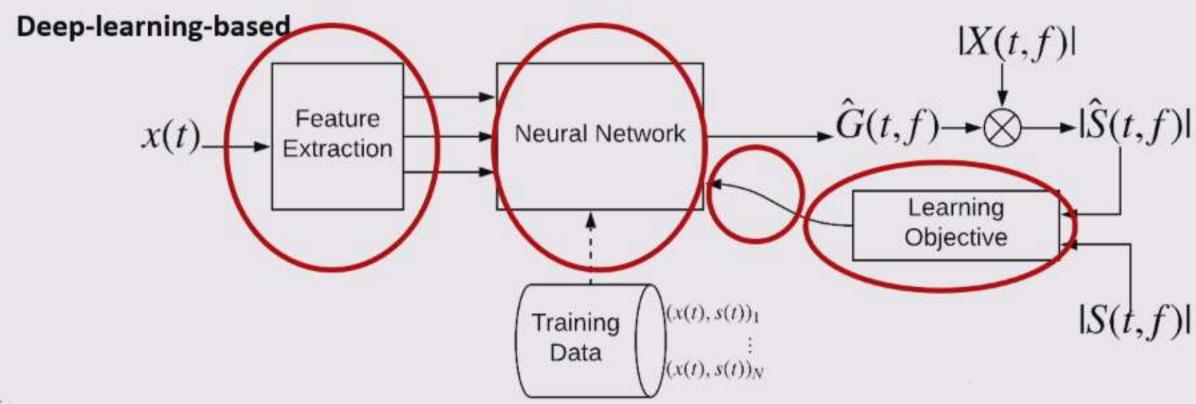










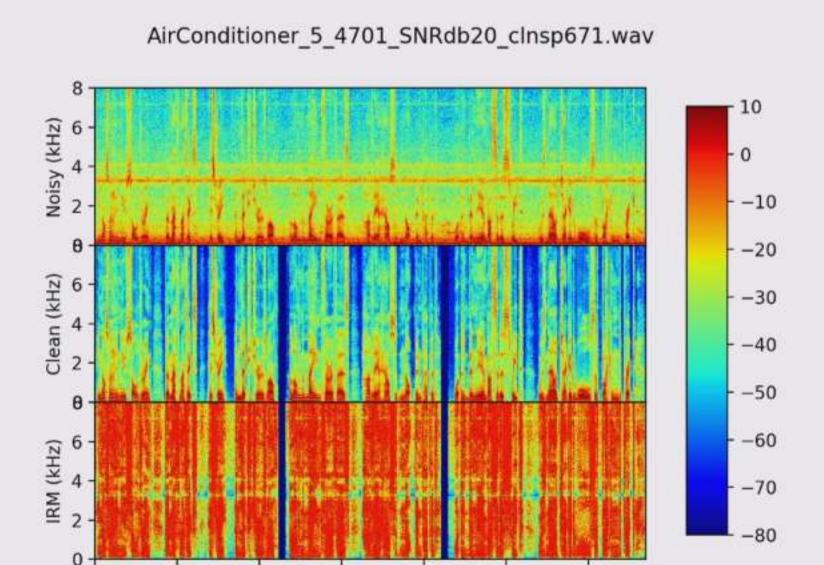


SP vs. DL for Online Enhancement

Name	Method related to Online Processing	Data-driven?	Online?
Spectral subtraction [Boll1979]	Estimate noise magnitude spectra by a moving average filter	No	Yes
Decision-directed [Ephraim1984]	Estimate SNRs by smoothing instantaneous measurements of SNRs	No	Yes
Deep clustering [Hershey2016]	Cluster each time-frequency bin based on feature embeddings generated from a 100-frame spectrograms	Yes	No
Audio-visual speech separation [Ephrat2018]	2-D convolution cross time and frequency of a spectrogram	Yes	No
RNNoise [Valin2018]	Recurrent units output one frame from one input frame	Yes	Yes
SEGAN [Pascual2017]	Generate enhanced speech from a waveform segment	Yes	Maybe, if trained on a single frame.
8/23/2019			6

Outline

- Introduction to Single-channel Speech Enhancement
 - · Classical signal processing vs. Deep learning
 - · Considerations for online processing
- Our Method
 - Feature Representations
 - Learning Machines
 - Learning Objectives
 - Training Considerations
- Evaluation
 - Data
 - Metrics
 - Results
- Findings and Conclusions



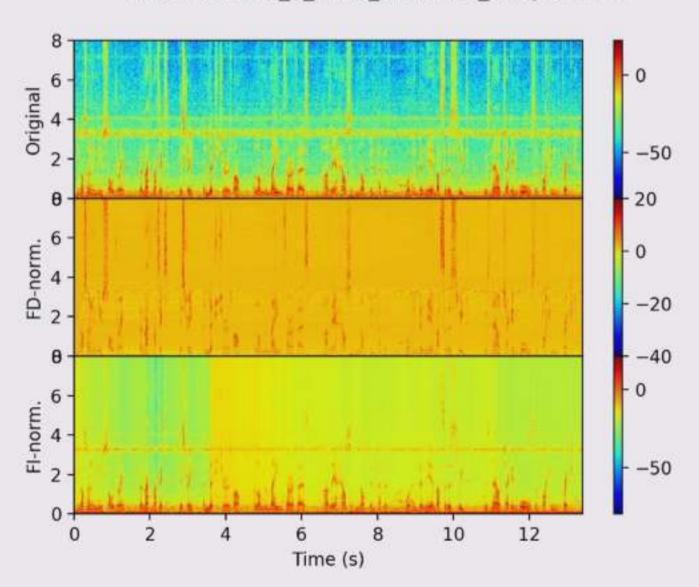
Time (s)

10

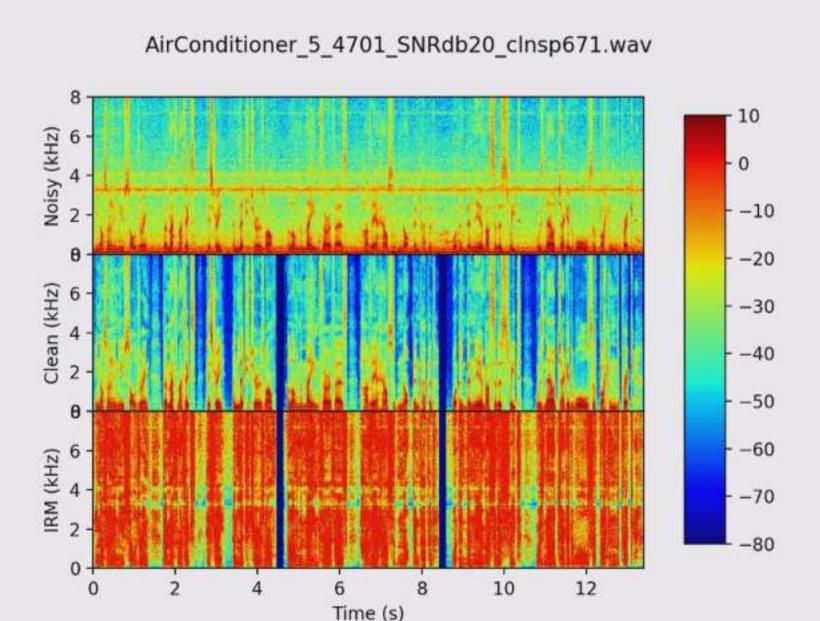
12

- (In) Short-time Fourier transform magnitude (STFTM)
- (In) Short-time log power spectra (LPS) with -80 dB floor
- (Out) Real magnitude gain function in [0, 1]
- Technical details:
 - 16 KHz sampling rate
 - · 32-ms analysis frame
 - Hamming window
 - 75% overlap between frames

AirConditioner_5_4701_SNRdb20_clnsp671.wav

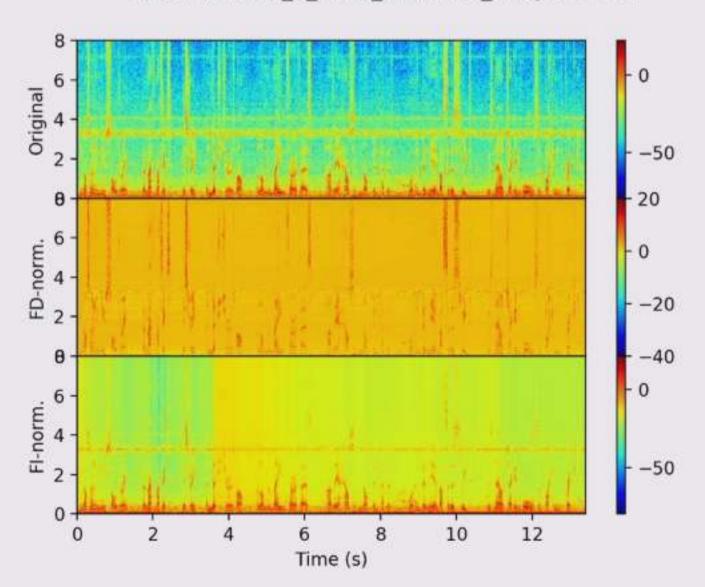


- Global mean and variance normalization
 - Statistics per frequency bin accumulated over 80 hours of randomly sampled speech from the training set
- Online mean and variance normalization
 - 3-second exponential smoothing
 - Frequency-dependent (FD) or frequency-independent (FI)



- (In) Short-time Fourier transform magnitude (STFTM)
- (In) Short-time log power spectra (LPS) with -80 dB floor
- (Out) Real magnitude gain function in [0, 1]
- Technical details:
 - 16 KHz sampling rate
 - · 32-ms analysis frame
 - Hamming window
 - 75% overlap between frames

AirConditioner_5_4701_SNRdb20_clnsp671.wav



- Global mean and variance normalization
 - Statistics per frequency bin accumulated over 80 hours of randomly sampled speech from the training set
- Online mean and variance normalization
 - 3-second exponential smoothing
 - Frequency-dependent (FD) or frequency-independent (FI)

Learning Machines

- Recurrent neural network (RNN) the most "natural" choice
 - Ability to encode long-term temporal patterns
 - Information exchange across frequencies
- Example: RNNoise [Valin2018]
 - GRUs [Bahdanau2014] encode temporal patterns
 - Full-connected (dense) layers transform composite features to a gain

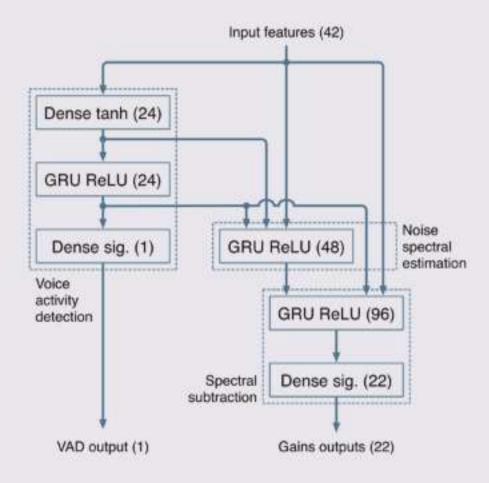


Image credit: [Valin2018]

Recurrent Units with Residual Connections

 Residual connections facilitate learning deep networks [He2016] h[t-1] ;

 Depth = sequence length in our context

- Existing work using RNN + residuals
 - Sequence classification [Wang2016]
 - Automatic speech recognition [Kim2017]
 - Feature compensation for ASR [Chen2017]

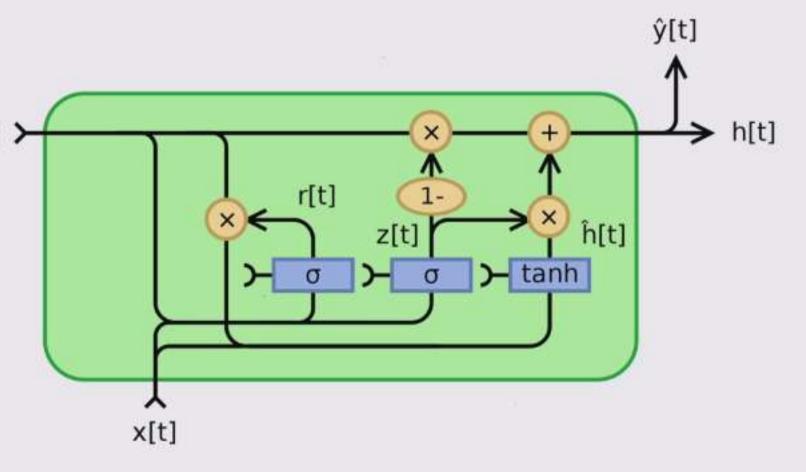


Image credit:

https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg. The original website is down.

Learning Machines

- Recurrent neural network (RNN) the most "natural" choice
 - Ability to encode long-term temporal patterns
 - Information exchange across frequencies
- Example: RNNoise [Valin2018]
 - GRUs [Bahdanau2014] encode temporal patterns
 - Full-connected (dense) layers transform composite features to a gain

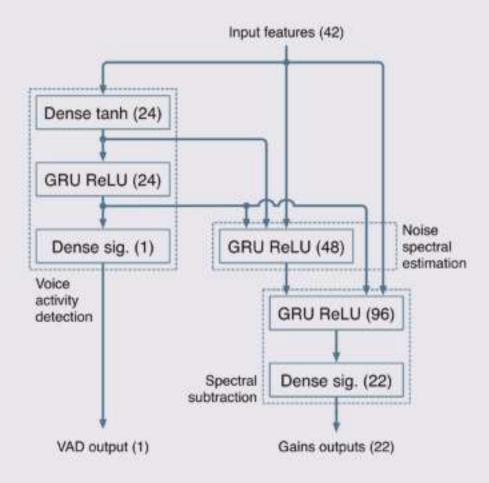


Image credit: [Valin2018]

Recurrent Units with Residual Connections

 Residual connections facilitate learning deep networks [He2016] h[t-1] ;

 Depth = sequence length in our context

- Existing work using RNN + residuals
 - Sequence classification [Wang2016]
 - Automatic speech recognition [Kim2017]
 - Feature compensation for ASR [Chen2017]

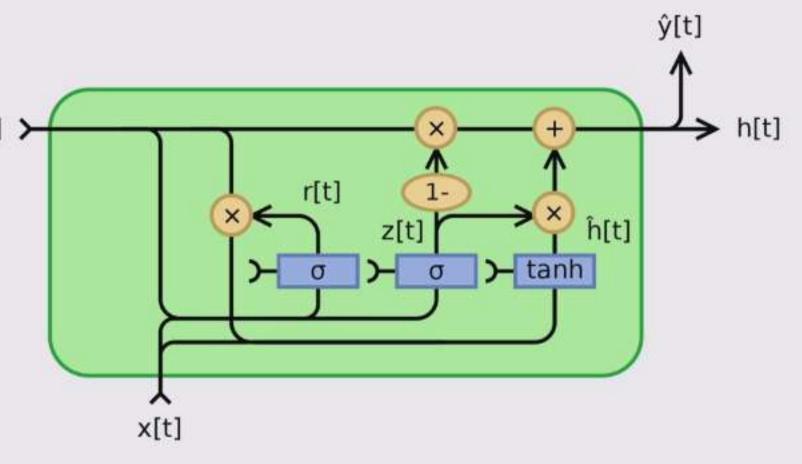


Image credit:

https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg. The original website is down.

Learning Machines

- Recurrent neural network (RNN) the most "natural" choice
 - Ability to encode long-term temporal patterns
 - Information exchange across frequencies
- Example: RNNoise [Valin2018]
 - GRUs [Bahdanau2014] encode temporal patterns
 - Full-connected (dense) layers transform composite features to a gain

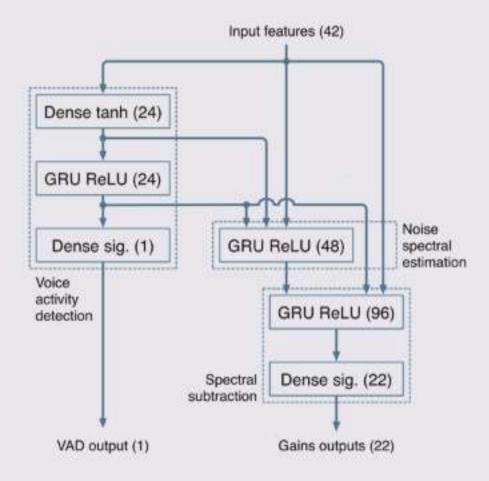


Image credit: [Valin2018]

Recurrent Units with Residual Connections

 Residual connections facilitate learning deep networks [He2016] h[t-1] ;

 Depth = sequence length in our context

- Existing work using RNN + residuals
 - Sequence classification [Wang2016]
 - Automatic speech recognition [Kim2017]
 - Feature compensation for ASR [Chen2017]

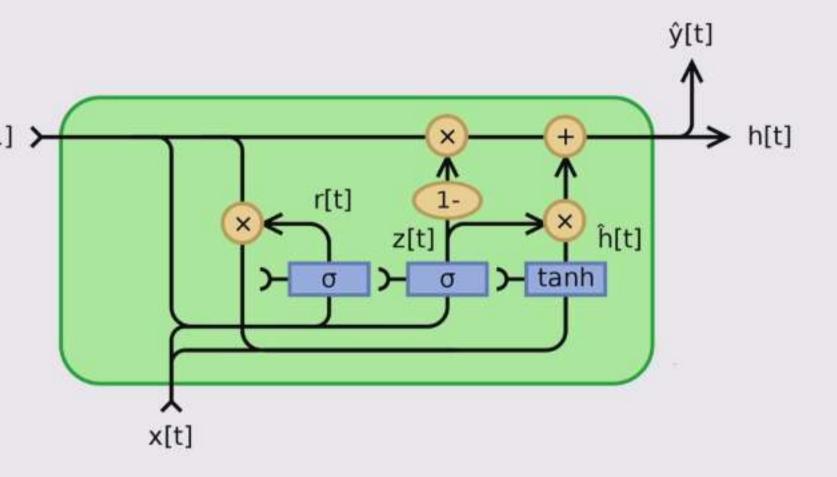


Image credit:

https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg. The original website is down.

Recurrent Units with Residual Connections

 Residual connections facilitate learning deep networks [He2016] h[t-1] ;

 Depth = sequence length in our context

- Existing work using RNN + residuals
 - Sequence classification [Wang2016]
 - Automatic speech recognition [Kim2017]
 - Feature compensation for ASR [Chen2017]

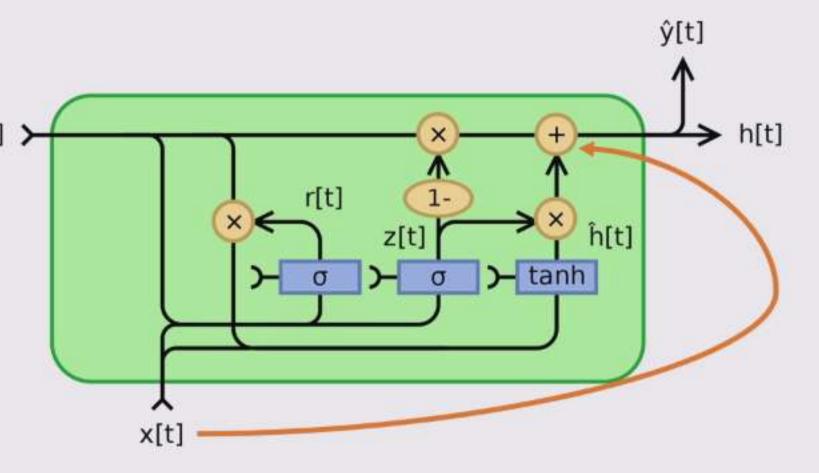
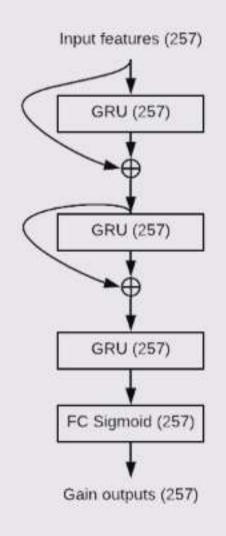


Image credit:

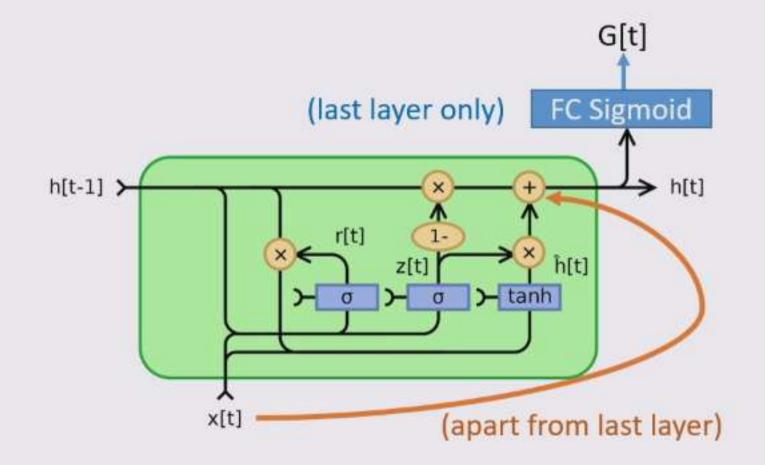
https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg. The original website is down.

GRU + Residuals for Speech Enhancement

Global view



Zoomed-in view



Mean squared error (MSE)

• Mean squared error (MSE) $L_{MSE}(\Theta;X,Y) = \frac{1}{TF}\sum_{t=0}^{T-1}\sum_{f=0}^{F-1}||X_{t,f}-G(Y_{t,f};\Theta)Y_{t,f}||^2$

- Mean squared error (MSE) $L_{MSE}(\Theta;X,Y) = \frac{1}{TF} \sum_{t=0}^{T-1} \sum_{f=0}^{F-1} ||X_{t,f} G(Y_{t,f};\Theta)Y_{t,f}||^2$ Classical statistical methods based on minimum MSE [Ephraim1984]
- - Assumes complex STFTs of speech/noise have Gaussian distribution
 - Assumes complex STFTs of speech and noise are uncorrelated
 - Solves for the optimal solution in MMSE sense

- Mean squared error (MSE) $L_{MSE}(\Theta;X,Y) = \frac{1}{TF} \sum_{t=0}^{T-1} \sum_{f=0}^{F-1} ||X_{t,f} G(Y_{t,f};\Theta)Y_{t,f}||^2$ Classical statistical methods based on minimum MSE [Ephraim1984]
- - Assumes complex STFTs of speech/noise have Gaussian distribution
 - Assumes complex STFTs of speech and noise are uncorrelated
 - Solves for the optimal solution in MMSE sense
- Deep learning methods based on MSE
 - No assumptions about distributions
 - Solves for a "good" solution by stochastic gradient descent
 - Good = small MSE for both seen and unseen examples
 - Stable convergence (if able to learn at all)

Re-writing the MSE

Re-writing the MSE

$$E[(S - \hat{S})^2] = E[(S - G(S + N))^2] \approx E[(S - GS)^2] + E[(GN)^2]$$

Cross terms ignored

Re-writing the MSE

$$E[(S - \hat{S})^2] = E[(S - G(S + N))^2] \approx E[(S - GS)^2] + E[(GN)^2]$$

Cross terms ignored

Assign weighting to separated speech distortion and noise suppression terms

Re-writing the MSE

$$E[(S - \hat{S})^2] = E[(S - G(S + N))^2] \approx E[(S - GS)^2] + E[(GN)^2]$$

Cross terms ignored

Assign weighting to separated speech distortion and noise suppression terms

$$L_{SN}(\Theta; S, N) = \alpha ||S - GS||^2 + (1 - \alpha)||GN||^2$$

Re-writing the MSE

$$E[(S - \hat{S})^2] = E[(S - G(S + N))^2] \approx E[(S - GS)^2] + E[(GN)^2]$$

Cross terms ignored

Assign weighting to separated speech distortion and noise suppression terms

$$L_{SN}(\Theta; S, N) = \alpha ||S - GS||^2 + (1 - \alpha)||GN||^2$$

- Compute speech distortion only when speech is active (SA)
 - Energy-based SA detector: [300, 5000] Hz, max. 30dB below max. power

Re-writing the MSE

$$E[(S - \hat{S})^2] = E[(S - G(S + N))^2] \approx E[(S - GS)^2] + E[(GN)^2]$$

Cross terms ignored

Assign weighting to separated speech distortion and noise suppression terms

$$L_{SN}(\Theta; S, N) = \alpha ||S - GS||^2 + (1 - \alpha)||GN||^2$$

- Compute speech distortion only when speech is active (SA)
 - Energy-based SA detector: [300, 5000] Hz, max. 30dB below max. power

$$L_{SN}(\Theta; S_{SA}, N) = \alpha ||S_{SA} - GS_{SA}||^2 + (1 - \alpha)||GN||^2$$

SNR-weighted Objectives

SNR-weighted Objectives

- The weighting is static, but our goal varies across different scenarios
 - We want little speech distortion when only speech is present (SNR $\rightarrow +\infty$)
 - We want aggressive suppression when only noise is present (SNR \rightarrow 0)
 - Existing work in classical SP approach [Low2011]

SNR-weighted Objectives

- The weighting is static, but our goal varies across different scenarios
 - We want little speech distortion when only speech is present (SNR $\rightarrow +\infty$)
 - We want aggressive suppression when only noise is present (SNR \rightarrow 0)
 - Existing work in classical SP approach [Low2011]
- Adapt the loss of each example pair {speech, noise} by the global SNR:

SNR-weighted Objectives

- The weighting is static, but our goal varies across different scenarios
 - We want little speech distortion when only speech is present (SNR $\rightarrow +\infty$)
 - We want aggressive suppression when only noise is present (SNR \rightarrow 0)
 - Existing work in classical SP approach [Low2011]
- Adapt the loss of each example pair {speech, noise} by the global SNR:

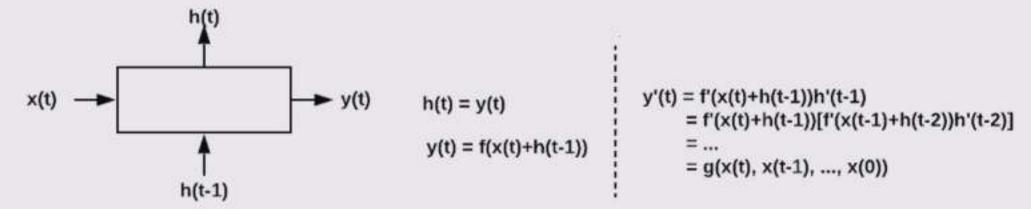
$$L_{SNR}^{(i)}(\Theta; S^{(i)}, N^{(i)}) = \alpha \frac{\sigma_{S^{(i)}}^2}{\sigma_{N^{(i)}}^2} ||S_{SA}^{(i)} - GS_{SA}^{(i)}||^2 + (1 - \alpha) \frac{\sigma_{S^{(i)}}^2}{\sigma_{N^{(i)}}} ||GN^{(i)}||^2$$

Training Consideration

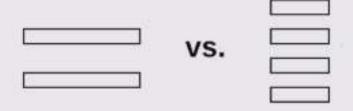
- Classical decision-directed approach [Ephraim1984]:
 - Transparent "hidden states" a priori SNR, a posteriori SNR
 - Hidden states from the previous estimates affect the current by recursive smoothing
 - · "Short-term memory that decays exponentially" in DL lingo
- RNN-based learning approach:
 - Black-box hidden states
 - LSTM/GRU are capable of learning long temporal patterns [Gers1999]
 - Patterns are learned through backpropagation through time [Werbos1990]

Training Consideration

Backpropagation through time:



 We want to compare a small batch of long sequences to a large batch of short sequences, given the same amount of information per batch.



Outline

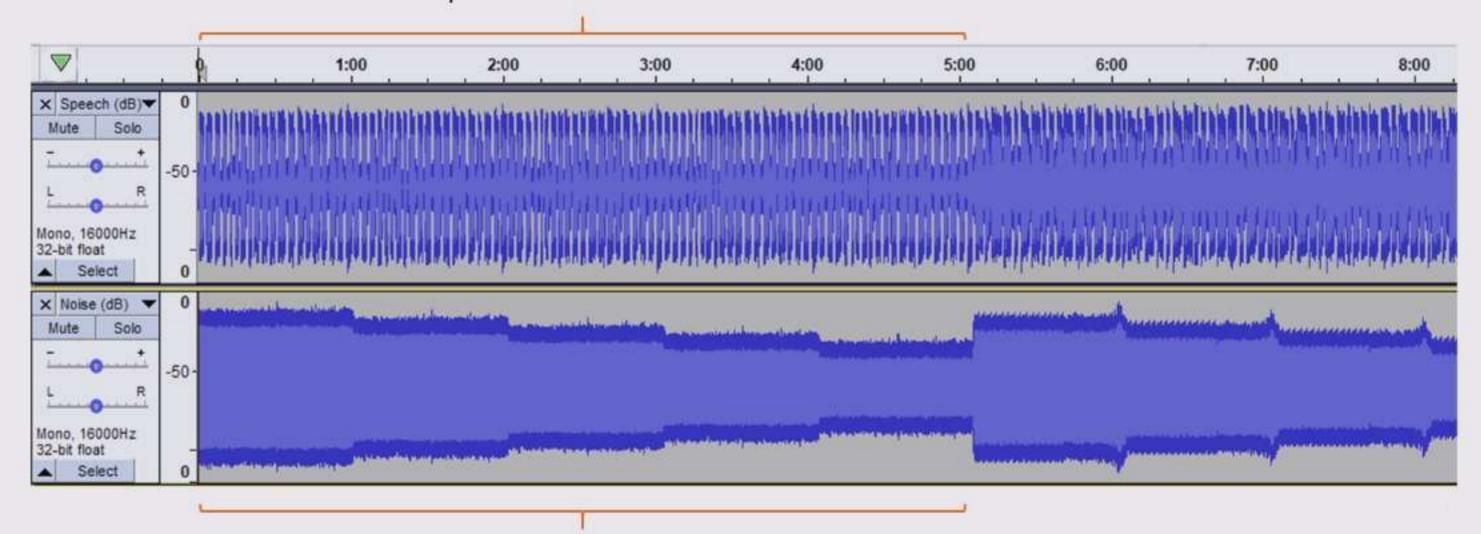
- Introduction to Single-channel Speech Enhancement
 - · Classical signal processing vs. Deep learning
 - · Considerations for online processing
- Our Method
 - Feature Representations
 - Learning Machines
 - Learning Objectives
 - Training Considerations
- Evaluation
 - Data
 - Metrics
 - Results
- Findings and Conclusions

Evaluation: Data

- 84 hours of training data
 - Speech: Edinburgh 56 Speakers Corpus
 - Noise: 14 noise types from DEMAND Database and Freesound
 - Air Conditioner, airport announcements, appliances, car noise, copy machine, door shutting, eating, multi-talker babble, neighbor speaking, squeaky chair, traffic, road, typing, vacuum cleaner.
- 18 hours of test data in 5500 clips
 - Speech: Graz University 20 Speakers Corpus
 - Noise: 9 challenging classes from DEMAND and Freesound
 - Air conditioner, airport announcements, babble, copy machine, munching, neighbor, shutting door, typing, vacuum cleaner.
 - All clips are unseen in training
- SNR: {40, 30, 20, 10, 0} dB
- All clips sampled at 16 kHz

Evaluation: Data & Data Augmentation

Same utterance from the same speaker repeated 5 times

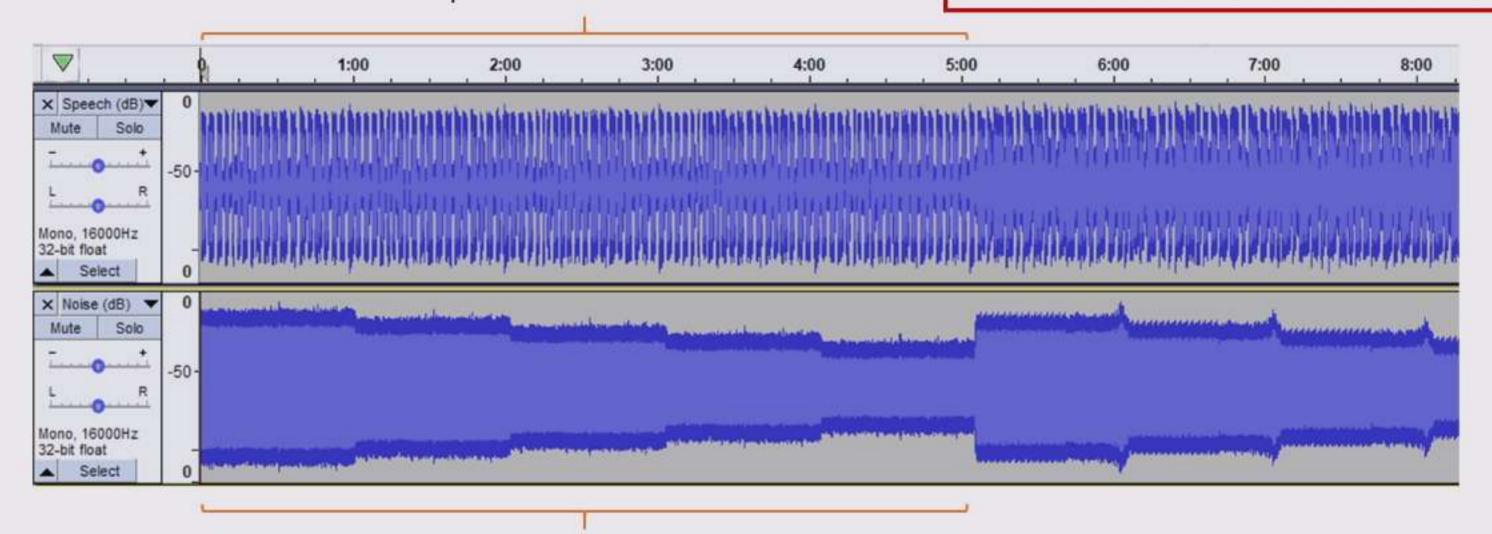


Same noise repeated 5 times with five discrete SNRs (assuming point-wise addition)

Evaluation: Data & Data Augmentation

Same utterance from the same speaker repeated 5 times

During training, we randomly sample x-second speech and noise, respectively, and remix.



Same noise repeated 5 times with five discrete SNRs (assuming point-wise addition)

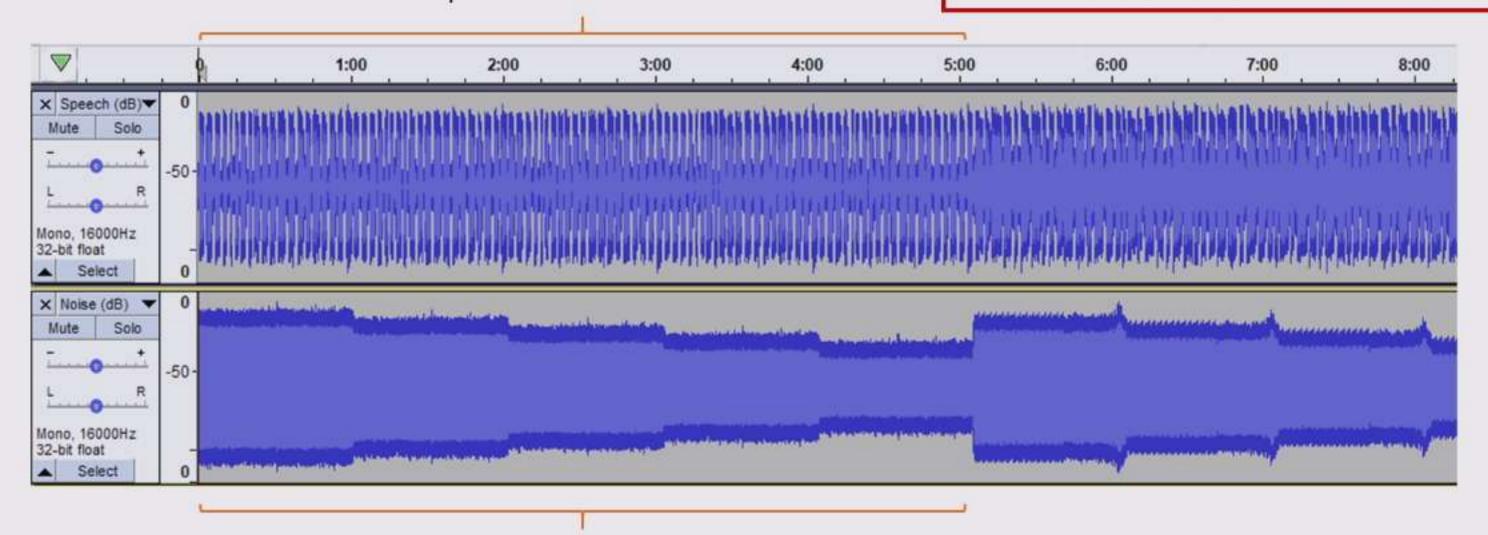
Baseline Systems

- Noisy
- MSR's statistical-based
- Proposed
 - Log spectra with global and FD online normalization; Twelve 5-second segments/batch; various objectives
- RNN
 - · Same as proposed, except no residual connections; MSE loss
- RNNoise [Valin2018]
 - Online enhancement of 22-dimensional energy envelope with 42-dimensional features
 - No augmented data
- Simplified RNNoise
 - Full-band (257) enhancement; same network architecture as RNNoise
 - No VAD during training
- Oracle information + Wiener filter rule

Evaluation: Data & Data Augmentation

Same utterance from the same speaker repeated 5 times

During training, we randomly sample x-second speech and noise, respectively, and remix.



Same noise repeated 5 times with five discrete SNRs (assuming point-wise addition)

Baseline Systems

- Noisy
- MSR's statistical-based
- Proposed
 - Log spectra with global and FD online normalization; Twelve 5-second segments/batch; various objectives
- RNN
 - · Same as proposed, except no residual connections; MSE loss
- RNNoise [Valin2018]
 - Online enhancement of 22-dimensional energy envelope with 42-dimensional features
 - No augmented data
- Simplified RNNoise
 - · Full-band (257) enhancement; same network architecture as RNNoise
 - No VAD during training
- Oracle information + Wiener filter rule

Evaluation Metrics

- Classical speech quality/intelligibility measures
 - Scale-invariant signal-to-distortion ratio (SI-SDR) [LeRoux2019]
 - Cepstral distance (CD) [Hu2008]
 - Short-time objective intelligibility (STOI) [Taal2010]
 - Perceptual evaluation of speech quality (PESQ) [Rix2001]
- DNN-based mean opinion score (MOS) prediction
 - AudioMOS
 - Trained on MOS by real users
 - 0.89 Pearson correlation coefficient on test data

Baseline Systems

- Noisy
- MSR's statistical-based
- Proposed
 - Log spectra with global and FD online normalization; Twelve 5-second segments/batch; various objectives
- RNN
 - · Same as proposed, except no residual connections; MSE loss
- RNNoise [Valin2018]
 - Online enhancement of 22-dimensional energy envelope with 42-dimensional features
 - No augmented data
- Simplified RNNoise
 - Full-band (257) enhancement; same network architecture as RNNoise
 - No VAD during training
- Oracle information + Wiener filter rule

Babble @ 20dB	Name	# Trainable Parameters	SI-SDR (dB)	CD	STOI (%)	PESQ (MOS)	AudioMOS (MOS)
4	Noisy	0	9.81	4.56	88.0	2.22	2.40
43	Statistical-based	0	6.10	4.64	84.7	2.33	2.61
48	RNNoise	61.2 K	10.4	4.24	84.3	2.33	2.73
4	RNN	1.26 M	10.4	4.48	88.6	2.39	3.15
4	Full-band RNNoise	2.64 M	13.0	3.88	89.3	2.56	2.95
1	Proposed (SNR wt.; a = 0.35)	1.26 M	14.8	3.72	90.9	2.71	3.24
11/2	Oracle Wiener	Oracle	20.5	2.13	98.1	3.82	3.75

Babble @ 20dB	Name	# Trainable Parameters	SI-SDR (dB)	CD	STOI (%)	PESQ (MOS)	AudioMOS (MOS)
4	Noisy	0	9.81	4.56	88.0	2.22	2.40
43	Statistical-based	0	6.10	4.64	84.7	2.33	2.61
43	RNNoise	61.2 K	10.4	4.24	84.3	2.33	2.73
4	RNN	1.26 M	10.4	4.48	88.6	2.39	3.15
48	Full-band RNNoise	2.64 M	13.0	3.88	89.3	2.56	2.95
	Proposed (SNR wt.; a = 0.35)	1.26 M ←	14.8	3.72	90.9	2.71	3.24
11/3	Oracle Wiener	Oracle	20.5	2.13	98.1	3.82	3.75

Enhanced 1 second audio in 39.6 milliseconds on a single CPU Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, Python 3.6.8

Babble @ 20dB	Name	# Trainable Parameters	SI-SDR (dB)	CD	STOI (%)	PESQ (MOS)	AudioMOS (MOS)
4	Noisy	0	9.81	4.56	88.0	2.22	2.40
43	Statistical-based	0	6.10	4.64	84.7	2.33	2.61
48	RNNoise	61.2 K	10.4	4.24	84.3	2.33	2.73
4/3	RNN	1.26 M	10.4	4.48	88.6	2.39	3.15
48	Full-band RNNoise	2.64 M	13.0	3.88	89.3	2.56	2.95
4	Proposed (SNR wt.; a = 0.35)	1.26 M ←	14.8	3.72	90.9	2.71	3.24
1	Oracle Wiener	Oracle	20.5	2.13	98.1	3.82	3.75

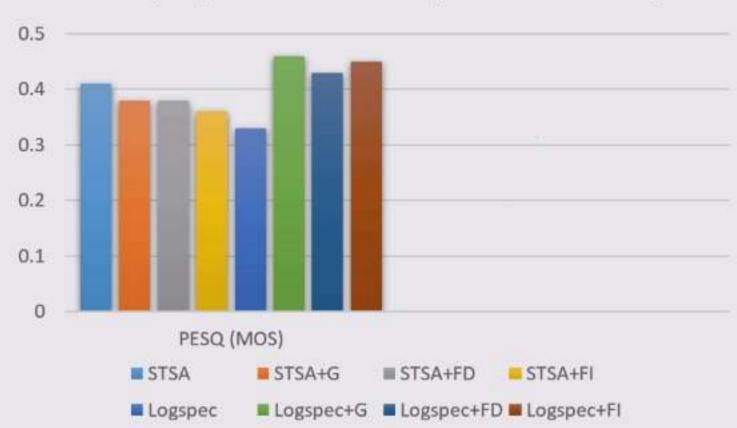
Enhanced 1 second audio in 39.6 milliseconds on a single CPU Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, Python 3.6.8

Babble @ 20dB	Name	# Trainable Parameters	SI-SDR (dB)	CD	STOI (%)	PESQ (MOS)	AudioMOS (MOS)
4	Noisy	0	9.81	4.56	88.0	2.22	2.40
43	Statistical-based	0	6.10	4.64	84.7	2.33	2.61
43	RNNoise	61.2 K	10.4	4.24	84.3	2.33	2.73
4	RNN	1.26 M	10.4	4.48	88.6	2.39	3.15
48	Full-band RNNoise	2.64 M	13.0	3.88	89.3	2.56	2.95
1	Proposed (SNR wt.; a = 0.35)	1.26 M ←	14.8	3.72	90.9	2.71	3.24
11/2	Oracle Wiener	Oracle	20.5	2.13	98.1	3.82	3.75

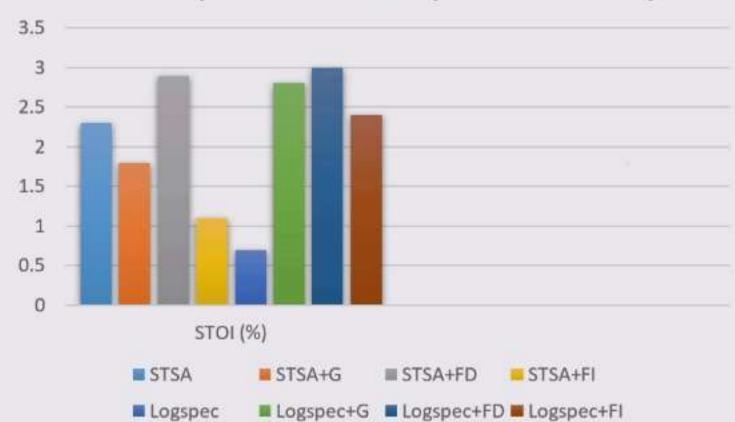
Enhanced 1 second audio in 39.6 milliseconds on a single CPU Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, Python 3.6.8

Results: Effect of Feature Normalization

PESQ Improvement of Proposed over Noisy



STOI Improvement of Proposed over Noisy



STSA – short-time spectral amplitude Logspec – short-time log power spectra G – global normalization FD – Frequency-dependent online norm. FI – Frequency-independent online norm.

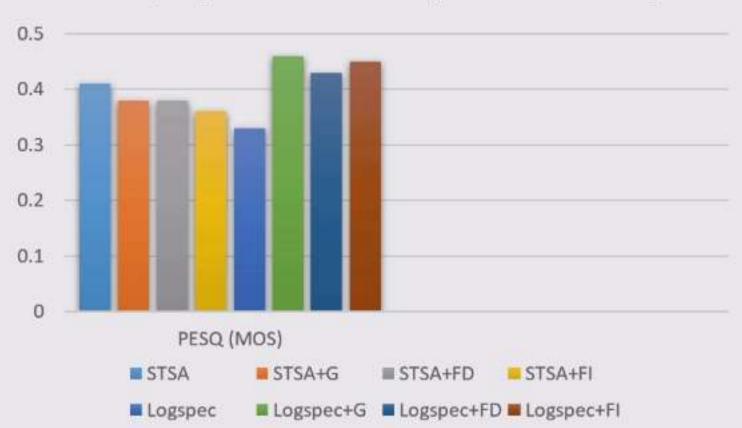
Results: Effect of Sequence Lengths

Duration (s/seg.)	# Seg. Per batch	SI-SDR (dB)	CD	STOI (%)	PESQ (MOS)	AudioMOS (MOS)
1	60	13.8	3.81	90.6	2.61	2.82
5	12	14.1	3.67	91.0	2.64	2.88
15	4	14.1	3.74	90.7	2.64	2.96
30	2	13.8	3.79	90.3	2.60	2.91

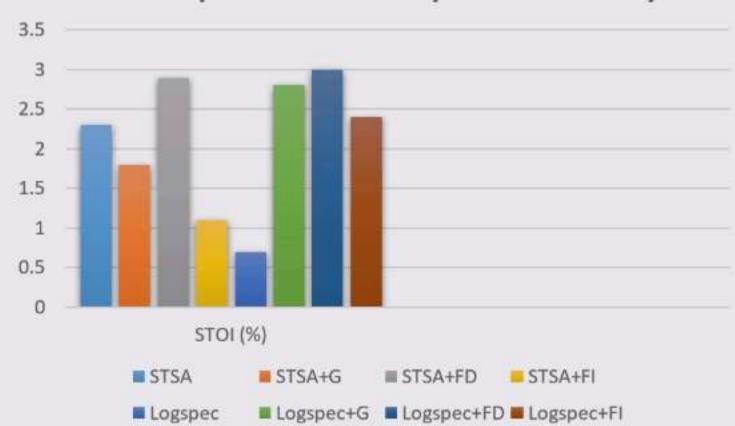
Stopped early at 53/100 epochs.

Results: Effect of Feature Normalization

PESQ Improvement of Proposed over Noisy



STOI Improvement of Proposed over Noisy



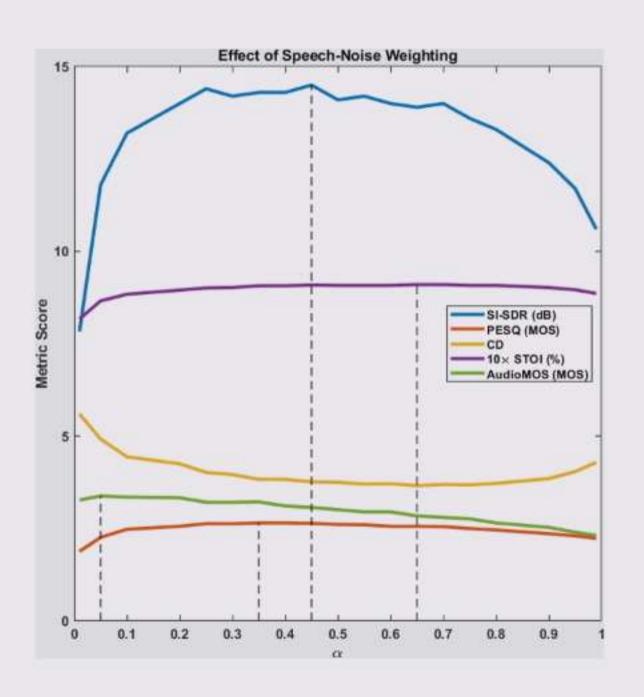
STSA – short-time spectral amplitude Logspec – short-time log power spectra G – global normalization FD – Frequency-dependent online norm. FI – Frequency-independent online norm.

Results: Effect of Sequence Lengths

Duration (s/seg.)	# Seg. Per batch	SI-SDR (dB)	CD	STOI (%)	PESQ (MOS)	AudioMOS (MOS)
1	60	13.8	3.81	90.6	2.61	2.82
5	12	14.1	3.67	91.0	2.64	2.88
15	4	14.1	3.74	90.7	2.64	2.96
30	2	13.8	3.79	90.3	2.60	2.91

Stopped early at 53/100 epochs.

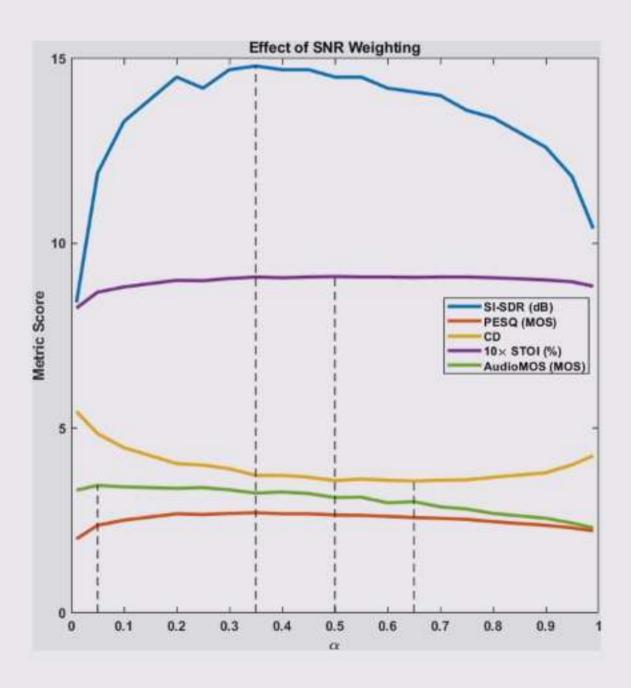
Results: Optimal Speech-Noise Weighting



DEMO: Air Conditioner Noise

a \ SNR	20dB	10dB	0dB
0.05 (AudioMOS)		5000	
0.35 (PESQ)			
0.45 (SI-SDR)		1000	
0.65 (CD & STOI)			The state of the s
Noisy	5000	A Solo	

Results: Optimal SNR-weighted SN Weighting



DEMO: Airport Announcements

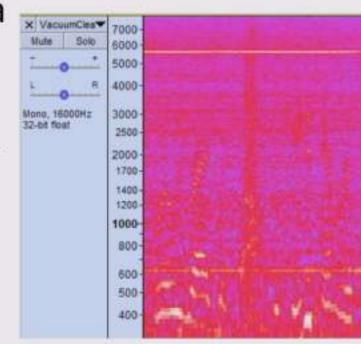
a \ SNR	20dB	10dB	0dB
0.05 (AudioMOS)	500	1000	500
0.35 (SI-SDR & PESQ)		NI O	
0.5 (STOI)		5000	5000
0.65 (CD)			
Noisy	500	100	500

Outline

- Introduction to Single-channel Speech Enhancement
 - · Classical signal processing vs. Deep learning
 - · Considerations for online processing
- Our Method
 - Feature Representations
 - Learning Machines
 - Learning Objectives
 - Training Considerations
- Evaluation
 - Data
 - Metrics
 - Results
- Findings and Conclusions

Major Findings

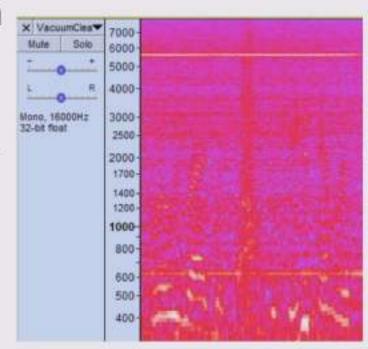
- Residual connections within recurrent cells really, really help
- GRUs are able to encode extremely long temporal patterns in high dimensional space (probably with the aid of residual connections)
 - 5-second waveform = 625 frames of 257-point spectra
- Trust the old faithful for stationary patterns?
 - The model learns to ALWAYS strongly suppress ~6 kHz



Major Findings • SNR-weighted (a=0.2) MSE AirConditioner 9 1109 SNRdb10 class1538 way AirConditioner_9_11.09_SNRdb10_clnsn158_wav

Major Findings

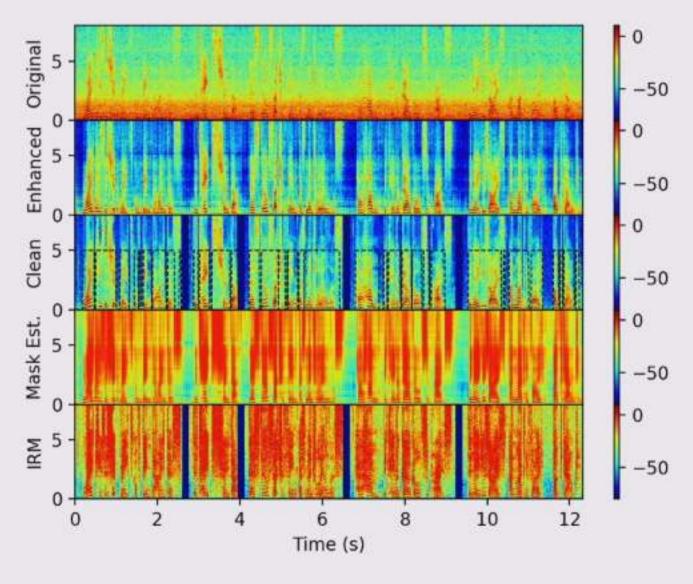
- Residual connections within recurrent cells really, really help
- GRUs are able to encode extremely long temporal patterns in high dimensional space (probably with the aid of residual connections)
 - 5-second waveform = 625 frames of 257-point spectra
- Trust the old faithful for stationary patterns?
 - The model learns to ALWAYS strongly suppress ~6 kHz



Major Findings

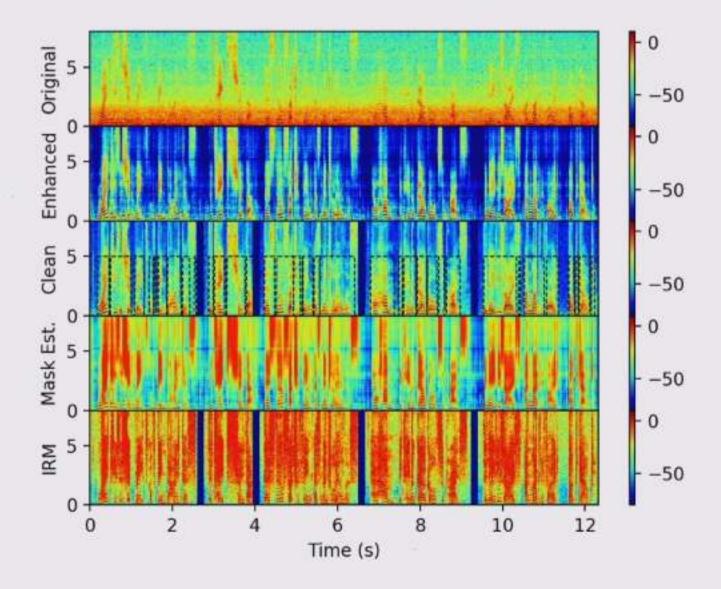
MSE

AirConditioner_9_1109_SNRdb10_clnsp158.wav



• SNR-weighted (a=0.2)

AirConditioner_9_1109_SNRdb10_clnsp158.wav



- We proposed a DNN-based online speech enhancement system
 - A compact recurrent network with residual connections
 - Two novel learning objectives motivated by balancing speech distortion and noise suppression
 - The speech-noise weighting happens to coincide (apart from VAD) with a paper published on arxiv a few days ago.

- We proposed a DNN-based online speech enhancement system
 - A compact recurrent network with residual connections
 - Two novel learning objectives motivated by balancing speech distortion and noise suppression
 - The speech-noise weighting happens to coincide (apart from VAD) with a paper published on <u>arxiv</u> a few days ago.
- We studied the impact of multiple factors associated with training a RNN on speech quality
 - Feature normalization, sequence length, objective weightings

- We proposed a DNN-based online speech enhancement system
 - A compact recurrent network with residual connections
 - Two novel learning objectives motivated by balancing speech distortion and noise suppression
 - The speech-noise weighting happens to coincide (apart from VAD) with a paper published on arxiv a few days ago.
- We studied the impact of multiple factors associated with training a RNN on speech quality
 - Feature normalization, sequence length, objective weightings
- We compared multiple competitive SP or DL-based online systems in terms of objective speech quality measures

Future Directions

- Study the speech quality improvement by SNR
- Investigate learning objectives to replace MSE
 - MAE, log-domain and cepstral-domain objectives
- Feature dimensionality reduction
 - Speech energy is sparse and noisy at very high frequencies

Thank you!

- Sebastian, Hannes, and all mentors from the Audio and Acoustics Group
- Ross, Chandan, and Hari from Skype
- All interns from the Audio and Acoustics Group

- Stay in touch!
 - School email: raymondxia@cmu.edu
 - Personal email: raymondxia@pm.me