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ABSTRACT

Although great progress has been made on end-to-end (E2E) mod-
els for monolingual and multilingual automatic speech recognition
(ASR), there is no successful study for E2E models on the chal-
lenging intra-sentential code-switching (CS) ASR task to our best
knowledge. In this paper, we propose an approach for CS ASR us-
ing E2E connectionist temporal classification (CTC) models. We
use a frame-level language identification model to linearly adjust the
posteriors of an E2E CTC model. We evaluate the proposed method
on Microsoft live Chinese Cortana data with 7000 hours Chinese and
English monolingual data and 300 hours CS data as the training data.
Trained with only monolingual data without observing any CS data,
the proposed method can obtain up to 6.3% relative word error rate
(WER) reduction. In the scenario of training with both monolingual
and CS data, the proposed method can get up to 4.2% relative WER
improvement. This approach can also maintain comparable perfor-
mance on a Chinese test set compared with baseline models.

Index Terms— code-switching, ASR, end-to-end, CTC, lan-
guage identification

1. INTRODUCTION

Traditionally, automatic speech recognition (ASR) systems contain
components including acoustic, pronunciation, and language mod-
els that are separately trained, each with a different objective. End-
to-end (E2E) ASR [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] is an emerging
field because of its simplicity compared with conventional ASR. An
E2E system directly maps an input sequence of acoustic features to
an output sequence of characters, phonemes, or words. There are
mainly three E2E ASR systems: (a) connectionist temporal classifi-
cation (CTC) [11, 12], (b) attention based encoder-decoder networks
[13, 14, 15, 16], and (c) recurrent neural network (RNN) transducer
[17].

The above-mentioned E2E models have been successfully ap-
plied to large-scale monolingual [1, 3, 4, 5, 7, 9, 10, 18, 19, 20,
21, 22] as well as multilingual ASR tasks [23, 24, 25]. However, it
is very challenging to be successful in code-switching (CS) ASR.
CS refers to the phenomenon of mixed words or phrases from two
or more distinct languages by a speaker. This phenomenon widely
exists in multilingual communities such as Cantonese-English [26],
Chinese-English [27], Spanish-English [28], Hindi-English [29],
and Frisian-Dutch [30]. Depending on where the switching of lan-
guages happens, there are two types of CS phenomenon. One is
intra-sentential CS where switches happen within an utterance. The
other is inter-sentential CS where switches occur at the boundaries
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of utterances. The former one is more difficult as acoustical varia-
tions of mixed languages within utterances can be larger than across
utterances.

To our best knowledge, there is no successful E2E work in
the challenging intra-sentential CS scenario. For example, Kim et
al. [23] utilized a language-specific gating mechanism to build a
multilingual end-to-end ASR system, but it cannot deal with CS
scenarios. Similarly, Google’s encoder-decoder based E2E multi-
lingual model [24] that is jointly trained on data from all languages
with output as the union of language specific sets can not address
the CS issue. Seki et al. [25] generated utterance-level synthetic CS
text to improve an encoder-decoder model while it cannot handle
intra-sentential CS.

One potential reason that the encoder-decoder based model can-
not work well for CS scenarios is the output of the decoder depends
on the previous outputs. When the previous steps keep emitting to-
kens from one language, it is very hard to immediately switch to
tokens of another language due to this dependency. In contrast, the
CTC model has the output independence assumption, which is in
general inaccurate but may make it more desirable to handle CS sce-
narios as the current step output does not explicitly rely on previous
outputs.

Note that most previous work on CS ASR studies how to im-
prove the performance for CS utterances. However, in most scenar-
ios, the utterances are mainly in one major monolingual language,
and CS utterances contain both the major language and a secondary
language. For example, for the Microsoft Cortana live data collected
in China, most utterances mainly contain Chinese tokens. People
only switch to English from time to time for words which cannot
be easily spoken in Chinese (e.g., iPhone, Cortana etc.). Therefore,
a better goal for CS ASR should maintain similar ASR accuracy
as mononlingual systems for the major language, and improve the
ASR performance of CS utterances at the same time. It is very hard
to evaluate a method for CS if we do not know how much it hurts
the recognition of the major language, which is missing in most CS
ASR studies [26, 27, 28, 31, 29, 30, 32, 33, 34, 35].

In this paper we study the effective way of doing intra-sentential
CS ASR for E2E CTC models. It has been shown that E2E CTC
models can produce comparable performance as traditional hybrid
deep acoustic models given the training data size is reasonably large
[3, 9]. We aim to improve the performance of E2E CTC systems
for CS scenarios and at the same time to maintain reasonable perfor-
mance on the major language. In this study, we propose a language
identification (LID) based approach to deal with CS ASR for E2E
CTC models. This approach separately trains an E2E CTC model
and an LID model, and directly adjusts the posteriors of the CTC
model with corresponding LID scores. We use greedy decoding
without any language model or lexicon component. We focus on
Chinese-English intra-sentential CS scenario.

The rest of the paper is organized as follows. In Sec. 2, we intro-



duce related work on code-switched ASR systems. In Sec. 3, we pro-
pose the approach for incorporating a LID into an E2E CTC model
to handle intra-sentential CSs. We evaluate the proposed method in
Sec. 4, and present conclusions in Sec. 5.

2. RELATED WORK

Prior work of CS ASR is mainly in conventional hybrid sys-
tems [26, 27, 28, 31, 29, 30, 32, 33, 34, 35]. A traditional multi-pass
approach is to first label speech frames with languages involv-
ing language boundary detection [36] and language identification
(LID) [37, 38], and perform recognition on labeled speech segments
with corresponding monolingual speech recognizers [34]. ASR per-
formances of these piped approaches are restricted by the language
boundary detection and LIDs at front-end. To alleviate this issue, a
single-pass approach without language boundary detection and LID
is proposed [31, 32, 30]. [39] adopted semi-supervised learning
approaches of lexicons and acoustic models to improve CS ASR
systems. [40] utilized a speech chain framework to enable ASR and
text-to-speech synthesis systems to learn code-switching in a semi-
supervised fashion. Besides, [41] proposed to jointly learn accent
ID and acoustic models for better recognizing accented speech.

The above methods mainly focus on acoustic models. CS hap-
pens more in spoken than written scenarios. Thus, the CS text corpus
is very limited. To solve this problem, semantic-based mappings for
n-gram language models [42] as well as a word-class n-gram lan-
guage model [43] are proposed to better model low-frequent and
unseen CS n-grams. Sreeram et al. [33] proposed a monolingual
class-based recurrent neural network language model (RNNLM) that
incorporates a CS tagger predicting switches of languages. Yilmaz
et al. [35] used RNNLM and neural machine translation based ap-
proaches to generate more CS text for better language modeling.
Besides, transliteration based approaches are proposed to improve
code-switched ASR performance [44].

3. METHODS

3.1. E2E CTC Models

We use bidirectional long short-term memory (LSTM) recurrent
neural networks (RNNs) as model architecture and CTC loss as
objective function [11, 12]. The ASR output symbols in an utter-
ance are usually fewer than the input speech frames. Hence CTC
paths that allow repeated labels and blank tokens are used to force
the output to have the same length as the input speech frames. Let
us denote x as the speech input sequence, l as the original label
sequence, π as the CTC path, Θ as the network parameters, and
B−1(l) as all possible CTC paths expanded from l.

The CTC loss function is defined as the sum of negative log
probabilities of correct labels as:

LCTC = − lnPΘ(l|x) = − ln
∑

π∈B−1(l)

PΘ(π|x) (1)

Based on the conditional independence assumption for output units,
PΘ(π|x) can be decomposed to a product of posteriors from each
time step t as below:

PΘ(π|x) =

T∏
t=1

PΘ(πt|xt), (2)

where xt is the input speech at time t, πt is the output unit at time t,
and T is the sequence length in frames.

Fig. 1: A explicitly combined CTC model and a frame-level LID
model for recognizing CS utterances. Chinese (ZH) and English
(EN) are languages in this example.

The output labels of E2E CTC systems can be either letters or
words. CTC outputs are usually dominated by blank labels. The out-
puts corresponding to the non-blank labels usually occur with spikes
in their posteriors. Thus, an easy way to generate ASR outputs using
CTC is to concatenate the non-blank labels corresponding to the pos-
terior spikes and collapse those labels into word outputs if needed.
This is known as greedy decoding. It is a very attractive feature for
E2E modeling as there is neither any LM nor any complex decoding
involved. We thus use greedy decoding in this study.

3.2. CTC with Language Identification

In this study, we propose to use LIDs to improve the E2E CTC’s
performance on CS utterances. As CS ASR is a challenging task of
recognizing large amount of output units from both the major and
secondary languages, it is relatively easier to recognize which lan-
guage the segments come from. If we can accurately predict the lan-
guage at each time step, especially for the switching cases, we can
use this information to better guide the original ASR model to han-
dle CS scenarios. Hence, we can improve the CS ASR performance
by switching from a challenging CS ASR problem to an easier LID
task.

Various methods can be applied [37, 45] to LID. Usually LIDs
are on utterance or phrase level. In this study, we aim to build a
frame-level LID for CS ASR so that we can combine LID outputs
with CTC outputs at the frame level. We use feed-forward deep neu-
ral networks (DNNs) and LSTMs to build frame-level LIDs for pre-
dicting both the major and secondary languages (as well as silence).

We thus propose an explicit combination of a frame-level LID
and an E2E CTC model. In Figure 1, we give an example how
to train a CS model with the help of LID for Chinese-English CS
utterances. The detailed process is as follows.

• Step 1: Initialize the CS CTC model from a major language
CTC model by keeping the network hidden weights and re-
placing the output targets of the major language with the
union of units from the major and secondary languages.

• Step 2: Train this CS CTC model by updating all the param-
eters with data from both languages.

• Step 3: Train an LID model on the same training data with
three outputs, predicting the major language, the secondary
language, and silence frame-by-frame.

• Step 4: During decoding, if the blank symbol dominates cur-
rent frame, emit the blank token as the label of this frame.
Otherwise, multiply the posteriors of the major and second



language outputs from the CTC model with the LID proba-
bilities of the corresponding languages. And then emit the
label with the maximum posterior among the units of these
two languages.

• Step 5: The decoding hypothesis is generated by collapsing
the above output tokens with greedy decoding.

Based on the experience that CTC models are very sensitive to
initialization [10], initializing them from the CTC model of the ma-
jor language at step 1 is critical to guarantee that the CS model can
still work reasonably on the major language. This is also different
from the common multilingual setup which usually trains the shared
hidden layer by treating all languages equally [46].

Both DNN and LSTM models can be used to predict frame-level
LID at step 3. However, it is impossible to accurately predict which
language a frame is from given a single frame. Therefore, for DNN-
based LID prediction, we use a relatively large context window so
that sufficient information is provided to predict current frame’s lan-
guage. For LSTM-based LID prediction, if we use a bi-directional
model, we should be able to predict well because the bi-directional
processing has the access to the whole utterance.

A more formal expression of the proposed combination at step
4 is as below. Let us denote ot as the predicted language at time t,
the probability of each language given a speech frame xt at time t
is P (ot|xt). And the adjusted posterior of CTC P adjΘ (πt|xt) at time
step t can be written as:

P adjΘ (πt|xt) = PΘ(πt|xt)× P (ot|xt)α (3)

where α is the hyper-parameter that controls the influence of the LID
on the CTC posteriors.

It should be noted that the combination of CTC and LID posteri-
ors only makes sense when the CTC model is a bi-directional model.
This is because the uni-directional CTC model has the notorious out-
put delay issue [47] which means the position of CTC output is not
aligned well. In contrast, the bi-directional CTC can give reliable
output alignment given it has the information from both directions.

4. EXPERIMENTS

4.1. Datasets and Setups

We evaluate the proposed method on the live utterances collected
from Microsoft live Cortana application in China. In this work,
we only focus on CS scenarios of Chinese (ZH) and English (EN).
While our approach can also be applied to other languages and situa-
tions with more than two languages. In the Chinese market, the ma-
jor language is Chinese and the secondary language is English. The
goal is to improve Chinese-English CS performance without sacri-
ficing too much the ASR accuracy for Chinese only utterances.

We have two test sets. One is a CS test set, containing 30k Chi-
nese characters and English words (accounts for 33.8%). The other
is a Chinese only test set with 50k Chinese characters. We treat every
Chinese character as a word, and thus we can report word error rate
(WER) for the evaluation. For training, we have both monolingual
and CS data, with around 4000 hours Chinese Cortana data, 3400
hours US-English Cortana data, and 300 hours code-switch data.

We use CNTK to train all the CTC models. All the E2E CTC
models contain 6 bi-directional LSTM layers, with hidden dimen-
sion 512 in each direction. We derived 80-dimensional log Mel filter-
bank energies at 10-ms intervals and stacked 3 contiguous frames to
form 240-dimensional features for CTC [18]. We apply greedy de-
coding to generate word sequences based on posterior spikes of the
CTC models.

Table 1: WERs (%) of baseline CTC models trained from Chinese
(ZH) data or the combination with English (EN) or CS data(CS).

Test sets ZH ZH+EN ZH+EN+CS CS

CS set 58.06 59.08 30.81 25.48

ZH set 11.03 11.04 11.01 21.92

4.2. Baseline CTC Models

We first train a baseline CTC model with monolingual 4000hr Chi-
nese data. It uses around 7k Chinese characters together with blank
as the outputs. This model obtains 11.03% WER on the Chinese
only set and 58.06% WER on the CS test set, as shown in Table 1.
All the CS CTC models are initialized from this baseline Chinese
CTC model as described at step 1 in Section 3.2.

In the following, we will build several CS CTC models which
have both Chinese and English output units. Given we have around
7k Chinese characters, we select around 8k letter trigrams as the
English outputs. In this way, we can balance the Chinese and English
outputs. We merge the Chinese characters and English letter trigrams
to form 15k output units used for all the CS models.

We build the first CS CTC model by merging the 4000 hours
Chinese only and 3400 hours English only data to investigate
whether we can build a CS model from monolingual data. Un-
fortunately, this model does not improve the accuracy for CS test
set, but does not degrade performance on the Chinese test set neither.
This is possibly because we initialize the model from the Chinese
CTC model, which makes the final model still be biased towards the
Chinese outputs. We can have better performance on the CS test
set if we do not have such initialization but degrade the accuracy on
Chinese test set, deviating from our goal.

Next, we build the second CS CTC model by merging all the
monolingual data with 300 hours CS data so that this model can
observe the CS phenomenon. Without surprise, it significantly im-
proves the performance on the CS test set with 30.81% WER and
has similar performance on the Chinese test set with 11.01% WER.

Finally, we build the third CS CTC model with only 300 hours
CS data. It performs the best on the CS test set with 25.48% WER,
but works the worst on the Chinese test set with 21.92% WER.
Clearly, this behavior is not desirable.

Since our goal is to improve CS performance and keep compa-
rable performance on the Chinese test set, we will only present how
to improve the first and second CS models in the following sections.

4.3. Language IDs

We trained both DNN and LSTM based LIDs. The DNN LID model
has 6 hidden layers with 2048 nodes at each layer. We choose a con-
text window with 41 frames for the DNN model. The bi-directional
LSTM LID model has 6 hidden layers with 512 LSTM units in each
direction at each layer. Based on the model type and whether CS
data is used for training, we have 6 LID models: two types for sce-
narios with only monolingual data (ZH+EN), merged monolingual
and CS data (ZH+EN+CS), and only CS data (CS).

We first evaluate the performance of the six LID models. The
frame level accuracies on the CS test set are given in Table 2. The
overall accuracy (acc.) is evaluated for all the switches (between ZH,
EN, and silence) while the switching acc. is only evaluated at frames
where a switch between ZH and EN happens in Table 2. Results in
Table 2 show that with CS training data, both DNN and LSTM based



Table 2: Frame-level accuracy (%) of various LIDs on the CS test
set. Overall acc. is evaluated for all switches (between ZH, EN, and
silence) while the switching acc. is only evaluated at frames where
a switch between ZH and EN happens.

ID Model Training data Overall acc. Switching acc.

LID1 DNN ZH+EN 68.9 40.1

LID2 LSTM ZH+EN 64.6 37.5

LID3 DNN ZH+EN+CS 76.7 67.0

LID4 LSTM ZH+EN+CS 86.2 68.5

LID5 DNN CS 88.5 78.7

LID6 LSTM CS 94.4 84.0

Table 3: WERs (%) of a CTC model adjusted by LIDs with α = 1.
Both CTC and LID models are trained with monolingual data only
without observing CS data.

Testset no LID ZH+EN

+LID1 +LID2

CS set 59.08 55.38 58.11

ZH set 11.04 11.26 11.11

LIDs perform better than those trained without CS data. We can
also observe that for scenarios without CS training data, DNN based
LIDs perform better than LSTM based ones. Without seeing any CS
data during training, the LSTM model cannot easily switch for CS
utterances because of its memory learning doesn’t see such patterns.
In contrast, the frame-by-frame processing of the DNN model make
it easier to switch between languages. While for scenarios with CS
training data, LSTM based LIDs outperform DNN based ones in
general. This is because the powerful LSTM model now observed
CS patterns during training.

4.4. Results of CTC and LID models trained with monolingual
data

We then evaluate the performance of adjusting the baseline CTC
model via different LIDs. Table 3 shows the WERs of the CTC
model adjusted by two LIDs on the CS and Chinese test sets. Both
CTC and LIDs are trained with monolingual ZH and EN data.
“LID1” is a DNN model and “LID2” is a LSTM model. α in Eq. 3
is set to default value 1.

When combining with the LID1 model, we can reduce the WER
on the CS test set from 59.08% to 55.38%, which stands for 6.3%
relative WER reduction, while the degradation on the Chinese test
is controlled within 2% relative. Combining with the LID2 model,
there is almost no degradation on the Chinese test with 1.6% relative
WER reduction on the CS test set. The improvement on the CS test
set without seeing any CS data during training shows the effective-
ness of the proposed approach.

4.5. Results of CTC and LID models trained with monolingual
and CS data

Table 4 shows the WERs of a CTC model (trained with both mono-
lingual and CS data) adjusted by four LIDs on the CS and Chinese

Table 4: WERs (%) of a CTC model (trained with CS data) adjusted
by LIDs with α = 1.

Testset no LID with CS only CS

+LID3 +LID4 +LID5 +LID6

CS set 30.81 29.52 30.53 30.08 28.06

ZH set 11.01 11.42 11.14 13.90 12.23

test sets with α = 1. “LID3” and “LID4” are DNN and LSTM based
LIDs trained with monolingual plus CS data. “LID5” and “LID6”
are DNN and LSTM based LIDs trained with only CS data. Com-
bining with the LID3 model reduces the WER on the CS test set from
30.81% to 29.52%, which stands for 4.2% relative WER reduction,
but degrades the Chinese test set with 3.7% relative. Combining with
the LID4 model can control the loss on the Chinese set within 1%,
with also around 1% relative improvement on the CS test set. Given
the LID6 model is trained with only CS data, it has the best LID ac-
curacy on the CS test set, resulting in the best combination WER as
28.06%. However, this also brings the WER on the Chinese set up
to 12.23%. Hence, simply improving the performance on the CS test
sets without caring about the major language is not desirable.

5. CONCLUSION AND FUTURE WORK

In this study we propose a LID based approach for CS ASR in E2E
CTC models. We intend to improve the performance by switching
from the challenging problem of recognizing large amount of ASR
units from both languages to an easier task of recognizing languages.
This approach separately trains a E2E CTC model and a LID and
directly adjusts the posteriors of the E2E CTC model with the poste-
riors of the LID. We applied this method to improve the CS perfor-
mance on the Microsoft Chinese Cortana data by using totally 7000
hours monolingual Chinese and English data and 300 hours CS data.
Using only monolingual data without observing any CS data during
training, the proposed method can get up to 6.3% relative WER re-
duction. If CS data is observed during training, the proposed method
still can get up to 4.2% relative improvement. For both scenarios, the
performance on the Chinese test set is controlled to be similar to the
baseline performance.

In the future, we plan to further improve the LID with weighted
decisions among frames. We also plan to investigate joint training
approach and apply the proposed method to other E2E models.
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