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Abstract—The acoustic-to-word model based on the Connec-
tionist Temporal Classification (CTC) criterion is a natural end-
to-end (E2E) system directly targeting word as output unit. Two
issues exist in the system: first, the current output of the CTC
model relies on the current input and does not account for
context weighted inputs. This is the hard alignment issue. Second,
the word-based CTC model suffers from the out-of-vocabulary
(OOV) issue. This means it can model only frequently occurring
words while tagging the remaining words as OOV. Hence, such
a model is limited in its capacity in recognizing only a fixed
set of frequent words. In this study, we propose addressing these
problems using a combination of attention mechanism and mixed-
units. In particular, we introduce Attention CTC, Self-Attention
CTC, Hybrid CTC, and Mixed-unit CTC.

First, we blend attention modeling capabilities directly into
the CTC network using Attention CTC and Self-Attention CTC.
Second, to alleviate the OOV issue, we present Hybrid CTC
which uses a word and letter CTC with shared hidden layers. The
Hybrid CTC consults the letter CTC when the word CTC emits
an OOV. Then, we propose a much better solution by training
a Mixed-unit CTC which decomposes all the OOV words into
sequences of frequent words and multi-letter units. Evaluated
on a 3400 hours Microsoft Cortana voice assistant task, our
final acoustic-to-word solution using attention and mixed-units
achieves a relative reduction in word error rate (WER) over the
vanilla word CTC by 12.09%. Such an E2E model without using
any language model (LM) or complex decoder also outperforms
a traditional context-dependent (CD) phoneme CTC with strong
LM and decoder by 6.79% relative.

Index Terms—CTC, OOV, acoustic-to-word, attention, end-to-
end system, speech recognition

I. Introduction

I N automatic speech recognition (ASR), we are given a
sequence of acoustic feature vectorsx. The objective is

to decode a sequence of wordsy from x with minimum
probability of error. With the 0-1 loss function, the optimal
solution uses the Bayesian Maximum Aposteriori (MAP) rule

ŷ = arg max
y

P(y|x;ΘASR), (1)

= arg max
y

P(x|y;ΘAM )P(y;ΘLM ). (2)

However, to reduce complexity, practical ASR systems often
use the sub-optimal solution

ŷ ≈ arg max
y,l

P(x|l;ΘAM )P(l|y;ΘPM)P(y;ΘLM ). (3)
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Here, l is a sequence of phonemes andΘASR =

{ΘAM ,ΘPM,ΘLM } is the set of parameters to be estimated
during training. The first termP(x|l;ΘAM ) in Eq. (3) is
the likelihood of the features given the phoneme sequence
and is obtained from an acoustic model (AM). The second
term P(l|y;ΘPM) is the likelihood of the phoneme sequence
given the word sequence and is obtained from a lexicon or
pronunciation model (PM). The third termP(y;ΘLM ) is the
prior probability of the word sequence and is obtained from a
language model (LM).

In theory, all{ΘAM ,ΘPM,ΘLM } should be estimated jointly.
However, in practice, they are estimated separately and hence
training an ASR system becomes a complex disjoint learning
problem. Moreover, decoding at test time involves a complex
graph search procedure which is intensive both in time and
memory. This makes traditional ASR systems often cumber-
some for deployment in real-world devices.

In contrast, an end-to-end (E2E) ASR system [1]–[10]
circumvents the disjoint learning problem by directly trans-
ducing a sequence of featuresx to a sequence of words
y. Some widely used contemporary neural network based
E2E approaches for sequence-to-sequence transduction are:
(a) Connectionist Temporal Classification (CTC) [11], [12],
(b) Recurrent Neural Network (RNN) Encoder-Decoder (ED)
[13]–[16], and (c) RNN Transducer (RNN-T) [17]. These
approaches have been successfully applied to large scale ASR
[2]–[6], [9], [18]–[24]. In this study, we confine ourselvesto
the CTC approach.

CTC, first introduced in [11], [12], involves training a stack
of underlying RNNs and minimizing the sequence level cross-
entropy (CE) loss−log P(y|x). In contrast, RNN training
minimizes the frame level CE loss. Moreover, CTC networks
offer the versatility to model output units of different sizes
such as monophones, characters, words, or other sub-word
units. Owing to this simplicity in the training structure and
versatility of output units, CTC is regarded as one of the most
popular E2E methods [1]–[3], [19], [25]–[32].

In ASR, the number of output labels iny is usually smaller
than the number of input speech frames inx. However, since
a CTC network is essentially an RNN, it is forced to predict
a label for every frame inx. Since some frames may not
always be associated with a label (a) CTC introduces a special
blank label as an additional output label which acts as a
filler and, (b) it allows for repetition of labels (for both
blank or non-blank). As a result, CTC frame level outputs are
usually dominated by blank labels. The outputs corresponding
to the non-blank labels usually occur with spikes in their
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posteriors because of their high confidences. Thus, an easy
way to convert intermediate frame level outputs to final ASR
outputs using CTC involves a simple two-step procedure. In
the first step, generate a sequence of labels corresponding to
the highest posteriors and merge consecutive duplicate labels.
In the second step, remove the blank labels and concatenate
the remaining non-blank labels into words. This is known
as greedy decoding. It is a very attractive feature for E2E
modeling as there is neither any LM nor any complex decoding
involved. This makes it easy for deployment in real-world
devices. The E2E ASR developed in this study uses greedy
decoding.

As the goal of ASR is to generate a word sequence
from speech acoustics, the word is the most natural output
unit compared to other output units such as monophones or
characters. A big challenge in the word-based CTC model,
a.k.a. acoustic-to-word (A2W) CTC or word CTC, is the OOV
issue [33]–[36]. In [19], [26], [30], only the most frequent
words in the training set were used as output targets whereas
the remaining words were lumped together as OOVs. These
OOVs can neither be modeled nor recognized correctly. For
example, consider an utterance containing the sequence “have
you been to newyorkabc” in which “newyorkabc” is an OOV
(infrequent) word. For an OOV-based model, a likely output
for this utterance would be “have you been to OOV”. Despite
it being the expected output from the OOV-based model, the
presence of the OOV tag in the sentence degrades the end-user
experience. Another disadvantage of OOV modeling is that the
data related to those infrequent words are wasted, resulting in
reduced modeling power. To underscore this issue, [26] trained
a word CTC with up to 25 thousand (k) word targets. However,
the ASR accuracy of the word CTC was far below the accuracy
of a context dependent (CD) phoneme CTC model with LM,
partially due to the high OOV rate when using only around
3k hours of training data.

The accuracy gap between a word CTC and CD phoneme
CTC can be attributed to multiple reasons. First, training a
word CTC requires orders of magnitude of more training
data than a CD phoneme CTC because words which qualify
as non-OOVs (frequent words) require sufficient number of
training examples. Words which do not meet this sufficiency
requirement are simply tagged as OOVs. Hence, such words
can neither be modeled as valid words during training nor
recognized during evaluation. Second, even in the presence
of large training data, it is difficult to capture the entire
vocabulary of a language. For example, a word CTC cannot
handle unfamiliar nouns or emerging hot-words (e.g. selfie,
meme, unfriend) which gradually become popular after an
acoustic model has been built.

Several studies in the past have attempted to address these
issues. In [19], it was shown that by using 100k words as
output targets and by training the model with 125k hours of
data, a word CTC was able to outperform a CD phoneme
CTC. However, easy accessibility to such large databases
is rare. Usually, at most a few thousand hours of data are
available. In [37], the authors were able to train a word CTC
model with only 2k hours of data achieving ASR accuracy
comparable to that of a CD phoneme CTC. Their proposed

training regime included initializing the word CTC with a
well-trained phoneme CTC, curriculum learning [38], Nes-
terov momentum-based stochastic gradient descent, dropout,
and low rank matrix factorization [39]. To address the hot-
words issue, [37] also proposed a spell and recognize (SAR)
model which has a combination of words and characters as
output targets. The SAR model is used to learn to first spell
a word as a sequence of characters and then recognize it
as a whole word. However, whenever an OOV is detected,
the decoder consults the letter sequence from the speller.
Thus, the displayed hypothesis to the end-user contains words
(for non-OOVs) and characters (for OOVs). Spelling out the
characters for OOVs is more meaningful to the users than
simply displaying “OOV”. However, it was reported that the
overall recognition accuracy of the SAR model improved
only marginally over a word-only CTC. In [40], the authors
proposed training two CTC models separately - an acoustics-
to-phoneme model from acoustic data and a phoneme-to-word
model using text data respectively. Then, the two models were
jointly optimized resulting in an A2W model.

In this study, we propose four solutions to improve the
recognition accuracy of the all-neural word CTC using only
3400 hours of training data while also alleviating the OOV
issue.

• First, in Section III, we proposeAttention CTC [41] to
address the inherent hard alignment problem in CTC. Since
CTC relies on the hidden feature vector at the current time
to make predictions, it does not directly attend to feature
vectors of the neighboring frames. This is the hard alignment
problem which makes CTC’s output independent assump-
tion worse. Our proposed solution generates new hidden
features that carry attention weighted context information.
We achieved this by blending some concepts from RNN-
ED into CTC modeling.

• Second, in Section IV, we investigate another attention
mechanism calledSelf-Attention[42] in CTC networks.

• Third, we proposeHybrid CTC [31] which is a single CTC
consisting of a word CTC and a letter CTC trained jointly
using multi-task learning (MTL) [43], [44]. We train the
word CTC first and then add a letter CTC as an auxiliary
task by sharing the hidden layers of the word CTC. During
recognition, the word and letter CTCs generate sequences of
words and letters respectively. However, the letter CTC is
consulted for the letter sequence only when the word CTC
emits an OOV token. This makes the Hybrid CTC capable
of recognizing OOVs and thereby reducing errors introduced
by OOVs.

• Finally, we further improve the word CTC and reduce OOV
errors by introducingMixed-unit CTC [45]. Here, during
training, the OOV word is decomposed into a sequence of
frequent words and letters (which we refer to asmixed-
units). During testing, we perform greedy decoding for the
whole E2E system in a single step without the need of
using the two-stage process (OOV-detection and then letter-
sequence-consulting) as in Hybrid CTC. We will later show
that a CTC with mixed-units outperformed a CTC with
wordpieces which have become popular in recent RNN-ED
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frameworks [9].

Our final proposed word CTC achieved a relative WER
reduction (WERR) of about 12.09% over the vanilla word
CTC [11]. Furthermore, the same word CTC outperformed the
traditional CD phoneme CTC with a strong LM and decoder
by 6.79% relative.

The remainder of the article is organized as follows. In
Section II we give a brief overview of CTC and RNN-ED.
In Sections III, IV, V, VI, we explain the proposed Attention
CTC, Self-Attention CTC, Hybrid CTC, and Mixed-unit CTC
respectively. In Section VII, we provide experimental evalua-
tions of our proposed algorithms. Finally, we summarize our
study and draw conclusions in Section VIII. The terms letter
and character have been interchangeably used in this study.

II. End-to-End Speech Recognition

An E2E ASR system models the posterior distribution
p(y|x) by transducing an input sequence of acoustic feature
vectorsx to an output sequence of tokensy (phonemes, char-
acters, words etc.). More specifically, for an input sequence of
feature vectorsx = (x1, · · · , xT) of lengthT with xt ∈ Rm, an
E2E ASR system transduces the input sequence to an inter-
mediate sequence of hidden feature vectorsh = (h1, · · · ,hL)
of length L with hl ∈ Rn. The sequenceh undergoes another
transduction resulting in an output sequencey whose posterior
probability is p̃(y|x). Herey = (y1, · · · , yU) is of lengthU with
yu ∈ L, L being the label set. UsuallyU ≤ T andL = T in E2E
ASR systems. Thus, an E2E neural network, parameterized by
W, learns a many-to-one functionalfW : x 7→ p̃(y|x) where
p̃(y|x) closely resembles the truep(y|x).

A. Connectionist Temporal Classification (CTC)

A CTC network uses a recurrent neural network (RNN) and
the CTC error criterion [11], [12] which directly optimizesthe
prediction of a transcription sequence. As the length of the
output labels is shorter than the length of the input speech
frames, a CTC path is introduced to make their lengths equal
by adding the blank symbolφ as an additional label and
allowing repetition of labels. Thus, the new label set becomes
L
′ = L ∪ φ. Let K = |L′| be the cardinality of the label setL′.
Denoteπ = (π1, · · · , πT) as the CTC path (or alignment)

with πt ∈ L′, y as the target label sequence (transcription) we
want to recognize, andB−1(y) as the preimage ofy mapping
all possible CTC pathsπ that result iny. Then, the CTC
loss function is defined as the negative log of sum of the
probabilities of all possible CTC pathsπ that result iny. This
is given by

LCTC = − ln p(y|x) = − ln
∑

π∈B−1(y)

p(π|x). (4)

With the conditional independence assumption (πt y π,t |x),
p(π|x) can be further decomposed into a product of posteriors
of each frame as

p(π|x) =
T
∏

t=1

p(πt |x). (5)

During decoding, it is very simple to generate the decoded
sequence using greedy decoding: simply concatenate the la-
bels corresponding to the highest posteriors and merge the
duplicate labels; then remove the blank labels. Thus, thereis
neither a language model nor any complex graph search in
greedy decoding.

B. RNN Encoder-Decoder (RNN-ED)

An RNN-ED [13]–[16] uses two distinct networks - an RNN
encoder network that transformsx into h and an RNN decoder
network that transformsh into y. Using these, an RNN-ED
modelsp(y|x) as

p(y|x) =
U
∏

u=1

p(yu|y1:u−1, cu), (6)

where cu is the context vector at timeu and is a function
of x. There are two key differences between CTC and RNN-
ED. First, p(y|x) in Eq. (6) is generated using a product of
ordered conditionals. Thus, RNN-ED is not impeded by the
conditional independence constraint of Eq. (5). Second, The
decoder outputyu at time u is dependent oncu which is a
weighted sum of all its inputs (soft alignment), i.e.,ht, t =
1, · · · ,T. In contrast, CTC generatesyu using only ht (hard
alignment).

The decoder network of RNN-ED has three components: a
multinomial distribution generator Eq. (7), an RNN decoder
Eq. (8), and an attention network Eq. (9)-(14) [15], [16] as
follows:

p(yu|y1:u−1, cu) = Generate(yu−1, su, cu), (7)

su = Recurrent(su−1, yu−1, cu), (8)

cu = Annotate(αu,h) =
T
∑

t=1

αu,tht, (9)

αu,t = Attend(su−1,αu−1,ht), t = 1, · · · ,T. (10)

Here, ht, cu ∈ Rn, and αu = [αu,1 · · ·αu,T ] is a probability
distribution. Hence,αu,t ∈ U with U = [0,1] such that
∑

t αu,t = 1. Also, for simplicity assumesu ∈ Rn. Generate(.) is
a feedforward network with a softmax operation generating the
ordered conditionalp(yu|y1:u−1, cu) . Recurrent(.) is an RNN
decoder operating on the output time axis indexed byu and
has hidden statesu. Annotate(.) computes the context vectorcu

(also called the soft alignment) using the attention probability
vector αu and the hidden sequenceh. Attend(.) computes
the attention weightαu,t using a single layer feedforward
network (Score(.) function) followed by softmax normalization
as follows:

eu,t = Score(su−1,αu−1,ht), t = 1, · · · ,T, (11)

αu,t =
exp(eu,t)

∑T
t′=1 exp(eu,t′ )

, t = 1, · · · ,T. (12)

Here, eu,t ∈ R and Score(.) can either be a content-based or
hybrid-based function. The latter encodes both content (su−1)
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Fig. 1. An example of an Attention CTC network with an attention window of sizeC = 3.

and location (αu−1) information. Score(.) is computed using

eu,t =















vT tanh (Usu−1 +Wht + b), (content)

vT tanh (Usu−1 +Wht + Vfu + b), (hybrid)
(13)

where, fu = F ∗αu−1. (14)

The operation∗ denotes convolution. Thus, in the hybrid case,
the dependence onαu−1 is through fu. Attention parameters
U,W,V, F,b, v are learned while training RNN-ED.

III. Attention CTC

In this section, we outline various steps required to model
attention directly within CTC. In the past, several attempts
have been made to apply attention on E2E models. For exam-
ple, attention-based RNN-ED [15], [16] network was used to
predict word outputs in [46]. Other studies have investigated
using CTC as an auxiliary task to improve attention-based
RNN-ED using an MTL framework. For example, CTC was
used either at the top layer [47], [48] or at an intermediate
layer [49] in the MTL framework. Extensions of CTC such
as RNN-T [17], [20] and RNN aligner [7] either change the
objective function or the training process to relax the frame
independence assumption of CTC. However, none of these
approaches used attention directly within the CTC network.
The proposed Attention CTC model is different from all these
approaches since we use attention mechanism to improve the
hidden layer representations with more context information
without changing the CTC objective function and the training
process. Our primary motivation in this work is to address
the hard alignment problem of CTC, as outlined earlier in
Section I, by modeling attention directly within the CTC
framework.

An example of the proposed Attention CTC network is
shown in Figure 1. We propose the following key ideas to
blend attention into CTC. (a) First, we derive context vectors
using time convolution features(Section III-A) and apply
attention weights on these context vectors (Section III-B). This

makes it possible for CTC to be trained using soft alignments
instead of hard. (b) Second, to improve attention modeling,
we incorporate apseudo language model(Section III-C)
during CTC training. (c) Finally, we improve our attention
modeling further by introducingcomponent attention(Section
III-D) where context vectors are produced as a result of
applying attention on hidden features across both time and
their individual components. We explain each of these ideas
separately with illustrations in the following subsections. We
will use the indicest and u to denote the time step for input
h and outputc respectively of the attention block to maintain
notational consistency with RNN-ED.

A. Time Convolution (TC) Features

First, we construct TC features from the hidden outputs
h of the last LSTM layer. This is illustrated in Fig. 2.
Consider a subsequence ofh rather than the entire sequence.
We refer to this subsequence, (hu−τ, · · · ,hu, · · · ,hu+τ), as the
attention window. Each ht ∈ Rn. The attention window is
centered around the current timeu with τ being the length
of the attention window on either side ofu. Thus, the total
length of the attention window isC = 2τ + 1. Now consider
C time convolution kernels (W′

u−τ, · · · ,W′
u, · · · ,W′

u+τ) where
W′

t ∈ Rn×n andW′
t1 ,W′

t2 for t1 , t2. Then the context vector
cu is computed using time convolution as,

cu =

u+τ
∑

t=u−τ
W′

u−tht

∆
=

u+τ
∑

t=u−τ
gt

= γ

u+τ
∑

t=u−τ
αu,tgt. (15)

Here,gt, cu ∈ Rn represents thef iltered signal at timet. The
last step Eq. (15) holds whenαu,t =

1
C and γ = C. Since

Eq. (15) is similar to Eq. (9) in structure,cu represents a special
case context vector with uniform attention weightsαu,t =

1
C ,
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t ∈ [u−τ, u+τ]. Moreover,cu is a result of convolving features
h with W′ in time. Thus,W′ andcu representtime convolution
kerneland time convolution featurerespectively.

Fig. 2. Time convolution with an attention window of sizeC = 3 (i.e., τ = 1).

B. Content Attention (CA) and Hybrid Attention (HA)

To incorporate non-uniform attention in Eq. (15), we need
to compute a non-uniformly distributedαu where αu =

(αu−τ, · · · , αu, · · · , αu+τ) using an attention network similar to
Eq. (10). However, since there is no explicit decoder like
Eq. (8) in CTC, there is no decoder statesu. Therefore, we use
zu instead ofsu. The termzu ∈ RK is the logit to the softmax
and is given by

zu =Wsoftcu + bsoft,

p(πu|x) = Softmax(zu), (16)

whereWsoft ∈ RK×n,bsoft ∈ RK . The termp(πu|x) = [p(πu =

1|x) p(πu = 2|x) · · · p(πu = K|x)]T is the vector of probabilities
of labels in the alignment at timeu. Thus, Eq. (16) is similar to
the Generate(.) function in Eq. (7) but lacks the dependencyon
yu−1 and su. Consequently, the Attend(.) function in Eq. (10)
becomes

αu,t = Attend(zu−1,αu−1,gt), t = u− τ, · · · ,u+ τ (17)

whereht in Eq. (10) is replaced withgt. The Attend(.) function
is illustrated in Fig. 3 and is simply a single layer neural
network with a softmax. A scoring function Score(.), similar
to Eq. (11), computes the layer activations. However, here the
Score(.) function uses the filtered signalgt instead of the raw
signalht in Eq. (11). Thus, the new Score(.) function becomes

eu,t = Score(zu−1,αu−1,gt), t = u− τ, · · · ,u+ τ (18)

=















vT tanh(Uzu−1 +Wgt + b), (content)

vT tanh(Uzu−1 +Wgt + Vfu + b) (hybrid)
(19)

with fu a function ofαu−1 through Eq. (14). The content and
location information are encoded inzu−1 andαu−1 respectively.
Thus, the hybrid function in Eq. (19) includes both content and
location information. Scores from Eq. (18) can be normalized
using the softmax operation (as in Eq. (12)) to generate non-
uniformαu,t for t ∈ [u−τ, u+τ]. Now, αu can be plugged into
Eq. (15), along withg to generate the context vectorcu. This
completes the attention network. We found that excluding the
scale factorγ in Eq. (15), even for non-uniform attention, was
detrimental to the final performance. Therefore, we continue
to useγ = C.

Fig. 3. Content and hybrid attention.

Fig. 4. Pseudo language model.

C. Pseudo Language Model (PLM)

The performance of the attention model can be improved
further by providing more reliable content information from
the past. This is possible by introducing another recurrent
network, which we refer to as PLM, that can utilize content
from several time steps in the past instead of just one. This
network, in essence, would learn an LM-like model implicitly.
This is illustrated in Fig. 4. To build the PLM network, we
follow an architecture similar to RNN-LM [50]. As illustrated
in the PLM block of Fig. 1, the input to the PLM network is
computed by stacking the previous outputzu−1 with the context
vector cu−1 and feeding it to a recurrent functionH(.). The
output ofH(.) is zLM

u−1 which, instead ofzu−1, is fed to the
Attend(.) block in Eq. (17). This is represented as

zLM
u−1 = H(xu−1, zLM

u−2), xu−1 =

[

zu−1

cu−1

]

, (20)

αu,t = Attend(zLM
u−1,αu−1,gt), t = u− τ, · · · ,u+ τ. (21)

We modelH(.) using a single layer long short-term memory
(LSTM) unit [51] with n memory cells and input and output
dimensions set toK + n (since xu−1 ∈ RK+n) and n (since
zLM

u−1 ∈ Rn) respectively. Notice thatzLM
u−1 encodes the content

of a pseudo LM rather than a true LM since CTC outputs
are interspersed with blank symbols by design. Also,zLM

u−1 is
a real-valued vector instead of a one-hot vector. Hence, the
PLM is not a true LM.

D. Component Attention (COMA)

In the previous sections,αu,t is a scalar term weighting
the contribution of the entiren-dimensional vectorgt to
generate the outputp(πt |x). This means alln components (or
dimensions) of the vectorgt are weighted by the same scalar
αu,t. In this section, we consider weighting each component
(dimension) ofgt using a separate weight. Therefore, we need
ann-dimensional weight vectorαu,t ∈ Un instead of the scalar
αu,t ∈ U. The vectorαu,t can be generated as follows. First,
compute ann-dimensional scoreeu,t for eacht. This is easily
achieved using the Score(.) function in Eq. (19) but without
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taking the inner product withv. For example, in the case of
hybrid, the scoring function becomes

eu,t = tanh(Uzu−1 +Wgt + Vfu + b), t = u− τ, · · · ,u+ τ. (22)

Now, we haveC column vectors [eu,u−τ, · · · ,eu,u+τ] where each
vector is of dimensionn. Stacking them column-wise, we have
an n×C scoring matrixE

E =





















eu,u−τ eu,u−τ+1 . . . eu,u+τ





















n×C

. (23)

Let eu,t( j) ∈ (−1,1) be the jth component of the vectoreu,t.
To computeαu,t( j) from eu,t( j), we normalizeeu,t( j) acrosst
(columns) keepingj (row) fixed. Thus,αu,t( j) is computed as

αu,t( j) =
exp(eu,t( j))

∑u+τ
t′=u−τ exp(eu,t′ ( j))

, j = 1, · · · ,n. (24)

Since exp(.) and tanh(.) are both one-to-one functions, their
composition is also one-to-one. Thus, there is a one-to-one
correspondence between the inputgt( j) and outputαu,t( j)
through the composite function. Consequently,αu,t( j) can be
interpreted as the amount of contribution ofgt( j) in computing
cu( j). Now, from Eq. (24), we know the values of the vectors
αu,t, t ∈ [u− τ, u+ τ]. Hence, under the COMA formulation,
the context vectorcu can be computed fromαu,t andgt using

cu = Annotate(αu,g, γ) = γ
u+τ
∑

t=u−τ
αu,t ⊙ gt, (25)

where⊙ is the Hadamard product. One attractive feature of the
COMA formulation is that it does not introduce any additional
training parameters.

Finally, we highlight the differences between the attention
mechanism in this work and in [5]. First, we apply attention
across time (past, present, future) on the time convolution
features extracted from the final layer of the recurrent net-
work (encoder). Moreover, we attend only to a small context
window. In contrast, [5] attends to the entire output sequence
of the encoder in addition to the state of the decoder. There is
no time convolution applied on the encoder sequence either.
Second, to improve attention modeling, we make use of the
logit from the previous timezu−1 (or zLM

u−1) as an additional
input to our attention block. The attention mechanism in [5]
does not make use of logit due to the presence of an explicit
decoder. Finally, our COMA formulation yields additional
gains without introducing any additional training parameters.
There is no such formulation in [5].

IV. Self-Attention CTC

In this section, we investigate another attention-based
paradigm known as Self-Attention (SA) [42] in the context
of CTC training. There are some key differences in the way
the attention weights are computed between SA-CTC and
Attention CTC (Section III). In Attention CTC, the attention
weights are computed using the hidden features and the output
prediction from the previous time step (zu−1). This is evident
from the scoring function in Eq. (18). In contrast, in SA-CTC,
the weights are computed from the hidden features only. It
does not use any past output predictions. Another difference

is that the attention weights are computed using additive
operations in Attention CTC whereas multiplicative operations
(inner products) are used in SA-CTC. Moreover, matrix-vector
multiplications used in Attention CTC are computationally
slower than performing inner products in SA-CTC.

We highlight only the most important steps in the formula-
tion of SA-CTC. First the hidden features are converted into
input projections using the projection matrixWp as

bt =Wpht, t = u− τ, · · · ,u+ τ (26)

where u denotes the current time step. The inputs to the
attention block of SA-CTC consists of three kinds of vectors
- keys, values, and a query. These are derived using

qt = Qbt, t = u, (27)

kt = Kb t, t = u− τ, · · · ,u+ τ, (28)

vt = Vbt, t = u− τ, · · · ,u+ τ, (29)

where Q,K ,V are the query, key, and value matrices re-
spectively. Here, the dimensions ofqt, kt, vt are dk,dk,dv

respectively. Note that while there is a single query vector
corresponding to the current time stepu, there are multiple
key and value vectors corresponding to the context window
[u− τ,u+ τ].

Following this, scores are evaluated between the query and
the keys by taking their dot products and scaling them with

1√
dk

. This is given by

eu,t =
qT

u kt√
dk

, t = u− τ, · · · ,u+ τ. (30)

The scores reflect the correlation between the current inputand
the neighboring inputs. These scores are then converted into
probabilities (attention weights) using the softmax operation.
Linear combination of the value vectors using these attention
weights generates a context vectorcu as follows:

αu,t =
exp(eu,t)

∑u+τ
t′=u−τ exp(eu,t′ )

, t = u− τ, · · · ,u+ τ (31)

cu =

t=u+τ
∑

t=u−τ
αu,tvt. (32)

This is followed by a residual connection [52] and layer nor-
malization, i.e., LayerNorm(cu+ bu). The output of this is fed
to a single layer feed-forward network which is followed by
another round of residual connection and layer normalization.
This is the uni-head attention architecture of SA-CTC since
it computes a scalar weightαt for the entire value vectorvt.
This can be easily extended to multi-head attention wherevt

is fragmented into smaller sub-vectors and each sub-vectoris
weighted using a distinct scalar weight. For more details on
SA architecture, readers may refer [42].

V. Hybrid CTC

In this and the next section, our primary motivation is to
mitigate the OOV issue of the A2W model as mentioned in
Section I.

First, we describe the Hybrid CTC network. The Hybrid
CTC network uses a word CTC as the primary task and a
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letter CTC as the auxiliary task in an MTL framework. The
output units of the word CTC correspond to frequently used
words and an OOV token. Infrequent words in the training
set are lumped together and tagged as OOV. Given an input
sequence of features, the word and letter CTCs emit a word
and letter sequence respectively. If the word sequence contains
a list of frequent words, then the letter sequence from the letter
CTC is completely ignored. However, if the word sequence
contains the OOV token, the letter CTC is consulted at the
segment that generated the OOV token. In the consultation
process, the letter sequence from the letter CTC is merged
to form a word. Finally, this newly constructed word from
the letter CTC is used to replace the OOV token. Since the
word CTC and letter CTC are time synchronized through the
shared hidden layers of the MTL network, it is possible to find
a correspondence between the outputs of the two CTCs. An
illustration of this method is shown in Fig. 5. Here, the word
CTC generates the sequence “play artist OOV”. The word
sequence generated after merging the letters from the letter
CTC is “play artist ratatat”. Since the segment containing
“ ratatat” from the letter CTC has the most time overlap with
the segment containing “OOV” from the word CTC, the OOV
token is replaced with “ratatat”. Thus, the final output of the
Hybrid CTC is “play artist ratatat”.

The detailed steps for building the Hybrid CTC model are
described as follows:

• Build an LSTM-CTC model ofL layers with its out-
put units mapped to frequently occurring words in the
training corpus. Map all the remaining infrequent words
(occurring less thanN times) as the OOV token. Thus,
the output units in this LSTM-CTC model correspond to
(a) the frequent words, (b) the OOV token, and (c) blank
and silence (two additional tokens).

• Freeze the bottomL− 1 hidden layers of the word-CTC,
add one LSTM hidden layer and one softmax layer to
build a new LSTM-CTC model with letters as its output
units.

• During testing, generate the word output sequence using
greedy decoding. If the output word sequence contains
an OOV token, replace the OOV token with the word
generated from the letter CTC that has the largest time
overlap with the OOV token.

VI. M ixed-unit CTC

In this section, we briefly explain multi-letter CTC and
compare the past implementation of multi-letter CTC with
ours. Based on this foundation, we then explain our proposed
Mixed-unit CTC.

Although single-letter units in CTCs perform well, they are
prone to high degree of variability across training examples
due to their short temporal context. As we will see later
in Table IV, multi-letter units tend to perform better than
single-letter units since they have low degree of variability by
capturing context information and thereby offer more stability
during training. Improving letter CTCs can help improve the
accuracy of word CTCs. For example, a stronger letter CTC
can lower the WER of the Hybrid CTC since the OOV token

« «

«

Shared 

Hidden 

Layers

Hybrid decision area

character sequence

word sequence

LSTM  layer for 

character output

LSTM  layer for 

word output

Fig. 5. An example of how the Hybrid CTC solves the OOV issue of the
word CTC. The words “play”, “artist”, “OOV” are obtained from the word
CTC. The words “play”, “artist”, “ratatat” are obtained from the letter CTC.
Hence, the final output of Hybrid CTC is “play, artist, ratatat” with the first
two words obtained from the word CTC and the last word obtained from the
letter CTC.

may be replaced by more precise words generated by the letter
CTC.

Gram CTC [29] and multi-phone CTC [53] are multi-letter
CTCs based on letters and phonemes respectively. They allow
variable number of letters (or grams) and phonemes to be
output at each time step. The size of the units in gram CTC and
multi-phone CTC are learned automatically with the modified
forward-backward algorithm accounting for all decomposi-
tions. However, in the test phase, their decoding procedure
is more complex than the simple greedy decoding procedure
used in single-letter CTC models. To reduce the decoding
complexity, the authors in [54] proposed phone synchronous
decoding. In contrast, we offer a facile implementation of our
multi-letter CTC. We simply decompose every word (which
includes both frequent and OOV words) into a sequence of
one or more letter units. Examples are shown in the first
three rows of Table I where each word, frequent or OOV, is
decomposed into single-letter or double-letter or triple-letter
units. The advantages of doing this are three-fold. First, our
decomposition is straightforward. Second, it does not change
the CTC forward-backward algorithm. Finally, during the test
phase, our method is able to retain the same greedy decoding
procedure used in single-letter CTC models.

In Hybrid CTC, the shared-hidden-layer constraint is used
to aid the time synchronization of word outputs between the
word and letter CTCs. However, the blank symbol dominates
most of the frames. The unit boundaries from CTC is also
notorious for being arbitrary. Therefore, time synchronization
may not be very reliable with the two CTCs running in parallel.
A direct solution is to forgo the MTL framework and train a
single CTC model comprising of a mixture of frequent words
and letters. The letters arise as a result of decomposing the
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TABLE I
Examples of how words are decomposed into different output units.

“Newyork” is a frequent word while “newyorkabc” is an OOV (infrequent
word).

Decomposition Type newyork newyorkabc
All words → single-letter n e w y o r k n e w y o r k a b c
All words → double-letter ne wy or k ne wy or ka bc
All words → triple-letter new yor k new yor kab c
All words → word newyork OOV
OOVs only→ single-letter newyork n e w y o r k a b c
OOVs only→ word+single-letter newyork newyork a b c
OOVs only→ word+triple-letter newyork newyork abc
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Mixed-unit sequence

Play               artist           rat   at     at

Fig. 6. An example of how a single CTC trained with a mixture of words
and letters solves the OOV issue. The final output of this CTC is “play, artist,
rat at at”.

infrequent words in the training set into letters before CTC
training begins. The working of this CTC is illustrated in
Fig. 6. If the word is a frequent word, then we just keep it in
the output token list. If it is an OOV, then we decompose it
into a letter sequence. As shown in the fifth row of Table I, the
OOV “newyorkabc” is decomposed into “n e w y o r k a b c”
for single letter decompositions. However, the word “newyork”
is not decomposed any further because it is a frequent word.
Therefore, the output units of the CTC are both words (for
frequent words) and letters (for OOVs).

However, we note that artificially decomposing OOVs into
sequences of single-letters only may confuse CTC training
because the network output modeling units are frequent words
and letters. To solve such a potential issue, we decompose
the OOVs into a combination of frequent words and letters.
We refer to this combination asmixed units. For example,
in the last two rows of Table I, the OOV “newyorkabc” is
decomposed into “newyork a b c” if we use words and single-
letter units or “newyork abc” if we use words and triple-letter
units. In addition, for mixed units, we use “$” to separate
each word in the sentence. For example, the sentence “have
you been to newyorkabc” is decomposed into “$ have $ you
$ been $ to $ newyork abc $”. The “$” symbol acts as a word

separator (like the space symbol) and is essential for finding
word boundaries of the mixed-units. During training, sincethe
OOVs are decomposed into mixed units, there is no “OOV”
output node in the Mixed-unit CTC model. Consequently,
during testing, the model emits mixed units instead of “OOV”
while still emitting frequent words.

VII. Experiments

In this section, we compare the performance of the proposed
CTCs with the baseline CTC. We evaluated the proposed
methods using Microsoft’s Cortana voice assistant task. The
training and test sets consist of approximately 3400 hours (∼
3.3 million utterances) and 6 hours (∼ 5600 utterances) of
audio spoken in American English respectively.

All CTC models were trained using either unidirectional
LSTMs (ULSTM) or bidirectional LSTMs (BLSTM). The UL-
STM is a 5-layer LSTM with 1024 memory cells in each layer.
Similarly, the BLSTM is a 6-layer LSTM with 512 memory
cells in each direction (therefore resulting in 1024 output
dimensions when combining outputs from both directions).
The cell outputs are linearly projected to 512 dimensions.
The base feature vector is a 80-dimensional vector containing
log filterbank energies computed every 10 ms. Eight frames
of base features were stacked together (m = 80× 8 = 640)
as the input to the unidirectional CTC, while three frames
were stacked together (m = 80× 3 = 240) as the input to the
bidirectional CTC. The skip rate for both unidirectional and
bidirectional CTCs was three frames as in [26]. The dimension
n of vectorsht,gt, cu was set to 512. For decoding, the greedy
decoding procedure (no complex beam search decoder or
external LM) was used. This makes our E2E ASR systems
purely all-neural.

We focus on letter CTC first and then move on to word CTC.
This is because improvements in the letter CTC increase the
accuracy of the word CTC especially when encountering an
OOV word during test time. Thus, we evaluated the perfor-
mance of Attention CTC (Section III), SA-CTC (Section IV),
and multi-letter CTC using letter units. Then, we evaluated
the performance of our proposed Hybrid CTC (Section V)
and Mixed-unit CTC (Section VI) using both word and letter
units.

A. Experiments With Letter-Based CTCs

We experimented with different sizes of letter units. The
sizes are represented by the cardinalityK of the label set
(defined in Section II-A). For single-letter units,K was set
to 30. This corresponds to 26 English letters [a-z], ’, *, $, and
a blank symbol. For double and triple-letter units,K was set
to 763 and 8939 respectively covering all double-letter and
triple-letter occurrences in the training set.

1) Attention CTC (Section III):In the first set of exper-
iments, we evaluated Vanilla CTC [11] and the proposed
Attention CTC models trained using our 5-layer ULSTM with
single-letter units. We experimented withτ = 4 (length of
one-sided attention window, defined in Section III-A) con-
sidering the training efficiency with this setting. The results
are tabulated in the second column of Table II. The top row
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TABLE II
WERs of letter-based Vanilla CTC [11]and Attention CTC for τ = 4
trained with 5-layer ULSTM or 6-layer BLTSM and single-letter output
units. RelativeWERreduction and the number of model parameters are in
parentheses. TC= Time Convolution, CA = Content Attention, HA =

Hybrid Attention, PLM = Pseudo LanguageModel, COMA = Component
Attention, M = million.

E2E Model WER (%)
ULSTM BLSTM

Vanilla CTC 24.03 (0.00, 24.12 M) 17.84 (0.00, 35.13 M)
Attention CTC
+TC (Sec III-A) 21.89 (08.91, 26.48 M) 17.67 (0.95, 37.49 M)
+CA (Sec III-B) 20.45 (14.90, 26.74 M) 16.13 (09.59, 37.75 M)
+HA (Sec III-B) 20.27 (15.65, 27.00 M) 16.01 (10.26, 38.01 M)
+PLM (Sec III-C) 19.78 (17.69, 29.62 M) 15.34 (14.01, 40.63 M)
+COMA (Sec III-D) 18.57 (22.72, 29.62 M) 14.47 (18.89, 40.63 M)

presents the WER for Vanilla CTC. All subsequent rows under
“Attention CTC” present the WER for the proposed Attention
CTC models when attention modeling capabilities were grad-
ually added in a stage-wise fashion. The best proposed model
is in the last row. It includes component attention (COMA)
along with all the other enhancements above it (i.e., TC,
HA, PLM). It may be recalled, from Eq. (19), that hybrid
attention (HA) is a combination of both content and location
attention. The best proposed model outperformed Vanilla CTC
by 22.72% relative. We found that the gains are marginal
when going from CA to HA. Our conjecture is that the
benefits of adding location information in HA could become
more pronounced with smaller frame sizes and larger attention
windows. However, smaller frame sizes lead to an exponential
increase in the number of CTC paths resulting in instability
during CTC training.

Next we evaluated Attention CTC models trained with
our 6-layer BLSTM. The results are tabulated in the third
column of Table II. Similar to the unidirectional case, the
best proposed model outperformed Vanilla CTC by 18.89%
relative. This shows that the proposed Attention CTC models
continue to perform well even with stronger baselines like
BLSTMs.

As an additional experiment, we compared RNN-T models
trained with 5-layer ULSTM or 6-layer BLSTM transcription
networks along with 1-layer ULSTM prediction network and
30 letters as output units. The transcription networks have
the same structure as our baseline CTC models. We observed
21.07% and 16.96% WER for ULSTM and BLSTM transcrip-
tion networks respectively. While this outperforms the baseline
CTC error rates reported in Table II, it could not outperform
our final Attention CTC model (last row in Table II).

2) Self-Attention CTC (Section IV):In the next set of ex-
periments, we evaluated the performance of SA-CTC models
using our ULSTM and BLSTM with attention window size
τ = 4. We used 1024-dimensional vectors for both key/query
and value vectors. Thus,dk = 1024,dv = 1024. This is in
accordance with the number of memory cells used in Atten-
tion CTC. We experimented with other dimensions but they
performed worse. Furthermore, we experimented with both
single and multi-head attention (4 and 8 heads). The results
are tabulated in Table III. SA-CTC with 8 heads performed the
best for each case. The relative WERR over Vanilla CTC are

TABLE III
WERs of letter-based Vanilla CTC [11]and SA-CTC (1, 4, 8heads) for
τ = 4 trained with ULSTM/BLSTM and single-letter units. RelativeWER
reduction and the number of model parameters are in parentheses. M =

million.

E2E Model WER (%)
ULSTM BLSTM

Vanilla CTC 24.03 (0.00, 24.12 M) 17.84 (0.00, 35.13 M)
SA-CTC (1 head) 20.06 (16.52, 30.70 M) 15.69 (12.05, 41.91 M)
SA-CTC (4 heads) 18.90 (21.35, 30.71 M) 14.98 (16.03, 41.92 M)
SA-CTC (8 heads) 18.85 (21.56, 30.72 M) 14.88 (16.59, 41.93 M)

TABLE IV
WERs of letter-based CTCmodels, trained using 6-layer BLSTMs, with
Multi-letter output units. Three structures are evaluated: Vanilla CTC

[11], Attention CTC,and Attention CTC sharing 5 hidden layers with word
CTC. One-sided attention window size (τ) set to 4.

E2E Model Total WER (%)
Units Vanilla Attention Attention+

5 layers sharing
single-letter 30 17.84 14.47 16.74
double-letter 763 15.37 12.16 14.00
triple-letter 8939 13.28 11.36 12.81

21.56% and 16.59% using ULSTM and BLSTM respectively.
Comparing the best models from Attention CTC and SA-CTC,
we find that Attention CTC performed slightly better than SA-
CTC by about 1.2% (22.72-21.56) and 2.3% (18.89-16.59) for
ULSTM and BLSTM respectively.

3) Multi-letter CTC: In the next set of experiments, we
evaluated the performance of various CTC models trained us-
ing our 6-layer BLSTM with multi-letter units as outputs. We
evaluated three kinds of CTC models: Vanilla CTC, Attention
CTC, and Attention CTC sharing 5 hidden layers with a word
CTC. In the third CTC model, we applied attention only to
the letter CTC.

As shown in the third column of Table IV, the WER of
Vanilla CTC drops significantly when the output units become
larger (and hence more stable). The letter CTC using triple-
letter units achieved 13.28% WER which is a relative WERR
of 25.56% compared to the letter CTC using single-letter units.

As shown in the fourth column of Table IV, Attention
CTC improves hugely over the Vanilla CTC. It achieves about
18.89%, 20.88%, and 14.46% relative WERR over Vanilla
CTC using single-letter, double-letter, and triple-letter units
respectively.

In the last column of Table IV, the shared Attention CTC
performed better than the Vanilla CTC but worse than its non-
sharing counterpart. This indicates one shortcoming of the
shared Attention CTC – it sacrifices the accuracy of the letter
CTC because of the shared-hidden-layer constraint with the
word CTC.

B. Experiments With Word-Based CTCs

In this section, we evaluate the performance of the Hybrid
CTC (Section V) and the Mixed-unit CTC (Section VI) using
both words and letters as targets. We refer to these CTCs as
word CTCs since a majority of the output nodes in these CTCs
directly correspond to words. We are primarily interested in
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TABLE V
WERs of word-based Vanilla CTC [11]and Hybrid CTCmodels trained
with 6-layer BLSTMs. Hybrid CTCuses a word CTCand an Attention CTC
outputting multi-letter units. Attention models are based on Section III.

E2E Model WER (%)
Vanilla CTC 9.84
Hybrid CTC: word+ double-letter Attention CTC 9.66
Hybrid CTC: word+ triple-letter Attention CTC 9.66

TABLE VI
WERs of word-based CTCs with different kinds of output units. All CTC
models were trained with 6-layer BLSTMs. Attention models are based on

Section III.

E2E Model WER (%)
Vanilla CTC 9.84
Mixed (OOV→ single-letter) 20.10
Mixed (OOV→ word + single-letter) 10.17
WPM 9.73
Mixed (OOV→ word + double-letter) 9.58
Mixed (OOV→ word + triple-letter) 9.32
Mixed (OOV→ word + triple-letter)+ Attention 8.65

recognizing the OOVs as accurately as possible while also
boosting the accuracy of recognizing non-OOVs. All attention
models in this section are based on Attention CTC (Section
III) instead of SA-CTC (Section IV) owing to the superior
results of the former (Section VII-A2).

Our Vanilla CTC [11] is a 6-layer BLSTM with approx-
imately 27k output nodes consisting of frequent words and
the OOV token. We defined frequent words as those which
occurred at least 10 times in the training corpus. All the
remaining words were tagged as OOV. This is the mapping
scheme described in the fourth row of Table I. Thus, within the
family of word CTCs, the Vanilla CTC is a CTC with 6-layer
BLSTM whose output units model words and the OOV token.
The Vanilla CTC achieved 9.84% WER (Table V) among
which the OOVs contributed to 1.87% WER.

1) Hybrid CTC (Section V):Our Hybrid CTC model has
both word and letter CTCs operating in parallel in an MTL
framework. They share 5 hidden BLSTM layers. An additional
LSTM layer was added for each task (word and letter CTC)
and fine tuned. Thus, the underlying structure of Hybrid CTC
is still a 6-layer BLSTM which has the same number of hidden
layers as that of the Vanilla CTC. Results are tabulated in
Table V. Both hybrid models achieved 9.66% WER which
is a marginal improvement over the Vanilla CTC. Several
factors contribute to such a small improvement. First, the
shared-hidden-layer constraint degrades the performanceof the
letter CTC, potentially affecting the final hybrid system per-
formance. Second, although the shared-hidden-layer constraint
helps to synchronize the word outputs from the word and letter
CTC, we still observed that the time synchronization can fail
at times. In such cases, the OOV token was replaced with its
neighboring word because of word segment misalignments.
Because of these factors, the triple-letter CTC did not improve
over the double-letter CTC.

2) Mixed-unit CTC (Section VI):In the next set of exper-
iments, we compared the performance of CTCs by chang-

TABLE VII
Summary ofWERs of CD phoneme CTC, Vanilla CTC [11],andMixed-unit
CTC+ Attention. All CTCmodels were trained with 6-layer BLSTMs.

Attention models are based on Section III.

Model LM WER(%)
1. Conventional: CD phoneme CTC X 9.28
2. E2E: Vanilla CTC ✗ 9.84
3. E2E: Mixed-unit+ Attention CTC ✗ 8.65

#3 vs #1 #3 vs #2
Relative WERR 6.79% 12.09%

ing their output units to mixed-letter units or wordpieces
[55], [56]. Wordpieces are commonly occurring sub-word
units that can be merged to form whole words. Similar to
mixed-units, wordpieces offer the flexibility to generate open-
vocabulary words. Previous studies [20], [57] have explored
using wordpieces. To build a wordpiece model (WPM), each
word in a training corpus is first segmented into a sequence of
individual characters and an end-of-word symbol. Following
this, the most frequently occurring character pair is merged
to form a new symbol or wordpiece. This process is iterated
until a predefined number of wordpieces are generated. The
outcome of this is that the corpus is now redefined using those
wordpieces which result in minimal number of whole word
segmentations. However, our approach of building mixed-units
is different from building wordpieces since we decomposeonly
OOVs while still retaining the high frequency words as whole
word units.

Results are tabulated in Table VI. As before, the Vanilla
CTC achieved a WER of 9.84%. In the next experiment, we
decomposed only the OOVs in the training set into single-
letters. Thus, the output nodes consist of both single-letters and
27k frequent words. There indeed is no such clear boundary of
decomposition with 2 distinct sets of basic units. As mentioned
in Section VI, having a mixture of word and single-letters
confuses CTC training as the network does not know why the
frequent words cannot be decomposed into letters. Therefore,
this model achieved 20.10% WER which is far worse than
Vanilla CTC. Analyzing the posterior spikes of this model, we
observed that the word spikes and letter spikes are interspersed
with each other which proves our hypothesis.

However, when we decomposed OOVs into mixed-units
(frequent word+ single-letters), the WER dropped sharply
to 10.17% but still a little worse than the Vanilla CTC.
This is again because of the mixture of words with single-
letters. Next, we decomposed the OOVs into a combination of
frequent words and double-letters. The WER dropped further
to 9.58%. When triple-letters and frequent words were used
(totally 33k outputs), the WER dropped even more to 9.32%.
This is a 5.28% relative WERR over Vanilla CTC. Then
we applied attention on this model. To save computational
costs, because of large number of output units, we excluded
the PLM network in Eq. (20). This model achieved a WER
of 8.65%, which is about 12.09% relative WERR over the
Vanilla CTC. This is our final word CTC model (mixed-units
with triple-letters+ attention). As an additional experiment,
instead of mixed-units, we used wordpieces as targets. This
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model achieved a WER of 9.73% which is a little better than
that achieved with Vanilla CTC but worse than the results
obtained with mixed-unit CTC. This indicates that building
A2W models using mixed-units or WPMs is a better choice
than simply using words and OOV (as in Vanilla CTC).

Finally, we compared our final word CTC model with a
traditional CD phoneme CTC in Table VII. We trained a CD
phoneme 6-layer BLSTM with the CTC criterion, modeling
around 9000 tied CD phonemes. It has the same structure
as other CTC models except that it uses different output
units (phonemes instead of mixed-units or words). This CD
phoneme CTC model achieved 9.28% WER when decoding
with a well-trained 5-gram LM with totally around 100 million
(M) N-grams. Despite a strong CD phoneme CTC model and
LM, the mixed-unit+ Attention CTC model (without any LM
or complex decoder) was still able to outperform it by about
6.79% relative.

Note that the proposed model not only reduces the WER of
the word CTC but also improves the end-user experience. The
proposed model provides more meaningful outputs without
outputting any OOV token which can be distracting to users.
Moreover, we observed that even when the proposed model
failed to recognize the OOVs accurately, it still came out with
words which were a close match with the ground truth words.
For example, the proposed method recognizes “text fabine” as
“text fabian” and “call zubiate” as “call zubiat”. However,the
Vanilla CTC recognized these words as “text OOV” and “call
OOV” respectively.

VIII. Conclusions

We proposed improving letter and word CTC models using
Attention CTC, Self-Attention CTC, Hybrid CTC, and Mixed-
unit CTC. In attention-based CTCs, we generated new hidden
features that carry attention weighted context information
which are more useful than hidden features without context in-
formation. To solve the OOV issue in word CTC, we presented
Hybrid CTC which uses a word and letter CTC as primary
and auxiliary tasks in an MTL framework. Finally, to boost
the performance of Hybrid CTC, we introduced Mixed-unit
CTC whose output units contain both words and multi-letters.
While the frequent words are treated as whole word units,
the OOVs are decomposed into a sequence of frequent words
and multi-letters. We evaluated all these methods on a 3400
hours Microsoft Cortana voice assistant task. The proposed
word-based Mixed-unit CTC model with triple letters when
combined with attention improved over the word-based Vanilla
CTC model by 12.09% relative. Such an acoustic-to-word
CTC model is a pure end-to-end model without using any LM
and complex decoder. It also outperformed a traditional CD
phoneme CTC model equipped with strong LM and complex
decoder by 6.79% relative.

IX. Code

The CNTK script for Attention CTC described in Section III
is available online at: https://github.com/microsoft/CNTK/tree/
vadimma/CTC/Examples/Speech/AttentionCTC.
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