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Abstract

Recent works have shown the effectiveness of randomized smoothing as a scalable
technique for building neural network-based classifiers that are provably robust to
`2-norm adversarial perturbations. In this paper, we employ adversarial training
to improve the performance of randomized smoothing. We design an adapted
attack for smoothed classifiers, and we show how this attack can be used in an
adversarial training setting to boost the provable robustness of smoothed classifiers.
We demonstrate through extensive experimentation that our method consistently
outperforms all existing provably `2-robust classifiers by a significant margin on
ImageNet and CIFAR-10, establishing the state-of-the-art for provable `2-defenses.
Moreover, we find that pre-training and semi-supervised learning boost adversar-
ially trained smoothed classifiers even further. Our code and trained models are
available at http://github.com/Hadisalman/smoothing-adversarial.

1 Introduction

Neural networks have been very successful in tasks such as image classification and speech recogni-
tion, but have been shown to be extremely brittle to small, adversarially-chosen perturbations of their
inputs [32, 14]. A classifier (e.g., a neural network), which correctly classifies an image x, can be
fooled by an adversary to misclassify x + δ where δ is an adversarial perturbation so small that x
and x+ δ are indistinguishable for the human eye. Recently, many works have proposed heuristic
defenses intended to train models robust to such adversarial perturbations. However, most of these
defenses were broken using more powerful adversaries [4, 2, 34]. This encouraged researchers to
develop defenses that lead to certifiably robust classifiers, i.e., whose predictions for most of the test
examples x can be verified to be constant within a neighborhood of x [38, 27]. Unfortunately, these
techniques do not immediately scale to large neural networks that are used in practice.

To mitigate this limitation of prior certifiable defenses, a number of papers [21, 22, 6] consider the
randomized smoothing approach, which transforms any classifier f (e.g., a neural network) into a
new smoothed classifier g that has certifiable `2-norm robustness guarantees. This transformation
works as follows.

Let f be an arbitrary base classifier which maps inputs in Rd to classes in Y . Given an input x, the
smoothed classifier g(x) labels x as having class c which is the most likely to be returned by the base
classifier f when fed a noisy corruption x+ δ, where δ ∼ N (x, σ2I) is a vector sampled according
to an isotropic Gaussian distribution.

As shown in [6], one can derive certifiable robustness for such smoothed classifiers via the Neyman-
Pearson lemma. They demonstrate that for `2 perturbations, randomized smoothing outperforms
other certifiably robust classifiers that have been previously proposed. It is scalable to networks with
any architecture and size, which makes it suitable for building robust real-world neural networks.
∗Reverse alphabetical order. † Work done as part of the Microsoft AI Residency Program.
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Table 1: Certified top-1 accuracy of our best ImageNet classifiers at various `2 radii.

`2 RADIUS (IMAGENET) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

COHEN ET AL. [6] (%) 49 37 29 19 15 12 9
OURS (%) 56 43 37 27 25 20 16

Table 2: Certified top-1 accuracy of our best CIFAR-10 classifiers at various `2 radii.

`2 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

COHEN ET AL. [6] (%) 60 43 32 23 17 14 12 10 8
OURS (%) 74 57 48 38 33 29 25 19 17
+ PRE-TRAINING (%) 80 63 52 39 36 30 25 20 17
+ SEMI-SUPERVISION (%) 80 63 53 39 36 32 25 20 18
+ BOTH(%) 82 65 52 38 34 30 25 21 18

Our contributions In this paper, we employ adversarial training to substantially improve on the
previous certified robustness results of randomized smoothing [21, 22, 6]. We present, for the
first time, a direct attack for smoothed classifiers. We then demonstrate how to use this attack to
adversarially train smoothed models with not only boosted empirical robustness but also substantially
improved certifiable robustness using the certification method of Cohen et al. [6].

We demonstrate that our method outperforms all existing provably `2-robust classifiers by a significant
margin on ImageNet and CIFAR-10, establishing the state-of-the-art for provable `2-defenses. For
instance, our Resnet-50 ImageNet classifier achieves 56% provable top-1 accuracy (compared to
the best previous provable accuracy of 49%) under adversarial perturbations with `2 norm less than
127/255. Similarly, our Resnet-110 CIFAR-10 smoothed classifier achieves up to 16% improvement
over previous state-of-the-art, and by combining our technique with pre-training [17] and semi-
supervised learning [5], we boost our results to up to 22% improvement over previous state-of-the-art.
Our main results are reported in Tables 1 and 2 for ImageNet and CIFAR-10. See Tables 15 and 16 in
Appendix G for the standard accuracies corresponding to these results.

Finally, we provide an alternative, but more concise, proof of the tight robustness guarantee of Cohen
et al. [6] by casting this as a nonlinear Lipschitz property of the smoothed classifier. See appendix A
for the complete proof.

2 Our techniques

Here we describe our techniques for adversarial attacks and training on smoothed classifiers. We first
require some background on randomized smoothing classifiers. For a more detailed description of
randomized smoothing, see Cohen et al. [6].

2.1 Background on randomized smoothing
Consider a classifier f from Rd to classes Y . Randomized smoothing is a method that constructs a
new, smoothed classifier g from the base classifier f . The smoothed classifier g assigns to a query
point x the class which is most likely to be returned by the base classifier f under isotropic Gaussian
noise perturbation of x, i.e.,

g(x) = arg max
c∈Y

P(f(x+ δ) = c) where δ ∼ N (0, σ2I) . (1)

The noise level σ2 is a hyperparameter of the smoothed classifier g which controls a robust-
ness/accuracy tradeoff. Equivalently, this means that g(x) returns the class c whose decision region
{x′ ∈ Rd : f(x′) = c} has the largest measure under the distribution N (x, σ2I). Cohen et al. [6]
recently presented a tight robustness guarantee for the smoothed classifier g and gave Monte Carlo
algorithms for certifying the robustness of g around x or predicting the class of x using g, that succeed
with high probability.

Robustness guarantee for smoothed classifiers The robustness guarantee presented by [6] uses
the Neyman-Pearson lemma, and is as follows: suppose that when the base classifier f classifies
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N (x, σ2I), the class cA is returned with probability pA = P(f(x+ δ) = cA), and the “runner-up”
class cB is returned with probability pB = maxc6=cA P(f(x+ δ) = c). The smoothed classifier g is
robust around x within the radius

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
, (2)

where Φ−1 is the inverse of the standard Gaussian CDF. It is not clear how to compute pA and pB
exactly (if f is given by a deep neural network for example). Monte Carlo sampling is used to
estimate some pA and pB for which pA ≤ pA and pB ≥ pB with arbitrarily high probability over the
samples. The result of (2) still holds if we replace pA with pA and pB with pB .

This guarantee can in fact be obtained alternatively by explicitly computing the Lipschitz constant of
the smoothed classifier, as we do in Appendix A.

2.2 SMOOTHADV: Attacking smoothed classifiers
We now describe our attack against smoothed classifiers. To do so, it will first be useful to describe
smoothed classifiers in a more general setting. Specifically, we consider a generalization of (1) to soft
classifiers, namely, functions F : Rd → P (Y), where P (Y) is the set of probability distributions over
Y . Neural networks typically learn such soft classifiers, then use the argmax of the soft classifier as the
final hard classifier. Given a soft classifier F , its associated smoothed soft classifier G : Rn → P (Y)
is defined as

G(x) =
(
F ∗ N (0, σ2I)

)
(x) = E

δ∼N (0,σ2I)
[F (x+ δ)] . (3)

Let f(x) and F (x) denote the hard and soft classifiers learned by the neural network, respectively,
and let g and G denote the associated smoothed hard and smoothed soft classifiers. Directly finding
adversarial examples for the smoothed hard classifier g is a somewhat ill-behaved problem because
of the argmax, so we instead propose to find adversarial examples for the smoothed soft classifier
G. Empirically we found that doing so will also find good adversarial examples for the smoothed
hard classifier. More concretely, given a labeled data point (x, y), we wish to find a point x̂ which
maximizes the loss of G in an `2 ball around x for some choice of loss function. As is canonical in
the literature, we focus on the cross entropy loss `CE. Thus, given a labeled data point (x, y) our
(ideal) adversarial perturbation is given by the formula:

x̂ = arg max
‖x′−x‖2≤ε

`CE(G(x′), y)

= arg max
‖x′−x‖2≤ε

(
− log E

δ∼N (0,σ2I)

[
(F (x′ + δ))y

])
. (S)

We will refer to (S) as the SMOOTHADV objective. The SMOOTHADV objective is highly non-convex,
so as is common in the literature, we will optimize it via projected gradient descent (PGD), and
variants thereof. It is hard to find exact gradients for (S), so in practice we must use some estimator
based on random Gaussian samples. There are a number of different natural estimators for the
derivative of the objective function in (S), and the choice of estimator can dramatically change the
performance of the attack. For more details, see Section 3.

We note that (S) should not be confused with the similar-looking objective

x̂wrong = arg max
‖x′−x‖2≤ε

(
E

δ∼N (0,σ2I)
[`CE(F (x′ + δ), y)]

)
= arg max
‖x′−x‖2≤ε

(
E

δ∼N (0,σ2I)

[
− log (F (x′ + δ))y

])
, (4)

as suggested in section G.3 of [6]. There is a subtle, but very important, distinction between (S) and
(4). Conceptually, solving (4) corresponds to finding an adversarial example of F that is robust to
Gaussian noise. In contrast, (S) is directly attacking the smoothed model i.e. trying to find adversarial
examples that decrease the probability of correct classification of the smoothed soft classifier G.
From this point of view, (S) is the right optimization problem that should be used to find adversarial
examples of G. This distinction turns out to be crucial in practice: empirically, Cohen et al. [6] found
attacks based on (4) not to be effective.

Interestingly, for a large class of classifiers, including neural networks, one can alternatively derive the
objective (S) from an optimization perspective, by attempting to directly find adversarial examples to
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the smoothed hard classifier that the neural network provides. While they ultimately yield the same
objective, this perspective may also be enlightening, and so we include it in Appendix B.

2.3 Adversarial training using SMOOTHADV

We now wish to use our new attack to boost the adversarial robustness of smoothed classifiers. We do
so using the well-studied adversarial training framework [20, 25]. In adversarial training, given a
current set of model weights wt and a labeled data point (xt, yt), one finds an adversarial perturbation
x̂t of xt for the current model wt, and then takes a gradient step for the model parameters, evaluated
at the point (x̂t, yt). Intuitively, this encourages the network to learn to minimize the worst-case loss
over a neighborhood around the input.

At a high level, we propose to instead do adversarial training using an adversarial example for the
smoothed classifier. We combine this with the approach suggested in Cohen et al. [6], and train at
Gaussian perturbations of this adversarial example. That is, given current set of weights wt and
a labeled data point (xt, yt), we find x̂t as a solution to (S), and then take a gradient step for wt
based at gaussian perturbations of x̂t. In contrast to standard adversarial training, we are training the
base classifier so that its associated smoothed classifier minimizes worst-case loss in a neighborhood
around the current point. For more details of our implementation, see Section 3.2. We emphasize that
although we are training using adversarial examples for the smoothed soft classifier, in the end we
certify the robustness of the smoothed hard classifier we obtain after training.

We make two important observations about our method. First, adversarial training is an empirical
defense, and typically offers no provable guarantees. However, we demonstrate that by combining
our formulation of adversarial training with randomized smoothing, we are able to substantially boost
the certifiable robust accuracy of our smoothed classifiers. Thus, while adversarial training using
SMOOTHADV is still ultimately a heuristic, and offers no provable robustness by itself, the smoothed
classifier that we obtain using this heuristic has strong certifiable guarantees.

Second, we found empirically that to obtain strong certifiable numbers using randomized smoothing,
it is insufficient to use standard adversarial training on the base classifier. While such adversarial
training does indeed offer good empirical robust accuracy, the resulting classifier is not optimized for
randomized smoothing. In contrast, our method specifically finds base classifiers whose smoothed
counterparts are robust. As a result, the certifiable numbers for standard adversarial training are
noticeably worse than those obtained using our method. See Appendix C.1 for an in-depth comparison.

3 Implementing SMOOTHADV via first order methods

As mentioned above, it is difficult to optimize the SMOOTHADV objective, so we will approximate it
via first order methods. We focus on two such methods: the well-studied projected gradient descent
(PGD) method [20, 25], and the recently proposed decoupled direction and norm (DDN) method [29]
which achieves `2 robust accuracy competitive with PGD on CIFAR-10.

The main task when implementing these methods is to, given a data point (x, y), compute the gradient
of the objective function in (S) with respect to x′. If we let J(x′) = `CE(G(x′), y) denote the
objective function in (S), we have

∇x′J(x′) = ∇x′
(
− log E

δ∼N (0,σ2I)
[F (x′ + δ)y]

)
. (5)

However, it is not clear how to evaluate (5) exactly, as it takes the form of a complicated high
dimensional integral. Therefore, we will use Monte Carlo approximations. We sample i.i.d. Gaussians
δ1, . . . , δm ∼ N (0, σ2I), and use the plug-in estimator for the expectation:

∇x′J(x′) ≈ ∇x′
(
− log

(
1

m

m∑
i=1

F (x′ + δi)y

))
. (6)

It is not hard to see that if F is smooth, this estimator will converge to (5) as we take more samples. In
practice, if we take m samples, then to evaluate (6) on all m samples requires evaluating the network
m times. This becomes expensive for large m, especially if we want to plug this into the adversarial
training framework, which is already slow. Thus, when we use this for adversarial training, we
use mtrain ∈ {1, 2, 4, 8}. When we run this attack to evaluate the empirical adversarial accuracy
of our models, we use substantially larger choices of m, specifically, mtest ∈ {1, 4, 8, 16, 64, 128}.
Empirically we found that increasing m beyond 128 did not substantially improve performance.
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Pseudocode 1: SMOOTHADV-ersarial Training

function TRAINMINIBATCH((x(1), y(1)), (x(2), y(2)), . . . , (x(B), y(B)))
ATTACKER← (SMOOTHADVPGD or SMOOTHADVDDN)
Generate noise samples δ(j)

i ∼ N (0, σ2I) for 1 ≤ i ≤ m, 1 ≤ j ≤ B
L← [] # List of adversarial examples for training
for 1 ≤ j ≤ B do
x̂(j) ← x(j) # Adversarial example
for 1 ≤ k ≤ T do

Update x̂(j) according to the k-th step of ATTACKER, where we use
the noise samples δ(j)

1 , δ(j)
2 , . . . , δ(j)

m to estimate a gradient of the loss of the smoothed
model according to (6)
# We are reusing the same noise samples between different steps of the attack

end
Append ((x̂(j) + δ

(j)
1 , y(j)), (x̂(j) + δ

(j)
2 , y(j)), . . . , (x̂(j) + δ

(j)
m , y(j))) to L

# Again, we are reusing the same noise samples for the augmentation
end
Run backpropagation on L with an appropriate learning rate

While this estimator does converge to the true gradient given enough samples, note that it is not
an unbiased estimator for the gradient. Despite this, we found that using (6) performs very well in
practice. Indeed, using (6) yields our strongest empirical attacks, as well as our strongest certifiable
defenses when we use this attack in adversarial training. In the remainder of the paper, we let
SMOOTHADVPGD denote the PGD attack with gradient steps given by (6), and similarly we let
SMOOTHADVDDN denote the DDN attack with gradient steps given by (6).

3.1 An unbiased, gradient free method
We note that there is an alternative way to optimize (S) using first order methods. Notice that the
logarithm in (S) does not change the argmax, and so it suffices to find a minimizer of G(x′)y subject
to the `2 constraint. We then observe that

∇x′(G(x′)y) = E
δ∼N (0,σ2I)

[∇x′F (x′ + δ)y]
(a)
= E

δ∼N (0,σ2I)

[
δ

σ2
· F (x′ + δ)y

]
. (7)

The equality (a) is known as Stein’s lemma [31], although we note that something similar can be
derived for more general distributions. There is a natural unbiased estimator for (7): sample i.i.d.
gaussians δ1, . . . , δm ∼ N (0, σ2I), and form the estimator ∇x′(G(x′)y) ≈ 1

m

∑m
i=1

δi
σ2 · F (x′ +

δi)y . This estimator has a number of nice properties. As mentioned previously, it is an unbiased
estimator for (7), in contrast to (6). It also requires no computations of the gradient of F ; if F is a
neural network, this saves both time and memory by not storing preactivations during the forward
pass. Finally, it is very general: the derivation of (7) actually holds even if F is a hard classifier
(or more precisely, the one-hot embedding of a hard classifier). In particular, this implies that this
technique can even be used to directly find adversarial examples of the smoothed hard classifier.

Despite these appealing features, in practice we find that this attack is quite weak. We speculate that
this is because the variance of the gradient estimator is too high. For this reason, in the empirical
evaluation we focus on attacks using (6), but we believe that investigating this attack in practice is an
interesting direction for future work. See Appendix C.6 for more details.

3.2 Implementing adversarial training for smoothed classifiers
We incorporate adversarial training into the approach of Cohen et al. [6] changing as few moving
parts as possible in order to enable a direct comparison. In particular, we use the same network
architectures, batch size, and learning rate schedule. For CIFAR-10, we change the number of epochs,
but for ImageNet, we leave it the same. We discuss more of these specifics in Appendix D, and here
we describe how to perform adversarial training on a single mini-batch. The algorithm is shown in
Pseudocode 1, with the following parameters: B is the mini-batch size, m is the number of noise
samples used for gradient estimation in (6) as well as for Gaussian noise data augmentation, and T is
the number of steps of an attack2.

2Note that we are reusing the same noise samples during every step of our attack as well as during augmenta-
tion. Intuitively, this helps to stabilize the attack process.
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Figure 1: Comparing our SMOOTHADV-ersarially trained CIFAR-10 classifiers vs Cohen et al. [6].
(Left) Upper envelopes of certified accuracies over all experiments. (Middle) Upper envelopes of
certified accuracies per σ. (Right) Certified accuracies of one representative model per σ. Details of
each model used to generate these plots and their certified accuracies are in Tables 6-14 in Appendix G.

4 Experiments

We primarily compare with Cohen et al. [6] as it was shown to outperform all other scalable provable
`2 defenses by a wide margin. As our experiments will demonstrate, our method consistently and
significantly outperforms Cohen et al. [6] even further, establishing the state-of-the-art for provable
`2-defenses. We run experiments on ImageNet [8] and CIFAR-10 [19]. We use the same base
classifiers f as Cohen et al. [6]: a ResNet-50 [16] on ImageNet, and ResNet-110 on CIFAR-10.
Other than the choice of attack (SMOOTHADVPGD or SMOOTHADVDDN) for adversarial training,
our experiments are distinguished based on five main hyperparameters:

ε = maximum allowed `2 perturbation of the input
T = number of steps of the attack
σ = std. of Gaussian noise data augmentation during training and certification

mtrain = number of noise samples used to estimate (6) during training
mtest = number of noise samples used to estimate (6) during evaluation

(♦)

Given a smoothed classifier g, we use the same prediction and certification algorithms, PREDICT and
CERTIFY, as [6]. Both algorithms sample base classifier predictions under Gaussian noise. PREDICT
outputs the majority vote if the vote count passes a binomial hypothesis test, and abstains otherwise.
CERTIFY certifies the majority vote is robust if the fraction of such votes is higher by a calculated
margin than the fraction of the next most popular votes, and abstains otherwise. For details of these
algorithms, we refer the reader to [6].

The certified accuracy at radius r is defined as the fraction of the test set which g classifies correctly
(without abstaining) and certifies robust at an `2 radius r. Unless otherwise specified, we use the
same σ for certification as the one used for training the base classifier f . Note that g is a randomized
smoothing classifier, so this reported accuracy is approximate, but can get arbitrarily close to the
true certified accuracy as the number of samples of g increases (see [6] for more details). Similarly,
the empirical accuracy is defined as the fraction of the `2 SMOOTHADV-ersarially attacked test set
which g classifies correctly (without abstaining).

Both PREDICT and CERTIFY have a parameter α defining the failure rate of these algorithms.
Throughout the paper, we set α = 0.001 (similar to [6]), which means there is at most a 0.1%
chance that PREDICT does not return the most probable class under the smoothed classifier g, or that
CERTIFY falsely certifies a non-robust input.

4.1 SMOOTHADV-ersarial training
To assess the effectiveness of our method, we learn a smoothed classifier g that is adversarial trained
using (S). Then we compute the certified accuracies over a range of `2 radii r. Tables 1 and 2
report the certified accuracies using our method compared to [6]. For all radii, we outperform the
certified accuracies of [6] by a significant margin on both ImageNet and CIFAR-10. These results are
elaborated below.

For CIFAR-10 Fig. 1(left) plots the upper envelope of the certified accuracies that we get by
choosing the best model for each radius over a grid of hyperparameters. This grid consists of
mtrain ∈ {1, 2, 4, 8}, σ ∈ {0.12, 0.25, 0.5, 1.0}, ε ∈ {0.25, 0.5, 1.0, 2.0} (see ♦ for explanation),
and one of the following attacks {SMOOTHADVPGD, SMOOTHADVDDN} with T ∈ {2, 4, 6, 8, 10}
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Figure 2: Comparing our SMOOTHADV-ersarially trained ImageNet classifiers vs Cohen et al. [6].
Subfigure captions are same as Fig. 1. Details of each model used to generate these plots and their
certified accuracies are in Table 5 in Appendix G.

Table 3: Certified `∞ robustness at a radius of 2
255 on CIFAR-10.

MODEL `∞ ACC. AT 2/255 STANDARD ACC.

OURS 68.2 87.2
CARMON ET AL. [5] 63.8± 0.5 80.7± 0.3
WONG AND KOLTER [38] (SINGLE) 53.9 68.3
WONG AND KOLTER [38] (ENSEMBLE) 63.6 64.1
IBP [15] 50.0 70.2

steps. The certified accuracies of each model can be found in Tables 6-14 in Appendix G. These results
are compared to those of Cohen et al. [6] by plotting their reported certified accuracies. Fig. 1(left)
also plots the corresponding empirical accuracies using SMOOTHADVPGD with mtest = 128. Note
that our certified accuracies are higher than the empirical accuracies of Cohen et al. [6].

Fig. 1(middle) plots our vs [6]’s best models for varying noise level σ. Fig. 1(right) plots a represen-
tative model for each σ from our adversarially trained models. Observe that we outperform [6] in all
three plots.

For ImageNet The results are summarized in Fig. 2, which is similar to Fig. 1 for CIFAR-10, with
the difference being the set of smoothed models we certify. This set includes smoothed models
trained using mtrain = 1, σ ∈ {0.25, 0.5, 1.0}, ε ∈ {0.25, 0.5, 1.0, 2.0}, and one of the following
attacks {1-step SMOOTHADVPGD, 2-step SMOOTHADVDDN}. Again, our models outperform those
of Cohen et al. [6] overall and per σ as well. The certified accuracies of each model can be found in
Table 5 in Appendix G.

We point out, as mentioned by Cohen et al. [6], that σ controls a robustness/accuracy trade-off. When
σ is low, small radii can be certified with high accuracy, but large radii cannot be certified at all.
When σ is high, larger radii can be certified, but smaller radii are certified at a lower accuracy. This
can be observed in the middle and the right plots of Fig. 1 and 2.

Effect on clean accuracy Training smoothed classifers using SMOOTHADV as shown improves
upon the certified accuracy of Cohen et al. [6] for each σ, although this comes with the well-known
effect of adversarial training in decreasing the standard accuracy, so we sometimes see small drops in
the accuracy at r = 0, as observed in Fig. 1(right) and 2(right).

`2 to `∞ certified defense Since the `2 ball of radius
√
d contains the `∞ unit ball in Rd, a model

robust against `2 perturbation of radius r is also robust against `∞ perturbation of norm r/
√
d.

Via this naive conversion, we find our `2-robust models enjoy non-trivial `∞ certified robustness.
In Table 3, we report the best3 `∞ certified accuracy that we get on CIFAR-10 at a radius of 2/255
(implied by the `2 certified accuracy at a radius of 0.435 ≈ 2

√
3× 322/255). We exceed previous

state-of-the-art in certified `∞ defenses by at least 3.9%. We obtain similar results for ImageNet
certified `∞ defenses at a radius of 1/255 where we exceed the previous state-of-the-art by 8.2%;
details are in appendix F.

3We report the model with the highest certified `2 accuracy on CIFAR-10 at a radius of 0.435, amongst all
our models trained in this paper.
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Figure 3: Certified and empirical robust accuracy of Cohen et al. [6]’s models on CIFAR-10. For
each `2 radius r, the certified/empirical accuracy is the maximum over randomized smoothing
models trained using σ ∈ {0.12, 0.25, 0.5, 1.0}. The empirical accuracies are found using 20 steps
of SMOOTHADVPGD. The closer an empirical curve is to the certified curve, the stronger the
corresponding attack is (the lower the better).

Additional experiments and observations We compare the effectiveness of smoothed classifiers
when they are trained SMOOTHADV-versarially vs. when their base classifier is trained via standard
adversarial training (we will refer to the latter as vanilla adversarial training). As expected, because
the training objective of SMOOTHADV-models aligns with the actual certification objective, those
models achieve noticeably more certified robustness over all radii compared to smoothed classifiers
resulting from vanilla adversarial training. We defer the results and details to Appendix C.1.

Furthermore, SMOOTHADV requires the evaluation of (6) as discussed in Section 3. We analyze
in Appendix C.2 how the number of Gaussian noise samples mtrain, used in (6) to find adversarial
examples, affects the robustness of the resulting smoothed models. As expected, we observe that
models trained with higher mtrain tend to have higher certified accuracies.

Finally, we analyze the effect of the maximum allowed `2 perturbation ε used in SMOOTHADV on
the robustness of smoothed models in Appendix C.3.

4.2 More Data for Better Provable Robustness

In this section, we explore using more data to improve the robustness of our smoothed classifiers.
Specifically, we pursue two ideas: 1) pre-training, similar to [17], and 2) semi-supervised learning as
in [5].

Pre-training Hendrycks et al. [17] recently showed that using pre-training can improve the adver-
sarial robustness of classifiers, and achieved state-of-the-art results for empirical l∞ defenses on
CIFAR-10 and CIFAR-100. We employ this within our framework; we pretrain smoothed classifiers
on ImageNet, then fine-tune them on CIFAR-10. Details can be found in Appendix E.1.

Semi-supervised learning Carmon et al. [5] recently showed that using unlabelled data can im-
prove the adversarial robustness as well. They employ a simple, yet effective, semi-supervised
learning technique called self-training to improve the robustness of CIFAR-10 classifiers. We employ
this idea in our framework and we train our CIFAR-10 smoothed classifiers via self-training using the
unlabelled dataset used in Carmon et al. [5]. Details can be found in Appendix E.2.

We further experiment with combining semi-supervised learning and pre-training, and the details are
in Appendix E.3. We observe consistent improvement in the certified robustness of our smoothed
models when we employ pre-training, semi-supervision, or both. The results are summarized in
Table 2.

4.3 Attacking trained models with SMOOTHADV

In this section, we assess the performance of our attack, particularly SMOOTHADVPGD, for finding
adversarial examples for the CIFAR-10 randomized smoothing models of Cohen et al. [6].

SMOOTHADVPGD requires the evaluation of (6) as discussed in Section 3. Here, we analyze how
sensitive our attack is to the number of samples mtest used in (6) for estimating the gradient of the
adversarial objective. Fig. 3 shows the empirical accuracies for various values of mtest. Lower
accuracies corresponds to stronger attack. SMOOTHADV with mtest = 1 sample performs worse
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than the vanilla PGD attack on the base classifier, but as mtest increases, our attack becomes stronger,
decreasing the gap between certified and empirical accuracies. We did not observe any noticeable
improvement beyond mtest = 128. More details are in Appendix C.4.

While as discussed here, the success rate of the attack is affected by the number of Gaussian noise
samples mtest used by the attacker, it is also affected by the number of Gaussian noise samples n in
PREDICT used by the classifier. Indeed, as n increases, abstention due to low confidence becomes
more rare, increasing the prediction quality of the smoothed classifier. See a detailed analysis in
Appendix C.5.

5 Related Work

Recently, many approaches (defenses) have been proposed to build adversarially robust classifiers,
and these approaches can be broadly divided into empirical defenses and certified defenses.

Empirical defenses are empirically robust to existing adversarial attacks, and the best empirical
defense so far is adversarial training [20, 25]. In this kind of defense, a neural network is trained to
minimize the worst-case loss over a neighborhood around the input. Although such defenses seem
powerful, nothing guarantees that a more powerful, not yet known, attack would not break them; the
most that can be said is that known attacks are unable to find adversarial examples around the data
points. In fact, most empirical defenses proposed in the literature were later “broken” by stronger
adversaries [4, 2, 34, 1]. To stop this arms race between defenders and attackers, a number of work
tried to focus on building certified defenses which enjoy formal robustness guarantees.

Certified defenses are provably robust to a specific class of adversarial perturbation, and can guaran-
tee that for any input x, the classifier’s prediction is constant within a neighborhood of x. These are
typically based on certification methods which are either exact (a.k.a “complete”) or conservative
(a.k.a “sound but incomplete”). Exact methods, usually based on Satisfiability Modulo Theories
solvers [18, 11] or mixed integer linear programming [33, 24, 12], are guaranteed to find an adversar-
ial example around a datapoint if it exists. Unfortunately, they are computationally inefficient and
difficult to scale up to large neural networks. Conservative methods are also guaranteed to detect an
adversarial example if exists, but they might mistakenly flag a safe data point as vulnerable to adver-
sarial examples. On the bright side, these methods are more scalable and efficient which makes some
of them useful for building certified defenses [38, 35, 36, 27, 28, 39, 10, 9, 7, 13, 26, 30, 15, 37, 40].
However, none of them have yet been shown to scale to practical networks that are large and expres-
sive enough to perform well on ImageNet, for example. To scale up to practical networks, randomized
smoothing has been proposed as a probabilistically certified defense.

Randomized smoothing A randomized smoothing classifier is not itself a neural network, but
uses a neural network as its base for classification. Randomized smoothing was proposed by several
works [23, 3] as a heuristic defense without proving any guarantees. Lecuyer et al. [21] first proved
robustness guarantees for randomized smoothing classifier, utilizing inequalities from the differential
privacy literature. Subsequently, Li et al. [22] gave a stronger robustness guarantee using tools from
information theory. Recently, Cohen et al. [6] provided a tight robustness guarantee for randomized
smoothing and consequently achieved the state of the art in `2-norm certified defense.

6 Conclusions

In this paper, we designed an adapted attack for smoothed classifiers, and we showed how this attack
can be used in an adversarial training setting to substantially improve the provable robustness of
smoothed classifiers. We demonstrated through extensive experimentation that our adversarially
trained smooth classifiers consistently outperforms all existing provably `2-robust classifiers by
a significant margin on ImageNet and CIFAR-10, establishing the state of the art for provable
`2-defenses.
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A Alternative proof of the robustness guarantee of Cohen et al. [6] via
explicit Lipschitz constants of smoothed classifier

In this appendix, we present an alternate derivation of (2). Fix f : Rn → [0, 1] and define f̂ by:

f̂(x) = (f ∗ N (0, I)) (x) =
1

(2π)n/2

∫
Rn

f(t) exp

(
−1

2
‖x− t‖2

)
dt .

The smoothed function f̂ is known as the Weierstrass transform of f , and a classical property of the
Weierstrass transform is its induced smoothness, as demonstrated by the following.

Lemma 1. The function f̂ is
√

2
π -Lipschitz.

Proof. It suffices to prove that for any unit direction u one has u · ∇f̂(x) ≤
√

2
π . Note that:

∇f̂(x) =
1

(2π)n/2

∫
Rn

f(t)(x− t) exp

(
−1

2
‖x− t‖2

)
dt , (8)

and thus (using |f(t)| ≤ 1, and classical integration of the Gaussian density)

u · ∇f̂(x) ≤ 1

(2π)n/2

∫
Rn

|u · (x− t)| exp

(
−1

2
‖x− t‖2

)
dt

=
1√
2π

∫ +∞

−∞
|s| exp

(
−1

2
s2

)
ds =

√
2

π
.

However, f̂ in fact satisfies an even stronger nonlinear smoothness property as shown in the following
lemma.
Lemma 2. Let Φ(a) = 1√

2π

∫ a
−∞ exp

(
− 1

2s
2
)
ds. For any function f : Rn → [0, 1], the map

x 7→ Φ−1(f̂(x)) is 1-Lipschitz.

Proof. Note that:

∇Φ−1(f̂(x)) =
∇f̂(x)

Φ′(Φ−1(f̂(x))
,

and thus we need to prove that for any unit direction u, denoting p = f̂(x),

u · ∇f̂(x) ≤ 1√
2π

exp

(
−1

2
(Φ−1(p))2

)
.

Note that the left-hand side can be written as follows (recall (8))

E
X∼N (0,In)

[f(x+X)X · u] .

We now claim that the supremum of the above quantity over all functions f : Rn → [0, 1], subject to
the constraint that E[f(x+X)] = p, is equal to:

E[(X · u)1{X · u ≥ −Φ−1(p)}] =
1√
2π

exp

(
−1

2
(Φ−1(p)2)

)
, (9)

which would conclude the proof.

To see why the latter claim is true, first notice that h : x 7→ 1{x·u ≥ −Φ−1(p)} achieves equality. Let
us assume by contradiction that the maximizer is obtained at some function f : Rn → [0, 1] different
from h. Consider the set Ω+ where h(x) > f(x) and Ω− the set where h(x) < f(x), and note that
since both functions integrate to p, it must be that

∫
Ω+(h− f)dµ =

∫
Ω−

(f − h)dµ (where µ is the
Gaussian measure). Now simply consider the new function f̃ = f+(h−f)1{Ω+}−(f−h)1{Ω−}.
Note that f̃ takes value in [0, 1] and integrates to p. Moreover, denoting g(x) = x · u, one has∫
fgdµ <

∫
f̃gdµ. Indeed, by definition of h, one has for any x ∈ Ω+ and y ∈ Ω− that g(x) > g(y).

This concludes the proof.
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It turns out that the smoothness property of lemma 2 naturally leads to the robustness guarantee (2) of
Cohen et al. [6]. To see why, let f̂i : Rn → [0, 1] be the output of the smoothed classifier mapping a
point x ∈ Rn to the probability of it belonging to class ci. Assume that the smooth classifier assigns
to x the class cA with probability pA = f̂A(x). Denote by cB any other class such that cB 6= cA and
pB = f̂B(x) ≤ pA. By lemma 2, we know that under any perturbation δ ∈ Rn of x,

Φ−1
(
f̂A(x)

)
− Φ−1

(
f̂A(x+ δ)

)
≤ ‖δ‖2. (10)

For an adversarial δ, f̂A(x+ δ) ≤ f̂B(x+ δ) for some class cB , leading to

Φ−1
(
f̂A(x)

)
− Φ−1

(
f̂B(x+ δ)

)
≤ ‖δ‖2. (11)

By lemma 2 applied to f̂B , and noting that f̂B(x+ δ) ≥ f̂B(x) , we know that,

Φ−1
(
f̂B(x+ δ)

)
− Φ−1

(
f̂B(x)

)
≤ ‖δ‖2. (12)

Combining (11) and (12), it is straightforward to see that

‖δ‖2 ≥
1

2

(
Φ−1 (pA)− Φ−1 (pB)

)
(13)

The above equation gives a lower bound on the minimum `2 adversarial perturbation required
to flip the classification from cA to cB . This lower bound is minimized when pB is maximized
over the set of classes C \ {cA}. Therefore, cB is the runner up class returned by the smoothed
classifier at x. Finally, the factor σ that appears in (2) can be obtained by re-deriving the above with
f̂(x) =

(
f ∗ N (0, σ2I)

)
(x) and Φ(a) = 1√

2π

∫ a
−∞ exp

(
− 1

2 ( sσ )2
)
ds.

Note that both lemmas presented in this appendix give the same robustness guarantee for small gaps
(pA − pB), but the second lemma is much better for large gaps (in fact, in the limit of a gap going to
1, the second lemma gives an infinite radius while the first lemma only gives a radius of 1

2

√
π
2 ).

B Another perspective for deriving SMOOTHADV

In this section we provide an alternative motivation for the SMOOTHADV objective presented
in Section 2.2. We assume that we have a hard classifier f : Rd → Y which takes the form
f(x) = arg maxy∈Y L(x)y , for some function L : Rd → RY . If f is a neural network classifier, this
L can be taken for instance to be the map from the input to the logit layer immediately preceding the
softmax. If f is of this form, then the smoothed soft classifier g with parameter σ2 associated to (the
one-hot encoding of) f can be written has

g(x)y = Pr
δ∼N (0,σ2I)

[
arg max
y′∈Y

L(x+ δ)y′ = y

]
= E
δ∼N (0,σ2I)

[ν(L(x+ δ))y] , (14)

for all y ∈ Y , where ν : Rd → RY is the function, which at input z, has y-th coordinate equal to 1 if
and only if y = arg maxy′∈Y zy′ , and zero otherwise. The function ν is somewhat hard to work with,
therefore we will approximate it with a smooth function, namely, the softmax function. Recall that
the softmax function with inverse temperature parameter β is the function ζβ : RY → P (Y) given by
ζβ(z)y = eβzy/

∑
y′∈Y e

βzy′ . Observe that for any z ∈ RY , we have that ζβ(z)→ ν(z) as β →∞.
Thus we can approximate (14) with

g(x)y ≈ E
δ∼N (0,σ2I)

[ζβ(L(x+ δ))y] . (15)

To find an adversarial perturbation of g at data point (x, y), it is sufficient to find a perturbation x̂ so
that g(x)y is minimized. Combining this with the approximation (15), we find that a heuristic to find
an adversarial example for the smoothed classifier at (x, y) is to solve the following optimization
problem:

x̂ = arg min
‖x′−x‖2≤ε

E
δ∼N (0,σ2I)

[ζβ(L(x′ + δ))y] , (16)
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and as we let β → ∞, this converges to finding an adversarial example for the true smoothed
classifier.

To conclude, we simply observe that for neural networks, ζβ(L(x+ δ))y is exactly the soft classifier
that is thresholded to form the hard classifier, if β is taken to be 1. Therefore the solution to (S)
and (16) with β = 1 are the same, since log is a monotonic function.

An interesting direction is to investigate whether varying β in (16) allows us to improve our adversarial
attacks, and if they do, whether this gives us stronger adversarial training as well. Intuitively, as
we take β →∞, the quality of the optimal solution should increase, but the optimization problem
becomes increasingly ill-behaved, and so it is not clear if the actual solution we obtain to this problem
via first order methods becomes better or not.

C Additional Experiments

C.1 Adversarial attacking the base model instead of the smoothed model

We compare SMOOTHADV-ersarial training (training the smoothed classifier g) to:

1. using vanilla adversarial training (PGD) to find adversarial examples of the base classifier f
and train on them. We refer to this as Vanilla PGD training.

2. using vanilla adversarial training (PGD) to find adversarial examples of the base classifier
f , add Gaussian noise to them, then train on the resulting inputs. We refer to this as Vanilla
PGD+noise training.

For our method and the above two methods, we use T = 2 steps of attack, mtrain = 1, and we train
for ε ∈ {0.25, 0.5, 1.0, 2.0}, and for σ ∈ {0.12, 0.25, 0.5, 1.0}.
Fig. 4 plots the best certified accuracies over all ε and σ values, for each `2 radius r using our
SMOOTHADVPGD trained classifiers vs. smoothed models trained via Vanilla PGD or Vanilla
PGD+noise. Fig. 4 also plots Cohen et al. [6] results as a baseline. Observe that SMOOTHADV-
ersially trained models are more robust overall.
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Figure 4: Certified defenses: ours vs. Cohen et al. [6] vs. vanilla PGD vs. vanilla PGD + noise.

C.2 Effect of number of noise samples mtrain in (6) during SMOOTHADV-ersarial training
on the certified accuracy of smoothed classifiers

As presented in Section 4.3, more noise samples δi lead to stronger SMOOTHADV-eraial attack.
Here, we demonstrate that if we train with such improved attacks, we get higher certified accuracies
of the smoothed classifier. Fig. 5 plots the best certified accuracies over models trained using
SMOOTHADVPGD or SMOOTHADVDDN with T ∈ {2, 4, 6, 8, 10}, σ ∈ {0.12, 0.25, 0.5, 1.0}, ε ∈
{0.25, 0.5, 1.0, 2.0}, and across various number of noise samples mtrain for the attack. Observe that
models trained with higher mtrain tend to have higher certified accuracies.
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Figure 5: Vary number of samples mtrain.

C.3 Effect of ε during training on the certified accuracy of smoothed classifiers

Here, we analyze the effect of the maximum allowed `2 perturbation of SMOOTHADV during
adversarial training on the robustness of the obtained smoothed classifier. Fig. 6 plots the best certified
accuracies for ε ∈ {0.25, 0.5, 1.0, 2.0} over models trained using SMOOTHADVPGDwith T ∈
{2, 4, 6, 8, 10}, mtrain ∈ {1, 2, 4, 8}, and σ ∈ {0.12, 0.25, 0.5, 1.0}. Observe that as ε increases, the
certified accuracies for small `2 radii decrease, but those for large `2 radii increase, which is expected.
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Figure 6: Vary ε. Observe that as ε increases, the certified accuracies for small `2 radii decrease, but
those for large `2 radii increase, which is expected.

C.4 Effect of the number of samples mtest in (6) during SMOOTHADV attack on the
empirical accuracies

SMOOTHADVPGD requires the evaluation of (6) as discussed in Section 3. Here, we analyze how
sensitive our attack is to the number of samples mtest used in (6). Fig. 3 shows the empirical
accuracies for various values of mtest. Lower accuracies correspond to stronger attacks. For
mtest = 1, the vanilla PGD attack (attacking the base classifier instead of the smooth classifier)
performs better than SMOOTHADV, but as mtest increases, our attack becomes stronger, decreasing
the gap between certified and empirical accuracies. We did not observe any noticeable improvement
beyond mtest = 128.
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C.5 Effect of the number of Monte Carlo samples n in PREDICT on the empirical accuracies

Fig. 7 plots the empirical accuracies of g using a SMOOTHADVPGD attack (withmtest = 128) across
different numbers of Monte Carlo samples n that are used by PREDICT. Observe that the empirical
accuracies increase as n increases since the prediction quality of the smoothed classifier improves i.e.
less predictions are abstained.
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Figure 7: Empirical accuracies. Vary number of samples n. The higher the better.

C.6 Performance of the gradient-free estimator (7)

Despite the appealing features of the gradient-free estimator (7) presented in Section 3.1 as an
alternative to (6), in practice we find that this attack is quite weak. This is shown in Fig. 8 for various
values of mtest.

We speculate that this is because the variance of the gradient estimator is too high. We believe that
investigating this attack in practice is an interesting direction for future work.
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Figure 8: The emprirical accuracies found by the attack (S) using the plug-in estimator (6) vs. the
gradient-free estimator (7). The closer an empirical curve is to the certified curve, the stronger the
attack.
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D Experiments Details

Here we include details of all the experiments conducted in this paper.

Attacks used in the paper We use two of the strongest attacks in the literature, projected gradient
descent (PGD) [25] and decoupled direction and norm (DDN) [29] attacks. We adapt these attacks
such that their gradient steps are given by (6), and we call the resulting attacks SMOOTHADVPGD

and SMOOTHADVDDN, respectively.

For PGD (SMOOTHADVPGD), we use a constant step size γ = 2 ε
T where T is the number of attack

steps, and ε is the maximum allowed `2 perturbation of the input.

For DDN (SMOOTHADVDDN), the attack objective is in fact different than that of PGD (i.e. different
that (S)). DDN tries to find the “closest” adversarial example to the input instead of finding the “best”
adversarial example (in terms of maximizing the loss in a given neighborhood of the input). We stick
to the hyperparameters used in the original paper [29]. We use ε0 = 1, γ = 0.05, and an initial step
size α = 1 that is reduced with cosine annealing to 0.01 in the last iteration (see [29] for the definition
of these parameters). We experimented with very few iterations ({2, 4, 6, 8, 10}) as compared to the
original paper, but we still got good results.

We emphasize that we are not using PGD and DDN to attack the base classifer f of a smoothed
model, instead we are using them to adversarially train smoothed classiers (see Pseudocode 1).

Training details In order to report certified radii in the original coordinates, we first added Gaussian
noise and/or do adversarial attacks, and then standardized the data (in contrast to importing a
standardized dataset). Specifically, in our PyTorch implementation, the first layer of the base classifier
is a normalization layer that performed a channel-wise standardization of its input.

For both ImageNet and CIFAR-10, we trained the base classifier with random horizontal flips and
random crops (in addition to the Gaussian data augmentation discussed in Section 3.2).

The main training algorithm is shown in Pseudocode 1. It has the following parameters: B is the
mini-batch size, m is the number of noise samples used for gradient estimation in (6) as well as for
Gaussian noise data augmentation, and T is the number of steps of an attack.

We point out few remarks.

1. First, an important parameter is the radius of the attack ε. During the first epoch, it is set to
zero, then we linearly increase it over the first ten epochs, then it stays constant.

2. Second, we are reusing the same noise samples during every step of our attack as well as
augmentation. Intuitively, it helps to stabilize the attack process.

3. Finally, the way training is described in Pseudocode 1 is not efficient; it needs to be
appropriately batched so that we compute adversarial examples for every input in a batch at
the same time.

Compute details and training time On CIFAR-10, we trained using SGD on one NVIDIA P100
GPU. We train for 150 epochs. We use a batch size of 256, and an initial learning rate of 0.1 which
drops by a factor of 10 every 50 epochs. Training time varies between few hours to few days,
depending on how many attack steps T and noise samples m are used in Pseudocode 1.

On ImageNet we trained with synchronous SGD on four NVIDIA V100 GPUs. We train for 90
epochs. We use a batch size of 400, and an initial learning rate of 0.1 which drops by a factor of
10 every 30 epochs. Training time varies between 2 to 6 days depending on whether we are doing
SMOOTHADV-ersarial training or just Gaussian noise training (similar to Cohen et al. [6]).

Models used The models used in this paper are similar to those used in Cohen et al. [6]: a
ResNet-50 [16] on ImageNet, and ResNet-110 on CIFAR-10. These models can be found on
the github repo accompanying [6] https://github.com/locuslab/smoothing/blob/master/
code/architectures.py.

Parameters of CERTIFY amd PREDICT For details of these algorithms, please see the Pseu-
docode in [6].

For CERTIFY, unless otherwise specified, we use n = 100, 000, n0 = 100, α = 0.001.
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For PREDICT, unless otherwise specified, we use n = 100, 000 and α = 0.001.

Source code Our code and trained models are publicly available at http://github.com/
Hadisalman/smoothing-adversarial. The repository also includes all our training/certification
logs, which enables the replication of all the results of this paper by running a single piece of code.
Check the repository for more details.

E Details for Pre-training and Semi-supervision to Improve the Provable
Robustness

E.1 Pre-training

In this appendix, we describe the details of how we employ pre-training within our framework to boost
the certified robustness of our models. We pretrain smoothed classifiers on a 32x32 down-sampled
version of ImageNet (ImageNet32) as done by Hendrycks et al. [17]. Then we fine-tune all the
weights of these models on CIFAR-10 (with the 1000-dimensional logit layer of each model replaced
by a randomly initialized 10-dimensional logit layer suitable for CIFAR-10).

ImageNet32 training We train ResNet-110 architectures on ImageNet32 using SGD on one
NVIDIA P100 GPU. We train for 150 epochs. We use a batch size of 256, and an initial learn-
ing rate of 0.1 which drops by a factor of 10 every 50 epochs. We use SMOOTHADVPGD with T = 2
steps and mtrain = 1 noise samples. We train a total of 16 models each corresponding to a choice of
σ ∈ {0.12, 0.25, 0.5, 1.0} and ε ∈ {0.25, 0.5, 1.0, 2.0}.

Fine-tuning on CIFAR-10 For each choice of σ and ε, we fine tune the corresponding ImageNet32
model on CIFAR-10; we replace the 1000-dimensional logit layer of each model with a randomly
initialized 10-dimensional logit layer suitable for CIFAR-10, then we train for 30 epochs with
a constant learning rate of 0.001 and a batch size of 256. We use SMOOTHADVPGD with T ∈
{2, 4, 6, 8, 10} and mtrain ∈ {1, 2, 4, 8}.

E.2 Semi-supervised Learning

In this appendix, we detail how we employ semi-supervised learning [5] within our framework to
boost the certified robustness of our models.

We train our CIFAR-10 smoothed classifiers via the self-training technique of [5] using their 500K
unlabelled dataset. We equip this dataset with pseudo-labels generated by a standard neural network
trained on CIFAR-10, as in [5]; see [5] for more details4.

Self-training a smoothed classifier works as follows: at every step we randomly sample either a
labelled minibatch from CIFAR-10, or a pseudo-labelled minibatch from the 500K dataset:

1. for a labelled minibatch, we follow Pseudocode 1 as is.
2. for a pseudo-labelled minibatch, we scale the CE loss by a factor of η ∈ {0.1, 0.5, 1.0} and

we follow the rest of Pseudocode 1.

We use SMOOTHADVPGD with T ∈ {2, 4, 6, 8, 10}, mtrain = 1, σ ∈ {0.12, 0.25, 0.5, 1.0}, and
ε ∈ {0.25, 0.5, 1.0, 2.0}.

E.3 Semi-supervised Learning with Pre-training

We also experiment with combining semi-supervised learning with pre-training in the hopes of ob-
taining further improvements. We start from the same ResNet-110 models pretrained on ImageNet32
as in Appendix E.1. Then we finetune these models using semi-supervision, as in Appendix E.2,
for 30 epochs with a learning rate of 0.001. We use SMOOTHADVPGD with T ∈ {2, 4, 6, 8, 10},
mtrain = 1, σ ∈ {0.12, 0.25, 0.5, 1.0}, and ε ∈ {0.25, 0.5, 1.0, 2.0}.

4The 500K unlabelled dataset was not public at the time this paper was written. We obtained it, along with
the pseudo-labels, from the authors of [5]. We refer the reader to the authors of [5] to obtain this dataset if
interested in replicating our self-training results.
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F `2 to `∞ Certified Defense on ImageNet

We find our `2-robust ImageNet models enjoy non-trivial `∞ certified robustness. In Table 4, we
report the best `∞ certified accuracy that we get at a radius of 1/255 (implied by the `2 certified
accuracy at a radius of 1.5 ≈

√
3× 2242/255). We exceed previous state-of-the-art in certified `∞

defenses by around 8.2%.

Table 4: Certified `∞ robustness at a radius of 1
255 on ImageNet.

MODEL `∞ ACC. AT 1/255 STANDARD ACC.

OURS 36.8 53.6
COHEN ET AL. [6] 28.6 57.2

G ImageNet and CIFAR-10 Detailed Results

In this appendix, we include the certified accuracies of each mode that we use in the paper. For each
`2 radius, we highlight the best accuracy across all models. Note that we outperform the models of
Cohen et al. [6] (first three rows of each table) over all `2 radii by wide margins.

Table 5: Approximate certified test accuracy on ImageNet. Each row is a setting of the hyperparam-
eters σ and ε, each column is an `2 radius. The entry of the best σ for each radius is bolded. For
comparison, random guessing would attain 0.001 accuracy.

`2 RADIUS (IMAGENET) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

[6]
σ = 0.25 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.00
σ = 1.00 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.09

σ = 0.25 ε = 0.5 0.63 0.54 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.0 0.62 0.54 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
P
G
D σ = 0.25 ε = 2.0 0.56 0.52 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 4.0 0.49 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.5 0.56 0.48 0.42 0.34 0.00 0.00 0.00 0.00
σ = 0.50 ε = 1.0 0.54 0.49 0.43 0.37 0.00 0.00 0.00 0.00
σ = 0.50 ε = 2.0 0.48 0.45 0.42 0.37 0.00 0.00 0.00 0.00
σ = 0.50 ε = 4.0 0.44 0.42 0.39 0.37 0.00 0.00 0.00 0.00
σ = 1.00 ε = 0.5 0.44 0.38 0.34 0.29 0.24 0.20 0.15 0.11
σ = 1.00 ε = 1.0 0.41 0.36 0.34 0.31 0.26 0.21 0.18 0.14
σ = 1.00 ε = 2.0 0.40 0.37 0.34 0.30 0.27 0.25 0.20 0.15
σ = 1.00 ε = 4.0 0.34 0.31 0.29 0.27 0.25 0.22 0.19 0.16

σ = 0.25 ε = 0.5 0.66 0.52 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.0 0.65 0.56 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
D
D
N σ = 0.25 ε = 2.0 0.65 0.54 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 4.0 0.67 0.55 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.5 0.59 0.48 0.38 0.29 0.00 0.00 0.00 0.00
σ = 0.50 ε = 1.0 0.55 0.49 0.40 0.32 0.00 0.00 0.00 0.00
σ = 0.50 ε = 2.0 0.58 0.49 0.42 0.34 0.00 0.00 0.00 0.00
σ = 0.50 ε = 4.0 0.58 0.51 0.41 0.32 0.00 0.00 0.00 0.00
σ = 1.00 ε = 0.5 0.44 0.37 0.31 0.26 0.20 0.16 0.11 0.08
σ = 1.00 ε = 1.0 0.46 0.39 0.32 0.26 0.22 0.17 0.11 0.09
σ = 1.00 ε = 2.0 0.45 0.39 0.34 0.27 0.23 0.16 0.13 0.09
σ = 1.00 ε = 4.0 0.44 0.39 0.34 0.28 0.22 0.16 0.12 0.08
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Table 6: SMOOTHADV-ersarial training T = 2 steps, mtrain = 1 sample.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.84 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.75 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.75 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.78 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
P
G
D σ = 0.25 ε = 0.25 0.77 0.65 0.49 0.33 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.70 0.57 0.50 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.58 0.45 0.35 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.71 0.60 0.48 0.36 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.66 0.55 0.44 0.34 0.25 0.18 0.12 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.68 0.55 0.49 0.33 0.26 0.17 0.11 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.63 0.52 0.44 0.33 0.25 0.18 0.14 0.09 0.00 0.00
σ = 0.50 ε = 2.00 0.63 0.52 0.44 0.36 0.28 0.20 0.15 0.10 0.00 0.00
σ = 1.00 ε = 0.25 0.50 0.42 0.34 0.27 0.22 0.19 0.15 0.13 0.10 0.07
σ = 1.00 ε = 0.50 0.47 0.39 0.34 0.27 0.23 0.18 0.16 0.13 0.11 0.08
σ = 1.00 ε = 1.00 0.48 0.41 0.35 0.29 0.25 0.20 0.16 0.14 0.12 0.09
σ = 1.00 ε = 2.00 0.43 0.40 0.34 0.28 0.25 0.21 0.17 0.14 0.12 0.10

σ = 0.12 ε = 0.25 0.82 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.79 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.71 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.54 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
D
D
N σ = 0.25 ε = 0.25 0.77 0.65 0.51 0.39 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.74 0.64 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.64 0.59 0.53 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.53 0.49 0.46 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.64 0.56 0.46 0.38 0.30 0.23 0.15 0.10 0.00 0.00
σ = 0.50 ε = 0.50 0.63 0.55 0.47 0.39 0.30 0.24 0.19 0.14 0.00 0.00
σ = 0.50 ε = 1.00 0.57 0.52 0.46 0.41 0.33 0.28 0.23 0.18 0.00 0.00
σ = 0.50 ε = 2.00 0.47 0.45 0.41 0.39 0.35 0.31 0.26 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.42 0.36 0.30 0.25 0.21 0.17 0.14 0.12 0.09
σ = 1.00 ε = 0.50 0.47 0.41 0.37 0.31 0.27 0.22 0.20 0.17 0.14 0.12
σ = 1.00 ε = 1.00 0.46 0.41 0.37 0.33 0.28 0.24 0.22 0.18 0.16 0.14
σ = 1.00 ε = 2.00 0.39 0.37 0.34 0.30 0.27 0.25 0.22 0.20 0.18 0.15
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Table 7: SMOOTHADV-ersarial training T = 4 steps, mtrain = 1 sample.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.82 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.80 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.78 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.78 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
P
G
D σ = 0.25 ε = 0.25 0.77 0.64 0.50 0.38 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.70 0.61 0.50 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.61 0.53 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.72 0.63 0.54 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.65 0.57 0.47 0.37 0.27 0.19 0.12 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.64 0.54 0.45 0.35 0.28 0.20 0.15 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.63 0.54 0.46 0.38 0.30 0.23 0.16 0.11 0.00 0.00
σ = 0.50 ε = 2.00 0.63 0.53 0.44 0.36 0.29 0.22 0.17 0.10 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.41 0.34 0.29 0.22 0.19 0.17 0.14 0.10 0.09
σ = 1.00 ε = 0.50 0.47 0.40 0.34 0.28 0.23 0.20 0.17 0.14 0.11 0.09
σ = 1.00 ε = 1.00 0.47 0.39 0.34 0.28 0.24 0.21 0.18 0.15 0.13 0.09
σ = 1.00 ε = 2.00 0.48 0.40 0.35 0.30 0.25 0.21 0.17 0.14 0.12 0.09

σ = 0.12 ε = 0.25 0.83 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.81 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.72 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.56 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
D
D
N σ = 0.25 ε = 0.25 0.76 0.66 0.51 0.39 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.69 0.63 0.53 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.66 0.59 0.53 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.53 0.49 0.45 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.65 0.57 0.47 0.37 0.29 0.23 0.16 0.09 0.00 0.00
σ = 0.50 ε = 0.50 0.62 0.54 0.48 0.40 0.29 0.25 0.19 0.14 0.00 0.00
σ = 0.50 ε = 1.00 0.56 0.50 0.44 0.39 0.34 0.30 0.23 0.18 0.00 0.00
σ = 0.50 ε = 2.00 0.47 0.44 0.41 0.38 0.34 0.31 0.27 0.24 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.42 0.36 0.30 0.25 0.21 0.18 0.14 0.12 0.10
σ = 1.00 ε = 0.50 0.48 0.43 0.37 0.30 0.26 0.24 0.19 0.16 0.14 0.12
σ = 1.00 ε = 1.00 0.45 0.40 0.37 0.34 0.30 0.25 0.21 0.19 0.17 0.15
σ = 1.00 ε = 2.00 0.37 0.35 0.32 0.30 0.28 0.25 0.23 0.19 0.17 0.15
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Table 8: SMOOTHADV-ersarial training T = 6 steps, mtrain = 1 sample.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.81 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.81 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.76 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.80 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
P
G
D σ = 0.25 ε = 0.25 0.77 0.65 0.49 0.36 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.75 0.64 0.51 0.37 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.63 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.71 0.63 0.52 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.68 0.56 0.47 0.36 0.25 0.19 0.12 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.67 0.58 0.45 0.38 0.30 0.22 0.16 0.11 0.00 0.00
σ = 0.50 ε = 1.00 0.62 0.52 0.43 0.35 0.29 0.25 0.18 0.12 0.00 0.00
σ = 0.50 ε = 2.00 0.63 0.54 0.45 0.36 0.27 0.22 0.16 0.11 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.41 0.35 0.30 0.23 0.19 0.15 0.12 0.10 0.08
σ = 1.00 ε = 0.50 0.47 0.40 0.35 0.30 0.23 0.19 0.17 0.13 0.10 0.09
σ = 1.00 ε = 1.00 0.47 0.40 0.35 0.30 0.24 0.21 0.17 0.15 0.13 0.09
σ = 1.00 ε = 2.00 0.45 0.40 0.34 0.30 0.24 0.18 0.17 0.15 0.12 0.09

σ = 0.12 ε = 0.25 0.81 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.78 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.70 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.56 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
D
D
N σ = 0.25 ε = 0.25 0.76 0.63 0.54 0.40 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.72 0.61 0.52 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.61 0.57 0.52 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.52 0.48 0.44 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.65 0.56 0.45 0.36 0.29 0.22 0.14 0.09 0.00 0.00
σ = 0.50 ε = 0.50 0.62 0.55 0.46 0.38 0.31 0.25 0.20 0.16 0.00 0.00
σ = 0.50 ε = 1.00 0.55 0.51 0.45 0.40 0.35 0.29 0.24 0.19 0.00 0.00
σ = 0.50 ε = 2.00 0.47 0.44 0.42 0.39 0.35 0.30 0.28 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.47 0.41 0.36 0.30 0.25 0.21 0.18 0.14 0.12 0.10
σ = 1.00 ε = 0.50 0.47 0.41 0.37 0.31 0.28 0.23 0.20 0.17 0.14 0.11
σ = 1.00 ε = 1.00 0.45 0.40 0.36 0.32 0.29 0.26 0.22 0.19 0.15 0.14
σ = 1.00 ε = 2.00 0.39 0.36 0.32 0.31 0.27 0.24 0.22 0.19 0.18 0.16

23



Table 9: SMOOTHADV-ersarial training T = 8 steps, mtrain = 1 sample.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.83 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.82 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.77 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.74 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
P
G
D σ = 0.25 ε = 0.25 0.76 0.64 0.50 0.37 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.75 0.63 0.51 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.64 0.56 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.71 0.61 0.54 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.56 0.45 0.34 0.26 0.18 0.12 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.57 0.45 0.37 0.29 0.22 0.16 0.09 0.00 0.00
σ = 0.50 ε = 1.00 0.60 0.53 0.43 0.35 0.30 0.24 0.18 0.13 0.00 0.00
σ = 0.50 ε = 2.00 0.63 0.53 0.45 0.36 0.29 0.22 0.15 0.12 0.00 0.00
σ = 1.00 ε = 0.25 0.47 0.41 0.35 0.28 0.22 0.19 0.17 0.12 0.10 0.08
σ = 1.00 ε = 0.50 0.44 0.39 0.32 0.28 0.23 0.19 0.16 0.13 0.11 0.07
σ = 1.00 ε = 1.00 0.47 0.39 0.34 0.30 0.25 0.20 0.18 0.14 0.11 0.09
σ = 1.00 ε = 2.00 0.46 0.40 0.33 0.30 0.26 0.20 0.18 0.15 0.12 0.10

σ = 0.12 ε = 0.25 0.81 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.77 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.71 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.56 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
D
D
N σ = 0.25 ε = 0.25 0.73 0.64 0.50 0.39 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.74 0.63 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.64 0.58 0.51 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.52 0.48 0.44 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.64 0.55 0.47 0.37 0.29 0.22 0.14 0.09 0.00 0.00
σ = 0.50 ε = 0.50 0.63 0.57 0.48 0.39 0.32 0.26 0.19 0.13 0.00 0.00
σ = 0.50 ε = 1.00 0.56 0.51 0.44 0.40 0.36 0.31 0.25 0.20 0.00 0.00
σ = 0.50 ε = 2.00 0.46 0.43 0.40 0.38 0.35 0.31 0.26 0.22 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.41 0.35 0.30 0.25 0.21 0.17 0.15 0.12 0.10
σ = 1.00 ε = 0.50 0.48 0.42 0.36 0.31 0.26 0.22 0.19 0.16 0.14 0.12
σ = 1.00 ε = 1.00 0.44 0.41 0.35 0.33 0.29 0.25 0.22 0.19 0.16 0.14
σ = 1.00 ε = 2.00 0.39 0.36 0.34 0.30 0.28 0.25 0.23 0.21 0.18 0.16

24



Table 10: SMOOTHADV-ersarial training T = 10 steps, mtrain = 1 sample.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.84 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.81 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.76 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.75 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
P
G
D σ = 0.25 ε = 0.25 0.75 0.63 0.47 0.34 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.73 0.64 0.52 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.71 0.62 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.71 0.62 0.51 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.55 0.45 0.34 0.26 0.19 0.13 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.57 0.45 0.38 0.29 0.23 0.17 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.62 0.56 0.47 0.38 0.32 0.25 0.19 0.12 0.00 0.00
σ = 0.50 ε = 2.00 0.64 0.53 0.45 0.37 0.29 0.22 0.16 0.11 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.43 0.34 0.27 0.22 0.18 0.15 0.12 0.10 0.07
σ = 1.00 ε = 0.50 0.48 0.42 0.36 0.29 0.24 0.19 0.16 0.14 0.11 0.09
σ = 1.00 ε = 1.00 0.47 0.41 0.33 0.29 0.25 0.21 0.18 0.16 0.13 0.10
σ = 1.00 ε = 2.00 0.48 0.40 0.36 0.30 0.24 0.21 0.17 0.13 0.12 0.10

σ = 0.12 ε = 0.25 0.82 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.79 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.72 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.54 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S
M

O
O

T
H

A
D

V
D
D
N σ = 0.25 ε = 0.25 0.74 0.63 0.50 0.39 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.75 0.64 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.63 0.56 0.51 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.53 0.49 0.46 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.62 0.54 0.44 0.36 0.27 0.22 0.14 0.10 0.00 0.00
σ = 0.50 ε = 0.50 0.63 0.54 0.45 0.37 0.31 0.26 0.19 0.13 0.00 0.00
σ = 0.50 ε = 1.00 0.55 0.51 0.45 0.38 0.33 0.28 0.24 0.18 0.00 0.00
σ = 0.50 ε = 2.00 0.49 0.46 0.42 0.37 0.35 0.31 0.26 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.41 0.36 0.31 0.25 0.22 0.18 0.15 0.12 0.10
σ = 1.00 ε = 0.50 0.47 0.41 0.36 0.31 0.27 0.23 0.20 0.16 0.14 0.11
σ = 1.00 ε = 1.00 0.46 0.43 0.38 0.33 0.29 0.26 0.22 0.18 0.15 0.14
σ = 1.00 ε = 2.00 0.40 0.36 0.34 0.32 0.28 0.24 0.22 0.20 0.18 0.16

25



Table 11: SMOOTHADVDDN training T = 4 steps, mtrain ∈ {1, 2, 4, 8} samples.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.82 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.80 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.78 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.78 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
1

S
A

M
P

L
E σ = 0.25 ε = 0.25 0.77 0.64 0.50 0.38 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.70 0.61 0.50 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.61 0.53 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.72 0.63 0.54 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.65 0.57 0.47 0.37 0.27 0.19 0.12 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.64 0.54 0.45 0.35 0.28 0.20 0.15 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.63 0.54 0.46 0.38 0.30 0.23 0.16 0.11 0.00 0.00
σ = 0.50 ε = 2.00 0.63 0.53 0.44 0.36 0.29 0.22 0.17 0.10 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.41 0.34 0.29 0.22 0.19 0.17 0.14 0.10 0.09
σ = 1.00 ε = 0.50 0.47 0.40 0.34 0.28 0.23 0.20 0.17 0.14 0.11 0.09
σ = 1.00 ε = 1.00 0.47 0.39 0.34 0.28 0.24 0.21 0.18 0.15 0.13 0.09
σ = 1.00 ε = 2.00 0.48 0.40 0.35 0.30 0.25 0.21 0.17 0.14 0.12 0.09

σ = 0.12 ε = 0.25 0.84 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.83 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.78 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.79 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
2

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.77 0.65 0.51 0.35 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.77 0.64 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.76 0.66 0.54 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.73 0.64 0.54 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.56 0.47 0.37 0.26 0.18 0.10 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.58 0.47 0.36 0.29 0.22 0.13 0.09 0.00 0.00
σ = 0.50 ε = 1.00 0.64 0.58 0.48 0.39 0.30 0.24 0.16 0.11 0.00 0.00
σ = 0.50 ε = 2.00 0.66 0.57 0.49 0.39 0.31 0.25 0.18 0.13 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.43 0.36 0.29 0.22 0.18 0.15 0.12 0.09 0.07
σ = 1.00 ε = 0.50 0.49 0.43 0.35 0.29 0.24 0.19 0.16 0.13 0.10 0.07
σ = 1.00 ε = 1.00 0.49 0.44 0.36 0.30 0.25 0.20 0.18 0.15 0.11 0.09
σ = 1.00 ε = 2.00 0.49 0.43 0.35 0.30 0.26 0.21 0.19 0.14 0.12 0.09

σ = 0.12 ε = 0.25 0.85 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.85 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.81 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.82 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
4

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.79 0.66 0.51 0.35 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.79 0.63 0.51 0.39 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.77 0.68 0.56 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.76 0.68 0.56 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.68 0.57 0.46 0.37 0.27 0.17 0.11 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.68 0.59 0.48 0.37 0.28 0.21 0.14 0.08 0.00 0.00
σ = 0.50 ε = 1.00 0.66 0.58 0.47 0.38 0.31 0.24 0.17 0.11 0.00 0.00
σ = 0.50 ε = 2.00 0.65 0.58 0.49 0.40 0.29 0.23 0.17 0.10 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.41 0.35 0.29 0.22 0.19 0.15 0.12 0.09 0.07
σ = 1.00 ε = 0.50 0.50 0.44 0.36 0.29 0.24 0.19 0.16 0.12 0.09 0.06
σ = 1.00 ε = 1.00 0.48 0.42 0.35 0.30 0.24 0.19 0.16 0.13 0.10 0.08
σ = 1.00 ε = 2.00 0.39 0.34 0.28 0.23 0.18 0.15 0.13 0.09 0.08 0.06

σ = 0.12 ε = 0.50 0.82 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.80 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.77 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.25 0.79 0.65 0.51 0.37 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
8

S
A

M
P

L
E

S σ = 0.25 ε = 0.50 0.78 0.66 0.51 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.74 0.63 0.54 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.76 0.67 0.54 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.57 0.46 0.38 0.27 0.20 0.13 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.57 0.47 0.39 0.28 0.20 0.14 0.08 0.00 0.00
σ = 0.50 ε = 1.00 0.62 0.55 0.46 0.37 0.30 0.24 0.17 0.10 0.00 0.00
σ = 0.50 ε = 2.00 0.66 0.55 0.46 0.38 0.30 0.23 0.17 0.11 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.42 0.35 0.29 0.23 0.18 0.14 0.11 0.09 0.07
σ = 1.00 ε = 0.50 0.48 0.43 0.36 0.30 0.24 0.18 0.14 0.12 0.09 0.07
σ = 1.00 ε = 1.00 0.48 0.42 0.34 0.28 0.24 0.20 0.17 0.14 0.12 0.08
σ = 1.00 ε = 2.00 0.45 0.39 0.32 0.28 0.24 0.21 0.17 0.13 0.10 0.07

26



Table 12: SMOOTHADVDDN training T = 10 steps, mtrain ∈ {1, 2, 4, 8} samples.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.84 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.81 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.76 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.75 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
1

S
A

M
P

L
E σ = 0.25 ε = 0.25 0.75 0.63 0.47 0.34 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.73 0.64 0.52 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.71 0.62 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.71 0.62 0.51 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.55 0.45 0.34 0.26 0.19 0.13 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.57 0.45 0.38 0.29 0.23 0.17 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.62 0.56 0.47 0.38 0.32 0.25 0.19 0.12 0.00 0.00
σ = 0.50 ε = 2.00 0.64 0.53 0.45 0.37 0.29 0.22 0.16 0.11 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.43 0.34 0.27 0.22 0.18 0.15 0.12 0.10 0.07
σ = 1.00 ε = 0.50 0.48 0.42 0.36 0.29 0.24 0.19 0.16 0.14 0.11 0.09
σ = 1.00 ε = 1.00 0.47 0.41 0.33 0.29 0.25 0.21 0.18 0.16 0.13 0.10
σ = 1.00 ε = 2.00 0.48 0.40 0.36 0.30 0.24 0.21 0.17 0.13 0.12 0.10

σ = 0.12 ε = 0.25 0.86 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.81 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.78 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.79 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
2

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.77 0.63 0.49 0.34 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.63 0.55 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.74 0.65 0.55 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.65 0.53 0.43 0.34 0.24 0.16 0.10 0.06 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.58 0.47 0.37 0.29 0.20 0.13 0.08 0.00 0.00
σ = 0.50 ε = 1.00 0.64 0.56 0.46 0.38 0.30 0.23 0.18 0.12 0.00 0.00
σ = 0.50 ε = 2.00 0.63 0.55 0.49 0.41 0.33 0.24 0.19 0.12 0.00 0.00
σ = 1.00 ε = 0.50 0.49 0.42 0.36 0.28 0.25 0.21 0.17 0.13 0.12 0.08
σ = 1.00 ε = 2.00 0.49 0.43 0.38 0.30 0.26 0.22 0.19 0.15 0.13 0.09

σ = 0.12 ε = 0.25 0.86 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.86 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.81 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.82 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
4

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.79 0.65 0.48 0.34 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.79 0.67 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.77 0.66 0.57 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.75 0.65 0.55 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.59 0.47 0.36 0.27 0.19 0.14 0.09 0.00 0.00
σ = 0.50 ε = 0.50 0.67 0.59 0.47 0.39 0.29 0.23 0.15 0.09 0.00 0.00
σ = 0.50 ε = 1.00 0.66 0.58 0.50 0.42 0.33 0.25 0.17 0.10 0.00 0.00
σ = 0.50 ε = 2.00 0.65 0.57 0.49 0.39 0.34 0.26 0.18 0.12 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.41 0.35 0.28 0.23 0.19 0.16 0.13 0.09 0.07
σ = 1.00 ε = 0.50 0.48 0.42 0.37 0.29 0.24 0.19 0.15 0.12 0.08 0.06
σ = 1.00 ε = 1.00 0.49 0.43 0.36 0.30 0.25 0.21 0.16 0.13 0.12 0.08
σ = 1.00 ε = 2.00 0.49 0.42 0.36 0.30 0.26 0.21 0.17 0.14 0.12 0.09

σ = 0.12 ε = 0.25 0.87 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.86 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.82 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.81 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
8

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.64 0.52 0.38 0.23 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.80 0.69 0.53 0.37 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.62 0.52 0.40 0.32 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.71 0.62 0.52 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.69 0.59 0.45 0.32 0.24 0.19 0.12 0.06 0.00 0.00
σ = 0.50 ε = 0.50 0.65 0.55 0.47 0.39 0.31 0.23 0.16 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.65 0.58 0.47 0.37 0.29 0.22 0.15 0.09 0.00 0.00
σ = 0.50 ε = 2.00 0.65 0.56 0.46 0.36 0.29 0.22 0.16 0.10 0.00 0.00
σ = 1.00 ε = 0.25 0.47 0.43 0.36 0.30 0.26 0.22 0.17 0.13 0.10 0.08
σ = 1.00 ε = 0.50 0.48 0.42 0.35 0.28 0.22 0.18 0.16 0.13 0.10 0.07
σ = 1.00 ε = 1.00 0.46 0.40 0.34 0.29 0.23 0.18 0.15 0.13 0.11 0.09
σ = 1.00 ε = 2.00 0.46 0.40 0.34 0.29 0.24 0.20 0.17 0.15 0.11 0.09
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Table 13: SMOOTHADVPGD training T = 2 steps, mtrain ∈ {1, 2, 4, 8} samples.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.82 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.79 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.71 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.54 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
1

S
A

M
P

L
E σ = 0.25 ε = 0.25 0.77 0.65 0.51 0.39 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.74 0.64 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.64 0.59 0.53 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.53 0.49 0.46 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.64 0.56 0.46 0.38 0.30 0.23 0.15 0.10 0.00 0.00
σ = 0.50 ε = 0.50 0.63 0.55 0.47 0.39 0.30 0.24 0.19 0.14 0.00 0.00
σ = 0.50 ε = 1.00 0.57 0.52 0.46 0.41 0.33 0.28 0.23 0.18 0.00 0.00
σ = 0.50 ε = 2.00 0.47 0.45 0.41 0.39 0.35 0.31 0.26 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.42 0.36 0.30 0.25 0.21 0.17 0.14 0.12 0.09
σ = 1.00 ε = 0.50 0.47 0.41 0.37 0.31 0.27 0.22 0.20 0.17 0.14 0.12
σ = 1.00 ε = 1.00 0.46 0.41 0.37 0.33 0.28 0.24 0.22 0.18 0.16 0.14
σ = 1.00 ε = 2.00 0.39 0.37 0.34 0.30 0.27 0.25 0.22 0.20 0.18 0.15

σ = 0.12 ε = 0.25 0.83 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.80 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.75 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.61 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
2

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.77 0.66 0.53 0.38 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.73 0.64 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.68 0.61 0.55 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.58 0.53 0.48 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.65 0.58 0.48 0.38 0.28 0.21 0.13 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.64 0.56 0.50 0.41 0.32 0.27 0.17 0.12 0.00 0.00
σ = 0.50 ε = 1.00 0.60 0.54 0.48 0.41 0.35 0.29 0.24 0.19 0.00 0.00
σ = 0.50 ε = 2.00 0.52 0.48 0.45 0.41 0.38 0.33 0.28 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.50 0.43 0.37 0.31 0.25 0.21 0.17 0.14 0.11 0.08
σ = 1.00 ε = 0.50 0.48 0.43 0.37 0.32 0.26 0.22 0.19 0.16 0.14 0.10
σ = 1.00 ε = 1.00 0.46 0.43 0.39 0.34 0.30 0.26 0.23 0.19 0.16 0.14
σ = 1.00 ε = 2.00 0.43 0.41 0.36 0.32 0.29 0.26 0.24 0.21 0.17 0.15

σ = 0.12 ε = 0.25 0.86 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.83 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.77 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.64 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
4

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.79 0.66 0.52 0.37 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.76 0.66 0.56 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.64 0.56 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.60 0.56 0.50 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.58 0.47 0.38 0.27 0.20 0.13 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.66 0.59 0.50 0.39 0.30 0.24 0.18 0.11 0.00 0.00
σ = 0.50 ε = 1.00 0.63 0.57 0.49 0.41 0.36 0.29 0.23 0.18 0.00 0.00
σ = 0.50 ε = 2.00 0.53 0.49 0.46 0.41 0.36 0.32 0.27 0.21 0.00 0.00
σ = 1.00 ε = 0.25 0.50 0.43 0.38 0.30 0.25 0.20 0.16 0.13 0.10 0.07
σ = 1.00 ε = 0.50 0.49 0.44 0.39 0.32 0.27 0.23 0.18 0.15 0.12 0.09
σ = 1.00 ε = 1.00 0.49 0.45 0.41 0.35 0.29 0.24 0.19 0.18 0.15 0.13
σ = 1.00 ε = 2.00 0.46 0.42 0.38 0.35 0.31 0.28 0.24 0.21 0.19 0.16

σ = 0.12 ε = 0.25 0.85 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.84 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.80 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.66 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
8

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.81 0.67 0.52 0.40 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.10 0.10 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.73 0.65 0.56 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.61 0.56 0.51 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.57 0.47 0.37 0.28 0.19 0.13 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.68 0.59 0.48 0.41 0.30 0.22 0.16 0.11 0.00 0.00
σ = 0.50 ε = 1.00 0.62 0.56 0.50 0.42 0.35 0.29 0.20 0.14 0.00 0.00
σ = 0.50 ε = 2.00 0.57 0.51 0.46 0.42 0.38 0.32 0.28 0.22 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.43 0.36 0.30 0.26 0.19 0.15 0.13 0.10 0.07
σ = 1.00 ε = 0.50 0.48 0.41 0.35 0.28 0.21 0.17 0.15 0.11 0.08 0.05
σ = 1.00 ε = 1.00 0.46 0.42 0.38 0.33 0.27 0.24 0.20 0.16 0.15 0.12
σ = 1.00 ε = 2.00 0.47 0.44 0.40 0.37 0.32 0.27 0.23 0.20 0.17 0.15

28



Table 14: SMOOTHADVPGD training T = 10 steps, mtrain ∈ {1, 2, 4, 8} samples.

`2 RADIUS (CIFAR-10) 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

[6]
σ = 0.12 0.81 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 0.75 0.60 0.43 0.27 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 0.65 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
σ = 1.00 0.47 0.39 0.34 0.28 0.22 0.17 0.14 0.12 0.10 0.08

σ = 0.12 ε = 0.25 0.82 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.79 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.72 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.54 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
1

S
A

M
P

L
E σ = 0.25 ε = 0.25 0.74 0.63 0.50 0.39 0.00 0.00 0.00 0.00 0.00 0.00

σ = 0.25 ε = 0.50 0.75 0.64 0.53 0.43 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.63 0.56 0.51 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.53 0.49 0.46 0.42 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.62 0.54 0.44 0.36 0.27 0.22 0.14 0.10 0.00 0.00
σ = 0.50 ε = 0.50 0.63 0.54 0.45 0.37 0.31 0.26 0.19 0.13 0.00 0.00
σ = 0.50 ε = 1.00 0.55 0.51 0.45 0.38 0.33 0.28 0.24 0.18 0.00 0.00
σ = 0.50 ε = 2.00 0.49 0.46 0.42 0.37 0.35 0.31 0.26 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.41 0.36 0.31 0.25 0.22 0.18 0.15 0.12 0.10
σ = 1.00 ε = 0.50 0.47 0.41 0.36 0.31 0.27 0.23 0.20 0.16 0.14 0.11
σ = 1.00 ε = 1.00 0.46 0.43 0.38 0.33 0.29 0.26 0.22 0.18 0.15 0.14
σ = 1.00 ε = 2.00 0.40 0.36 0.34 0.32 0.28 0.24 0.22 0.20 0.18 0.16

σ = 0.12 ε = 0.25 0.83 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.82 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.74 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.60 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
2

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.77 0.64 0.50 0.38 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.73 0.65 0.53 0.44 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.70 0.61 0.54 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.57 0.53 0.51 0.45 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.66 0.55 0.45 0.37 0.30 0.21 0.14 0.09 0.00 0.00
σ = 0.50 ε = 0.50 0.64 0.56 0.49 0.40 0.32 0.25 0.16 0.11 0.00 0.00
σ = 0.50 ε = 1.00 0.61 0.55 0.48 0.41 0.35 0.28 0.22 0.17 0.00 0.00
σ = 0.50 ε = 2.00 0.50 0.46 0.44 0.40 0.38 0.33 0.29 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.50 0.44 0.38 0.31 0.26 0.21 0.17 0.15 0.11 0.09
σ = 1.00 ε = 0.50 0.48 0.44 0.39 0.33 0.27 0.22 0.19 0.16 0.13 0.10
σ = 1.00 ε = 1.00 0.47 0.44 0.39 0.35 0.30 0.25 0.21 0.18 0.16 0.14
σ = 1.00 ε = 2.00 0.45 0.41 0.38 0.35 0.32 0.28 0.25 0.22 0.19 0.17

σ = 0.12 ε = 0.25 0.85 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.80 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.75 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.61 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
4

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.78 0.64 0.50 0.37 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.78 0.68 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.72 0.65 0.56 0.48 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.61 0.56 0.51 0.47 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.67 0.59 0.45 0.34 0.28 0.18 0.13 0.08 0.00 0.00
σ = 0.50 ε = 0.50 0.66 0.56 0.48 0.38 0.29 0.22 0.16 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.64 0.57 0.49 0.40 0.33 0.28 0.22 0.16 0.00 0.00
σ = 0.50 ε = 2.00 0.53 0.50 0.45 0.41 0.35 0.30 0.27 0.23 0.00 0.00
σ = 1.00 ε = 0.25 0.49 0.43 0.37 0.29 0.25 0.21 0.16 0.13 0.10 0.08
σ = 1.00 ε = 0.50 0.50 0.43 0.37 0.30 0.26 0.21 0.17 0.13 0.11 0.09
σ = 1.00 ε = 1.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
σ = 1.00 ε = 2.00 0.45 0.43 0.38 0.36 0.33 0.30 0.25 0.22 0.19 0.16

σ = 0.12 ε = 0.25 0.86 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 0.50 0.83 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 1.00 0.78 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.12 ε = 2.00 0.63 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

m
t
r
a
i
n

=
8

S
A

M
P

L
E

S σ = 0.25 ε = 0.25 0.82 0.68 0.52 0.37 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 0.50 0.76 0.65 0.53 0.41 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 1.00 0.74 0.67 0.57 0.47 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.25 ε = 2.00 0.61 0.57 0.53 0.46 0.00 0.00 0.00 0.00 0.00 0.00
σ = 0.50 ε = 0.25 0.68 0.58 0.48 0.37 0.27 0.17 0.10 0.07 0.00 0.00
σ = 0.50 ε = 0.50 0.66 0.58 0.48 0.38 0.29 0.22 0.16 0.10 0.00 0.00
σ = 0.50 ε = 1.00 0.64 0.57 0.49 0.41 0.34 0.27 0.22 0.14 0.00 0.00
σ = 0.50 ε = 2.00 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.00 0.00
σ = 1.00 ε = 0.25 0.48 0.40 0.34 0.29 0.23 0.17 0.14 0.11 0.07 0.05
σ = 1.00 ε = 0.50 0.48 0.44 0.37 0.32 0.27 0.22 0.19 0.16 0.13 0.09
σ = 1.00 ε = 1.00 0.50 0.44 0.38 0.34 0.29 0.24 0.20 0.16 0.13 0.10
σ = 1.00 ε = 2.00 0.46 0.43 0.40 0.36 0.30 0.29 0.24 0.20 0.18 0.15
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