
Learning for
policy improvement

Geoffrey J. Gordon
Microsoft Research Montreal

Carnegie Mellon University

joint work w/ Wen Sun

Geoff Gordon—RL Day—October 2019

Learning from ≪109 steps
•Many successes of RL: need billions of training examples

•What if experience is expensive?
‣ e.g., robot in real world
‣ e.g., expert supervision
‣ e.g., personalization
‣ e.g., safety

•Idea: replace “SGD-like” algorithms (e.g., policy gradient) with
algorithms based on policy iteration

•Different tradeoff between computation and data
‣ compute better update directions, take bigger steps
‣ “think before you act”

2

Geoff Gordon—RL Day—October 2019

Motivation
•Consider TD(λ) (and later algorithms based on it, like DQN)

•Each iteration: one new experience, one step of SGD
‣ couples optimization efficiency and sample efficiency
‣ if optimizer is slow, uses more data

•What if we did more computation on a minibatch of samples
to determine a better update direction?
‣ if done well: bigger updates, fewer total samples
‣ if done poorly: don’t update policy often enough, collected data is less

relevant

3

Geoff Gordon—RL Day—October 2019

(Exact) policy iteration
•Do at least once:
‣ for all states s, actions a
‣ calculate current total exp. cost Q𝜋(s, a),

value V𝜋(s) = Ea~𝜋(s)[Q𝜋(s, a)], and
(dis)advantage A𝜋(s, a) = Q𝜋(s, a) – V𝜋(s)

‣ choose 𝜋new(s) = argmina A𝜋(s, a)

•Doesn’t work in a real-size problem:
‣ must sample (s, a) rather than iterating over all
‣ can’t calculate A𝜋 exactly, must estimate somehow

‣ can’t choose new policy freely, must work in some hypothesis class
4

// evaluate

// improve

Geoff Gordon—RL Day—October 2019

Approximate policy improvement

•Do at least once:
‣ estimate A𝜋(s, a)

‣ train 𝜋’ to achieve low E[A𝜋(s, a)]

‣ adjust 𝜋 toward 𝜋’ to get 𝜋new

•To instantiate: way to estimate A𝜋(s, a), train 𝜋’, update 𝜋new

‣ also starting 𝜋, stopping criterion

5

// evaluate

// improve

(meta-algorithm)

Geoff Gordon—RL Day—October 2019

Simple analysis of approx PI

•Guarantee: cost of 𝜋new is V𝜋(s0) + T Enew[A𝜋(s, a)]
‣ performance difference lemma
‣ simple proof by telescoping sum: if we follow 𝜋 we expect V𝜋(s0);

each time we instead take an action a ≠ 𝜋(s) we gain/lose A𝜋(s, a)

‣ improvement when Enew[A𝜋(s, a)] < 0
(i.e., 𝜋 improvable, hypothesis class rich enough, and training succeeds)

•Difficulty: expectation is under distribution of (s, a) from 𝜋new
(not the distribution we used to collect data)

•Can we develop algorithms that guarantee improvement (w/
assumptions) despite this difficulty? Yes…

6

Geoff Gordon—RL Day—October 2019

Two routes to improvement
•Small updates: if new policy is close enough to old, then

difference between new/old gradients doesn’t matter
‣ “SGD-like” analysis
‣ pro: frequent updates mean we can get to relevant policies faster

•Big updates: if we can guarantee Enew[A𝜋(s, a)] < 0 whp,
doesn’t matter how close new/old policies are
‣ pro: might be able to do better optimizing each minibatch

•Range of algorithms, from aggressive to deliberate updates

7

Geoff Gordon—RL Day—October 2019

Ex: natural policy gradient
•Exponential family policy 𝜋(s, a) ~ exp(𝜙(s, a)·w)
‣ features 𝜙(s, a), weights w, probs. normalized to sum to 1 at each s

•Evaluation step: fit A𝜋(s, a) ≈ 𝜙(s, a)·v by regression
‣ compatible function approximation (same 𝜙)

‣ data: run 𝜋, collect 𝜙(s, a) → [total cost after taking (s, a)] – V𝜋(s)

• Improvement/update step: boosting
‣ w ← w – 𝜂v (step size 𝜂)

‣ i.e., scale 𝜋(s, a) by exp(–𝜂𝜙(s, a)·v), then renormalize

•Analysis: v estimates natural gradient of total cost wrt w
‣ improvement for small enough 𝜂, vs. noise level (batch size) and smoothness

8

ok to use any
estimate, even a

biased one

ˆ

try all acts, or try
a random one
and use IPS

Geoff Gordon—RL Day—October 2019

Variation: policy boosting
•Functional gradient version of same algorithm

•Instead of linear model 𝜙(s, a)·v, fit A𝜋(s, a) from any
function class (decision trees, deep nets, …) — say, at
iteration t, At(s, a)

•Policy proportional to exp(– 𝜂1A1 – 𝜂2A2 – …)

9

Geoff Gordon—RL Day—October 2019

Ex: conservative policy iteration
•Policy: mixture of classifiers from hypothesis space H

•Evaluation/improvement step: cost-sensitive classification
‣ train 𝜋’ from H to minimize E[A𝜋(s, a)] with s ~ 𝜋, a ~ 𝜋’

‣ sample s ~ 𝜋, a ~ arbitrary, record advantage A𝜋(s, a) and score 1 / P(a | s)

‣ e.g., a ~ 𝜋 and argmax regression: same setup as for natural gradient

•Update step: mixture
‣ 𝜋(s, a) ← (1–𝜂) 𝜋(s, a) + 𝜂 𝜋’(s, a)

•Analysis: 𝜋’ minimizes dot product w/ functional policy gradient
‣ so, update step is Frank-Wolfe
‣ nonconvex objective, but convergence guaranteed with, e.g., 𝜂 = 1/iter

10

Geoff Gordon—RL Day—October 2019

Connection: imitation learning

•Let 𝜋 be the expert policy, run one iteration of approx.
policy improvement to find 𝜋new that does at least as well

•Note: if expert is suboptimal, learner might do strictly better
‣ in fact, a single step of policy iteration is often very powerful
‣ e.g., suggests that a random expert can be good enough for successful

IL, as long as it reaches goals occasionally

11

Geoff Gordon—RL Day—October 2019

Ex: AggreVaTe
•Policy: mixture of classifiers from hypothesis space H

•Evaluation/improvement step: cost-sensitive no-regret
classification
‣ train 𝜋’ from 𝛥(H) to minimize E𝜋’[A𝜋(s, a)]: i.e., on its own distribution

•Update step:
‣ slowly mix from expert to learned policy (original paper)
‣ or wait and set 𝜋 ← 𝜋’ when confident of improvement (justified by

perf. diff. lemma)

12

Geoff Gordon—RL Day—October 2019

Update step
•If we mix over to new policy slowly enough, improvement is

guaranteed (analysis in original AggreVaTe paper)

•If we switch all at once, can be confident of improvement
when observed advantage is sufficiently negative
‣ compare no-regret guarantee to performance difference lemma

V𝜋’(s0) – V𝜋(s0) = T E𝜋’[A𝜋(s, a)]

•Either way, don’t have to use mixture policy (random
selection from iterations of no-regret)
‣ best component of the mixture is at least as good as the mixture itself

13

Geoff Gordon—RL Day—October 2019

Variation: AggreVaTeD
•Pick online gradient descent as no-regret learner

•Pick a deep net as function representation (even though no-
regret property is not guaranteed in this case)

•Ignore the expert after initialization
‣ learn initial policy by behavioral cloning
‣ then aggressively update expert to be current policy (small

minibatches)

14

Geoff Gordon—RL Day—October 2019

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Differential Imitation Learning for Sequential Prediction

(a) Cartpole (b) Acrobot (c) Acrobot (POMDP) (d) Walker (e) Hopper

Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green),
experts (red), and RL algorithms (dotted) on different robotics simulators.

Arc-Eager AggreVaTeD (LSTMs) AggreVaTeD (NN) SL-RL (LSTMs) SL-RL(NN) RL (LSTMs) RL (NN) DAgger SL (LSTMs) SL (NN) Random

Regular 0.924±0.10 0.851±0.10 0.826± 0.09 0.386±0.1 0.256±0.07 0.227±0.06 0.832±0.02 0.813±0.1 0.325±0.2 ⇠0.150Natural 0.915±0.10 0.800±0.10 0.824±0.10 0.345±0.1 0.237±0.07 0.241±0.07

Table 1. Performance (UAS) of different approaches on handwritten algebra dependency parsing. SL stands for supervised learning using
expert’s samples: maximizing the likelihood of expert’s actions under the sequences generated by expert itself. SL-RL means RL with
initialization using SL. Random stands for the initial performances of random policies (LSTMs and NN). The performance of DAgger
with Kernel SVM is from (Duyck & Gordon, 2015).

sists of three data structures: Stack, Buffer and Arcs, which
store raw images of the algebraic symbols. Since the sizes
of stack, buffer and arcs change during parsing, a com-
mon approach is to featurize the state s by taking the fea-
tures of the latest three symbols from stack, buffer and arcs
(e.g., (Chang et al., 2015a)). Hence the problem falls into
the partially observable setting, where the feature o is ex-
tracted from state s and only contains partial information
about s. The dataset consists of 400 sets of handwritten
algebra equations. We use 80% for training, 10% for val-
idation, and 10% for testing. We include an example of
handwritten algebra equations and its dependency tree in
Appendix I. Note that different from robotics simulators
where at every episode one can get fresh data from the sim-
ulators, the dataset is fixed and sample efficiency is critical.

The RNN policy follows the design from (Sutskever et al.,
2014). It consists of two LSTMs. Given a sequence of al-
gebra symbols ⌧ , the first LSTM processes one symbol at
a time and at the end outputs its hidden states and mem-
ory (i.e., a summary of ⌧). The second LSTM initializes its
own hidden states and memory using the outputs of the first
LSTM. At every parsing step t, the second LSTM takes the
current partial observation ot (ot consists of features of the
most recent item from stack, buffer and arcs) as input, and
uses its internal hidden state and memory to compute the
action distribution ⇡(·|o1, ..., ot, ⌧) conditioned on history.
We also tested reactive policies constructed as fully con-
nected ReLu neural networks (NN) (one-layer with 1000
hidden states) that directly maps from observation ot to ac-
tion a, where ot uses the most three recent items. We use
variance reduced gradient estimations, which give better
performance in practice. The performance is summarised
in Table 1. Due to the partial observability of the prob-
lem, AggreVaTeD with a LSTM policy achieves signifi-
cantly better UAS scores compared to the NN reactive pol-

(a) Validation (b) Test

Figure 3. UAS (y-axis) versus number of iterations (n on x-axis)
of AggreVaTeD with LSTM policy (blue and green), experts (red)
on validation set and test set for Arc-Eager Parsing.

icy and DAgger with a Kernelized SVM (Duyck & Gordon,
2015). Also AggreVaTeD with a LSTM policy achieves
97% of optimal expert’s performance. Fig. 3 shows the im-
provement rate of regular gradient and natural gradient on
both validation set and test set. Overall we observe that
both methods have similar performance. Natural gradient
achieves a better UAS score in validation and converges
slightly faster on the test set but also achieves a lower UAS
score on test set.

7. Conclusion
We introduced AggreVaTeD, a differentiable imitation
learning algorithm which trains neural network policies for
sequential prediction tasks such as continuous robot control
and dependency parsing on raw image data. We showed
that in theory and in practice IL can learn much faster
than RL with access to optimal cost-to-go oracles. The IL
learned policies were able to achieve expert and sometimes
super-expert levels of performance in both fully observable
and partially observable settings. The theoretical and ex-
perimental results suggest that IL is significantly more ef-
fective than RL for sequential prediction with near optimal
cost-to-go oracles.

AggreVaTeD on AI gym 2d walker
•Single PI step, starting from policy from TRPO (overnight)

•AggreVaTeD (regular and natural gradient versions) improves
much faster than from-scratch RL, beats original expert

15

Geoff Gordon—RL Day—October 2019

Differential Imitation Learning for Sequential Prediction

(a) Cartpole (b) Acrobot (c) Acrobot (POMDP) (d) Walker (e) Hopper

Figure 2. Performance (cumulative reward R on y-axis) versus number of episodes (n on x-axis) of AggreVaTeD (blue and green),
experts (red), and RL algorithms (dotted) on different robotics simulators.

performance in the Hopper problem. After 100 iterations,
we see that by leveraging the help from experts, Aggre-
VaTeD can achieve much faster improvement rate than the
corresponding RL algorithms.

6.2. Dependency Parsing on Handwritten Algebra

We consider a sequential prediction problem: transition-
based dependency parsing for handwritten algebra with raw
image data (Duyck & Gordon, 2015). The parsing task
for algebra is similar to the classic dependency parsing
for natural language (Chang et al., 2015a) where the prob-
lem is modelled in the IL setting and the state-of-the-art is
achieved by AggreVaTe with FTRL (using Data Aggrega-
tion). The additional challenge here is that the inputs are
handwritten algebra symbols in raw images. We directly
learn to predict parse trees from low level image features
(Histogram of Gradient features (HoG)). During training,
the expert is constructed using the ground-truth dependen-
cies in training data. The full state s during parsing con-
sists of three data structures: Stack, Buffer and Arcs, which
store raw images of the algebraic symbols. Since the sizes
of stack, buffer and arcs change during parsing, a com-
mon approach is to featurize the state s by taking the fea-
tures of the latest three symbols from stack, buffer and arcs
(e.g., (Chang et al., 2015a)). Hence the problem falls into
the partially observable setting, where the feature o is ex-
tracted from state s and only contains partial information
about s. The dataset consists of 400 sets of handwritten
algebra equations. We use 80% for training, 10% for val-
idation, and 10% for testing. We include an example of
handwritten algebra equations and its dependency tree in
Appendix I. Note that different from robotics simulators
where at every episode one can get fresh data from the sim-
ulators, the dataset is fixed and sample efficiency is critical.

The RNN policy follows the design from (Sutskever et al.,
2014). It consists of two LSTMs. Given a sequence of al-
gebra symbols ⌧ , the first LSTM processes one symbol at
a time and at the end outputs its hidden states and mem-
ory (i.e., a summary of ⌧). The second LSTM initializes its
own hidden states and memory using the outputs of the first
LSTM. At every parsing step t, the second LSTM takes the
current partial observation ot (ot consists of features of the

(a) Validation (b) Test

Figure 3. UAS (y-axis) versus number of iterations (n on x-axis)
of AggreVaTeD with LSTM policy (blue and green), experts (red)
on validation set and test set for Arc-Eager Parsing.

most recent item from stack, buffer and arcs) as input, and
uses its internal hidden state and memory to compute the
action distribution ⇡(·|o1, ..., ot, ⌧) conditioned on history.
We also tested reactive policies constructed as fully con-
nected ReLu neural networks (NN) (one-layer with 1000
hidden states) that directly maps from observation ot to ac-
tion a, where ot uses the most three recent items. We use
variance reduced gradient estimations, which give better
performance in practice. The performance is summarised
in Table 1. Due to the partial observability of the prob-
lem, AggreVaTeD with a LSTM policy achieves signifi-
cantly better UAS scores compared to the NN reactive pol-
icy and DAgger with a Kernelized SVM (Duyck & Gordon,
2015). Also AggreVaTeD with a LSTM policy achieves
97% of optimal expert’s performance. Fig. 3 shows the im-
provement rate of regular gradient and natural gradient on
both validation set and test set. Overall we observe that
both methods have similar performance. Natural gradient
achieves a better UAS score in validation and converges
slightly faster on the test set but also achieves a lower UAS
score on test set.

7. Conclusion
We introduced AggreVaTeD, a differentiable imitation
learning algorithm which trains neural network policies for
sequential prediction tasks such as continuous robot control
and dependency parsing on raw image data. We showed
that in theory and in practice IL can learn much faster
than RL with access to optimal cost-to-go oracles. The IL
learned policies were able to achieve expert and sometimes
super-expert levels of performance in both fully observable

AggreVaTeD on POMDP

•Fun use of IL: let
the expert cheat

•POMDP version
of acrobot (can
see only joint
angles not angular
velocities)

•Expert sees
everything

16

Geoff Gordon—RL Day—October 2019

Summary
•Sample-efficient RL via approximate policy improvement

•Family of RL algorithms (different ways to estimate
advantages, represent step directions, improve policies;
aggressive to deliberate updates)
‣ gave several examples
‣ many more seem possible

•Future work
‣ more thorough exploration and analysis of possibilities
‣ combine these algorithms with exploration mechanisms

17

