Learning for policy improvement

Geoffrey J. Gordon Microsoft Research Montreal Carnegie Mellon University

joint work w/ Wen Sun

Learning from $\ll 10^9$ steps

- Many successes of RL: need billions of training examples
- What if experience is expensive?
 - e.g., robot in real world
 - e.g., expert supervision
 - e.g., personalization
 - ▶ e.g., safety
- Idea: replace "SGD-like" algorithms (e.g., policy gradient) with algorithms based on *policy iteration*
- Different tradeoff between computation and data
 - compute better update directions, take bigger steps
 - ''think before you act''

Geoff Gordon—RL Day—October 2019

Motivation

- Consider TD(λ) (and later algorithms based on it, like DQN)
- Each iteration: one new experience, one step of SGD
 - couples optimization efficiency and sample efficiency
 - ▶ if optimizer is slow, uses more data
- What if we did more computation on a minibatch of samples to determine a better update direction?
 - ▶ if done well: bigger updates, fewer total samples
 - if done poorly: don't update policy often enough, collected data is less relevant

(Exact) policy iteration

- Do at least once:
 - ▶ for all states s, actions a
 - calculate current total exp. cost Q^π(s, a), value V^π(s) = E_{a∼π(s)}[Q^π(s, a)], and (dis)advantage A^π(s, a) = Q^π(s, a) V^π(s)
 - choose $\pi^{new}(s) = \arg \min_a A^{\pi}(s, a)$

// evaluate

// improve

- Doesn't work in a real-size problem:
 - must sample (s, a) rather than iterating over all
 - can't calculate A^{π} exactly, must estimate somehow
 - can't choose new policy freely, must work in some hypothesis class

Approximate policy improvement

(meta-algorithm)

- Do at least once:
 - estimate $A^{\pi}(s, a)$
 - train π ' to achieve low E[A π (s, a)]
 - adjust π toward π ' to get π^{new}

- // evaluate
- // improve

- To instantiate: way to estimate $A^{\pi}(s, a)$, train π' , update π^{new}
 - also starting π , stopping criterion

Simple analysis of approx PI

- Guarantee: cost of π^{new} is $V^{\pi}(s_0) + T E_{\text{new}}[A^{\pi}(s, a)]$
 - performance difference lemma
 - simple proof by telescoping sum: if we follow π we expect $V^{\pi}(s_0)$; each time we instead take an action a $\neq \pi(s)$ we gain/lose $A^{\pi}(s, a)$
 - improvement when $E_{new}[A^{\pi}(s, a)] < 0$ (i.e., π improvable, hypothesis class rich enough, and training succeeds)
- Difficulty: expectation is under distribution of (s, a) from π^{new} (not the distribution we used to collect data)
- Can we develop algorithms that guarantee improvement (w/ assumptions) despite this difficulty? Yes...

Two routes to improvement

- Small updates: if new policy is close enough to old, then difference between new/old gradients doesn't matter
 - "SGD-like" analysis
 - ▶ pro: frequent updates mean we can get to relevant policies faster
- Big updates: if we can guarantee E_{new}[A^π(s, a)] < 0 whp, doesn't matter how close new/old policies are
 - Pro: might be able to do better optimizing each minibatch
- Range of algorithms, from aggressive to deliberate updates

Ex: natural policy gradient

- Exponential family policy $\pi(s, a) \sim \exp(\phi(s, a) \cdot w)$
 - features ϕ (s, a), weights w, probs. normalized to sum to 1 at each s
- Evaluation step: fit $A^{\pi}(s, a) \approx \phi(s, a) \cdot v$ by regression
 - compatible function approximation (same ϕ)
 - data: run π , collect $\phi(s, a) \rightarrow [total cost after taking <math>(s, a)] \hat{V}^{\pi}(s)$
- Improvement/update step: boosting
 - $w \leftarrow w \eta v$ (step size η)

ok to use any estimate, even a biased one

try all acts, or try

a random one

and use IPS

- i.e., scale $\pi(s, a)$ by $\exp(-\eta \phi(s, a) \cdot v)$, then renormalize
- Analysis: v estimates *natural gradient* of total cost wrt w
 - improvement for small enough η , vs. noise level (batch size) and smoothness

Variation: policy boosting

- Functional gradient version of same algorithm
- Instead of linear model $\phi(s, a) \cdot v$, fit $A^{\pi}(s, a)$ from any function class (decision trees, deep nets, ...) say, at iteration t, $A_t(s, a)$
- Policy proportional to $\exp(-\eta_1A_1 \eta_2A_2 ...)$

Ex: conservative policy iteration

- Policy: mixture of classifiers from hypothesis space H
- Evaluation/improvement step: cost-sensitive classification
 - train π ' from H to minimize $E[A^{\pi}(s, a)]$ with $s \sim \pi$, $a \sim \pi$ '
 - sample s ~ π , a ~ arbitrary, record advantage A π (s, a) and score | / P(a | s)
 - e.g., a $\sim \pi$ and argmax regression: same setup as for natural gradient
- Update step: mixture
 - $\pi(s, a) \leftarrow (|-\eta) \pi(s, a) + \eta \pi'(s, a)$
- Analysis: π ' minimizes dot product w/ functional policy gradient
 - ▶ so, update step is Frank-Wolfe
 - nonconvex objective, but convergence guaranteed with, e.g., $\eta = 1$ /iter

Connection: imitation learning

- Let π be the expert policy, run one iteration of approx. policy improvement to find π^{new} that does at least as well
- Note: if expert is suboptimal, learner might do strictly better
 - ▶ in fact, a single step of policy iteration is often very powerful
 - e.g., suggests that a random expert can be good enough for successful IL, as long as it reaches goals occasionally

Ex: Aggre Vale

- Policy: mixture of classifiers from hypothesis space H
- Evaluation/improvement step: cost-sensitive *no-regret* classification
 - train π ' from $\Delta(H)$ to minimize $E_{\pi'}[A^{\pi}(s, a)]$: i.e., on its *own* distribution
- Update step:
 - slowly mix from expert to learned policy (original paper)
 - or wait and set $\pi \leftarrow \pi$ ' when confident of improvement (justified by perf. diff. lemma)

Update step

- If we mix over to new policy slowly enough, improvement is guaranteed (analysis in original AggreVaTe paper)
- If we switch all at once, can be confident of improvement when observed advantage is sufficiently negative
 - compare no-regret guarantee to performance difference lemma $V_{\pi'}(s_0) V_{\pi}(s_0) = T E_{\pi'}[A^{\pi}(s, a)]$
- Either way, don't have to use mixture policy (random selection from iterations of no-regret)
 - best component of the mixture is at least as good as the mixture itself

Variation: AggreVaTeD

- Pick online gradient descent as no-regret learner
- Pick a deep net as function representation (even though noregret property is not guaranteed in this case)
- Ignore the expert after initialization
 - Iearn initial policy by behavioral cloning
 - then aggressively update expert to be current policy (small minibatches)

AggreVaTeD on AI gym 2d walker

- Single PI step, starting from policy from TRPO (overnight)
- AggreVaTeD (regular and natural gradient versions) improves much faster than from-scratch RL, beats original expert

Geoff Gordon—RL Day—October 2019

AggreVaTeD on POMDP

- Fun use of IL: let the expert cheat
- POMDP version

 of acrobot (can
 see only joint
 angles not angular
 velocities)
- Expert sees everything

Summary

- Sample-efficient RL via approximate policy improvement
- Family of RL algorithms (different ways to estimate advantages, represent step directions, improve policies; aggressive to deliberate updates)
 - gave several examples
 - many more seem possible
- Future work
 - more thorough exploration and analysis of possibilities
 - combine these algorithms with exploration mechanisms