

Towards Improving Health Decisions with Reinforcement Learning

Finale Doshi-Velez

Collaborators: Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Xuefeng Peng, David Wihl, Yi Ding, Omer Gottesman, Liwei Lehman, Matthieu Komorowski, Aldo Faisal, David Sontag, Fredrik Johansson, Leo Celi, Aniruddh Raghu, Yao Liu, Emma Brunskill, and the CS282 2017 Course₁

Our Lab: ML Towards Effective, Interpretable Health Interventions

Our Lab: ML Towards Effective, Interpretable Health Interventions

Today: How can reinforcement learning help solve problems in healthcare?

Our Lab: ML Towards Effective, Interpretable Health Interventions

Focus: Situations that require a sequence of decisions

Challenges in the Health Space

- The data are typically available only in batch
 - No control over the clinician policy!
- The data give very partial views of the process
 - Measurements, confounds missing
 - Intents missing
- Success is not always easy to quantify

BUT: We still want to extract as much from these data as we can!

Problem Set-Up

Solutions: Train Model/Value Function

Solves the long-term problem (e.g. Ernst 2005; Parbhoo 2014; Marivate 2015), often in simulation/simplified settings.

Solutions: Nonparametric

Use the full patient history to predict immediate outcomes (e.g. Bogojeska 2012), but often ignore long term effects.

Our insight: These approaches have complementary strengths!

Our insight: These approaches have complementary strengths!

Patients in clusters may be best modeled by their neighbors

0	
	Patient Space

Our insight: These approaches have complementary strengths!

Patients without neighbors may be better modeled with a parametric model

New Solution: Ensemble the Predictors

Application to HIV Management

- 32,960 patients from EU Resist Database; hold out 3,000 for testing.
- Observations: CD4s, viral loads, mutations
- Actions: 312 common drug combinations (from 20 drugs)

Approach	DR Reward
Random Policy	-7.31 ± 3.72
Neighbor Policy	9.35 ± 2.61
Model-Based Policy	3.37 ± 2.15
Policy-Mixture Policy	11.52 ± 1.31
Model-Mixture Policy	12.47 ± 1.38

Application to HIV Management

Application to HIV Management

- 32,960 patients from EU Resist Database; hold out 3,000 for testing.
- Observations: CD4s, viral loads, mutations
- Actions: 312 common drug combinations (from 20 drugs)

Approach	DR Reward
Random Policy	-7.31 ± 3.72
Neighbor Policy	9.35 ± 2.61
Model-Based Policy	3.37 ± 2.15
Policy-Mixture Policy	11.52 ± 1.31
Model-Mixture Policy	12.47 ± 1.38

And: Our hypothesis was correct! Model used when neighbors are far

- Cohort of 15,415 patients with sepsis from the MIMIC dataset (same as Raghu et al. 2017); contains vitals and some lab tests.
- Actions: focus on vasopressors and fluids, used to manage circulation.
- Goal: reduce 30-day mortality; rewards based on probability of 30-day mortality:

$$r(o, a, o') = -\log \frac{f(o')}{1 - f(o')} f(o') + \log \frac{f(o)}{1 - f(o)}$$

Minor Adjustment: Values, not Models

LSTM+DDQN suggests nevertaken actions \rightarrow hard cap.

	Physician	Kernel	DQN	MoE_{V_d,Q_d}	MoE_{V_b,Q_b}
non-recurrent encoded	3.76	3.73	4.06	3.93	4.31
recurrent encoded	3.76	4.46	4.23	5.03	5.72

	Physician	Kernel	DQN	MoE_{V_d,Q_d}	MoE_{V_b,Q_b}
non-recurrent encoded	3.76	3.73	4.06	3.93	4.31
recurrent encoded	3.76	4.46	4.23	5.03	5.72

Just the start: Statistical Methods have high variance

And select non-representative cohorts

And select non-representative cohorts

How can increase confidence in our results?

Core question: Given data collected under some behavior policy π_{b} , can we estimate the value of some other evaluation policy π_{e} ?

Three main kinds of approaches:

· Importance-sampling: reweight current data (high variance)

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

- · Model-based: build model with current data, simulate (high bias)
- · Value-based: apply value evaluation to current data (high bias)

Core question: Given data collected under some behavior policy $\pi_{_{\rm b}}$, can we estimate the value of some other evaluation policy $\pi_{_{\rm e}}$?

Three main kinds of approaches:

· Importance-sampling: reweight current data (high variance)

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

- · Model-based: build model with current data, simulate (high bias)
- · Value-based: apply value evaluation to current data (high bias)

Stitching to Increase Sample Sizes

Importance sampling-based estimators suffer because importance weights most importance weights get small very fast:

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

One way to ameliorate the issue: "stitch" trajectories with zero weight to get more non-zero weight trajectories.

Stitching to Increase Sample Sizes

Importance sampling-based estimators suffer because importance weights most importance weights get small very fast:

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

One way to ameliorate the issue: "stitch" trajectories with zero weight to get more non-zero weight trajectories.

Stitching to Increase Sample Sizes

Importance sampling-based estimators suffer because importance weights most importance weights get small very fast:

Core question: Given data collected under some behavior policy π_{b} , can we estimate the value of some other evaluation policy π_{e} ?

Three main kinds of approaches:

· Importance-sampling: reweight current data (high variance)

$$\rho_n = \prod_t \frac{\pi_e(a_{tn}|s_{tn})}{\pi_b(a_{tn}|s_{tn})}$$

- · Model-based: build model with current data, simulate (high bias)
- · Value-based: apply value evaluation to current data (high bias)

Better Models: Mixtures help again!

We use RL to bound the long-term accuracy of the value estimate.

33

Better Models: Mixtures help again!

We use RL to bound the long-term accuracy of the value estimate.

Bound on the Quality

$$|g_{T} - \hat{g}_{T}| \leq L_{r} \sum_{t=0}^{T} \gamma^{t} \sum_{t'=0}^{t-1} (L_{t})^{t'} \varepsilon_{t} (t - t' - 1) + \sum_{t=0}^{T} \gamma^{t} \varepsilon_{r} (t)$$

Total return error

Error due to state estimation

Error due to reward estimation

 $L_{t/r}$ - Lipschitz constants of transition/reward functions $\varepsilon_{t/r}(t)$ - Bound on model errors for transition/reward at time t T - Time horizon γ - Reward discount factor $g_T \equiv \sum_{t=0}^{T} \gamma^t r(t)$ - Return over entire trajectory

Closely related to bound in - Asadi, Misra, Littman. "Lipschitz Continuity in Model-based Reinforcement Learning." (ICML 2018). 35

Estimating Errors

Parametric

 $\hat{\boldsymbol{\varepsilon}}_{t,p} \approx \max \Delta(\boldsymbol{x}_{t+1}, \hat{\boldsymbol{f}}_t(\boldsymbol{x}_{t'}, \boldsymbol{a}))$

Nonparametric

Toy Example

Example with HIV Simulator

We use RL to bound the long-term accuracy of the value estimate.

Better Models: Designed for Evaluation

Main objective: find a model that will minimize error in individual treatment effects:

$$(E_{s_0}[V^{\pi}(s_0)] - E_{s_0}[\hat{V}^{\pi}(s_0)])^2 E_{s_0}[(V^{\pi}(s_0) - \hat{V}^{\pi}(s_0))^2]$$

where the value function is estimated via trajectories from an approximated model M. Question: Can we do better than just optimizing M for p(M|data)?

Show this can be optimized via a transfer-learning type objective:

$$L(M) = \sum_{nt} l(M, n, t) + \sum_{nt} \rho_{nt} l(M, n, t) + \dots$$

"on-policy" loss "reweighted for π_{\circ} " loss

"reweighted for π_{a} " loss

(Liu et al, NIPS 2018)

Better Models: Designed for Evaluation

Main objective: find a model that will minimize error in individual treatment effects:

$$(E_{s_0}[V^{\pi}(s_0)] - E_{s_0}[\hat{V}^{\pi}(s_0)])^2 E_{s_0}[(V^{\pi}(s_0) - \hat{V}^{\pi}(s_0))^2]$$

where the value approximated mo optimizing M for

Show this can be

L(M

		Tab	ole 1: R	oot MSE fo	or Cart l	Pole				
Long Horizon	RepBM	DR	AN	I DR(A	M) AN	Λ (π)	MRDR	Q MR	DR	IS
Mean Individual	0.4121 1.033	1.359	0.753 1.31	35 1.780 3 -	5 41 47	1.80 7.63	151.1 151.9	20	2	194.5
Short Horizon	RepBM	DR	AM	I DR(A	M) AN	$M(\pi)$	MRDR	Q MR	DR	IS
Mean Individual	0.07836 0.4811	0.02081	0.12: 0.55	54 0.023 06 -	5 0.1 0.5	1233 5974	3.013 3.823	0.2	58	2.86
		Table	2: Roo	t MSE for	Mounta	in Ca	r			
	RepBM	DR	AM	DR(AM)	AM (π) M	RDR Q	MRDR	IS	3
Mean Individual	12.31 31.38	135.8	17.15 36.36	141.6	72.61 79.46		135.4 138.1	172.7	149	0.7

Checking the reasonableness of our policies

Some Basic Digging

Positive Evidence: Reproducing across sites (robust to covariate shift)

Our HIV results hold across two distinct cohorts.

		Doubly Robust	Importance Sampling	Weighted Importance
	Random Policy	-2.31 ± 1.42	-3.48 ± 1.36	-2.80 ± 1.27
	Short-term Kernel	2.17 ± 1.4	2.18 ± 1.20	2.16 ± 1.71
	Long-term Kernel	9.47 ± 1.70	5.72 ± 1.81	6.97 ± 1.29
	POMDP	6.04 ± 2.18	4.15 ± 2.28	6.67 ± 1.74
	Mixture-of-experts	$\textbf{11.83} \pm \textbf{1.26}$	$\textbf{12.50} \pm \textbf{1.19}$	11.07 ± 1.21
		Doubly Dobust	Importance Sampling	Waighted Importance
		Doubly Robust	importance Sampling	weighted hilportance
	Random Policy	-6.33 ± 3.47	-5.57 ± 2.17	-6.18 ± 3.24
- -	Short-term Kernel	1.64 ± 1.86	2.03 ± 1.81	2.17 ± 1.74
5 —				
2	Long-term Kernel	9.67 ± 1.49	7.38 ± 1.72	7.64 ± 1.92

 13.59 ± 1.57

 10.73 ± 1.02

Mixture-of-experts

 11.83 ± 1.31

Positive Evidence: Check importance weights, variances

Sepsis: results hold with different control variates

Ask the Experts

Asking the Doctors

• HIV: Checking against standard of care:

	NNRTIs	NRTIs	PIs	Fusion/Entry Inhibitors
First-line therapy	12157	3 0 5 4	774	128
Second-line therapy	4 0 6 8	8764	6 0 8 2	1 042

• As well as three expert clinicians:

	Clinician 1	Clinician 2	Clinician 3
Agree	18	15	13
Partially Agree	10	11	13
Disagree	2	4	4

Asking the Doctors

• HIV: Checking against standard of care:

• As we'n as three expert clinicians.

	Clinician 1	Clinician 2	Clinician 3
Agree	18	15	13
Partially Agree	10	11	13
Disagree	2	4	4

Detour: Summarizing a Treatment Policy

How can we best communicate a treatment policy to a clinical expert? Formalize as the following game:

Us: Present expert with some state-action pairs Expert: Predict the agent's action in a new state, s' Our Goal: choose the state-action pairs so the expert predicts the best.

Example 1: Gridworld

Given:

Example 2: HIV Simulator

Given:

What happens in states like:

Finding: Humans use different methods in different scenarios

...and it's important to account for it!

Offering Options

In Progress: Displaying Diverse Alternatives

If policies can't be statistically differentiated, share all the options.

54

In Progress: Displaying Diverse Alternatives

If policies can't be statistically differentiated, share all the options.

55

Applied to Hypotension Management

Applied to Hypotension Management

Example for a single decision point

Reward Design

In Progress: IRL to Identify Rewards

(Lee and Srinivasan et al, IJCAI 2019; Srinivasan, in submission)

Going Forward

RL in the health space is tricky, but has potential in several settings. Let's

- Think holistically about how RL can provide value in a human-agent system.
- Be careful with analyses but not turn away from messy problems!

Collaborators: Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Xuefeng Peng, David Wihl, Yi Ding, Omer Gottesman, Liwei Lehman, Matthieu Komorowski, Aldo Faisal, David Sontag, Fredrik Johansson, Leo Celi, Aniruddh Raghu, Yao Liu, Emma Brunskill, and the CS282 2017 Course

Going Forward

RL in the health space is tricky, but has potential in several settings. Let's

- Think holistically about how RL can provide value in a human-agent system.
- Be careful with analyses but not turn away from messy problems!

Collaborators: Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Xuefeng Peng, David Wihl, Yi Ding, Omer Gottesman, Liwei Lehman, Matthieu Komorowski, Aldo Faisal, David Sontag, Fredrik Johansson, Leo & Aniruddh Raghu, Yao Liu, Emma Brunskill, and the CS282 2017 Course

Modeling Improvement #2: **Personalizing** to patient dynamics

Assume that there exists some small latent vector that would allow us to personalize to the patient's dynamics (HiP-MDP).

Modeling Improvement #2: **Personalizing** to patient dynamics

Assume that there exists some small latent vector that would allow us to personalize to the patient's dynamics (HiP-MDP).

Modeling Improvement #2: **Personalizing** to patient dynamics

Results with a (simple) HIV simulator

Killian et al. NIPS 2017; Yao et al. ICML LLARLA workshop 2018

Off-policy Evaluation Challenges: Sensitive to Algorithm Choices

 $\mathsf{WDR}(D) := \sum_{i=1}^{I} \sum_{t=0}^{T} \gamma^{t} w_{i}^{t} r_{t}^{H_{i}} - \sum_{i=1}^{I} \sum_{t=0}^{T} \gamma^{t} (w_{t}^{i} \hat{Q}^{\pi_{e}}(S_{t}^{H_{i}}, A_{t}^{H_{i}}) - w_{t-1}^{i} \hat{V}^{\pi_{e}}(S_{t}^{H_{i}}))$

Off-policy Evaluation Challenges: Sensitive to Algorithm Choices

Sepsis: Neural networks definitely not calibrated.

Off-policy Evaluation Challenges: Sensitive to Algorithm Choices

 $WDR(D) := \sum_{i=1}^{I} \sum_{t=0}^{T} \gamma^{t} w_{i}^{t} r_{t}^{H_{i}} - \sum_{i=1}^{I} \sum_{t=0}^{T} \gamma^{t} (w_{t}^{i} \hat{Q}^{\pi_{e}}(S_{t}^{H_{i}}, A_{t}^{H_{i}}) - w_{t-1}^{i} \hat{V}^{\pi_{e}}(S_{t}^{H_{i}}))$

kNN is more calibrated

Severity	LR	RF	NN	Approx kNN
0 - 4	0.249	0.214	0.213	0.129
5 - 9	0.269	0.254	0.246	0.152
10 - 13	0.309	0.309	0.399	0.210
14 - 23	0.356	0.337	0.426	0.199

Calibration helps

Behaviour Policy Model	MDP Approximate Model	MSE
Approximate kNN	Fitted Q Iteration	3.05
Approximate kNN	Kernel-based RL	6.54
Approximate kNN	Discrete SARSA	6.53
Neural network	Fitted Q Iteration	3.53
Neural network	Kernel-based RL	10.2

In Progress: Displaying Diverse Alternatives

If policies can't be statistically differentiated, give plausible alternatives.

68

SODA-RL Applied to Hypotension Management

Quantitative Results: Safety, quality are important to consider

	Setting			Quantitative Metrics						
	Diversity Weight	Safety Mask?	Quality Term	# Kept Agents	CWPDIS Value	CE w/ Beh. Actions	SymKL w/ Beh. Action Probabilities	ESS	SymKL btw pairs of agents	# Times Agents Allowed Unseen Actions
Diverse and Safe	High	Yes	CE	3	34.25 ± 0.07	1.03 ± 0.04	0.58 ± 0.06	352.2 ± 94.5	1.95 ± 0.21	0 ± 0
	High	Yes	SymKL	3	35.43 ± 1.45	1.13 ± 0.11	0.62 ± 0.13	221.5 ± 102.4	2.05 ± 0.23	0 ± 0
	Low	Yes	CE	0	-	-	-	-	-	
	Low	Yes	SymKL	4	36.70 ± 0.10	0.52 ± 0.00	0.06 ± 0.00	282.9 ± 30.8	0.00 ± 0.00	0 ± 0
	High	Yes	None	4	35.86 ± 1.51	2.44 ± 0.65	1.39 ± 0.47	310.7 ± 180.9	3.27 ± 0.00	0 ± 0
Diverse, not Safe	High	No	CE	0	(H)	-	-	-	-	-
	High	No	SymKL	2	41.74 ± 0.36	1.14 ± 0.15	0.92 ± 0.32	234.7 ± 146.1	2.90 ± 0.00	29230 ± 12387
	Low	No	CE	0	1.7.4	-	-	-	-	-
	Low	No	SymKL	0	2 — 2	-	-	-	-	-
	High	No	None	0	340 Contractor (1997)	-	-	- The second second	-	
Safe, not	None	Yes	CE	4	38.29 ± 0.32	0.52 ± 0.00	0.08 ± 0.00	96.1 ± 18.8	0.01 ± 0.00	0 ± 0
Diverse	None	Yes	SymKL	4	36.74 ± 0.08	0.52 ± 0.00	0.06 ± 0.00	284.1 ± 27.2	0.00 ± 0.00	0 ± 0
Not Safe	None	No	CE	0		-	-	2		<u>_</u>
or Diverse	None	No	SymKL	0	-	-	<u>-</u>	-	-	-