
Proceedings of the 2019 IEEE International Conference on Information Technologies (InfoTech-2019)

19-20 September 2019, St. St. Constantine and Elena, Bulgaria

 ©2018 IEEE

Sentiment Detection from ASR Output

Ivan J. Tashev, IEEE Senior Member, Dimitra Emmanouilidou, IEEE Member
Microsoft Research Labs

One Microsoft Way, Redmond, WA, USA

{ivantash, diemmano }@microsoft.com

Abstract – Emotion and sentiment detection from text have

been one of the first text analysis applications. Practical use

includes human-computer interaction, media content

discovery and applications for monitoring the quality of

customer service calls. In this paper we perform a review of

established and novel features for text analysis, combine them

with the latest deep learning algorithms and evaluate the

proposed models for the needs of sentiment detection for

monitoring of the customer satisfaction from support calls.

The issues we address are robustness to the low ASR

recognition rate, the variable length of the text queries, and

the case of highly imbalanced data sets. The proposed

approaches are shown to significantly outperform the

accuracy of the baseline algorithms.

Keywords – deep learning; sentiment detection; text

analysis.

I. INTRODUCTION

 Affective computing [1] is the art of recognizing

emotions from various modalities. It is widely growing

within the field of Human Computer Interaction (HCI)

where speech remains a primary form of expressive

communication. Predominantly, speech emotion

recognition systems are built to classify speech utterances,

which comprise of one dialog turn and typically range a

few seconds in duration, or 5-10 words in length. It is

assumed that there is one emotion in each utterance and the

classification can be either categorical: into discrete

categories such as sadness, anger, happiness, neutral [2], or

continuous: emotional attributes such as arousal (passive vs

active), and valence (positive vs negative) [3]. For analysis

of customer service telephone calls the classification

happens only on the valence axis (positive, neutral,

negative). Classifications from each of the utterances in the

call are later fused to form the final evaluation of the

customer call. This paper covers sentiment recognition

from the recognized by an Automatic Speech Recognition

(ASR) block text, and we explore various features and

classifiers for sentiment analysis based on a single

utterance of a customer call.

 Emotion and sentiment detection from text is one of the

first applications of text analysis. Initial papers were rule-

based algorithms, later replaced by bag of words (BoW)

modeling using a large sentiment or emotion lexicon [4], or

statistical approaches that also assume the availability of a

large dataset annotated with polarity or emotion labels [5].

Word embedding [6] emerged as a powerful tool to map

words with similar meaning closer together. It also can be

used to transfer the knowledge from large numbers of

unlabeled documents [7] to smaller labeled data sets, in the

context of emotion or sentiment analysis.

Analysis of text utterances using deep neural networks

faces the problem of different number of words in the

utterance, while classifiers (SVM, FC DNNs) expect fixed

number of input features. One approach is to extract

utterance statistics based on the word features a priori, and

use the extracted statistics as input to the classifier;

alternatively, statistics can be extracted after individual

word classification and then combined into a final decision.

A third approach is to use models with an intermediate hold

state, such as Hidden Markov Models (HMM) or RNN.

 Sentiment analysis from call center conversations faces

additional set of problems: the noise in the audio signal that

harms both the audio-based classification and the ASR; the

need for speech diarization into customer and agent speech;

the need for robust text classifiers that overcome inevitable

ASR errors. Another aspect of the sentiment classification

from audio and text in real-life customer calls is that the

collected and labeled data sets are highly imbalanced, with

neutral label dominating – typically above 90%. If we train

the classier on weighted accuracy (WA) we will have very

poor results for the positive and negative classes. If we

train the classifier on unweighted accuracy (UA) instead,

then we will end up with a high absolute number of neutral

phrases misclassified as positive or negative, which is also

non-ideal.

 In this paper we explore various features and classifiers

for sentiment detection from the output of ASR from real-

life customer service calls. To address the issue with the

imbalanced dataset we propose a new cost function to train

the classifiers, which is a weighted sum of UA and WA.

The paper is structured as follows. In section II we describe

the real-life data set and the approaches for labeling it.

Section III covers the investigated feature sets, section IV –

the classifier architectures. We provide the experimental

results in section V and we finish the paper with discussion

of the results and draw some conclusions in section VI.

II. DATASET AND EVALUATION

 The dataset is created from recorded Microsoft customer

support calls, and for a range of products and services. It

consists of 1957 sessions in total. Each conversation has

been automatically segmented into utterances and separated

into agent and customer speech (although occasional mix-

ups occur due to crosstalk or processing glitches). An

initial transcription pass is done automatically, followed by

human transcription. For the purposes of our task, we will

use only the audio data from the customer side, with initial

number of 139,493 utterances.

 Each utterance is labeled for sentiment by three judges in

the Microsoft UHRS crowd-sourcing system. All judges

must pass a qualifying test, scoring at least 75% on ‘gold

set’ of pre-labeled utterances. Judges listen to the entire

conversation, one utterance at a time. Additionally, human-

transcribed text is presented on-screen for both current and

context utterances (three previous and three following).

The context displayed includes both agent and customer

utterance. Each judge labels the utterance using one of the

following labels: clearly positive, somewhat positive,

neutral, somewhat negative, clearly negative, agent speech,

not intended for service (side talk), can't label.

 The data selection includes removing all utterances

labeled agent speech, not intended for service, can't label;

collapsing somewhat and clearly labels together; leaving

only the utterances where at least two of the judges agree.

In the final dataset we have 111,665 utterances left, with

three labels: positive, neutral, and negative. For each

utterance we have noisy transcription (the output of ASR)

and exact transcription.

 The overall judges’ agreement leads to UA of 84.85%.

The labels distribution is 93.01% neutral, 5.22% negative,

and 1.77% positive. The utterances contained between 1

and 97 words, where 95% of them contained less than 18

words. More detailed analysis of the judges’ performance

and the dataset can be found in [8]. The dataset was split on

training, validation, and testing sets in proportion 80%–

10%–10%.

 Class labels were assigned in a way that emphasizes

natural proximity between pairs of classes: -1 for negative,

0 for neutral, and +1 for positive. This way the negative

class is closer to neutral than positive. All classifiers

initially act as regressors that estimate one score value; the

score value is then converted to a class membership using

two thresholds.

 The first evaluation parameter for the classifier is

weighted accuracy (WA):

CL

WA
N

= (1)

where WA is the weighted accuracy, CL is the total number

of correct labels, and N is the total number of labels. Note

that a classifier that always returns neutral achieves 93%

WA on the imbalanced dataset. The second evaluation

parameter is unweighted accuracy (UA):

1

1 K
k

k k

CL
UA

K N=

= (2)

where UA is the unweighted accuracy, Nk is the total

number of labels in class k=1,...,K, and CLk is the total

number of correct labels in class k. Given the three classes

of the dataset, a classifier that always returns neutral

achieves 33% UA.

 With WA as a cost function during training, the trained

neural network will tend to return mostly neutral, reducing

the accuracy for the other two classes. With UA as a cost

function, we will have a very large absolute number of

class neutral misclassified as one of the other two classes.

This will make the manual investigation of customer

support calls more difficult and time consuming. To

address this issue, we propose using as a cost function the

weighted sum of the two accuracies:

 ()1 0.001 tQ WA UA T = + − − (3)

where Q is the cost function, WA and UA are the weighted

and unweighted accuracies, in %, coefficient denotes

the tradeoff between UA and WA, and Tt is the classifier

training time in seconds. The last member is a protection

against classifiers with very long training time and minimal

advantage in accuracy.

 The thresholds are determined as follows:

 ()
1, 2

1, 2 arg max val
Th Th

Th Th Q= (4)

where Th1 and Th2 are the thresholds, and Qval is the cost

function on the validation set.

III. FEATURES

 The input for the feature extractor is a sequence of words

with variable length. The goal is to provide the classifier

with the most informative for the task set of features.

 In the group of the statistical features are the classic for

the field of computational linguistics n-grams: unigrams,

bigrams, and trigrams [9]. Each n-gram is represented as

one-hot vector and we let the classifier learn which n-gram

is carrying more information about the utterance sentiment

of a given class. The feature set for the utterance is the sum

of all one-hot vectors.

 This feature set can be further augmented with

information about the frequency of the n-grams in the

utterances of each class, which in information retrieval is

called TF*IDF (term frequency–inverse document

frequency) [10]. In this case each n-gram is represented by

a sparse vector with length the number of n-grams in each

class and as many different than zero numbers as classes

we have, containing the TF*IDF number of the n-gram for

each class.

 One of the problems in the statistical features is out-of-

vocabulary (OOV) n-grams or TF*IDFs, which are not

presented in the training set, but seen in the test and/or

validation dataset. Both n-grams and TF*IDF features are

frequently referred to as bag-of-words (BoW) features as

they do not keep track of the sequence, i.e. the position of

the n-gram in the utterance is not accounted for.

 Word embedding represents each word as a long vector,

i.e. as a point in a large dimensional space. Because of the

way this vector is derived [6] the words with similar

meaning are close together. Even more, in this space king-

man+woman is very close to queen. For sentiment

detection form text, we can use embedded vectors pre-

trained on a large data corpus, such as the 16 billion

documents dataset in [7]. The probability of OOV words

will generally be small, but the word embedding is

language dependent and will not be domain specific.

 A second approach is to train the word embedding on the

words in the training set. In this case the embedded space

will be domain-specific, but we can have increased number

of OOV words in the validation and test data sets.

 Third approach is to train the embedding jointly with the

sentiment classifier. Then in the embedded space words

informative for a given class will be closer together. The

problem with OOV words will still be present.

 We can use the word embedding vectors as a sequence,

or compute statistics across all the word embedding in the

utterance: mean, max, min, standard deviation.

IV. CLASSIFIERS

 Most of the classifiers expect fixed input length, while

the number of words in the utterance varies. This means

that we either have to do some statistical processing of the

features before the classifier, or to do classification of each

word and then do statistical processing of the outputs, or

use classifiers that carry a state from word to word and

output the final conclusion at the end of the utterance.

 The potential feature sets for the classifiers with fixed

input length is the BoW group. In this paper we limit the

scope to two: Extreme Learning Machine (ELM) [11] and

feed forward fully connected (FC) neural network

frequently referred to simply as DNN [12].

 In the group of classifiers with state we experiment with

Long-Short Term Memory (LSTM) [13] classifiers, which

are in the group of RNN. The LSTM classifiers process the

input features consecutively and account for the order of

the input vectors. They also preserve internal state and

output the decision at the end of the input sequence. LSTM

classifiers perform better than the traditional HMM [14].

 Each neural network has hyper-parameters, describing

the architecture: number of layers, number of neurons in

each layer, etc. All of the results in this paper are presented

after a formal process of hyper-parameters optimization,

using the cost function, defined in Equation (3), as

optimization criterion. The optimization space is small, and

the optimization is carried iteratively, one hyper-parameter

at a time. For each of the single dimensional optimization

procedures a scanning method is used with eventual

quadratic interpolation.

V. EXPERIMENTAL RESULTS

 All the classifiers are implemented in MATLAB using

the Text Analytics toolbox. Criterion (3) is used for

optimization, where 0.5 = . The training times are

measured on a Windows computer with 12-core, 3.6 GHz,

64-bits CPU and 128 Gbytes of RAM. The GPU is

NVIDIA GeForce GTX980Ti. All the design decisions and

algorithmic performance ranking are based on performance

achieved on the validation dataset. The performance

numbers from the test set are provided as evidence for the

generalization of the proposed approaches.

 The results from using BoW as features are provided in

Table I. We use as features unigrams, bigrams, trigrams

and all of them simultaneously. A separate experiment is

done using TF*IDF features. The two neural networks we

experimented with are ELM and DNN. Column Notes

describes the architecture of the neural network: the

number of hidden layers (hl) and neurons in each layer

(hu). As expected, the fully connected deep neural network

performs better than ELM with its single hidden layer. The

combined feature set of 1-, 2-, and 3-grams provides the

highest performance on the validation dataset, achieving

Q=75.63. This is the model that achieves the highest

UA=64.22%. Worth mentioning the performance of the

same neural network using unigrams with Q=75.08. The

good performance of the unigrams as feature can be

explained with the lower number of OOV unigrams,

compared to bigrams and trigrams. It is reasonable to

expect that with large datasets the combined use of all three

features will perform even better.

 Table II shows the results from the experiments with

word embedding. Again, the Notes column gives

information about the neural network architecture.

 The first group of experiments uses a pre-trained word

embedding on 16 billion documents in American English.

This drastically reduces OOV words. As the utterances

have different length, in one of the cases we take statistics

of the embedding vectors with length of 300: mean, max,

min, standard deviation and add as additional feature the

number of the words in the utterance. These 1201 features

from each utterance are the input of two fully connected

neural networks: DNN and ELM. Another approach is to

treat the embedding vectors as a sequence of 300 features

and use an LSTM network as a classifier. In one of the

cases we have an additional fully connected layer at the

LSTM output, in another we collect the LSTM outputs

after each word. In the second case at the end of the

utterances we do statistics as above (mean, min, max,

standard deviation, number of words) and finalize the

decision using ELM neural network. These two approaches

perform well, with slight advantage of the classic LSTM

and FC after the output. It achieves Q=74.94 and

UA=62.18%.

 A second group of experiments is with word embedding

trained either on the training set or trained on the joint

training+validation sets. The advantages here are that the

embedding is domain specific, the disadvantages – the

dataset is small (less than a million words). The best

performing classifier from the previous group of

experiments was used (LSTM+FC, last), but in general this

group has lower results than the first one.

 The last experiment is to train the classifier and

embedding jointly. In this case the embedding vector caries

information about how much this word belongs to a given

class. The used classifier is again LSTM+FC and this is the

third best performing configuration using word embedding.

It doesn't require a language specific pre-trained word

embedding and doesn't depend on the quality of such pre-

trained embedding. The price for this is minimal hit in the

performance, which can be increased with larger dataset.

From this standpoint the third approach is the winner of the

classifiers using embedding as features.

VI. DISCUSSION AND CONCLUSIONS

 In this paper we explored various feature representations

and classifiers for the task of sentiment detection from

speech transcription. We proposed the use of a cost

function that accounts for both WA and UA via

Equation (3), aiming to mitigate highly imbalanced training

dataset. A tradeoff coefficient of 0.5 = was proposed.

For DNN classifier using all n-grams as features when

1.0 = we have WA=94% and UW=42%. When the

coefficient is moved to the other extreme, 0.0 = , then

weighted accuracy goes down to 67% and unweighted

accuracy goes up to 69%. Using 0.5 = provides a good

tradeoff between the WA and UA, where we have most of

the gain in UA (up to 64%), without losing much from WA

(down to 87%).

 Another aspect of the proposed algorithm is to use the

classifiers in regression mode and estimate a value ranging

from -1 (negative), through 0 (neutral), to +1 (positive).

This introduces the concept that negative is closer to

neutral than to positive, but also allows applying of two

separate thresholds to adjust individually the false positive

and false negative rates for the negative and positive

classes.

 In our experiments the traditional classifiers are

represented by the ELM, which performs close, but better

than pretty much all of them. The proposed algorithms

outperform the ELM based classifier with 5-7% in UA for

word embedding features and 2-6% in UA for n-gram

features.

VI. ACKNOWLEDGEMENT

 Authors would like to thank our colleagues Ashley

Chang, Bryan Li, Dimitrios Dimitriadis, and Andreas

Stolcke for labeling the data and fruitful discussions on

sentiment detection from customers calls.

REFERENCES

[1] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, “A review

of affective computing: From unimodal analysis to

multimodal fusion,” Information Fusion, vol. 37, pp. 98–

125, 2017.

[2] B. Schuller, A. Batliner, S. Steidl, and D. Seppi,

“Recognizing realistic emotions and affect in speech: State

of the art and lessons learnt from the first challenge,”

Speech Communication, vol. 53, no. 9, pp. 1062–1087,

2011.

[3] F. Weninger, F. Ringeval, E. Marchi, and B. Schuller,

“Discriminatively trained recurrent neural network for

continuous dimensional emotion recognition from audio,”

in Proceedings of IJCAI, 2016, pp. 2196–2202.

[4] G. Mishne and et al, “Experiments with mood classification

in blog posts,” in Proceedings of ACM SIGIR 2005

Workshop on stylistic analysis of text for information

access, 2005, pp. 321–327.

[5] L. Oneto, F. Bisio, E. Cambria, and D. Anguita, “Statistical

learning theory and ELM for big social data analysis,” IEEE

Comput. Intell. Mag., vol. 11, no. 3, pp. 45–55, 2016.

[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,

“Distributed representations of words and phrases and their

compositionality,” in Proceedings of NIPS, 2013.

[7] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A.

Joulin, “Advances in Pre-Training Distributed Word

Representations,” in Proceedings of the International

Conference on Language Resources and Evaluation (LREC

2018), 2018.

[8] B. Li, D. Dimitriadis, and A. Stolcke, “Acoustic and Lexical

Sentiment Analysis for Customer Service Calls,” in

Proceedings of ICASSP. May 2019, IEEE.

[9] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and

R. L. Mercer, “Class-based n-gram models of natural

language,” Computational Linguistics, vol. 18, pp. 467–479,

1992.

[10] K. Sparck Jones, “A statistical interpretation of term

specificity and its application in retrieval,” Journal of

Documentation, vol. 28, pp. 11–21, 1972.

[11] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme

learning machine: theory and applications,”

Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[12] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning

algorithm for deep belief nets,” Neural Computation, vol.

18, no. 7, pp. 1527–1554, 2006.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp. 1735–

1780, 1997.

[14] L. Rabiner, “A tutorial on hidden Markov models and

selected applications in speech recognition,” Proceedings of

the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

TABLE 1. RESULTS FOR BAG-OF-WORDS AS FEATURES

Classifier Features Valid ation set Notes Test set

 WA UA TrTme Q WA UA WA+UA

 unigrams 87.89 61.74 18.5 74.80 1500 hu 87.89 60.89 74.39

 bigrams 91.04 45.92 159.2 68.32 6620 hu 92.02 45.94 68.98

 ELM trigrams 92.56 35.09 3.3 63.82 2000 hu 93.23 34.75 63.99

 1-,2-,3-grams 88.15 58.78 73.3 73.34 4000 hu 89.37 59.20 74.29

 TF*IDF 89.68 56.61 27.5 73.12 2000 hu 90.13 58.26 74.20

 unigrams 88.33 62.49 335.0 75.08 3 hl, 800 hu 89.48 64.92 77.20

 bigrams 91.72 46.89 843.0 68.46 4 hl, 1024 hu 92.85 46.12 69.49

 DNN trigrams 92.50 35.33 8.5 63.91 2 hl, 128 hu 93.31 34.91 64.11

 1-, 2-, and 3-grams 87.35 64.22 151.6 75.63 3 hl, 512 hu 88.04 66.23 77.14

 TF*IDF 89.44 60.33 237.7 74.65 4 hl, 256 hu 90.40 62.76 76.58

TABLE 2. RESULTS FOR WORD EMBEDDING AS FEATURES

Embedding Features Classifier Val dati on set Notes Test set

 WA UA TrT Q WA UA Q

 Pre-trained stats: #words, mean, ELM 88.7 56.23 169 72.28 5265 hu 89.7 59.1 74.37

on 16 Bill min, max, stdev DNN 84.5 63.89 530 73.66 3 hl, 600 hu 85.8 65.9 75.85

words embeddings LSTM + FC, last 88.2 62.18 233 74.94 150 hu 89.2 63.5 76.32

 as a sequence LSTM+sts+ELM 88.8 61.18 291 74.7 480 hu 89.8 63.1 76.42

Pre-trained on train set LSTM + FC, last 89.3 57.59 752 72.68 256hu 89.9 57.2 73.56

the dataset tran+val sets LSTM + FC, last 89.2 58.04 747 72.89 256hu 89.9 58.6 74.23

Embedding trained jointly LSTM + FC, last 89.6 59.77 265 74.44 180 hu 90.3 58.4 74.35

