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Abstract – Emotion and sentiment detection from text have 

been one of the first text analysis applications. Practical use 

includes human-computer interaction, media content 

discovery and applications for monitoring the quality of 

customer service calls. In this paper we perform a review of 

established and novel features for text analysis, combine them 

with the latest deep learning algorithms and evaluate the 

proposed models for the needs of sentiment detection for 

monitoring of the customer satisfaction from support calls. 

The issues we address are robustness to the low ASR 

recognition rate, the variable length of the text queries, and 

the case of highly imbalanced data sets. The proposed 

approaches are shown to significantly outperform the 

accuracy of the baseline algorithms. 

Keywords – deep learning; sentiment detection; text 

analysis. 
 

I. INTRODUCTION 

 

 Affective computing [1] is the art of recognizing 

emotions from various modalities. It is widely growing 

within the field of Human Computer Interaction (HCI) 

where speech remains a primary form of expressive 

communication. Predominantly, speech emotion 

recognition systems are built to classify speech utterances, 

which comprise of one dialog turn and typically range a 

few seconds in duration, or 5-10 words in length. It is 

assumed that there is one emotion in each utterance and the 

classification can be either categorical: into discrete 

categories such as sadness, anger, happiness, neutral [2], or 

continuous: emotional attributes such as arousal (passive vs 

active), and valence (positive  vs negative) [3]. For analysis 

of customer service telephone calls the classification 

happens only on the valence axis (positive, neutral, 

negative). Classifications from each of the utterances in the 

call are later fused to form the final evaluation of the 

customer call. This paper covers sentiment recognition 

from the recognized by an Automatic Speech Recognition 

(ASR) block text, and we explore various features and 

classifiers for sentiment analysis based on a single 

utterance of a customer call. 

 Emotion and sentiment detection from text is one of the 

first applications of text analysis. Initial papers were rule-

based algorithms, later replaced by bag of words (BoW) 

modeling using a large sentiment or emotion lexicon [4], or 

statistical approaches that also assume the availability of a 

large dataset annotated with polarity or emotion labels [5]. 

Word embedding [6] emerged as a powerful tool to map 

words with similar meaning closer together. It also can be 

used to transfer the knowledge from large numbers of 

unlabeled documents [7] to smaller labeled data sets, in the 

context of emotion or sentiment analysis. 

Analysis of text utterances using deep neural networks 

faces the problem of different number of words in the 

utterance, while classifiers (SVM, FC DNNs) expect fixed 

number of input features. One approach is to extract 

utterance statistics based on the word features a priori, and 

use the extracted statistics as input to the classifier; 

alternatively,  statistics can be extracted after individual 

word classification and then combined into a final decision. 

A third approach is to use models with an intermediate hold 

state, such as Hidden Markov Models (HMM) or RNN. 

 Sentiment analysis from call center conversations faces 

additional set of problems: the noise in the audio signal that 

harms both the audio-based classification and the ASR; the 

need for speech diarization into customer and agent speech; 

the need for robust text classifiers that overcome inevitable 

ASR errors. Another aspect of the sentiment classification 

from audio and text in real-life customer calls is that the 

collected and labeled data sets are highly imbalanced, with 

neutral label dominating – typically above 90%. If we train 

the classier on weighted accuracy (WA) we will have very 

poor results for the positive and negative classes. If we 

train the classifier on unweighted accuracy (UA) instead, 

then we will end up with a high absolute number of neutral 

phrases misclassified as positive or negative, which is also 

non-ideal. 

 In this paper we explore various features and classifiers 

for sentiment detection from the output of ASR from real-

life customer service calls. To address the issue with the 

imbalanced dataset we propose a new cost function to train 

the classifiers, which is a weighted sum of UA and WA. 

The paper is structured as follows. In section II we describe 

the real-life data set and the approaches for labeling it. 

Section III covers the investigated feature sets, section IV – 

the classifier architectures. We provide the experimental 

results in section V and we finish the paper with discussion 

of the results and draw some conclusions in section VI. 

 

II. DATASET AND EVALUATION 

 

 The dataset is created from recorded Microsoft customer 

support calls, and for a range of products and services. It 

consists of 1957 sessions in total. Each conversation has 

been automatically segmented into utterances and separated 

into agent and customer speech (although occasional mix-

ups occur due to crosstalk or processing glitches). An 

initial transcription pass is done automatically, followed by 

human transcription. For the purposes of our task, we will 

use only the audio data from the customer side, with initial 

number of 139,493 utterances. 

 Each utterance is labeled for sentiment by three judges in 

the Microsoft UHRS crowd-sourcing system. All judges 

must pass a qualifying test, scoring at least 75% on ‘gold 



 

 

set’ of pre-labeled utterances. Judges listen to the entire 

conversation, one utterance at a time. Additionally, human-

transcribed text is presented on-screen for both current and 

context utterances (three previous and three following). 

The context displayed includes both agent and customer 

utterance. Each judge labels the utterance using one of the 

following labels: clearly positive, somewhat positive, 

neutral, somewhat negative, clearly negative, agent speech, 

not intended for service (side talk), can't label. 

 The data selection includes removing all utterances 

labeled agent speech, not intended for service, can't label; 

collapsing somewhat and clearly labels together; leaving 

only the utterances where at least two of the judges agree. 

In the final dataset we have 111,665 utterances left, with 

three labels: positive, neutral, and negative. For each 

utterance we have noisy transcription (the output of ASR) 

and exact transcription. 

 The overall judges’ agreement leads to UA of 84.85%. 

The labels distribution is 93.01% neutral, 5.22% negative, 

and 1.77% positive. The utterances contained between 1 

and 97 words, where 95% of them contained less than 18 

words. More detailed analysis of the judges’ performance 

and the dataset can be found in [8]. The dataset was split on 

training, validation, and testing sets in proportion 80%–

10%–10%. 

 Class labels were assigned in a way that emphasizes 

natural proximity between pairs of classes: -1 for negative, 

0 for neutral, and +1 for positive. This way the negative 

class is closer to neutral than positive. All classifiers 

initially act as regressors that estimate one score value; the 

score value is then converted to a class membership using 

two thresholds. 

 The first evaluation parameter for the classifier is 

weighted accuracy (WA): 
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where WA is the weighted accuracy, CL is the total number 

of correct labels, and N is the total number of labels. Note 

that a classifier that always returns neutral achieves 93% 

WA on the imbalanced dataset. The second evaluation 

parameter is unweighted accuracy (UA): 
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where UA is the unweighted accuracy, Nk is the total 

number of labels in class k=1,...,K,  and CLk is the total 

number of correct labels in class k. Given the three classes 

of the dataset, a classifier that always returns neutral 

achieves 33% UA. 

 With WA as a cost function during training, the trained 

neural network will tend to return mostly neutral, reducing 

the accuracy for the other two classes. With UA as a cost 

function, we will have a very large absolute number of 

class neutral misclassified as one of the other two classes. 

This will make the manual investigation of customer 

support calls more difficult and time consuming. To 

address this issue, we propose using as a cost function the 

weighted sum of the two accuracies: 

 ( )1 0.001 tQ WA UA T = + − −   (3) 

where Q is the cost function, WA and UA are the weighted 

and unweighted accuracies, in %, coefficient   denotes 

the tradeoff between UA and WA, and Tt is the classifier 

training time in seconds. The last member is a protection 

against classifiers with very long training time and minimal 

advantage in accuracy.  

 The thresholds are determined as follows:  

   ( )
1, 2

1, 2 arg max val
Th Th

Th Th Q=   (4) 

where Th1 and Th2 are the thresholds, and Qval is the cost 

function on the validation set. 

 

III. FEATURES 

 

 The input for the feature extractor is a sequence of words 

with variable length. The goal is to provide the classifier 

with the most informative for the task set of features. 

 In the group of the statistical features are the classic for 

the field of computational linguistics n-grams: unigrams, 

bigrams, and trigrams [9]. Each n-gram is represented as 

one-hot vector and we let the classifier learn which n-gram 

is carrying more information about the utterance sentiment 

of a given class. The feature set for the utterance is the sum 

of all one-hot vectors. 

 This feature set can be further augmented  with  

information about the frequency of the n-grams in the 

utterances of each class, which in information retrieval is 

called TF*IDF (term frequency–inverse document 

frequency) [10]. In this case each n-gram is represented by 

a sparse vector with length the number of n-grams in each 

class and as many different than zero numbers as classes 

we have, containing the TF*IDF number of the n-gram for 

each class.  

 One of the problems in the statistical features is out-of-

vocabulary (OOV) n-grams or TF*IDFs, which are not 

presented in the training set, but seen in the test and/or 

validation dataset. Both n-grams and TF*IDF features are 

frequently referred to as bag-of-words (BoW) features as 

they do not keep track of the sequence, i.e. the position of 

the n-gram in the utterance is not accounted for. 

 Word embedding represents each word as a long vector, 

i.e. as a point in a large dimensional space. Because of the 

way this vector is derived [6] the words with similar 

meaning are close together. Even more, in this space king-

man+woman is very close to queen. For sentiment 

detection form text, we can use embedded vectors pre-

trained on a large data corpus, such as the 16 billion 

documents dataset in [7]. The probability of OOV words 

will generally be small, but the word embedding is 

language dependent and will not be domain specific. 

 A second approach is to train the word embedding on the 

words in the training set. In this case the embedded space 

will be domain-specific, but we can have increased number 

of OOV words in the validation and test data sets. 

 Third approach is to train the embedding jointly with the 

sentiment classifier. Then in the embedded space words 

informative for a given class will be closer together. The 

problem with OOV words will still be present. 

 We can use the word embedding vectors as a sequence, 

or compute statistics across all the word embedding in the 

utterance: mean, max, min, standard deviation. 

 



 

 

IV. CLASSIFIERS 

 

 Most of the classifiers expect fixed input length, while 

the number of words in the utterance varies. This means 

that we either have to do some statistical processing of the 

features before the classifier, or to do classification of each 

word and then do statistical processing of the outputs, or 

use classifiers that carry a state from word to word and 

output the final conclusion at the end of the utterance.  

 The potential feature sets for the classifiers with fixed 

input length is the BoW group. In this paper we limit the 

scope to two: Extreme Learning Machine (ELM) [11] and 

feed forward fully connected (FC) neural network 

frequently referred to simply as DNN [12].  

 In the group of classifiers with state we experiment with 

Long-Short Term Memory (LSTM) [13] classifiers, which 

are in the group of RNN. The LSTM classifiers process the 

input features consecutively and account for the order of 

the input vectors. They also preserve internal state and 

output the decision at the end of the input sequence. LSTM 

classifiers perform better than the traditional HMM [14].  

 Each neural network has hyper-parameters, describing 

the architecture: number of layers, number of neurons in 

each layer, etc. All of the results in this paper are presented 

after a formal process of hyper-parameters optimization, 

using the cost function, defined in Equation (3), as 

optimization criterion. The optimization space is small, and 

the optimization is carried iteratively, one hyper-parameter 

at a time. For each of the single dimensional optimization 

procedures a scanning method is used with eventual 

quadratic interpolation. 

 

V. EXPERIMENTAL RESULTS 

 

 All the classifiers are implemented in MATLAB using 

the Text Analytics toolbox. Criterion (3) is used for 

optimization, where 0.5 = . The training times are 

measured on a Windows computer with 12-core, 3.6 GHz, 

64-bits CPU and 128 Gbytes of RAM. The GPU is 

NVIDIA GeForce GTX980Ti. All the design decisions and 

algorithmic performance ranking are based on performance 

achieved on the validation dataset. The performance 

numbers from the test set are provided as evidence for the 

generalization of the proposed approaches. 

 The results from using BoW as features are provided in 

Table I. We use as features unigrams, bigrams, trigrams 

and all of them simultaneously. A separate experiment is 

done using TF*IDF features. The two neural networks we 

experimented with are ELM and DNN. Column Notes 

describes the architecture of the neural network: the 

number of hidden layers (hl) and neurons in each layer 

(hu). As expected, the fully connected deep neural network 

performs better than ELM with its single hidden layer. The 

combined feature set of 1-, 2-, and 3-grams provides the 

highest performance on the validation dataset, achieving 

Q=75.63. This is the model that achieves the highest 

UA=64.22%. Worth mentioning the performance of the 

same neural network using unigrams with Q=75.08. The 

good performance of the unigrams as feature can be 

explained with the lower number of OOV unigrams, 

compared to bigrams and trigrams. It is reasonable to 

expect that with large datasets the combined use of all three 

features will perform even better.  

 Table II shows the results from the experiments with 

word embedding. Again, the Notes column gives 

information about the neural network architecture. 

 The first group of experiments uses a pre-trained word 

embedding on 16 billion documents in American English. 

This drastically reduces OOV words. As the utterances 

have different length, in one of the cases we take statistics 

of the embedding vectors with length of 300: mean, max, 

min, standard deviation and add as additional feature the 

number of the words in the utterance. These 1201 features 

from each utterance are the input of two fully connected 

neural networks: DNN and ELM. Another approach is to 

treat the embedding vectors as a sequence of 300 features 

and use an LSTM network as a classifier. In one of the 

cases we have an additional fully connected layer at the 

LSTM output, in another we collect the LSTM outputs 

after each word. In the second case at the end of the 

utterances we do statistics as above (mean, min, max, 

standard deviation, number of words) and finalize the 

decision using ELM neural network. These two approaches 

perform well, with slight advantage of the classic LSTM 

and FC after the output. It achieves Q=74.94 and 

UA=62.18%. 

 A second group of experiments is with word embedding 

trained either on the training set or trained on the joint 

training+validation sets. The advantages here are that the 

embedding is domain specific, the disadvantages – the 

dataset is small (less than a million words). The best 

performing classifier from the previous group of 

experiments was used (LSTM+FC, last), but in general this 

group has lower results than the first one. 

 The last experiment is to train the classifier and 

embedding jointly. In this case the embedding vector caries 

information about how much this word belongs to a given 

class. The used classifier is again LSTM+FC and this is the 

third best performing configuration using word embedding. 

It doesn't require a language specific pre-trained word 

embedding and doesn't depend on the quality of such pre-

trained embedding. The price for this is minimal hit in the 

performance, which can be increased with larger dataset. 

From this standpoint the third approach is the winner of the 

classifiers using embedding as features. 

 

VI. DISCUSSION AND CONCLUSIONS 

 

 In this paper we explored various feature representations 

and classifiers for the task of sentiment detection from 

speech transcription. We proposed the use of a cost 

function that accounts for both WA and UA via 

Equation (3), aiming to mitigate highly imbalanced training 

dataset. A tradeoff coefficient of 0.5 =  was proposed. 

For DNN classifier using all n-grams as features when 

1.0 =  we have WA=94% and UW=42%. When the 

coefficient is moved to the other extreme, 0.0 = , then 

weighted accuracy goes down to 67% and unweighted 

accuracy goes up to 69%. Using 0.5 =  provides a good 

tradeoff between the WA and UA, where we have most of 

the gain in UA (up to 64%), without losing much from WA 

(down to 87%). 



 

 

 Another aspect of the proposed algorithm is to use the 

classifiers in regression mode and estimate a value ranging 

from -1 (negative), through 0 (neutral), to +1 (positive). 

This introduces the concept that negative is closer to 

neutral than to positive, but also allows applying of two 

separate thresholds to adjust individually the false positive 

and false negative rates for the negative and positive 

classes.  

 In our experiments the traditional classifiers are 

represented by the ELM, which performs close, but better 

than pretty much all of them. The proposed algorithms 

outperform the ELM based classifier with 5-7% in UA for 

word embedding features and 2-6% in UA for n-gram 

features. 
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TABLE 1. RESULTS FOR BAG-OF-WORDS AS FEATURES 

Classifier Features  Valid ation set   Notes Test set   

    WA UA TrTme Q   WA UA WA+UA 

 unigrams 87.89 61.74 18.5 74.80 1500 hu 87.89 60.89 74.39 

  bigrams 91.04 45.92 159.2 68.32 6620 hu 92.02 45.94 68.98 

 ELM trigrams 92.56 35.09 3.3 63.82 2000 hu 93.23 34.75 63.99 

  1-,2-,3-grams 88.15 58.78 73.3 73.34 4000 hu 89.37 59.20 74.29 

  TF*IDF 89.68 56.61 27.5 73.12 2000 hu 90.13 58.26 74.20 

 unigrams 88.33 62.49 335.0 75.08 3 hl, 800 hu 89.48 64.92 77.20 

  bigrams 91.72 46.89 843.0 68.46 4 hl, 1024 hu 92.85 46.12 69.49 

 DNN trigrams 92.50 35.33 8.5 63.91 2 hl, 128 hu 93.31 34.91 64.11 

  1-, 2-, and 3-grams 87.35 64.22 151.6 75.63 3 hl, 512 hu 88.04 66.23 77.14 

  TF*IDF 89.44 60.33 237.7 74.65 4 hl, 256 hu 90.40 62.76 76.58 

 

TABLE 2. RESULTS FOR WORD EMBEDDING AS FEATURES 

Embedding Features Classifier  Val dati on   set  Notes Test  set   

      WA UA TrT Q   WA UA Q 

 Pre-trained stats: #words, mean, ELM 88.7 56.23 169 72.28 5265 hu 89.7 59.1 74.37 

on 16 Bill min, max, stdev DNN 84.5 63.89 530 73.66 3 hl, 600 hu 85.8 65.9 75.85 

words embeddings LSTM + FC, last 88.2 62.18 233 74.94 150 hu 89.2 63.5 76.32 

 as a sequence LSTM+sts+ELM 88.8 61.18 291 74.7 480 hu  89.8 63.1 76.42 

Pre-trained on train set LSTM + FC, last 89.3 57.59 752 72.68 256hu 89.9 57.2 73.56 

the dataset tran+val sets LSTM + FC, last 89.2 58.04 747 72.89 256hu 89.9 58.6 74.23 

Embedding trained jointly LSTM + FC, last 89.6 59.77 265 74.44 180 hu 90.3 58.4 74.35 

 


