
Acoustic-to-Phrase Models for Speech Recognition

Yashesh Gaur, Jinyu Li, Zhong Meng, Yifan Gong

Microsoft Corporation, one Microsoft way, Redmond, WA 98052
{yagaur, jinyli, zhme, yifan.gong}@microsoft.com

Abstract
Directly emitting words and sub-words from speech spectro-
gram has been shown to produce good results using end-to-end
(E2E) trained models. Connectionist Temporal Classification
(CTC) and Sequence-to-Sequence attention (Seq2Seq) models
have both shown better success when directly targeting words
or sub-words. In this work, we ask the question: Can an E2E
model go beyond words and transcribe directly to phrases (i.e., a
group of words)? Directly modeling frequent phrases might be
better than modeling its constituent words. Also, emitting mul-
tiple words together might speed up inference in models like
Seq2Seq where decoding is inherently sequential. To answer
this, we undertake a study on a 3400-hour Microsoft Cortana
voice assistant task. We present a side-by-side comparison for
CTC and Seq2Seq models that have been trained to target a va-
riety of tokens including letters, sub-words, words and phrases.
We show that an E2E model can indeed transcribe directly to
phrases. We see that while CTC has difficulty in accurately
modeling phrases, a more powerful model like Seq2Seq can ef-
fortlessly target phrases that are up to 4 words long, with only a
reasonable degradation in the final word error rate.
Index Terms: speech recognition, sequence-to-sequence, con-
nectionist temporal classification, end-to-end training

1. Introduction
End-to-end trained (E2E) models for automatic speech recog-
nition (ASR) are no longer just a promising research direction.
They have begun to replace conventional hybrid systems [1] and
have found their way into production services [2]. Connection-
ist Temporal Classification (CTC) and Sequence-to-Sequence
attention (Seq2Seq) models are among the most popular E2E
ASR solutions today. The flexibility afforded by E2E models
has inspired people to train these models to emit a variety of
tokens, including phones [3, 4], characters [5, 6], sub-words
and words [7] [8]. For both CTC and Seq2Seq, better results
were obtained as we moved from smaller tokens like characters
to larger word-level units like word-pieces [7] and mixed-units
[8]. A natural next step might be to see if E2E models can emit
even bigger output units, for e.g. a phrase. A system that can
emit a group of words as one token might do a better job of
jointly learning how the constituent words are spoken together.
The reduced output sequence length might also speed up train-
ing/inference. Moreover, training these models to target phrases
would be a good way to test the limits of their modeling.

In this work, we try to investigate this by constructing 3 dif-
ferent phrase-based vocabularies and training both Seq2Seq and
CTC with them. Each vocabulary exposes the E2E models to
progressively longer (hence potentially more difficult) phrases.
In addition to phrases, the model also has to learn to fall back
to emitting words and sub-words in case frequent phrases can
not be predicted. The intention is to check if and when E2E
models can learn to accurately emit phrases. We present the re-

sults for phrase-based vocabularies in context of 4 strong base-
lines that were trained on a variety of tokens from the literature.
The “baseline tokens” consist of single characters, words, word-
pieces and mixed units. We present a side-by-side comparison
for Seq2Seq and CTC for these 7 tokens. The results show
that both CTC and Seq2Seq can learn to emit phrases. How-
ever, CTC’s final word error rate (WER) increases drastically
when trained with phrase-based vocabularies. Seq2Seq, on the
other hand, can effectively emit phrase tokens that are as long
as 4 words. The final WER for Seq2Seq models only showed
a minor degradation. This study works as a proof of concept
and allows us to launch future investigations into constructing
phrase-based vocabularies that might benefit from potentially
better modeling and faster training/decoding speeds. This paper
has the following contributions. To the best of our knowledge,
this is the first work to target units that are larger than words.
Secondly, we present an extensive side-by-side empirical com-
parison between CTC and Seq2Seq across a variety of output
tokens, ranging from single characters to phrases. Lastly, we
show that Seq2Seq is strong enough to accurately target phrases
as output units. CTC, on the other hand, falls short on this task.

2. End-to-End models for ASR
2.1. Connectionist Temporal Classification

A CTC model is usually a Recurrent Neural Network (RNN)
[9] that is trained using the CTC loss function [3], that directly
optimizes prediction of the transcription sequence. Lets denote
x as the speech input frame sequence and y as the original la-
bel sequence. As the length of y is shorter than the length of
x, a CTC path π is introduced to have the same length as x
by adding the blank symbol as an additional label and allow-
ing repetition of labels. A CTC path can thus be collapsed to
give back y by simply collapsing repeating tokens and remov-
ing blank symbols. Let’s call this operation B. The CTC loss
function is then defined as follows:

LCTC = − lnP (y|x) = − ln
∑

π∈B−1(y)

P (π|x). (1)

To calculate P (π|x), CTC assumes conditional independence
between prediction at various output time-steps and decom-
poses it into product of posteriors from each frame as:

P (π|x) =
T∏

t=1

P (πt|x). (2)

This makes the computation tractable but also does not al-
low the RNN to learn any dependencies between the output to-
kens. To decode CTC models, we can greedily pick the to-
ken corresponding to the posterior spikes to form the output
sequence. This would neither require a language model nor any
complex beam search decoding procedure. For the sake of sim-
plicity, we will be using this greedy decoding for all our CTC
models in this work.

2.2. Sequence-to-Sequence models

Seq2Seq models are an efficient way to combine the acoustic,
language and pronunciation models into one single neural net-
work. Many Seq2Seq architectures have been proposed, includ-
ing Recurrent Neural Network Transducer [10], Listen Attend
and Spell [5] and Recurrent Neural Aligner [11]. In this work
we have to chosen to work with an Encoder-Decoder architec-
ture very similar to [4]. The Encoder in our case is an RNN
that takes in the input features, x, and maps them to a higher
level feature representation henc. The decoder is also an RNN,
which acts like a conditional LM and tries to compute:

P (y|x) = P (y|henc) =

T∏
t=1

P (yt|y0, . . . , yt−1,h
enc) (3)

where y is the output label sequence. The dependence of yt
on henc is captured by conditioning the decoder-RNN on the
so-called context-vector (ct), which is just a weighted combina-
tion of encoder hidden states. ct tells the decoder which input
frames it should ”focus on” to emit the next token. To calculate
ct, the decoder RNN is augmented with a location-aware atten-
tion mechanism similar to [4]. The network is optimized by
minimizing the Cross-Entropy (CE) loss between the output of
the decoder and references at all time-steps. We refer the reader
to [4] for further details on our implementation.

3. Output tokens in E2E ASR
3.1. Characters

Some of the earliest work with CTC and Seq2Seq had phones
as targets [4, 12]. Later, these models were also shown to be
successful with characters as targets [5, 6]. Directly targeting
characters allowed us to get rid of the phonetic lexicon, thereby
making the decoding process simpler. In addition, the models
could also overcome the losses due to imperfect or incomplete
pronunciations in the phonetic lexicon, if any.

3.2. Words

CTC suffers from the Conditional Independence (CI) assump-
tion (Section 2.1) which leads to poor results when decoding
greedily. One way to partially mitigate the CI assumption is
to avoid learning the dependency between characters altogether
and directly targeting words. [13, 14] showed that words as
output units would be a natural choice for CTC. Seq2Seq mod-
els have also been trained to directly target words [15]. How-
ever, the word-based models suffer from the out-of-vocabulary
(OOV) issue as they can only model a limited number of words
in the output layer. Several solutions have been proposed to
mitigate the OOV issue [16, 8, 17]. A popular approach to ad-
dress the OOV issue is to predict the rare and unknown words
as sequences of words and/or subwords. Two examples of this
approach are word pieces [7] and mixed units [8].

3.3. Word Pieces (Byte-Pair Encoding)

Sub-words as targets in E2E modeling were first proposed in
[7]. Inspired by the Byte-Pair Encoding algorithm, which is
used for data compression, it described a simple algorithm that
starts from characters and iteratively collapses tokens to form
subwords. This vocabulary of sub-words can be used to seg-
ment words in a deterministic fashion. Word-pieces have al-
ready demonstrated superior performance for E2E ASR models
[17, 18, 2].

3.4. Mixed units

In contrast to word pieces algorithm, which builds up the vocab-
ulary in a bottom-up manner, mixed-units [8] preparation works
in a top-down fashion. We start by selecting all the words that
occur greater than a certain number of times, in the training set.
Rest of the words make the OOV set. A set of character n-grams
(n=1,2,3) is then constructed so that all the OOV words can be
decomposed as a sequence of character n-grams and/or frequent
words. The final vocabulary is the union of frequent words and
character n-grams (sub-words).

3.5. Phrases

Going beyond words and trying to target phrases as output units
might be worth exploring for a few reasons. Firstly, in some
cases, modeling frequent phrases might be better than model-
ing its constituent words as it might allow the model to jointly
learn how its constituent words are spoken together. Secondly,
segmenting the text into phrases will reduce the length of out-
put sequence that needs to be targeted. A much shorter out-
put sequence can lead to quicker loss computation and might
result in faster training times for both CTC and Seq2Seq mod-
els. Moreover, in Seq2Seq models, where the decoding is in-
herently sequential, decoding a longer output sequence can be
slower. Modeling phrases allows to emit a group of words at
the same time, potentially speeding-up the decoding. Addition-
ally, so far, both CTC and Seq2Seq have demonstrated enough
modeling prowess by being able to successfully target a variety
of output tokens. This motivates us to ask how complex can
the output tokens get before these models start to fail. Training
these models to target phrases might help us explore the limits
of these E2E models.

Having said that, it is important that we demonstrate the
feasibility of this approach first. Hence, in this work, we only
check if E2E models can accurately emit phrases. We leave
the investigation into construction of phrase-based vocabularies
that lead to better modeling or speed-ups in training/inference
for future studies. To that extent, we construct the 3 vocabular-
ies: P2, P3 and P4. These are vocabularies that contain up to
2/3/4-gram phrases respectively.

To construct P2, we first collect all word-bigrams, that oc-
cur in the training set with frequency greater than a certain
threshold. Then, we simply augment this set of bigrams with the
mixed-units vocabulary. Hence P2 not only contains frequent
word-bigrams, but also frequent words, subwords and letters.
P3 and P4 are constructed in a similar manner, i.e., by aug-
menting frequent word-trigrams and word-4grams with P2 and
P3 respectively.

To test the limits of E2E modeling, we want the network
to prioritize emitting higher-order n-grams first, and then con-
sequently fall back to emitting lower-order ngrams, words, sub-
words and letters, in that order. To achieve this behavior, we
adopt the tokenization strategy below. To tokenize a sentence
using Pn (n = 2, 3, 4):

• Check if a frequent n-gram from Pn is present in the
sentence. If multiple such n-grams are present, select
the n-gram with the greatest frequency. Collapse this
n-gram into one single token. For example, “Hey Cor-
tana” will collapse into “Hey+Cortana”, “on the way”
will collapse into “on+the+way” and so on. In this way,
the model can emit multiple words at the same time.

• Repeat the above step until there are no n-grams to col-
lapse in the sentence

• The remaining sentence is tokenized exactly like P (n−
1). Note that P1 is just mixed-units, were frequent uni-
grams are tokenized first and OOV words are broken into
a sequence of words and subwords.

As a side note, please see that this kind of tokenization is
not likely to yield the best final WER. For that, the network
should prioritize emitting tokens that it can model most accu-
rately (irrespective of their length). Table 1 shows how a partic-
ular utterance was tokenized differently for different tokens.

4. Experiment details
4.1. Dataset and preparation

All the experiments were performed on Microsoft’s Cortana
voice assistant task. The training dataset contains approxi-
mately 3.3 million short utterances (∼ 3400 hours) in US-
English. The test set contains about 5600 utterances (∼ 6
hours). 0.05% of the utterances were extracted from the training
data to form the validation set. The base feature vector for every
10 ms is a 80-dimensional vector containing log filterbank en-
ergies. The base feature vectors in three continuous frames are
stacked together to form the 240-dimension input feature that is
used to train both CTC and Seq2Seq models [19]

4.2. Models

Both Seq2Seq and CTC models were developed independently,
with best effort for each model class. The CTC models were
developed and trained using CNTK [20] while PyTorch [21]
was used for Seq2Seq models. Within a particular model class
though, the training schedule and other details remain the same
for various output tokens. We evaluate the test set using the
checkpoint that produced the best loss on validation set.

Both Seq2Seq and CTC have a 6-layer bidirectional RNN
[22] with 512 hidden units in each layer. Seq2Seq adopts Gated
Recurrent Unit (GRU) [23] cells, while CTC has LSTM [24]
cells. Furthermore, Seq2Seq models also have a decoder which
is a 2-layer forward-only GRU-RNN. These models use dropout
[25] with p = 0.1 and layer normalization [26] in both en-
coder and decoder. To optimize them, we minimize the label-
smoothed cross-entropy [27] loss between the posterior prob-
abilities from the decoder and the ground truth tokens. We
also use scheduled sampling [28] during training. The sampling
probability starts at 0.0 and gradually ramps up to 0.4 [17].

4.3. Tokens

We train Seq2Seq and CTC models with all the tokens described
in section 3. The size of ‘character’ vocabulary is 30, includ-
ing the 26 alphabets and a few other miscellaneous tokens like
〈space〉 and ctc blank. To construct ‘words’ vocabulary, we
select all the words that have occurred at least 10 times in the
dataset. This gives us ∼27k words and rest of the words are
mapped to the OOV token, yielding an OOV rate of 1.8%. For
word-pieces, we run the BPE algorithm [7] to get ∼29k units.
The mixed-units vocabulary is constructed by augmenting the
∼ 27k frequent words with sub-word units produced according
to [8]. The size mixed-unit vocabulary totals to ∼33k.

To construct the phrase-based vocabularies (P2, P3, P4),
we keep cut-off frequency for 2/3/4-gram as 100. Note that the
cut-off frequency for 1-gram was 10. If we keep the same cut-
off frequency for phrases, the vocabulary size increases dras-
tically. For example, a cut-off frequency of 10 will give us
104k bigrams, while the same cut-off gave us only 27k uni-

grams. Hence, we decided to set a much higher frequency cut-
off for phrases. This gives us 11k 2-grams, 5k 3-grams and 2k
4-grams. The total vocabulary sizes for P2, P3, P4 become
45k, 50k and 52k respectively. Next we apply the tokenization
schemes for P2, P3 and P4 as described in section 3.5. Post
tokenization, we analyze the % of various token types present
in the train set corresponding to each phrase based vocabulary
(Table 2). Note that there are significant amount of phrases as
target tokens in the training sets.

5. Results
Table 3 shows the greedy 1-best test WERs and model sizes for
Seq2Seq and CTC across 7 different tokens. We do not use any
beam search or language models during decoding. Note that all
Seq2Seq and CTC models share exactly the same architecture
within their respective model types. The only difference in test
WER and model sizes comes from targeting different vocabu-
laries. Across the baseline tokens (i.e., ‘characters’, ‘words’,
‘word-pieces’ and ‘mixed-units’), we see that Seq2Seq outper-
forms CTC models by a significant margin most of the time.
This is expected as Seq2Seq overcomes limitations of CTC, like
the conditional independence assumption. This does not allow
it to model dependencies between the output tokens. As a re-
sult, Seq2Seq vastly outperforms CTC when both are trained
to emit characters. This problem with CTC is, however, mit-
igated to a large extent when it is trained to target word-level
units i.e., ‘words’, ‘word-pieces’ and ‘mixed-units’. Even for
these units, CTC’s results are still inferior to Seq2Seq which
tells us that Seq2Seq is, arguably a better E2E modeling tech-
nique. However, the results for ‘words’ tokens do not follow
this trend. We think that Seq2Seq performs worse than CTC in
this case because of the OOV token. OOV token has the po-
tential to disturb the modeling of dependencies between output
tokens in the Seq2Seq decoder. This would not be a concern for
CTC models. Note that despite following similar encoder ar-
chitectures (6-layer 512-unit RNNs), Seq2Seq models are con-
siderably smaller than CTC. This is because the CTC models
use LSTMs while Seq2Seq models use GRUs, which are much
more compact.

The results for phrase-based vocabularies (P2, P3 and
P4) makes the gap between Seq2Seq and CTC performance
much more prominent. While the results for Seq2Seq are pretty
encouraging, performance degrades drastically for CTC when
compared to the baseline units. To check if these models are in-
deed emitting phrases, we calculate the distribution of the emit-
ted tokens for both Seq2Seq (Table 4) and CTC (Table 5). We
see that both Seq2Seq and CTC do emit phrases in proportions
similar (but not exact) to what was present in the training sets.
But while Seq2Seq gives a reasonably good final WER, CTC
WER suffers significantly. This leads us to believe that CTC is
not strong enough to deal with tokens that vary greatly in in-
put lengths. Another interesting observation is that both models
emit less number of “mix” tokens (i.e. combinations of words
and/or sub-words to deal with OOV) than present in the train
set. CTC’s mix tokens output, in particular, is very low. This
likely tells us that the sub-words approach might not be very
effective in dealing with OOVs. As noted earlier, the phrase-
based vocabularies were designed only to check the feasibility
of the phrase-based approach. Hence, we were not expecting
phrase-based vocabularies would outperform the baseline to-
kens. However, these experiments do show that Seq2Seq can
be trained to emit reasonably long phrases, which we think is an
important result. We plan to leverage this in our future work to

Characters Words Word-pieces Mixed-units P2 P3 P4
〈space〉 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉
h hey hey hey hey+cortana hey+cortana+what’s hey+cortana+what’s+the
e 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉
y cortana cortana cortana what’s+the the+traffic+like traffic
〈space〉 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉
c what’s what what’s traffic+like on+the+way like
o 〈space〉 ’ 〈space〉 〈space〉 〈space〉 〈space〉
r the s the on+the to on+the+way+to
t 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉 〈space〉
a traffic the traffic way+to clair clair
n 〈space〉 〈space〉 〈space〉 〈space〉 ton ton
a like traffic like clair 〈space〉 〈space〉
〈space〉 〈space〉 〈space〉 〈space〉 ton . .
w on like on 〈space〉
h 〈space〉 〈space〉 〈space〉 .
a the on the
t 〈space〉 〈space〉 〈space〉
’ way the way
s 〈space〉 〈space〉 〈space〉
〈space〉 to way to
t 〈space〉 〈space〉 〈space〉
h 〈oov〉 to clair
e 〈space〉 〈space〉 ton
〈space〉 . clair 〈space〉
t ton .
r 〈space〉
...... .

Table 1: “hey cortana, what’s the traffic like on the way to clairton” tokenized for different token types. ’clairton’ is an OOV in this
case. 〈space〉 is used as delimiter between words. ‘Characters’ tokenized output has been clipped for lack of space. Note that the
length of output sequence is considerably shorter for phrase-based vocabularies P2, P3 and P4.

tokens mix 1-gram 2-gram 3-gram 4-gram
P2 4.9 57.2 37.9 0 0
P3 5.0 66.8 14.2 13.9 0
P4 4.9 73.8 10.0 5.7 5.5

Table 2: % of various token types in the train-set after applying
tokenization schemes for P2, P3 and P4. ‘x-gram’ means a
word-phrase with ‘x’ words. ‘mix’ is count of words and sub-
words when their combination is used to represent an OOV.

token
Type

token
Size

WER(%) Size (MB)
S2S CTC S2S CTC

Characters 30 9.54 17.54 81 139
Words 27k 10.95 9.84 186 242
Word-pieces 29k 7.75 9.73 195 256
Mixed-units 34k 7.51 9.32 213 274
P2 45k 8.15 13.76 256 315
P3 50k 8.31 21.97 277 339
P4 52k 8.21 24.87 286 348

Table 3: Greedy decoding test-WER and model size for Seq2Seq
and CTC models on the 4 baseline and 3 phrase-based vocab-
ularies. Token size is the size of the vocabulary. Tokens with
large vocabulary sizes have been rounded off to the nearest 1k.

design phrase-based vocabularies that can provide faster train-
ing/inference and potentially better modeling.

tokens mix 1-gram 2-gram 3-gram 4-gram
P2 2.7 57.0 40.2 0 0
P3 2.6 70.3 11.0 16.1 0
P4 2.3 78.7 6.7 4.7 7.5

Table 4: % of various token types emitted by Seq2Seq models.

tokens mix 1-gram 2-gram 3-gram 4-gram
P2 0.9 57.4 41.5 0 0
P3 0.06 72.9 10.5 16.4 0
P4 0.01 82.5 5.7 4.1 7.4

Table 5: % of various token types emitted by CTC models

6. Conclusions
In this work, we explore if E2E ASR models can be trained to
emit phrases. We construct 3 phrase-based vocabularies for a
3400 hour Microsoft Cortana task and train Seq2Seq and CTC
models using them. We present the results in context of 4 strong
baselines that were trained on a variety of tokens including char-
acters, words, word-pieces and mixed-units. We find that while
CTC can not accurately learn to model phrases, Seq2Seq can
easily learn to emit phrases that are up-to 4 words long, without
much degradation in the final WER. Being able to target phrases
as output tokens opens up the possibility of improved modeling
and speed-up in training/inference. In future, we plan to explore
phrase-based vocabularies that directly optimize these potential
benefits.

7. References
[1] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech recog-

nition with deep bidirectional lstm,” in 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, Dec 2013, pp.
273–278.

[2] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang,
D. Bhatia, Y. Shangguan, B. Li, G. Pundak, K. C. Sim, T. Bagby,
S. Chang, K. Rao, and A. Gruenstein, “Streaming end-to-end
speech recognition for mobile devices,” in ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2019, pp. 6381–6385.

[3] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
the 23rd international conference on Machine learning. ACM,
2006, pp. 369–376.

[4] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Ad-
vances in neural information processing systems, 2015, pp. 577–
585.

[5] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 4960–4964.

[6] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Bat-
tenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen,
J. Chen, J. Chen, Z. Chen, M. Chrzanowski, A. Coates et al.,
“Deep speech 2: End-to-end speech recognition in english and
mandarin,” in Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume
48, ser. ICML’16. JMLR.org, 2016, pp. 173–182. [Online].
Available: http://dl.acm.org/citation.cfm?id=3045390.3045410

[7] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, Aug. 2016, pp. 1715–1725. [Online].
Available: https://www.aclweb.org/anthology/P16-1162

[8] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing acoustic-
to-word ctc model,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 5794–5798.

[9] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” in Proceedings of the Na-
tional Academy of Sciences, 1982.

[10] A. Graves, “Sequence transduction with recurrent neural net-
works,” arXiv preprint arXiv:1211.3711, 2012.

[11] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Recurrent neural
aligner: An encoder-decoder neural network model for sequence
to sequence mapping,” in INTERSPEECH, 08 2017, pp. 1298–
1302.

[12] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks,” in Proceedings
of the 23rd International Conference on Machine Learning, ser.
ICML ’06. New York, NY, USA: ACM, 2006, pp. 369–376. [On-
line]. Available: http://doi.acm.org/10.1145/1143844.1143891

[13] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer:
Acoustic-to-word lstm model for large vocabulary speech recog-
nition,” Proc. Interspeech, 2016.

[14] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D. Na-
hamoo, “Direct acoustics-to-word models for english conversa-
tional speech recognition,” in INTERSPEECH, 08 2017, pp. 959–
963.

[15] S. Palaskar and F. Metze, “Acoustic-to-word recognition with
sequence-to-sequence models,” 2018 IEEE Spoken Language
Technology Workshop (SLT), pp. 397–404, 2018.

[16] J. Li, G. Ye, R. Zhao, J. Droppo, and Y. Gong, “Acoustic-to-word
model without oov,” in 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU). IEEE, 2017, pp. 111–
117.

[17] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 4774–4778.

[18] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures,
data and units for streaming end-to-end speech recognition with
rnn-transducer,” in 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, 12 2017, pp. 193–199.

[19] H. Sak, A. W. Senior, K. Rao, and F. Beaufays, “Fast
and accurate recurrent neural network acoustic models for
speech recognition,” CoRR, vol. abs/1507.06947, 2015. [Online].
Available: http://arxiv.org/abs/1507.06947

[20] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source
deep-learning toolkit,” in Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 2135–2135. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2945397

[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[22] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neu-
ral networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, Nov 1997.

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” in
NIPS 2014 Workshop on Deep Learning, December 2014, 2014.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” CoRR, vol. abs/1207.0580,
2012. [Online]. Available: http://arxiv.org/abs/1207.0580

[26] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,”
arXiv e-prints, Jul. 2016.

[27] J. Chorowski and N. Jaitly, “Towards better decoding and lan-
guage model integration in sequence to sequence models,” in
Proc. Interspeech 2017, 08 2017, pp. 523–527.

[28] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sam-
pling for sequence prediction with recurrent neural networks,” in
Advances in Neural Information Processing Systems 28, 2015, pp.
1171–1179.

