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ABSTRACT

Leveraging weak or noisy supervision for building effective machine learning
models has long been an important research problem. The growing need for large-
scale datasets to train deep learning models has increased its importance. Weak
or noisy supervision could originate from multiple sources including non-expert
annotators or automatic labeling based on heuristics or user interaction signals.
Previous work on modeling and correcting weak labels have been focused on
various aspects, including loss correction, training instance re-weighting, etc. In this
paper, we approach this problem from a novel perspective based on meta-learning.
We view the label correction procedure as a meta-process and propose a new
meta-learning based framework termed MLC for learning with weak supervision.
Experiments with different label noise levels on multiple datasets show that MLC
can achieve large improvement over previous methods incorporating weak labels
for learning.

1 INTRODUCTION

Recent advances in deep learning have enabled several natural language processing models to achieve
impressive performance. At the core of this success lies the availability of large amounts of annotated
data. However, such datasets are not readily available in large scale for many tasks. The problem
of learning with weak supervision aims to address this challenge by leveraging weak evidence
for supervision, such as corrupted labels, noisy labels,automatic labels based on heuristics or user
interaction signals, etc.

Two major lines of work have been proposed to combine trusted (or gold) labeled data with weak
or noisy supervision data for better learning. The first approach relies on re-weighting of training
instances (Ren et al., 2018). It aims to assign proper importance to each sample in the training set
such that the ones with higher weights will contribute more positively to the model training. On
the other hand, the second approach relies on the idea of label correction. It aims to correct the
noisy/corrupt labels based on certain assumptions about the weak label generation process. In a sense,
label correction is a finer way to incorporate the noisy data samples than simply assigning scalar
weights to each training instance and has shown to work well even in the setting where a very small set
of clean labels is available. Label correction in previous methods relies on the assumption about the
weak label generation process and thus often involves estimating a label corruption matrix (Hendrycks
& Gimpel, 2016). However, the label correction estimation is done in separation from the main model
limiting the flow of information between them.

In this paper, we address the label correction problem from a novel angle based on meta-learning
and propose meta label correction (MLC). Specifically, we view the label correction procedure as a
meta-process, meaning that its objective is to provide corrected labels for the examples with weak
labels. On the other hand, the main supervised model is trained to fit the corrected labels (generated
by the meta-model). Both the meta-model and the main model are learned by optimizing the model
performances on the gold data set (i.e., a validation set w.r.t. the noisy set) allowing us to co-optimize
the label correction process and the main model process.

Meta learning has been successfully used for many applications including hyper-parameter tun-
ing (Maclaurin et al., 2015), model selection (Pedregosa, 2016) and neural architecture search (Liu
et al., 2018). To the best of our knowledge, MLC is the first to utilize a meta model to automatically
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“tune” noisy labels from data and combine it with trusted labels for better learning. The contributions
of this paper can be summarized as follows:

• A new learning framework with weak supervision based on meta learning, is proposed
based on a novel angle by treating the label correction network as a meta process to provide
reliable labels for the main models to learn;

• We conduct experiments on various text classification and gray-scale image recognition
experiments and the proposed methods outperform previous best methods on label correction,
demonstrating the power of the proposed method.

The rest of the paper is organized as follows: We briefly review the preliminaries on learning with
weak supervision, particularly on learning with corrupt/noisy labels 2 and propose a meta-learning
based learning framework for weak supervision in Section 3. Empirical evaluations and analysis are
conducted in Section 4 and we conclude the paper in Section 6.

2 PRELIMINARIES

We follow a setup of learning with weak supervision that involves two sets of data: a small set of data
with clean/reliable labels {xi,yi}mi=1 and a large set of data with weak supervision (noisy/corrupted
labels) {xi,y

′
i}Mi=1. Typically the clean set is much smaller compared to the noisy set (m�M ) due

to scarcity of expert labels and to labeling costs. Training directly on the small clean set often tends
to be sub-optimal, as too little data can easily cause over-fitting. The problems of learning with weak
supervision under this setup can then be formulated as how to build a predictive model f : X → Y
with the given two sets. Two major lines of work have been proposed to solve this problem.

2.1 LEARNING WITH LABEL CORRECTION

The first line of work aims to correct the weak labels as much as possible by imposing assumptions
of how the noisy labels are generated from its underlying true labels. To be concrete, consider the
problem of classifying the data into k categories, where label correction involves estimating a label
corruption matrix Ck×k whose entry Cij denotes the probability of observing weak label for class
i while the underlying true class label is actually j. Gold loss correction (Hendrycks et al., 2018)
falls into this category; a key drawback of this line of work is that the label perturbing matrix is often
estimated in an ad-hoc way and also that the estimation process is separate from the main model
process, hence allowing no feedback from the main model to the estimation process.

2.2 LEARNING TO RE-WEIGHT TRAINING INSTANCES

Knowing that not all training examples are equally important and useful for building a main model,
another line of work for learning with weak supervision is to assign learnable weights to each example
in the training noisy set. The goal is to assign a a proper weight for each training example such
that the main model would perform well on a separate validation set (the clean set) (Ren et al.,
2018). The example weights are essentially hyper-parameters for the main model and can be learned
by formulating a bi-level optimization problem. Due to the meta-learning characteristic of this
framework, the example weights learning and the main model could communicate with each other
and a better model could be learned.

3 META LABEL CORRECTION

One advantage of the label correction approach is that it allows us to combine trusted labels and
corrected noisy labels in the learning process. Our proposed approach adopts the label correction
methodology while also co-optimizing the label correction process together with the main model
process through an unified meta learning framework. We achieve that by adopting a meta-learning
framework where the meta learner (meta model) tries to correct the noisy labels and the main model
tries to build the best predictive model with corrected labels coming from the meta model, allowing
the meta model and main model to reinforce each other.
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Figure 1: MLC Architecture. Nodes in gray denotes the noisy training examples and green ones
denotes the clean ones.The meta model gα (in orange) takes in a noisy example label pair and tries to
generate a “corrected” label which will be treated as the correct labels to train the main model fw (in
blue). Thus the trained main model depends on the corrected labels yc, hence further depends on the
parameters of the meta model. The trained main model then will be tested on a separate true clean
set, whose loss is to be minimized. Note that when minimizing the loss on the clean examples, the
parameters for the main models are not changed, only to let the loss signal on the clean examples to
propogate back to the meta network, thus making gα generate better corrections for x, y′. In practice,
we won’t be able to always get the trained main model to evaluate on the clean examples, thus k-step
SGD ahead updated version of the main model is used as a “trained” model.

We describe the framework in detail as follows. Given a set of clean data examples D = {x,y}m
and a set of noisy data examples D′ = {x,y′}M with m much smaller than M . To best utilize the
information provided by the weak labels, we propose to construct a label correction network (LCN),
serving as a meta model, which takes a pair of noisy data example and its weak label as input and
produces a different version of the weak label. Formally, the label correction network (LCN) is
defined as a function with parameters α:

yc = gα(x, y
′) (1)

to correct the weak label y′ of example x to its true label. (Note that the subscription in yc emphasizes
that it’s generating a corrected label). Meanwhile, the main model f , that we aim to train and use for
prediction after training, is instantiated as another function with parameters w,

y = fw(x) (2)

Without linking the two models, there’s no way to enforce that 1.) the generated label for an example
from the meta model g is indeed a meaningful one, let alone a corrected one, since we cannot
directly train the meta model without clean labels for the noisy examples ; 2) The main model f
might be fitting onto arbitrary targets, if the labels provided do not align with the unknown true
labels. Fortunately, the two models can be linked together via a bi-level optimization problem, by
the intuition that if the labels generated by the meta model are of high quality, then we can use these
pairs of examples and their corrected labels as training data to train a good main model, such that
the main model achieves low loss on a separate set of clean examples. This can be instantiated as the
following bi-level optimization problem:

min
α

E(x,y)∈D `(y, fw∗α(x))

s.t.w∗α = argmin
w

E(x,y′)∈D′ `(gα(x, y
′), fw(x)) (3)

where `() denotes a chosen differentiable loss function to measure the predictive error and the
subscript of w is to emphasize the dependency of the best main model f on α. We term this
framework as Meta Label Correction (MLC); Figure 1 provides an overview of the framework.

In this bi-level formulation, since the LCN is parameterized by α, α are the upper parameters (or
meta parameters) while the main model parameters w are the lower parameters (or main parameters).
Like many other work involving bi-level optimizations, exact solutions of Problem (3) requires
solving for the optimal w∗ whenever α is updated. This is often analytically infeasible when the
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while not converged do
Update meta parameters α by descending ∇αLD(w − kη∇wLD′(α,w))
Update model parameters w by descending ∇wLD′(α,w)

end
Algorithm 1: MLC - Meta Label Correction

main model f is complex, such as deep neural networks, and also computationally expensive. Instead
of solving for the optimal for w∗ for each α, we use a k-step look ahead SGD update for w as an
estimate to the optimal main model for a given α

w′(α) ≈ w − kη∇wLD′(α,w) (4)

where LD′(α,w) = E(x,y′)∈D′ `(gα(x, y
′), fw(x)), thus the proxy optimization problem turns to

min
α
LD(w′(α)) = LD(w∗(α)) = E(x,y)∈D `(y, fw′(α)(x)) (5)

Algorithm 1 outlines an iterative procedure to solve the above proxy problem with k-step look ahead
SGD for the main model:

The above meta learning algorithm involves computing an expensive second-order partial deriva-
tive ∇2

α,wLD′(α,w) followed by a matrix vector product. To speed up training, we propose to
approximate the second order gradients with finite differences, as follows

∇αLD(w − kη∇wLD′(α,w)) = −kη∇2
α,wLD′(α,w)∇w′LD(w′) (6)

= −kη∇α

(
∇>wLD′(α,w)∇w′LD(w′)

)
(7)

≈ −kη
2ε

(
∇αLD′(α,w

+)−∇αLD′(α,w
−)
)

(8)

where w± = w± ε∇w′LD(w′), and w′ = w′ − kη∇wLD′(α,w). Similar approximation strategy
is also adopted by meta-learning related tasks. (Liu et al., 2018; Finn et al., 2017)

3.1 CONVERTING A CLASSIFIER TO A LABEL CORRECTION NETWORK

There are multiple ways to build mappings from (x, y′) to the corrected label with deep neural
networks as the desired label correction network. In essence, gα(x, y′) behaves also like a classifier
with the only difference from conventional classifiers, i.e., it also takes the noisy label y′ as input.
To ease the effort of designing and working with the MLC framework, we explored several simple
strategies, which doesn’t require heavy-weight modifications to existing architectures. The one that is
adopted in all our experiments is by constructing the LCN as a weighted combination from a classifier
h(x) and the weak label y′ itself, i.e.

g(x, y′) ≡ λ(x)h(x) + (1− λ(x))y′ (9)

where λ is a data dependent scalar controlling the mixing weights. We found it helps to have a
separate λ for each class, hence different weak classes fed in will be paired with different weights.
If doing so, this only requires modifying the last layer of the classifier h(x), to output a vector of
dimension 2C (C dimensions for the class logits, and the rest C dimensions for the weak label
weights λ), instead of C for the original classifier (where C is number of classes),

3.2 SOFT CROSS ENTROPY LOSS FOR LEARNING WITH WEAK SUPERVISION

In the classification scenario, when a clean label is given to a data example typically the cross entropy
loss is used to train the classifier. Here, we demonstrate that with a soft label (generated from the label
correction network), how the soft cross entropy loss could be beneficial for the weakly supervised
setting. Denote the the soft label as q, where q is a dense vector with

∑
i qi = 1, typically resulted

from a softmax layer and denote the predicting probability of the main classifier as p with
∑

i pi = 1.
In this setup, the original cross entropy loss defined for hard labels can be naively extended as

CEsoft(p,q) = −
∑
i

qi log pi =
∑
i

qi log
qi
pi
−
∑
i

qi log qi = KL(q,p) + entropy(q) (10)
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Minimizing this loss w.r.t the parameters of the main model is equivalent to (with the meta model fixed,
thus q fixed) minimizing the KL divergence between the (soft) label and the predicting distribution,
similar to the hard label case. And when updating the parameters of the meta model, minimizing
this loss function is now equivalent to (with the main model fixed, thus p fixed) minimizing both the
KL divergence between the (soft) label and the predicting distribution, and also the entropy of the
soft labels predicted by the meta model, since we would like to have labeling distribution as close to
discrete as possible.

3.3 k-STEP LOOK AHEAD SGD LOOK AHEAD IN META MODEL LEARNING

We found it’s crucial to use a value of k greater than 1 for MLC to ensure model convergence,
particularly in the early phases of training, when both the main model and the meta model are close to
random predictors and lacks confidence in their outputs. Using k = 1 is likely to confuse both models
and thus they won’t converge. This is not the case for previous similar works with meta-learning,
however we find this to be crucial, as the main model in GLC is not directly trained on any clean
examples, thus slightly more explorations from the main model is likely to help training convergence.
We’ll explore this aspect in the coming section. Due to this requirement, in all our experiments, we
use scheduling for k starting from 1500 and decreasing to 500 towards the end of model training.

4 EXPERIMENTS

To test the performance of MLC, we conduct experiments on a set of classification tasks, both from the
text and vision domains, and compare results with previous state-of-the-art approaches for learning
with weak/noisy labels, under different weak label scenarios.

4.1 WEAK SUPERVISION GENERATION

To generate weak supervision data, for each data set we test on, we sample a portion of the entire
training set as the clean set. The noisy dataset is generated by corrupting the labels of all the remaining
data points based on one of the following two(three) settings:

• Uniform mixture (UNIF)

• Flipped labels (FLIP)

• Weak labels from trained weak classifiers (WEAK)

The first two methods follow the same procedure adopted by (Hendrycks et al., 2018)by either
corrupting uniformly all classes or by flipping a label to a different class. To generate the corrupted
labels from the true labels, we first devise a corruption probability categorical distribution for each
true class, hence for all classes the corruption probability forms a label corruption matrix C. Then,
for an example with true label i, we sample the corrupted label from the categorical distribution
parameterized by the ith row of C. Note that this is a simplified assumption assuming that the
corrupted label does not depend on the data example itself, however we still use this to ensure a
fair comparison to (Hendrycks et al., 2018) where the same process was used for generating noisy
data.To create a noisy datasets with different levels of noise, we take a convex combination of an
identity matrix and the corruption matrix, with the coefficient of the latter serving as an indicator of
the noise level (Hendrycks et al., 2018).

To also study scenarios where the noise could be dependent on both the data and the label, we
introduce a third more realistic method: WEAK. In this method, weak labels are provided by separate
(weak) predictive models that depend on both the data and the labels. To generate different levels
of noise, we train multiple weak predictive models with varying accuracies where a lower accuracy
corresponds to a higher noise level. Note that in all noise levels, the weak predictive model is
performing better than random prediction.

Note that all method are not aware of this true label corruption probability nor do they have knowledge
about which data sample in the noisy set is actually corrupted. Since UNIF and FLIP are similar to
one another, we report results based on UNIF only and leave the FLIP results for the appendix.
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4.2 BASELINE METHODS

We test MLC mainly against the current state-of-the-art model (Hendrycks et al., 2018) for label
correction (denoted by GLC hereafter) in various settings where the labels in the noisy set are
corrupted by different noise levels, as well as the different ratios the clean set is sampled from the
entire training set. Note that GLC was shown to perform consistently better than other models
that combine the clean and weak labels using methods such as distillation Li et al. (2017). For
completeness, we also compare with the forward loss correction method proposed in (Sukhbaatar
et al., 2014) (denoted by Forward hereafter). In lieu with meta learning for learning with weak
supervision, we also compare with the method of learning weights of training examples to learn a
robust classifier (Ren et al., 2018) (denoted by L2R hereafter).

4.3 DATA SETS AND IMPLEMENTATION DETAILS

To ensure fair comparison with previous methods as much as possible, we experiment on a broad set
of data collections from both , with our best effort to match the pre-processing and hyper-parameter
setting from previous methods when experimenting with them on new datasets that were not used in
the original papers.

We test on 10 different collections with varying data sizes. To compare with GLC, we test on all three
text collections used by (Hendrycks et al., 2018) and on the MNIST dataset. The dataset are::

MNIST: The MNIST dataset contains 28× 28 grayscale images of the digits 0-9. The training set
has 60,000 images and the test set has 10,000 images. For preprocessing, we rescale the pixels to the
interval [0, 1]. We train a 2-layer fully connected network with 128 hidden dimensions. We train
with Adam for 20000 iterations using batches of size 128 and a learning rate of 0.001 for the main
model and 0.0001 for the meta model.

Twitter: The Twitter Part of Speech dataset (Gimpel et al., 2011) contains 1,827 tweets annotated
with 25 POS tags. This is split into a training set of 1,000 tweets, a development set of 327 tweets,
and a test set of 500 tweets. We use the development set to augment the training set. We use the
same pretrained 50-dimensional word vectors as in (Hendrycks et al., 2018), and for each token, we
concatenate word vectors in a fixed window centered on the token. These form our training and test
set. We use a window size of 3, and train a 2-layer fully connected network with hidden size 256, and
use the GELU nonlinearity (Hendrycks & Gimpel, 2016). We train with Adam (Kingma & Ba, 2014)
for 20000 iterations with batch size 128 and learning rate of 0.001 for the main model and 0.0001 for
the meta model. Wwe use `2 weight decay with λ = 3× 10−4 on all the weights.

SST

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Table 1: Overview of network architecture used for main model and meta model
Data set Meta network Main network

Twitter, SST Embedding Avg Embedding Avg
MNIST 3-layer MLP 3-layer MLP
IMDB 1-layer LSTM 1-layer LSTM
AG, Amazon2, Amazon5, Yelp2, Yelp5, DBpedia BERT-base BERT-base

Amazon-2 dataset has 3,600,000 training samples and 400,000 testing samples, while the Amazon-5
dataset has 3,000,000 trainig samples and 650,000 testing samples.

Yelp Reviews (Yelp-2 and Yelp-5): The Yelp-2 and Yelp-5 datasets are constructed from the Yelp
Dataset Challenge 2015 data, for binary polarity rating classification and 5-way rating classification,
respectively. Yelp-2 contains 560,000 training samples and 38,000 testing samples and Yelp-5
contains in total of 650,000 training samples and 50,000 testing samples.

DBpedia DBpedia is a crowd-sourced project aiming to extract structured information from
Wikipedia. The DBpedia dataset was covers 14 non-overlapping ontology classes from DBPe-
dia. Each class contains 40,000 training samples and 5,000 testing samples. Hence, the full dataset
has 560,000 training samples and 70,000 testing samples.

For all the large scale text classification datasets (AG, Amazon-2 and -5, Yelp-2 and 5 and DBpedia),
we adopt a pre-trained BERT-base (Devlin et al., 2018) model for both the main network and meta
network. This ensures that we can test the ability of MLC in the weakly supervised setting with
strong state-of-the-art base models.

We implement all models and experiments in PyTorch2. To ensure fair comparison, we adopt the
same main network architecture as much as possible from previous best methods with comparable
number of parameters. A brief overview of the neural net architectures used in various settings is
listed in Table 1 (Refer to the appendix for a detailed description of the model architectures). Code
for reproducing the results in this paper will be made publicly available.

4.4 MAIN RESULTS

MLC with MLP, LSTM: We investigate multiple settings with an extensive set of different configu-
rations, i.e., two noise types, different noise levels, and different clean ratios. Table 2 presents the
averaged accuracies across all these configurations with each one repeated for 5 times. Notice that the
results vary per dataset when the news is generated using UNIF (i.e. noise is independent of the data).
On the other hand, we notice that the performance of all methods seems to drop when we use WEAK
(noise depends on the data and the label). This shows that this is a more realistic and challenging
settings. We also observe that MLC performs consistently better in this case.

Table 2: Mean accuracies over an extensive set of experimental configurations. Each cell represents
an average over 2 noise types (UNIF and WEAK), 3 clean ratios(0.1%, 1.0% and 5%), 11 noise levels
for UNIF ( 0 - 1.0 with 0.1 step and 3 different weak classifiers for WEAK. Every experiment was
repeated 5 times

Datasets Twitter SST IMDB MNIST
UNIF Forward 0.484 0.739 0.735 0.844

GLC 0.743 0.736 0.739 0.924
L2R 0.763 0.614 0.702 0.905
MLC 0.780 0.646 0.712 0.855

WEAK Forward 0.226 0.631 0.626 0.407
GLC 0.295 0.615 0.628 0.451
L2R 0.435 0.592 0.628 0.608
MLC 0.729 0.635 0.623 0.843

2https://pytorch.org
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MLC with BERT. Table 3 presents the error rates of MLC on 6 large text data sets with pre-trained
BERT-base as its main model and meta models. Note that these are much larger scale dataset and that
the baselines and the base models for both the meta and the main learner are using Bert. We notice
that MLC consistently outperforms the baselines (except for L2R on the AG dataset).

Table 3: Error rates comparison on 6 large text data sets
Datasets AG Yelp-2 Yelp-5 Amazon-2 Amazon-5 DBpedia
Fully supervised (# labeled examples) (120k) (560k) (650k) (3.6m) (3m) (560k)

BERTLARGE (Xie et al., 2019) - 1.89 29.32 2.63 34.17 0.64

SSL (# labeled examples) (20) (2.5k) (20) (2.5k) (140)

BERTBASE-512 - 13.60 41.00 26.75 44.09 2.58
BERTLARGE-512 - 10.55 38.90 15.54 42.30 1.68

WSL (# labeled examples, p = 0.6) (60) (20) (2.5k) (20) (2.5k) (140)

GLC - BERTBASE-128 18.74 8.87 44.79 10.19 48.08 3.10
L2R - BERTBASE-128 8.37 10.00 38.74 10.77 42.93 2.08
MLC - BERTBASE-128 9.25 8.18 37.69 9.54 42.53 1.70

4.5 DETAILED RESULTS

We investigate how the noise levels in the weak labels affect MLC training. Due to space limitations,
we only present detailed results on Twitter and MNIST. Detailed experiments on SST and IMDB can
be found in the appendix.

Twitter. Figure 2 presents the detailed performances with different clean data ratio and label noise
levels. For the UNIF setting, both loss correction methods (GLC and MLC) works better than using
only clean data to train the classifier, emphasizing the importance of incorporating those weakly
supervised examples. With 1% and 5% only clean data, MLC achieves consistently higher accuracies
over the range of high noise levels, implying the robustness of MLC with severe noise present. In the
WEAK setting, where the weak labels are generated by weak classifiers, GLC performs worse than
MLC since it assumes that the noisy labels are only dependent on the true label but not on the data. In
contrast, MLC gains significant edge over the other methods as MLC doesn’t make such assumptions.
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Figure 2: Results on Twitter. All numbers reported are accuracies on the test set.

MNIST. Figure 3 presents the detailed performances with different gold data ratio and corruption
levels. Similar trends could be observed as previously seen in Twitter and SST. On the UNIF setting,
MLC is not as good as GLC and L2R; however in the upper range of noise levels, MLC catches up
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Figure 3: Results on MNIST. All numbers reported are accuracies on the test set. Best results in
terms of mean accuracies are printed in black.
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Figure 4: (a) Loss curve on noisy data; (b) Loss curve on clean data; (c) Entropy of the label correction
distribution from the meta model; (d) Test set accuracy changes over the iterations

and leads the way for both GLC and L2R. Moreover, in the WEAK setting, GLC loses to MLC again
due to its simplistic assumption about the noises with a large margin.

4.6 ANALYSIS AND ABLATION STUDIES

In this section, we tap into the details of how MLC behaves in terms of training dynamics and what
the meta networks learns.

4.6.1 TRAINING DYNAMICS

Figure 4 shows the training progress for one run on the MNIST data sets. We monitor a set of different
metrics in training, including the loss function on the noisy data (thus with corrected labels), loss
function on clean data, the entropy of the output distribution from the meta-model (since it’s a soft
label). Another key factor is the parameter k for the look ahead SGD. It turned out that with k = 1
the model basically diverges, thus picking a value larger than 1 is crucial to MLC training.

4.6.2 META NET EVALUATION

After training, besides the main model that serve as the predictive for inference, we also obtain the
meta model, a trained label correction network. In this section, we investigate what actually the meta
model learns after convergence. To achieve this we follow the UNIF setting, i.e., we corrupt the
labels for examples in the test set according to the label corruption matrix used in the weak label
generation process and feed the corrupted test pair into the LCN to check it could recover the correct
label. Note that by doing this we ensure that the MLC framework doesn’t see the instance in training.

It’s clear that after training, both main and meta models have the ability to predict correct labels. The
main network could be used for prediction, while the other serve as a good label correction network.
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Figure 5: (Left) We test the label correction ability of the trained meta model from MLC as a classifier
taking a pair of data and its noisy label as input and assess its accuracy. For reference, we also plot
the accuracies for corresponding trained main model; (Right) Comparison of discrepancies of the
estimated label corruption matrix against the ground truth one. Both GLC and MLC are shown.

By measuring the MAE of the estimated label corruption matrix, we verify that the corrected label
distribution aligns well to the ground truth for the UNIF setting (so is GLC, however GLC cannot be
used to correct future unseen examples).

5 RELATED WORK

Labeled data largely determines whether a machine learning system can perform well on a task or not,
as noisy label or corrupted labels could cause dramatic performance drop (Nettleton et al., 2010). The
problem gets even worse when an adversarial rival intentionally injects noises into the labels (Reed
et al., 2014). Thus, understanding, modeling, correcting, and learning with noisy labels has been of
interest at large in the research communities (Natarajan et al., 2013; Frénay & Verleysen, 2013).

Several works (Mnih & Hinton, 2012; Patrini et al., 2017; Sukhbaatar et al., 2014; Larsen et al., 1998)
have attempted to address the weak labels by modifying the model’s architecture or by implementing
a loss correction. (Sukhbaatar et al., 2014) introduced a stochastic variant to estimate label corruption,
however the methods have to have access to the true labels, rendering it inapplicable when no true
labels are present. A forward loss correction adds a linear layer to the end of the model and the
loss is adjusted accordingly to incorporate learning about the label noise. (Patrini et al., 2017) also
make use of the forward loss correction mechanism, and propose an estimate of the label corruption
estimation matrix which relies on strong assumptions, and does not make use of clean labels that
might be available for a portion of the data set..

Following (Charikar et al., 2017), we assume that during training the model has access to a small set
of clean labels besides a large set of weak labels. This assumption has been leveraged by others for
the purpose of label noise robustness, most notably (Veit et al., 2017; Li et al., 2017; Xiao et al., 2015;
Ren et al., 2018). (Veit et al., 2017) use human-verified labels to train a label cleaning network by
estimating the discrepancies between the noisy and clean labels in a multi-label classification setting.
This assumes that, for a subset of the data, both trusted and noisy labels are available. This work
avoids this limitation by proposing a meta learning approach that does not require trusted and noisy
data to be available for the same instances.

6 CONCLUSIONS

In this paper, we address the problem of learning with weak supervision from a meta-learning
perspective. Specifically, we propose to use a meta network to correct the noisy labels from the
noisy data set, and a main classifier network is trained to fit the example to a provided label, i.e.,
corrected labels for the noisy examples and true labels for the clean examples. The meta network and
main network are jointly optimized in a bi-level optimization framework; to address the computation
challenge, we employ a k-step ahead SGD update for the model weights of the main model. Empirical
experiments on several benchmark datasets including text and graysacle images demonstrates the
effectiveness of MLC.
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A ADDITIONAL RESULTS

A.1 SST AND IMDB

SST. Figure 6 presents the detailed performances with different gold data ratio and corruption levels.
On this binary classification task, it’s surprising to observe that using clean data solely is only
achieving results that are slightly better than random guessing (an accuracy of 0.5). Again with
the help of label correction for the noisy examples, the performance boosts by quite a margin with
GLC. So does MLC over GLC, demonstrating the potential power of using a meta network as a label
correction procedure.
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Figure 6: Results on SST. All numbers reported are accuracies on the test set. For references, using
gold data only to train a model yields test accurucies of 0.541?, 0.647? and 0.741?, for three gold
data ratios respectively.

IMDB. Figure 7 presents the detailed results on all three noisy settings.
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Figure 7: Results on IMDB. All numbers reported are accuracies on the test set. For references, using
gold data only to train a model yields test accurucies of (0.541?, 0.647? and 0.741?, for three gold
data ratios respectively.
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