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Concurrency bugs are notoriously hard to detect and reproduce. Controlled concurrency testing (CCT)

techniques aim to offer a solution, where a scheduler explores the space of possible interleavings of a concurrent

program looking for bugs. Since the set of possible interleavings is typically very large, these schedulers

employ heuristics that prioritize the search to łinterestingž subspaces. However, current heuristics are typically

tuned to specific bug patterns, which limits their effectiveness in practice.

In this paper, we present QL, a learning-based CCT framework where the likelihood of an action being

selected by the scheduler is influenced by earlier explorations. We leverage the classical Q-learning algorithm

to explore the space of possible interleavings, allowing the exploration to adapt to the program under test,

unlike previous techniques. We have implemented and evaluated QL on a set of microbenchmarks, complex

protocols, as well as production cloud services. In our experiments, we found QL to consistently outperform

the state-of-the-art in CCT.
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1 INTRODUCTION

Testing concurrent programs for defects can be challenging. The difficulty stems from a combination
of potentially exponentially large set of program behaviors due to interleavings between concurrent
workers, and the dependence of a bug on a specific, and rare, ordering of actions between the
workers.1 The term Heisenbug has often been used to refer to concurrency bugs because they can
be hard to find, diagnose and fix [Gray 1986; Musuvathi et al. 2008]. Unfortunately, traditional
techniques, such as stress testing, are unable to uncover many concurrency bugs. Such techniques
offer little control over orderings among workers, thus fail to exercise a sufficient number of
program behaviors, and are a poor certification for the correctness or reliability of a concurrent
program. Consequently, concurrent programs often contain insidious defects that remain latent

1Concurrency can come in many forms: between tasks, threads, processes, actors, and so on. In this paper, we will use the

generic term worker to refer to the unit of concurrency of a program.

Authors’ addresses: Suvam Mukherjee, Microsoft Research, Bangalore, India, suvamm@outlook.com; Pantazis Deligiannis,

Microsoft Research, Redmond, USA, pdeligia@microsoft.com; Arpita Biswas, Indian Institute of Science, Bangalore, India,

arpitab@iisc.ac.in; Akash Lal, Microsoft Research, Bangalore, India, akashl@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART230

https://doi.org/10.1145/3428298

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 230. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3428298
https://doi.org/10.1145/3428298
https://doi.org/10.1145/3428298


230:2 Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal

until put into production, leading to actual loss of business and customer trust [Amazon 2012;
Tassey 2002; Treynor 2014].

Previous work on testing of concurrent programs can broadly be classified into stateful and
stateless techniques, depending on whether they rely on observing the state of the program or not.
Stateful techniques require a precise representation of a program’s current state during execution.
Examples of successful tools in this space include Spin [Holzmann 2011] and Zing [Andrews et al.
2004] that do enumerative exploration, as well as tools such as NuSmv [Cimatti et al. 2000; Clarke
et al. 1996] that do symbolic exploration. These techniques, however, are generally applied to a
model of the program. Each of these tools have their own input representation for programs and
a user must encode their scenario in this representation. This limits the application of stateful
techniques for testing real-world code; doing so would require taking precise snapshots of an
executing program, which is hard to do efficiently and reliably.

Stateless techniques overcome the requirement of recording program state, and thus, are a better
starting point for testing real-world code. Such techniques require taking over the scheduling in a
program. By controlling all scheduling decisions of which worker to run next, they can reliably
explore the program’s state space. The exploration can be systematic, i.e., exhaustive in the limit, or
randomized. Since the number of executions of a concurrent program (also called interleavings) is
usually very large, schedulers leverage heuristics that prioritize searching łinterestingž subspaces
of interleavings where concurrency bugs2 are likely to occur. For example, many bugs can be caught
with executions that only have a few context switches [Musuvathi and Qadeer 2007] or a few ordering

constraints [Burckhardt et al. 2010] or a few number of delays [Emmi et al. 2011], and so on. These
heuristics have been effective at finding several classes of concurrency bugs in microbenchmarks
and real-world scenarios [Deligiannis et al. 2016; Thomson et al. 2016]. Controlled concurrency

testing (CCT) refers to the general setup of applying a scheduler to (real-world) programs for the
purpose of finding concurrency bugs.

Our goal is to improve upon the state-of-the-art for CCT. Our technique leverages lessons from
the area of reinforcement learning (RL) [Sutton and Barto 1998; Szepesvári 2010], which also has
been concerned with the problem of efficient state-space exploration. The general RL scenario
comprises an agent interacting with its environment. Initially, the agent has no knowledge about
the environment. At each step, the agent can only partially observe the state of the environment,
and invoke an action based on some policy. As a result of this action, the environment transitions
to a new state, and provides a reward signal to the agent. The objective of the agent is to select
a sequence of actions that maximizes the expected reward. RL techniques have been applied to
achieve spectacular successes in domains such as robotics [Kober et al. 2013; Levine et al. 2016],
game-playing (Go [Silver et al. 2016], Atari [Mnih et al. 2015], Backgammon [Tesauro 1991]),
autonomous driving [Lange et al. 2012; Li et al. 2019; O’Kelly et al. 2018], business management [Cai
et al. 2018; Shi et al. 2019], transportation [Khadilkar 2018; Wei et al. 2018], chemistry [Neftci and
Averbeck 2019; Zhou et al. 2017] and many more.

We map the problem of CCT to the general RL scenario. In essence, the RL agent is the CCT
scheduler and the RL environment is the program: the scheduler (agent) decides the action in the
form of which worker to execute next, and the program (environment) executes the action by
running the worker for one step, and then passing control back to the scheduler to choose the next
action. RL techniques are robust to partial state observations, which implies that we only need to
partially capture the state of an executing program, which is readily possible. In that sense, our
technique is neither stateless nor stateful, but rather somewhere in between. The main contribution
of this paper is a CCT scheduler based on the classical Q-learning algorithm [Peng and Williams

2A concurrency bug refers to an interleaving that causes a user-specified assertion to fail.
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1996; Watkins and Dayan 1992]. To the best of our knowledge, this scheduler is the first attempt at
applying learning-based techniques to the problem of CCT.

The use of RL is fundamentally very different compared to the stateless exploration techniques
mentioned earlier. The latter build off empirical observations to define heuristics that optimize for a
particular subspace of interleavings. This can, however, have its shortcomings when the heuristics
fail to apply. The heuristics optimize for a particular bug pattern, but fall-off in effectiveness as
soon as the bug escapes that pattern. This renders the testing to be brittle against new classes of
bugs. For instance, a bug that is triggered by a combination of two patterns will not be found by a
scheduler looking for just one of those patterns.
This problem of brittleness is further compounded in scenarios where concurrency is not the

only form of non-determinism in the program. Programs can have data non-determinism as well
(we refer to concurrency as a form of control non-determinism). Data non-determinism is used to
generate unconstrained scalar values, for example, to model user input or choices made outside
the control of the application under test. In these cases, heuristics on effectively resolving the
non-determinism do not exist because the resolution can be very program specific (see more in
Section 2).
Lastly, existing schedulers do not learn from the explorations performed in previous iterations,

other than perhaps not repeating the same interleaving again. Systematic schedulers continue along
their fixed exploration strategy (regardless of the program) and randomized schedulers execute an
iteration independent of previously explored iterations. None of them gather feedback from the
program under test.

In this paper, we show how RL does not exhibit the falling-off behavior for complex bug patterns,
and systematically learns from exploration done previously, even in the presence of data non-
determinism.

It is worth noting that RL, in general, has two phases. The first phase is concerned with learning
a strategy for the agent through exploration, and in the second phase the agent simply applies the
learnt strategy to navigate the environment. With CCT, we limit our attention to the first phase
because our objective is simply to explore the state space of the program, and stop as soon as a bug
is discovered.

We implemented our RL-based scheduler (which we denote as QL) for testing of concurrent .NET
applications. We evaluated QL on a wide range of C# applications, including production distributed
services spanning tens of thousands of LOC, complex protocols, and multithreaded programs. Our
results show that QL outperforms state-of-the-art CCT techniques in terms of bug-finding ability.
On some benchmarks, QLwas the only scheduler that was able to expose a particular bug. Moreover,
in many cases, its frequency of triggering bugs was higher compared to other schedulers.
The main contributions of this paper are as follows:

(1) We provide a novel mapping of the problem of testing a program for concurrency bugs onto
the general reinforcement learning scenario (Section 4).

(2) We provide an implementation of the RL-based scheduling strategy for testing C# applications
(Section 5).

(3) We perform a thorough experimental evaluation of our RL-based scheduler on a wide range
of applications, including large production distributed services (Section 6).

Our work is a starting point for the application of RL-based search to CCT. We anticipate that
many further improvements are possible by tuning knobs such as the reward function, partial state
observations, etc. For this purpose, we make our implementation and (non-proprietary) benchmarks
available open-source3.

3https://github.com/suvamM/psharp-ql
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The rest of this paper is organized as follows. In Section 2, we provide a high-level overview of
our learning-based scheduling strategy. We cover background material on controlled concurrency
testing and reinforcement learning in Section 3, and then present the QL exploration strategy in
Section 4. We discuss the implementation details of QL in Section 5 and discuss our experimental
evaluation in Section 6. We present related work in Section 7, limitations and future work in
Section 8, and conclude in Section 9.

2 OVERVIEW

This section provides an overview of the key benefits of our learning-based scheduler. We consider
a message-passing model of concurrency in our examples. That is, programs can have one or more
workers executing concurrently, where each worker has its own local state and communicates with
other workers via messages. When the program reaches a łbadž state (e.g., an assertion is violated),
it stops and raises an error. We note that the choice of message-passing is only for illustration. Our
technique applies to other forms of concurrency as well; our experiments, for instance, include
shared-memory multi-threaded programs.
The goal of CCT is to find an execution of a given program that raises an error. CCT typically

works by serializing the execution of the program, allowing only one worker to execute at a given
point. More precisely, CCT is parameterized by a scheduler that is called at each step during the
program’s execution. The scheduler must pick one action among the set of all enabled actions at
that point to execute next. For simplicity, assume that a worker can have at most one enabled
action, which implies that picking an enabled action is the same as picking an enabled worker.
Section 3 presents our formal model that also considers the possibility of each worker having
multiple enabled actions in order to allow for data non-determinism.
We focus this section on two particular schedulers that have been used commonly in prior

literature. The first is a pure random scheduler. This scheduler, whenever it has to make a scheduling
decision, picks one worker uniformly at random from the set of all enabled workers. The second
scheduler is probabilistic concurrency testing (PCT) [Burckhardt et al. 2010]. In PCT, each worker is
assigned a unique priority. The scheduler always selects the highest-priority worker, except that at
a few randomly chosen points during the program’s execution, it changes (decreases) the priority
of the highest-priority worker. The two schedulers are formalized in Section 3. We use additional
schedulers in our evaluation (Section 6).

Learning-based scheduler. Our main contribution is QL, a learning-based scheduler. As mentioned
in the introduction, we consider the scheduler to be an agent that is interested in exploring the
environment, i.e., the program under test. The agent can partially observe the configuration of
the environment which, in our case, is the program’s current state. Whenever the agent asks the
environment to execute a particular action, it gets feedback in the form of a reward. The agent
attempts to make decisions that maximizes its reward.
QL employs an adaptive learning algorithm called Q-Learning [Watkins and Dayan 1992]. For

each state-action pair, QL associates a (real-valued) quality metric called q-value. When QL observes
that the program is in state 𝑠 , it picks an action 𝑎 from the set of all enabled actions with probability
that is governed by the q-value of (𝑠, 𝑎). After one run of the program finishes, QL updates the
q-values of each state-action pair that it observed during the run, according to the rewards that it
received, and uses the updated q-values for choosing actions in the next run.

The goal of QL is to explore the program state space, covering as many diverse set of executions as
it can. In other words, the scheduler should maximize coverage. For this purpose, we set the reward
to always be a fixed negative value (−1), which has the effect of disincentivizing the scheduler from
visiting states that it has seen before. In other words, the more times a state 𝑠 has been visited
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before, the higher is the likelihood of QL to stay away from 𝑠 in future runs. The choice remains
probabilistic and the probabilities never go to 0. This is essential because the scheduler only gets to
observe the program state partially.
Adaptive learning has important ramifications for exploration. Stateful techniques require ob-

serving the entire program configuration, whereas QL only requires a partial observation, which is
more practical, especially for complex production systems. Unlike stateless strategies, QL adapts its
decisions based on prior program executions. Schedulers like Random and PCT are agnostic to the
program: they follow the same hard-wired rules for any program.

𝟎 𝟏
Worker C

Worker A Worker B

Fig. 1. Simple messaging example with 3 workers.

Table 1. B-% for Random, PCT and QL scheduling

strategies for the program in Figure 1.

B-%

String Random PCT QL

𝜂1 = 091 0.08 0.97 7.34

𝜂2 = (01)5 0.08 ✗ 7.82

𝜂3 = (01)3031 0.08 ✗ 7.07

Power of state observations. Consider the program in Figure 1, with two workers 𝐴 and 𝐵 contin-
ually sending messages, denoted 0 and 1 respectively, to a third worker𝐶 . Worker𝐶 has a constant
𝑛-length string 𝜂 ∈ {0, 1}∗, as well as a counter𝑚 that is initialized to 0. If the 𝑖-th message received
by𝐶 (which is 0 if sent by𝐴 or 1 if sent by 𝐵), matches the 𝑖-th character of 𝜂, then𝑚 is incremented,
else it is set to −1 and is never updated again. The program reaches a bad configuration if𝑚 = 𝑛.
Note that given any string 𝜂, there is exactly one way of scheduling between 𝐴 and 𝐵 so that 𝐶
raises an error after 𝑛 messages. We measure the effectiveness of each scheduler as the B-% value:
the percentage of buggy program runs in a sufficiently large number of runs. Table 1 shows the
results for Random, PCT and QL, for different choices of the string 𝜂.

The Random scheduler has similar B-% values for the various strings. It is easy to calculate this
result analytically: for any string 𝜂 of length 𝑛 in the above example, Random has 1

2𝑛
chance of

producing that string, as it must choose between workers 𝐴 and 𝐵 exactly according to 𝜂. Although
B-% does not change with the string, the effectiveness of finding the bug is poor because of the
exponential dependence on the string length. The PCT scheduler biases search for certain types of
strings. As seen in Table 1, when the string matches the PCT heuristics, its effectiveness is much
better than Random, however, it has no chance otherwise.
QL is able to expose the bug for each of the strings with a much higher B-% compared to the

other two schedulers. QL benefits greatly from observing the state of the program as it performs
exploration. For this example, we set it up to observe just the value of counter𝑚 of worker 𝐶 . QL
optimizes for coverage, and because the counter is set to −1 on a wrong scheduling choice, it is
forced to learn scheduling decisions that keep incrementing𝑚, which leads to the bug.

Resilience to bug patterns. Different schedulers have their own strengths: they are more likely
to find bugs of a certain pattern over others. Consider a slight extension to the Figure 1 example
where we add another worker 𝐷 that sends a single message (denoted 2) to𝐶 and then halts. In this
case, Random is much more likely to find the string 𝜂4 = 2(091) (B-% of 0.05%) compared to the
string 𝜂5 = (091)2 (B-% of 0.003%). The reason is that Random chooses among all enabled workers
with equal probability. Thus, it is more likely to schedule 𝐷 earlier in the execution rather than
later. PCT works much better at scheduling 𝐷 late because it schedules based on priorities. If 𝐷

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 230. Publication date: November 2020.



230:6 Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal

// initialization phase 

async void InitializeProdService() {

...

resp = await SendWriteRequest(key, value);

if (resp == eWriteException) {

abort();

}

...

}

Service Node P

void write () {

if ( )

send eWriteException;

else

send eWriteSuccess;

}

}

Persistent Storage S

Client C

Request

Response

Write

Request

Write

Response

// processing phase 

async void ProcessClientRequest() {

...

resp = await SendWriteRequest(key, value);

if (resp == eWriteException) {

retry(key, value);

}

...

// send response back to client

Send(client, response);

}

async Task<Response> SendWriteRequest(int key, byte[] value) {

Send(Store, new WriteRequest(key, value));

return await Receive(...);

}

Fig. 2. Code snippets from the CacheProvider service.

gets a low priority, then it will not be scheduled until its priority is raised, which has the effect
of scheduling 𝐷 late in the execution. Consequently, PCT has B-% of 0.02% for 𝜂5. Together, this
implies that a string like 𝜂6 = (01)52 falls out of scope for both Random and PCT: it requires 𝐷 to
be scheduled late, and it requires a prefix that PCT cannot schedule. QL does not demonstrate such
behavior: it has a high B-% for each of these strings (at least 1.7%).
Although the program we used here is a toy example, such łpatternsž do occur in real-world

programs. The PoolManager service, discussed in Section 6, is one such example. Roughly, a bug
in the program is triggered when a particular message𝑚𝑎 is processed after processing message
𝑚𝑏 . However, the message𝑚𝑎 is enabled very early in the program’s execution, somewhat like
worker 𝐷 in the example discussed here, and𝑚𝑏 is only enabled late in the program’s execution.
We see exactly the trend described here: Random performs poorly because it tends to schedule𝑚𝑎

very early, and PCT performs better because it is designed for such patterns. However, QL is able to
perform even better than PCT with no explicit tuning to patterns. QL learns over time to inject𝑚𝑎

later and later in the execution, eventually producing a case where it is scheduled after𝑚𝑏 .

Data non-determinism. Programs can have non-determinism within a worker as well. A common
example is the use of a Boolean★ operator to model choices made outside the control of the program,
for instance timeouts (that may or may not fire) or error conditions (e.g., calling an external routine
may return one of several legal error codes).

Prior work on stateless schedulers does not account for such data non-determinism. The common
practice is to resolve ★ uniformly at random: there are no heuristics that determine if one return
value should be preferred over the other. With partial state observations, QL can do much better.
We demonstrate this fact with a simple example. Consider rewriting the program of Figure 1
where we replace workers 𝐴 and 𝐵 with a single worker𝑊 that runs a loop and in each iteration
of the loop, it makes a non-deterministic choice to either send 0 or 1 to 𝐶 . Semantically, this
program is no different from the one in Figure 1. However, PCT’s performance regresses because
the scheduling between workers is immaterial: only the non-deterministic choice matters, for which
sampling uniformly-at-random is the only option available. Interestingly, QL retains its performance,
performing just as well as it did for the program of Figure 1 because it treats all non-determinism
in the same manner.
Consider the code snippet shown in Figure 2. It abstractly describes a production distributed

service (CacheProvider) used in our evaluation (Section 6). The service node 𝑃 uses external
storage 𝑆 to persist data. A read or write request sent to 𝑆 can potentially fail and return an error
code; this is modeled using non-deterministic choice as shown in the figure. 𝑃 is expected to deal
with such failed requests and take appropriate corrective action. 𝑃 is designed to first go through
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an initialization phase, followed by a processing phase where it handles client requests. Both phases
require multiple calls to 𝑆 , however, majority of the business logic of 𝑃 is in the processing phase,
and is the main target of testing. If a request to 𝑆 fails during the initialization phase, 𝑃 simply
aborts by design, because it cannot proceed without proper initialization. Triggering bugs in 𝑃
requires that requests to 𝑆 during initialization all succeed, but may potentially fail during the
processing phase. QL automatically learns to control the data non-determinism in 𝑆 in such manner,
whereas other schedulers perform poorly with 𝑃 often aborting during initialization. Section 6
shows multiple other examples where data non-determinism is relevant to triggering bugs.

Optimizing for coverage. The QL scheduler attempts to learn scheduling decisions that increase
coverage. That is, it tries to uncover new states that it has not observed before. It does not directly
attempt to learn scheduling decisions that reveal the bugÐthe bug-finding ability is a by-product of
increased coverage. Consider the łcalculatorž example illustrated in Figure 3.

Divide

D

Subtract

S

Calculator

C

Add

A

Multiply

M

Reset

R

Reset

Add(1)

Multiply(2)

Divide(2)

Subtract(1)

Fig. 3. A simple calculator example.
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Fig. 4. Measuring coverage in the calculator example.

The worker Calculator maintains a counter that is initialized to 0. Each of the other workers
sends exactly 100 identical messages to Calculator. In response to a message sent by worker Add,
Calculator increments its counter by 1. Similarly, in response to a message sent by Subtract,
Multiply, Divide, and Reset, the Calculatorworker will subtract 1, multiply by 2, divide (integer
division) by 2, and reset the counter to 0, respectively. The counter in Calculator is limited to the
range [−5000, 5000], for a total of 10000 unique counter valuations.

In this example, there are a large number of concurrent executions. However, their effect is such
that many of them result in the same Calculator state. Figure 4 shows the coverage that each
scheduler can achieve as we increase the number of explored program executions. Here, coverage
is defined as the number of distinct counter values generated across all executions. QL dramatically
outperforms both Random and PCT: it is able to traverse almost the entire state space of 10000
unique counter values. We can gain some important insights into the superior state coverage of
QL via Figure 5. The subfigures show the number of times each of the Add, Subtract, Multiply,
Divide and Reset messages are sent, in intervals of 100 program runs. The QL scheduler learns
very quickly that scheduling Reset hampers coverage, so it de-prioritizes it. QL can learn this
fact because Reset always takes the counter back to 0, a state that it has seen many times before.
Similarly, QL also realizes that Divide is not that useful either for generating new counter values,
although it is still more useful than a Reset. Note that the learning is specific to the Calculator
example and obtained by running it repeatedly.
Figure 5 shows a uniform distribution for the Random scheduler, as expected. PCT has more

variance: some runs prefer one type of action over the others. However, there is no learning; the
distribution of one action is indistinguishable from the others.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 230. Publication date: November 2020.



230:8 Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

14000

#
A

ct
io

n
s

QL

Reset

Add

Sub

Mul

Div

0 2000 4000 6000 8000 10000

#Program runs

Random

Reset

Add

Sub

Mul

Div

0 2000 4000 6000 8000 10000

PCT

Reset

Add

Sub

Mul

Div

Fig. 5. Distribution of actions taken across program runs (best viewed in color).

Picking the right state abstraction. The above examples show that learning from state observations
provides an effective alternative to generic (program-independent) scheduling heuristics. This
leaves open the question of what constitutes a good state observation? If we make the observation
too imprecise (e.g., not observing any state), then QL deteriorates to Random-like performance
because there is nothing to learn. For the Calculator example, if QL cannot observe the calculator
value (i.e., all observations return the same state) then it is only able to cover 2715 states in 10K
program runs, almost the same as Random.

On the other hand, we cannot make the observation too precise either. For one, it is very difficult
(and expensive) to hash the entire state of a running program. Moreover, it can also make the state
space very large and slow down learning. We find that in real-world systems, often times programs
have a lot of auxiliary state (e.g., logs and other debugging information) that is irrelevant to the
correctness of their implementation. For instance, in the Calculator sample, suppose that worker
C maintains a count of the number of operations that it has processed in a run of the program. This
count starts at zero and is incremented each time C processes a message from any worker. Further,
we hash both the calculator value as well as this counter. In this case, QL is only able to cover 1693
calculator states in 10K program runs, even worse than Random. The learning slows down because
every observation made in a single run of the program is unique.
It is thus clear that observing the right amount of state is important for the performance of QL.

This poses a stumbling block because predicting the performance of a learning-based algorithm
can be challenging. Characterizing exactly when the algorithm will perform well is hard, often
impossible. Our approach then is to resort to an empirical analysis to find evidence of effectiveness
of QL in practice. For this, we rely on the following intuition: we only observe state that is relevant
for the concurrency in the program. If QL is able to maximize the coverage of such relevant state,
then it should also be good at finding bugs in the program.
We break the observation of state into two parts. The first, called a default observation, is to

hash the synchronization state of the program that is readily available from the CCT tool itself.
Any CCT tool needs to control the scheduling among the workers of a program, for which it must
know which workers are enabled to execute a step, or correspondingly, which workers are disabled
or blocked. For instance, a CCT tool for multi-threaded programs will maintain the set of locks
held by each thread. (A thread that is about to acquire a lock held by another thread is disabled.)
In a message-passing program, a CCT tool will typically maintain the set of pending message
for each process. (A process with no pending message is disabled and the rest are enabled.) This
synchronization state maintained by the CCT tool forms the default state observation. This state is
naturally relevant because it captures the state of synchronization between workers: holding a lock
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or sending a message is how one worker informs another of what it is doing. Furthermore, because
the information is available from the CCT tool itself, it requires no user involvement.
The second kind of state observation is called a custom state observation, where a user can

apply their program-specific intuition to capture additional state that might be relevant in the
program. (We make these concepts concrete in Section 5.) We now illustrate the use of these state
observations through a real-world example.

The Raft Protocol. Raft is a widely used consensus protocol [Ongaro and Ousterhout 2014]. Such
protocols form the basis of many distributed systems and hence it is important to get them right.
However, testing that they have been correctly implemented, especially in corner cases can be
challenging, thus, they are a good target for CCT.

Each node in a Raft cluster can be in one of three roles: follower, candidate or leader. The leader
is responsible for receiving client requests and replicating them across the rest of the nodes. Each
follower keeps tracks of all requests received from the leader. A candidate can, at any time, start a
leader election process. If it wins the election, it becomes a leader. (This is necessary to tolerate
failures of the leader node.) An election consists of nodes exchanging voting messages with each
other; the candidate that receives a quorum (majority) of votes becomes the leader.
Raft ensures that at most one node can be the leader of the cluster at any point in time. Having

two leaders is a serious bug; it can result in requests from one overwriting the other and corrupting
the state of the system. We consider a particular implementation of Raft4 with such a bug [Akka
Raft 2015]. In this case, the candidate node was missing logic that is supposed to de-duplicate
votes originating from the same follower during the same leader election. This de-duplication is
important. A follower node can send the same vote multiple times, if it believes that earlier votes
were dropped by the network. It relies on a timeout to determine possibly-dropped messages; it
cannot know for sure. If the candidate does not perform de-duplication (i.e., discard duplicate
messages), then it could end up counting the same vote multiple times and transition to become
the leader role without actually having achieved a quorum of votes.
To trigger the bug, in a particular election round, it must happen that candidate 𝐴 receives a

majority of the votes and a follower that voted for candidate 𝐵 ends up sending multiple duplicate
votes, so that both candidates end up claiming that they are the leaders. (This bug was fixed
as follows. Instead of maintaining a count of the number of votes received, a candidate should
maintain a set of all followers who have voted for it. Adding to the set will automatically do the
de-duplication. The candidate then checks the size of the set to know if it has a quorum or not.)

For a developer interested in testing their Raft implementation, clearly they do not know of bugs
beforehand. Instead, their goal is to write a test that covers as many diverse behaviors as possible
in a given amount of budget. For this, they make relevant state available to QL. This consists of
in-flight messages (captures the state of the network) as well as the status of each node (its role,
and whom they are choosing to vote for currently). Let us call this state as łruntime statež of the
protocol. Other components such as the linearized log of requests maintained by nodes are not
deemed relevant.

We consider three variants of QL that incrementally include more relevant state. The variant QLi

only considers in-flightmessages (by hashing the inbox of each node). QLd additionally also considers
the current role of each node. QLc considers the entire runtime state. (In our implementation, as
we make it clear in Section 5, QLd is the default configuration where the state observation only
consults the CCT runtime.) Note that QL only gets to observe a hash of the state and it does not
know how to interpret the hashed value. It must learn that on its own.

4Colin Scott’s blog nicely details this bug. See: https://colin-scott.github.io/blog/2015/10/07/fuzzing-raft-for-fun-and-profit/
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Fig. 6. Measuring coverage of runtime states (left), leader elections (middle) and multiple candidates during

the same leader election (right) in the Raft implementation.

Aswewill see in Section 6, all variants of QL find the bug with a much higher frequency than other
schedulers. We use Figure 6 to understand the effectiveness of QL. The figure shows a comparison
of the coverage obtained by CCT using different schedulers over 10K program runs. The three plots
in the figure are all obtained from the same set of runs, but they measure coverage in different ways.
The left-most plot measures coverage in the number of runtime states. The schedulers QLc and QLd

are very close to each other and offer much superior coverage compared to other schedulers and
even QLi to a smaller extent.
The other two plots measure coverage that is more directly relevant for the particular bug in

this implementation of Raft. The middle plot measures the number of leaders elected, whereas
the right-most plot measures the number of times there were multiple candidates during the same
leader election. Both of these are required for the bug to manifest. QLc and QLd perform best in
these metrics as well. While Random is better at electing leaders than QLi, it is worse off at having
multiple candidates in an election.
Random and PCT are program agnostic: without knowing the program under test, they are

unable to effectively push Raft into semantically interesting cases. QL, on the other hand, leverages
state coverage as a means of generating more interesting behaviors.

We do note that increased coverage does not always imply better bug-finding ability. The state
spaces of such programs can be very large, and each bug can require a very different kind of
coverage. Nonetheless, we rely on empirical evidence to show that for all bugs that we consider, QL,
with default observation only, consistently delivers best coverage and bug-finding ability, whereas
other schedulers only tend to do well on a subset.

3 PRELIMINARIES

This section presents background material on CCT and reinforcement learning and sets up the
notation that we follow in the rest of the paper.

3.1 Controlled Concurrency Testing

3.1.1 Programming Model. A program P is a tuple ⟨W, Σ, 𝜎init , 𝐴,Θ⟩, whereW denotes a (finite)
set of concurrently executingworkers and Σ denotes the set of program configurations, with 𝜎init ∈ Σ
being the initial configuration. The set of actions that the program can execute is denoted by 𝐴. We
use the meta-variables 𝜎 , 𝑎 and𝑤 to range over the sets Σ, 𝐴 andW respectively. Let 𝜔 : 𝐴 ↦→ W

be an onto function that maps each action to the unique worker which executes it. The function

Θ : 𝐴 ↦→ 2Σ×Σ denotes the set of transitions associated with 𝑎. We write 𝜎
𝑎
−→ 𝜎 ′ iff (𝜎, 𝜎 ′) ∈ Θ(𝑎).

Further, for simplicity, we assume that transitions associated with an action are deterministic. That
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is, for each action 𝑎, if 𝜎1
𝑎
−→ 𝜎2 and 𝜎1

𝑎
−→ 𝜎3 then 𝜎2 = 𝜎3. (Any non-determinism must then be

reflected in the choice of which action to execute.)
We define some helper functions that will be used in the rest of the paper. The function IsError (𝜎)

returns true if the configuration𝜎 represents an erroneous configuration, and returns false otherwise.
We define the functions enabled (𝜎), enabled𝑤 (𝜎) and 𝜗 (𝜎) as follows:

enabled (𝜎)
def
= {𝑎 ∈ 𝐴 | ∃𝜎 ′ ∈ Σ : 𝜎

𝑎
−→ 𝜎 ′}

enabled𝑤 (𝜎)
def
= {𝑎 ∈ enabled (𝜎) | 𝜔 (𝑎) = 𝑤}

𝜗 (𝜎)
def
= {𝑤 ∈ W | enabled𝑤 (𝜎) ≠ ∅}

The function enabled (𝜎) returns the set of all actions that P can execute when it is at the configu-
ration 𝜎 , while enabled𝑤 (𝜎) returns those actions in enabled (𝜎) that can be executed by a worker
𝑤 . Lastly, 𝜗 (𝜎) returns all workers that have at least one enabled action in the configuration 𝜎 .
With this notation, |𝜗 (𝜎) | > 1 represents control non-determinism: there is a choice between which
worker will take the next step. When |enabled𝑤 (𝜎) | > 1, it represents data non-determinism: the
worker𝑤 itself can have multiple enabled actions.

Note that this programming model is very general. It does not assume anything about how
different workers communicate. One can easily encode message-passing programs or shared-
memory programs in this model.

3.1.2 Schedulers. A schedule ℓ of length 𝑁 is defined to be a sequence of program transitions
starting from the initial configuration:

ℓ
def
=

〈

𝜎init
𝑎1

−−→ 𝜎1
𝑎2

−−→ . . .
𝑎𝑁
−−→ 𝜎𝑁

〉

We use |ℓ | to denote the length of a schedule, and write ℓ
𝑎′

−→ 𝜎 ′ to denote a schedule that extends ℓ

with the single (valid) transition 𝜎𝑁
𝑎′

−→ 𝜎 ′. We also refer to the transition 𝜎𝑖−1
𝑎𝑖
−→ 𝜎𝑖 as the 𝑖-th

step of the schedule. We call a schedule buggy if its final configuration represents an error. Note
that because transitions associated with an action are deterministic, a schedule can equivalently be
represented by its sequence of actions.

For a given programP, CCT aims to explore possible schedules ofP using the generic exploration
algorithm shown in Algorithm 1. The algorithm is parameterized by a scheduler Sch. It accepts
bounds 𝑀 and 𝑁 on the length of each schedule, and the total number of schedules to explore,
respectively. Algorithm 1 returns a buggy schedule if discovered, else it returns an empty sequence.

Algorithm 1 iteratively explores multiple schedules of P, up to bound 𝑁 (line 1). In each iteration,
the scheduler is informed via a call to PrepareNext to prepare for executing a new schedule (line
3). Each schedule consists of at most𝑀 steps, after which the schedule is aborted and a new one is
attempted. In each step, the scheduler Sch is asked to pick an action from the set of all enabled
actions via a call to GetNext (line 8). The selected action is then executed (line 9): given 𝜎 and 𝑎,

Execute (𝑃, 𝜎, 𝑎) returns 𝜎 ′ such that 𝜎
𝑎
−→ 𝜎 ′. The process continues until a bug is found or the

algorithm hits the bound 𝑁 on the number of explored schedules.
The scheduler Sch controls the exploration strategy. We describe two different scheduler instan-

tiations next.

Random. A purely randomized exploration strategy can be obtained by setting the PrepareNext
function to skip, and making the GetNext function return an action chosen uniformly at random
from its given set of enabled actions enabled (𝜎). Prior work has noted that such a simple strategy
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Algorithm 1: Generic Exploration Algorithm.

Input: Scheduler Sch

Input: Program P, Max-Steps𝑀 , Max-Iterations 𝑁

1 foreach 𝑖 ∈ {1, . . . , 𝑁 } do

2 𝜎 ← 𝜎init , ℓ ← ⟨𝜎init ⟩

3 Sch.PrepareNext ()

4 foreach 𝑗 ∈ {1, . . . , 𝑀} do

5 if IsError (𝜎) ∨ enabled (𝜎) = 𝜙 then

6 break

7 end

8 𝑎 ← Sch.GetNext (enabled (𝜎))

9 𝜎 ′ ← Execute (P, 𝜎, 𝑎)

10 ℓ ←
(

ℓ
𝑎
−→ 𝜎 ′

)

11 𝜎 ← 𝜎 ′

12 end

13 if IsError (𝜎) then

14 return ℓ

15 end

16 end

17 return ⟨⟩

is still effective at finding bugs in practice and should be used as a baseline for future comparisons
[Thomson et al. 2016].

Probabilistic concurrency testing (PCT). The PCT scheduler described here is an adaptation of the
original algorithm [Burckhardt et al. 2010] to our setting. PCT is a priority-based scheduler that is
parameterized by a given bound 𝐷 , called the priority-change-point budget. We explain PCT with a
fixed number of workers, although it is easily extended for an unbounded number of workers. Let
|W| =𝑊 . The PrepareNext method of the scheduler (randomly) assigns a unique initial priority to
each worker in the range {𝐷,𝐷 + 1, . . . , 𝐷 +𝑊 }. It also constructs a set 𝑍 = {𝑧1, . . . , 𝑧𝐷−1} of 𝐷 − 1
distinct numbers chosen uniformly at random from the set {1, . . . , 𝑀}. Assume that 𝑍 is sorted, so
that 𝑧 𝑗 ≤ 𝑧 𝑗+1 for each 𝑗 ≤ 𝐷 − 2.

The idea behind PCT is to choose the highest-priority worker within the set of enabled workers
at each step. Priorities remain fixed, except at priority-change points when the scheduler shifts
priorities. More precisely, when GetNext is called for choosing the 𝑖𝑡ℎ action, it first picks the
highest-priority worker 𝑤 . Next, it checks if 𝑖 equals 𝑧 𝑗 for some 𝑧 𝑗 ∈ 𝑍 . If so, it decreases the
priority of 𝑤 to 𝑗 . (Note that 𝑗 ≤ 𝐷 − 1, so it is the least priority among all currently-assigned
priorities.) It then re-picks the highest-priority worker𝑤 ′. Finally, it returns an enabled action of
𝑤 ′ chosen uniformly at random from its set of all enabled actions. (This last part deals with data
non-determinism.)

Schedulers need not always be probabilistic or randomized. It is also possible to define a DFS-like
scheduler that is guaranteed to explore all schedules of the program in the limit, although such
systematic schedulers tend not to work well in practice [Thomson et al. 2016]. There are many
other schedulers defined in prior literature [Desai et al. 2015; Emmi et al. 2011; Musuvathi and
Qadeer 2007; Thomson et al. 2016].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 230. Publication date: November 2020.



Learning-Based CCT 230:13

3.2 Reinforcement Learning

The Reinforcement Learning (RL) [Heidrich-Meisner et al. 2007; Russell et al. 2003; Sutton and
Barto 1998] problem, outlined in Figure 7, comprises of an agent interacting with an environment,
about which it has no prior knowledge. At each step, the agent takes an action, which causes
the environment to undergo a state transition. The agent then observes the new state of the
environment, and receives feedback in the form of a reward or penalty. The goal of the agent is to
learn a sequence of actions that maximizes its expected reward.

Fig. 7. The Reinforcement Learning problem.

The environment is unknown a priori, i.e., the effect of executing an action is not known. This
makes the RL problem hard, but also generally applicable. In the RL literature, it is common to
model the environment as a Markov Decision Process (MDP) over the partial state observation. An
MDP is a stochastic state-transition model, comprising the following components:

(1) A set of states S, representing partial observations of the environment’s actual state.
(2) A set of actions 𝐴 that the agent can instruct the environment to execute.
(3) Transition probabilities T (𝑠, 𝑎, 𝑠 ′), which denote the probability that the environment transi-

tions from a state 𝑠 ∈ S to 𝑠 ′ ∈ S, on taking action 𝑎 ∈ 𝐴.
(4) Reward R(𝑠, 𝑎) obtained when the agent takes an action 𝑎 from the state 𝑠 .

Assume that the environment is in some state 𝑠 ∈ S, and the agent instructs it to execute a sequence
of actions (𝑎1, 𝑎2, . . .), denoted as ⟨𝑎𝑡 ⟩. Let 𝑠𝑖+1 denote the state of the environment after executing
the action 𝑎𝑖+1 at state 𝑠𝑖 . Then, the expected discounted reward, for 𝑠 and ⟨𝑎𝑡 ⟩ is defined as

V(𝑠, ⟨𝑎𝑡 ⟩)
def
= E

[

∞
∑︁

𝑖=0

𝛾𝑖R(𝑠𝑖 , 𝑎𝑖+1)
�

�

� 𝑠0 = 𝑠

]

The parameter 𝛾 ∈ (0, 1] is called the discount factor, and is used to strike a balance between
immediate rewards and long-term rewards. The optimal expected discounted reward for a state 𝑠
can be written as:

V∗ (𝑠)
def
= max

⟨𝑎𝑡 ⟩
V(𝑠, ⟨𝑎𝑡 ⟩)

= max
𝑎∈𝐴

(

R(𝑠, 𝑎) + 𝛾
∑︁

𝑠′∈S

T (𝑠, 𝑎, 𝑠 ′)V∗ (𝑠 ′)

)

The Q-function 𝑄∗ (𝑠, 𝑎) denotes the expected value obtained by taking action 𝑎 at state 𝑠 , and is
written as

𝑄∗ (𝑠, 𝑎)
def
=

(

R(𝑠, 𝑎) + 𝛾
∑︁

𝑠′∈S

T (𝑠, 𝑎, 𝑠 ′)V∗ (𝑠 ′)

)

(1)

The agent makes use of a policy function, 𝜋 : S ↦→ 𝐴, to determine the action to be executed
at a given state of the environment. The optimal policy 𝜋∗ (𝑠) can be obtained by computing the
Q-function for each state-action pair, and then selecting the action 𝑎 that maximizes 𝑄∗(𝑠, 𝑎) (by
solving the Bellman equations [Bellman et al. 1954]). However, when the MDP is unknown, instead
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of computing the optimal policy, the agent needs to adaptively learn the policy from its history of
interaction with the environment. RL techniques help in systematic exploration of the unknown
MDP by learning which sequences of actions are more likely to earn better rewards (or incur less
penalties).

One such popular RL algorithm is Q-Learning [Watkins and Dayan 1992; Watkins 1989b], which
estimates 𝑄∗ values using point samples. Starting from an initial state 𝑠0, Q-Learning iteratively
selects an action 𝑎𝑖+1 at state 𝑠𝑖 and observes a new state 𝑠𝑖+1. Let ⟨𝑠𝑡 ⟩ be a sequence of states
obtained by some policy and ⟨𝑎𝑡 ⟩ be the sequence of corresponding actions. Then, given an initial
estimate of 𝑄0, the Q-learning update rule is as follows:

𝑄𝑖+1 (𝑠𝑖 , 𝑎𝑖+1) ← (1 − 𝛼) ·𝑄𝑖 (𝑠𝑖 , 𝑎𝑖+1) + 𝛼 ·
(

R(𝑠𝑖 , 𝑎𝑖+1) + 𝛾 max
𝑎′

𝑄𝑖 (𝑠𝑖+1, 𝑎
′)
)

(2)

Here, 𝛼 ∈ [0, 1] is called the learning parameter. When 𝛼 = 0, the agent does not learn anything new
and retains the value obtained at the 𝑖𝑡ℎ step, while 𝛼 = 1 stores only the most recent information
and overwrites all previously obtained rewards. Setting 0 < 𝛼 < 1, helps to strike a balance between
the new values and the old ones.
The Q-Learning algorithm does not explicitly use the transition probability distribution of

the underlying MDP during the update step (unlike Equation 1), and is hence called a model-free

algorithm. Such algorithms are advantageous when the state-space is huge and it is computationally
expensive to try learning all the transition probability distributions.
Exploration methods like random completely ignore the historical agent-environment interac-

tions [Whitehead 1991a,b], while counter-based methods [Barto and Singh 1991; Sato et al. 1988] take
decisions based solely on the frequency of visited states. In contrast, Q-Learning takes informed
stochastic decisions that eventually make worse actions less likely. In our work, we use Soft-
max [Sutton and Barto 1998; Watkins 1989a] as our policy in order to bias the exploration against
unfavorable actions based on the current Q-values. According to the Softmax policy, the probability

of choosing an action 𝑎 (from a set of possible choices 𝐴) at state 𝑠 , is given by 𝑒𝑄 (𝑠,𝑎)
∑

𝑎′∈𝐴 𝑒𝑄 (𝑠,𝑎
′) . Thus,

lower the 𝑄 (𝑠, 𝑎) value, lesser the likelihood of taking action 𝑎 again at state 𝑠 . We note that there
are alternatives to the Softmax policy, such as 𝜖-greedy (with probability 𝜖 , choose a random action
and with probability (1 − 𝜖) choose the action with max 𝑄 value). We found Softmax to be the
most natural choice, and leave experimentation with other choices as future work.

4 Q-LEARNING-BASED CONTROLLED CONCURRENCY TESTING

This section describes our QL scheduler. LetH be a user-defined function that maps Σ ↦→ S, where
Σ is the set of program configurations and S is a set of abstract states. When the environment
(program) is in the configuration 𝜎 , then H(𝜎) represents the observation that the agent will
make about the environment. One can think ofH as defining an abstraction over the program’s
configuration space. In reality, H is implemented as a hashing function that is applied to only
a fraction of the program’s configuration. The reward function R : S × 𝐴 ↦→ R is fixed to be a
constant −1, that is, R(𝑠, 𝑎) = −1 for all states 𝑠 and actions 𝑎.

Given a schedule ℓ = ⟨𝜎init
𝑎1

−−→ 𝜎1
𝑎2

−−→ . . .
𝑎𝑛
−−→ 𝜎𝑛⟩, letH(ℓ) denote the abstracted schedule with

each 𝜎𝑖 replaced by 𝑠𝑖 = H(𝜎𝑖 ). The QL scheduler is parameterized by the abstraction functionH . Its
GetNext and PrepareNext procedures are described in Algorithm 2 and Algorithm 3, respectively.
The QL scheduler maintains a partial map Q : S × 𝐴 ↦→ R. For an abstract state 𝑠 and action 𝑎,
Q(𝑠, 𝑎), when defined, represents the 𝑄-value associated with the state-action pair (𝑠, 𝑎).

Algorithm 2 takes as input a program configuration 𝜎 , and the set of (say, 𝑛) actions enabled (𝜎).
We fix an arbitrary ordering among these actions and use 𝑎𝑖 to refer to the 𝑖𝑡ℎ action in this order.
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Algorithm 2: GetNext-QL

Input: Set of actions {𝑎1, . . . , 𝑎𝑛}, Configuration 𝜎

1 𝑠 ←H(𝜎)

2 foreach 𝑎 ∈ {𝑎1, . . . , 𝑎𝑛} do

3 if Q(𝑠, 𝑎) is undefined then
/* Initialize 𝑄-value of new (𝑠, 𝑎) pair to 0 */

4 Q(𝑠, 𝑎) ← 0

5 end

6 end

7 D ← ⟨⟩ /* probability distribution over actions */

8 foreach 𝑖 ∈ {1, . . . , 𝑛} do

9 D(𝑖) ← 𝑒Q(𝑠,𝑎𝑖 )
∑𝑛

𝑗=1 𝑒
Q(𝑠,𝑎𝑗 )

10 end

11 𝑖 ← Sample(D)

12 return 𝑎𝑖

The GetNext procedure first computesH(𝜎) and stores it in the variable 𝑠 . For each input action
𝑎, if the 𝑄-value for (𝑠, 𝑎) is not present in Q, then it is initialized to 0 (lines 2-6). Next, a variable
D is initialized. Lines 8-10 creates a probability distribution D over the set of 𝑛 enabled actions
using the Softmax policy. Finally, Algorithm 2 samples from the distribution D (i.e., it picks 𝑖 with
probability D(𝑖)) and returns the corresponding action.

Algorithm 3: PrepareNext-QL

Input: Schedule ℓ = ⟨𝜎0
𝑎1

−−→ 𝜎1, . . . , 𝜎𝑛−1
𝑎𝑛
−−→ 𝜎𝑛⟩

1 ℓ̂ ←H(ℓ) /* Sets ℓ̂ to ⟨𝑠0
𝑎1

−−→ 𝑠1
𝑎2

−−→ . . .
𝑎𝑛
−−→ 𝑠𝑛 ⟩ */

2 foreach 𝑖 ∈ {𝑛, . . . , 1} do

3 maxQ← max
𝑎
Q(𝑠𝑖 , 𝑎)

4 Q(𝑠𝑖−1, 𝑎𝑖 ) ← (1 − 𝛼) · Q(𝑠𝑖−1, 𝑎𝑖 ) + 𝛼 ·
(

R(𝑠𝑖−1, 𝑎𝑖 ) + 𝛾 · maxQ
)

5 end

We use the PrepareNext procedure to update the𝑄-values according to the previously executed
schedule. We assume that PrepareNext is not called in the first iteration of Algorithm 1, and in each
subsequent iteration, it is passed the completed schedule from the previous iteration. Algorithm 3
updates the 𝑄-values for each state-action pair (𝑠𝑖−1, 𝑎𝑖 ) in the abstracted schedule ℓ̂ , according to
Equation 2. Note that the negative reward causes the update rule to decrease the 𝑄-value for each
observed (𝑠, 𝑎) state-action pair. As a result, the Softmax policy lowers the likelihood of selecting
𝑎 in subsequent iterations when the state 𝑠 is encountered, thereby increasing the chances of
discovering newer states.

5 IMPLEMENTATION

The QL scheduler needs a setup for performing Controlled Concurrency Testing of a given program.
Any CCT framework would suffice as long as it allows the following:

(1) the ability to implement the abstraction functionH for observing the current configuration
of the program,

(2) the ability to retrieve the current set of enabled actions, and
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(3) the ability to execute only the chosen action from the set of enabled actions.

We used P# [Deligiannis et al. 2015] as the implementation vehicle for QL.

The P# Framework. P# is an open-source industrial-strength framework for building and testing
concurrent C# applications [P# Team 2019]. It consists of two main components: a runtime library
and a CCT tool called the P#-Tester. The P# runtime is a regular .NET library that offers APIs for
creating actors (calledmachines in P#) and sendingmessages between them. The programmer simply
links their C# application against this library. Instead of using threads and locks for concurrency,
the programmer is expected to use P# machines that communicate with each other via messages.

A machine consists of an inbox of incoming messages along with other user-defined fields. The
P# runtime executes each machine in a single-threaded fashion, where it dequeues messages from
the machine’s inbox and processes them sequentially one after the other. The programmer can
define custom logic for processing messages as regular C# methods using the full extent of the
language. These methods can update the machine’s local fields, or invoke other runtime APIs that
create new machines or send messages to existing ones.
The P# runtime also provides an API, called NonDet, that returns an unconstrained Boolean

value; a program can use NonDet to model data non-determinism. Optionally, a machine can
internally have a state-machine (SM) structure that is offered in P# for programmatic convenience. P#
also provides the ability to program safety and liveness specifications of the application alongside its
implementation. Violating any of these specifications or a user assertion or an uncaught exception,
all constitute a bug in the program that should be caught before the program is put into production.

The P#-Tester. P#-Tester implements Algorithm 1. A worker is simply a machine. An enabled
worker is a machine that has a message in its inbox that it has not processed already. The P#

runtime maintains the inbox for each machine, hence this information is readily available to the
P#-Tester. (Our QL strategy will also leverage the information maintained by the runtime for the
purpose of implementing the abstraction functionH .)

P#-Tester takes control of the scheduling of machines in the P# runtime, which then allows it
to serialize the execution of the program, allowing only one machine to proceed at a time. When
a machine is scheduled, it executes until it reaches a scheduling point, at which point the control
goes back to the P#-Tester and it can choose to schedule some other machine. The notion of an
action is thus the execution of a machine from one scheduling point to the next.

It is generally the role of the CCT tool to ensure that there are enough scheduling points inserted
in the program so that all its executions can be covered in the limit. For instance, inserting a
scheduling point before each machine instruction is clearly enough (when using a sequentially-
consistent memory). However, this can be very intrusive, and may considerably slow down the
execution of the program. A scheduling point before non-commuting actions is enough, based
on Lipton’s theory of reduction [Lipton 1975]. P# assumes a data-race free program [Deligiannis
et al. 2015]. In that case, the only non-commuting actions in a P# program are: (1) the creation of
a machine and (2) the sending of a message. Both of these can only happen via calls into the P#
runtime, at which point the P#-Tester can take control. We note that the choice of scheduling points
and dealing with assumptions such as data-race freedom and sequentially-consistent memory
semantics, are specific to the CCT implementation, not the scheduling strategy. These concerns are
thus orthogonal to the contributions of this paper.
P#-Tester allows a user to choose between various different schedulers that it has implemented

already, including Random and PCT. We implemented and added QL to P#-Tester that allows for a
direct comparison with other schedulers.
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The P#-Tester also inserts a scheduling point at each call to NonDet and it is up to the scheduler
to pick the value to return. A machine, at any point, can have at most one enabled action, except in
cases when it is at a call to NonDet, in which case it can have two enabled actions (one for each
possible return value of NonDet). The resolution of NonDet in all schedulers that come with
P#-Tester is purely random. QL is the first scheduler that does otherwise.
Our decision to use P# was motivated by the following reasons:

(1) There are production distributed services of Microsoft Azure that have been developed
using P# [Deligiannis et al. 2020]. This allowed us to evaluate QL on highly concurrent services
comprising tens of thousands of LOC. Several other benchmarks that use P# were available
as well.

(2) P#-Tester contains implementations of several state-of-the-art scheduling strategies, includ-
ing Random and PCT. This allowed us to compare QL against independently-implemented
schedulers that have been shown to be effective in practice.

(3) P# provides the necessary scaffolding to quickly implement the QL scheduler. The framework
exposes APIs to perform suitable abstractions of the program configuration, retrieve the set
of actions, etc., and has been used in prior studies as well [Deligiannis et al. 2016; Mudduluru
et al. 2017; Ozkan et al. 2018].

Extension to multithreaded applications. We further implemented an extension to P# that allows
the creation of tasks. Tasks execute concurrently while communicating with other tasks via shared-
memory. Tasks also have access to synchronization, such as blocking on another task to finish (join)
or acquiring/releasing locks. This extension allows us to exercise the various schedulers of P# on
multi-threaded benchmarks as well.
In this case, the task corresponds to a worker and an action is the execution of a task from one

scheduling point to the next. The treatment of NonDet also remains the same. The P# runtime
maintains, for each task, the set of locks currently held by it or if one task is waiting on another
to finish (join). This information is used by the P#-Tester to know if a task is enabled or not. By
default, the P#-Tester considers scheduling points at task creation, join points and at acquire of
locks. This is sufficient to cover all executions of a data-race free program. In case the programmer
feels that certain shared-memory accesses in the program may be racy, they have to manually
insert a scheduling point (just before the access) via an API provided by the P# runtime.

QL scheduler. We experimentedwith several differentH functions for obtaining state observations.
Each of themwere implemented as a hashing routine thatmapped the current program configuration
to an integer; they only differed in how much of the program state was hashed. In each case, we
first constructed a per-worker (per-machine or per-task) hash and then applied a commutative hash
(in our case, a simple multiplication) of these individual hashes. The commutative hashing allows
us to remove distinction between two program configurations that only differ in the enumeration
order of workers. (The enumeration order can be made relevant simply by including the worker’s
unique ID in the per-worker hash. In all theH functions that we considered, however, we did not
include the worker ID.)
We considered three variants of QL that use a different per-worker hash, called QLi, QLd and

QLc. Following the description in Section 2, the schedulers QLi and QLd use default observations,
i.e., they only rely on information present in the P# runtime, whereas QLc accepts a custom state
observation. These are described in more detail below.

(1) QLi: hashes only the contents of the inbox of a machine. This only applies to machine-based
programs.
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(2) QLd: For machine-based programs, this hashes the inbox contents, current machine operation
(send or create or NonDet), as well as the current state of the machine’s state-machine (if
any). For the case of task-based applications, this only hashes the locks held by a task.

(3) QLc: hashes a machine/task using a user-defined hashing routine that is free to look at any
runtime component used by QLd, as well as the local state of the machine/task. We added
convenient APIs to the P# library to let a user provide this hashing scheme.

It is important to note that because QLi and QLd only make use of information already present
in the P# runtime, they require no user involvement. They will work out-of-the-box for any P#

program. Thus, these variants serve to demonstrate the general power of our scheduler, whereas
QLc demonstrates how a user can step in to control the testing quality.

Optimizations. Our implementation of QL in P#-Tester closely mirrors Algorithm 2 and Algo-
rithm 3, with the exception of two optimizations that we describe next. These optimizations improve
upon the basic reward function defined in Section 4.

• Opt-1: The implementation maintains a map TF : S → int. TF[𝑠] records the number of
times the scheduler has encountered the hash 𝑠 during exploration. Our first optimization
is that for a given hash 𝑠 , we multiply the reward in line 4 of Algorithm 3 with TF[𝑠]. This
optimization allows QL to rapidly learn to avoid exploring a state repeatedly.
• Opt-2: The second optimization involves assigning a high negative reward (−1000) for an
action 𝑎 that corresponds to sending a message of a special type, from any state 𝑠 . This change
has the following effect. For some state 𝑠 and a special action 𝑎, once the scheduler has
explored a schedule that takes action 𝑎 on state 𝑠 , it will be highly discouraged to fire action 𝑎
in the future when the program is in state 𝑠 . This optimization helps the scheduler improve its
diversity of schedules when it comes to the insertion of this special action. In our experiments,
this special action is the injection of a failure message that is used by programmers to test
the failover logic of their distributed system. A failure message is intended to bring down a
set of machines, so one can test the effects of failures in their system.

These optimizations, along with the choice of the abstraction function showcase the degree of
control available to a user for enhancing the testing experience for the program they care about
most. In contrast, other schedulers offer no control to the user. In our evaluation, we added the
scheduler QLb, which is a basic version of QLd with both Opt-1 and Opt-2 turned off.
For all our experiments, we set the values of 𝛼 and 𝛾 , used in Algorithm 3, to 0.3 and 0.7,

respectively. We justify this choice in Section 6.
The ability to observe the program configuration is an added source of information for QL

compared to stateless schedulers. To evaluate the effectiveness of the learning aspects of the
algorithm, we came up with two other strategies to serve as a baseline for QL, described below.

Greedy scheduler. The Greedy scheduler maintains a TF map, similar to QL. When the program
reaches a state 𝑠 , the scheduler computes the set N𝑠 of possible target states the program can
transition to from 𝑠:

N𝑠 = {𝑠
′ | ∃𝑎 ∈ 𝐴 : 𝑠

𝑎
−→ 𝑠 ′}

The Greedy scheduler chooses a state 𝑠 ′ ∈ N𝑠 having the lowest TF[𝑠
′] value, executes the corre-

sponding action and increments TF[𝑠 ′]. In case of a tie among several 𝑠 ′ states, Greedy draws the
target state uniformly at random.

Iterative delay-bounding scheduler. We also compare against a variant of the delay-bounding

(DB) [Emmi et al. 2011] scheduler. In our experiments, we found the original DB algorithm to be
ineffective at exposing bugs, so we started with an optimized version of it [Desai et al. 2015] and
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modified it to leverage state observations. In our variant, which we call iterative delay-bounding
(IDB), at each scheduling decision, it either selects an action of the worker𝑤 that executed the last
action, or randomly context-switches to a worker different from𝑤 . The number of such random
context-switches per run is bounded (called the delay bound). IDB keeps tracks of the visited states
as it performs exploration. It starts with a delay bound of 0 and then iteratively increments it when
no new states are discovered in the last 100 runs.

6 EVALUATION

This section describes our empirical evaluation that compares QL against other schedulers in terms
of coverage and bug-finding ability. We also measure robustness to data non-determinism, as well
as the effect of different state observations on the performance of QL. All our experiments use the
P#-Tester. We used existing implementations of schedulers when available (Random and PCT) and
implemented others ourselves (Greedy and IDB). There were other schedulers [Thomson et al.
2016], such as DFS and preemption bounding [Musuvathi and Qadeer 2007], that performed very
poorly on our benchmarks compared to all others, so we leave them out of the evaluation.
We measure the effectiveness of finding bugs using the metric Bugs100 that we define next. For

each program, and for each scheduler, we invoke the P#-Tester 100 times. Each invocation of the
tester has a budget of exploring up to 10000 schedules, but it would stop as soon as it found a bug
and move on to the next invocation. (Note that in the absence of any bug found, the experiment
totals 1 million schedules per scheduler.) The metric Bugs100 is the number of times a bug was
exposed out of the 100 invocations. The metric captures the most important aspect of a user’s
experience when testing their code: Bugs100 is the chance (in percentage) that an invocation of
P#-Tester would find a bug when there is one.

The exact upper bound on the length of each schedule (in the number of scheduling decisions) was
varied per program, and was typically in the order of 103. We ran all experiments on a Windows 10
machine configured with 8 Intel Xeon cores and 64GB of RAM.

6.1 Benchmarks

We consider three different categories of benchmarks: complex protocols that are publicly available
as part of the P# framework, multithreaded benchmarks from SvComp [Beyer 2019] and SCTBench
[Thomson et al. 2016] benchmark suites, and production distributed services from Microsoft

Azure. All of the benchmarks are C# programs already designed to use P#, except for SvComp and
SCTBench benchmarks that we had to manually port. In all cases, this exercise was straightforward.
Most of the SvComp and SCTBench benchmarks contained trivial bugs, with all the schedulers
reporting large Bugs100 values of over 50. We report here the results for the rest of the benchmarks.

We briefly describe our benchmarks including the custom hashing scheme that we implemented
for them (for use with QLc). Our choice of the hash was not guided by knowledge of the bug in the
program, but rather by selecting the components of the program that were central to its logic.

Protocols. Raft has been explained already in Section 2. Chord is a protocol for a peer-to-peer
distributed hash table. It maintains a collection of keys; their associated values are distributed
among multiple nodes. A bug occurs if a client attempts to retrieve a key, which should be present,
but gets a response that it does not exist. We hash the set of keys stored in each node.
FailureDetector is a protocol for detecting node failures. It contains a heartbeat mechanism,

where a manager initiates rounds where each node is expected to send heartbeats. If a node fails to
send a heartbeat within a period of time, it is deemed to have failed in that round. The custom hash
includes the set of alive nodes, and the set of nodes that are still deemed alive in the current round.
A bug occurs if three rounds elapse and a node stays failed.
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Paxos is a consensus protocol. A bug occurs if two different values are agreed upon simultane-
ously. We hash the set of proposed, accepted and learned values.

Multithreaded programs. The variants of Fib-Bench and Triangular benchmarks involve multi-
ple tasks performing integer arithmetic over shared variables, and with an assertion over the value
of the shared variables after all threads finish. For instance, the assertion in Fib-Bench requires
the computation among the tasks to finally result in the 𝑛-th Fibonacci number.
SafeStack is an implementation of a lock-free stack [Thomson et al. 2016; Vyukov 2010]. The

bug is challenging, requiring at least 5 preemptions, and was missed by all the techniques in a prior
evaluation [Thomson et al. 2016]. Our custom hashing scheme only considers the contents of the
stack at any given point of time.
BoundedBuffer is an adaptation of a popular example [Cargill 2009], consisting of a fixed-size

buffer being simultaneously updated by producers and consumers. The bug in this code turned out
to be extremely challenging and evaded detection until revealed by the original author [Wayne
2018]. Our implementation is a C# port of the original Java version of the program. Our custom
hashing scheme only considers the contents of the buffer at any given point of time.

Production distributed services. These are deployed cloud services of Microsoft Azure. The
services are highly concurrent, serving over hundreds of thousands of VMs to users of Azure. Their
tests check for functional correctness as well as tolerance to failures, commonly called failover

testing, that is often a central concern for distributed services. One of the services, including its
design in P#, has been described in detail in previous work [Deligiannis et al. 2020].
We used three different services, sometimes taking multiple versions of the services. These

services were designed by the product teamswhile routinely using P#-Tester during the development
process. In some cases, running P#-Tester was mandated with every check-in to the code repository.
Occasionally, the product team reported a snapshot of their code to an internal P# emailing list
(before squashing their commits) when they managed to find and fix a łtrickyž bug in their code.
We included these snapshots in our evaluation. We, however, did not have knowledge of the bug
before running P#-Tester ourselves. An important note is that the released version of P# does not
yet include QL. Bugs in these services were found by existing P#-Tester schedulers, mostly PCT. In
that sense, these bugs are biased towards PCT because we know that PCT already finds them in
reasonable time. Nonetheless, as our results will show, QL still manages to outperform PCT.

The selected set of benchmarks span a wide range of programs, covering a wide spectrum of bug
patterns. All the benchmarks have a single known bug (to the best of our knowledge).

6.2 Results

Bug-finding ability. Table 2 compares the performance of the QLd scheduler, on the Bugs100

metric, against the other schedulers. For PCT, we used a priority-switch bound of 3 because lower
bounds performed worse. Interestingly, we found that higher bounds sometimes performed better
(theoretically, lower bounds have a better chance in the worst-case), so we report bounds of 10 and
30 as well. However, in all production benchmarks, PCT regressed on Bugs100 with bounds higher
than 10.

Our main conclusions from Table 2 are as follows. QLd was the only scheduler to find bugs in all
the benchmarks. Greedywas the next best with bugs found in 12 out of the 16 benchmarks. Further,
the Bugs100 value for QLd was consistently among the highest (for 10 out of the 16 applications). In
Raft-v2, QLd had Bugs100 of 95, whereas all other schedulers had Bugs100 of less than 5. For Chord,
QLd is the only scheduler that exposed the bug.

The performances of PCT and IDB are very sensitive to the choice of parameters such as bounds
on priority-change points and maximum schedule length. As an example, in the FailureDetector
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Table 2. Results from applying various schedulers on our benchmarks. The reported statistics are: lines

of code (LoC), maximum number of concurrent workers (#T) and the Bugs100 metric (higher is better) for

various schedulers. The last row gives the geometric mean of the Bugs100 metric for each scheduler (only

over non-zero values), as well as the number of bugs found (out of 16).

Bugs100

Benchmarks LoC #T QLb QLd Random Greedy PCT-3 PCT-10 PCT-30 IDB

P
ro
to
co

ls

Raft-v1 1194 17 99 99 100 83 ✗ 12 45 28
Raft-v2 1194 17 28 95 4 3 ✗ ✗ ✗ 1
Paxos 849 10 16 66 8 20 19 91 92 33
Chord 859 7 ✗ 34 ✗ ✗ ✗ ✗ ✗ ✗

FailureDetector 692 5 ✗ 99 ✗ ✗ 11 100 99 31

M
u
lt
it
h
re
a
d
e
d Fib-Bench-2 55 3 100 100 100 100 ✗ 82 100 100

Fib-Bench-Longest-2 55 3 99 100 100 100 ✗ ✗ ✗ 100
Triangular-2 73 3 85 100 86 100 ✗ ✗ 2 70
Triangular-Longest-2 73 3 ✗ 100 ✗ 79 ✗ ✗ ✗ ✗

SafeStack 253 6 32 1 43 23 ✗ ✗ 21 46
BoundedBuffer 284 9 ✗ 53 12 36 ✗ ✗ ✗ ✗

P
ro
d
u
ct
io
n CacheProvider 56649 27 74 79 14 24 37 29 25 23

PoolManager-v1 33827 15 ✗ 100 ✗ ✗ 100 100 37 ✗

PoolManager-v2 33827 28 100 97 ✗ ✗ 100 36 ✗ ✗

ResourceProvider-v1 18663 17 ✗ 92 100 16 76 96 80 ✗

ResourceProvider-v2 19771 17 ✗ 100 100 10 64 100 90 ✗

G-Mean Bugs100 59.1(9) 63.9(16) 37.4(11) 32.2(12) 45.0(7) 59.2(9) 40.4(10) 30.3(9)

benchmark, PCT-30 performs better than PCT-3, but it is the other way around for PoolManager-

v1. We also found that the performance of PCT deteriorated as we increased the maximum schedule
length parameter of P#-Tester. It is difficult for a user to make a good educated guess of these
parameters a priori. QL is robust to such parameters, adding to its appeal for practical use.

The performance of PCT on production benchmarks was usually good. This was to be expected
because these bugs were first caught using PCT by the product teams. Even then, we find that QL
outperforms PCT with significantly higher Bugs100 values.
Lastly, we find that exploration strategies based on state observations seem to perform well in

general, evenwithout learning. For example, the performance of the Greedy scheduler is competitive
compared to PCT-3. Thus, clearly, making state observations is useful for exploration of concurrent
behaviors.

The extra component of adaptive learning in QL provides it with an additional edge over Greedy.
We believe that Greedy often suffered because of its deterministic nature of always picking the
least visited state, whereas QL can make other choices with a smaller, but non-zero probability.
Furthermore, QL also accounts for actions that are bad from an exploration point of view. For
example, periodic events (such as timers) can trivially result in new states. Greedy may repeatedly
fire these periodic events, filling up inboxes, but disallowing it from exploring new concurrent
behaviors. However, the negative reward associated with an action, as well as the tendency to make
randomized decisions, allows QL to break from this loop.
Figure 8 reports the mean number of iterations required by P#-Tester to find a bug over the

protocol benchmarks. The general trend is similar to the Bugs100metric reported in Table 2, however,
for benchmarks such as Raft, the relative gap is even more favorable for QL.
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Fig. 8. Mean iterations and standard error (both lower the better) for the various schedulers on the protocols.

Effect of optimizations. The performance of QLb in Table 2 shows the effect of the optimizations
Opt-1 and Opt-2 (outlined in Section 5) in QLd. Note that Opt-2 plays a role only in the PoolMan-

ager and ResourceProvider production benchmarks, since these are the only applications that
do failover testing.
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Fig. 9. Comparing coverage for QL with optimizations (QLd) and with all optimizations turned off (QLb).

0 2000 4000 6000 8000 10000

#Iterations

40

60

80

100

120

140

160

180

200

220

240

#
S

te
p

s
to

F
a
il

u
re

r1

r100

r1000

QLd Random PCT-3

Fig. 10. Steps to failure injection across iterations. 𝑟𝑥 denotes a penalty of 𝑥 used in QL.

Opt-1: Compared to QLd, the QLb scheduler regresses in 12 out of the 16 benchmarks. To investi-
gate the reason behind this regression, we compared the coverage achieved by QLb against QLd for
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a large number of iterations. Figure 9 summarizes our findings for a subset of the benchmarks. QLd

explores a good percentage of the total discovered states quickly (within 10000 iterations). The QLb

scheduler does achieves similar coverage but at a slower pace. For Raft-v1, QLb requires nearly 10×
more iterations to match the coverage of QLd, while this number is even higher for FailureDetector.
For SafeStack, since the total number of states is low, QLb is able to explore the state space better.
Overall, Opt-1 helps accelerate coverage.
Opt-2: We investigated the effect this optimization on the PoolManager benchmark. We

measured the number of steps after which a scheduler injected the failure message across different
iterations. Figure 10 summarizes our findings. The bugs in PoolManager manifests only if the
whole system reaches a particular configuration (after a complex set of interactions between the
constituent state machines) and then a failure message is sent. Due to the design of the test, if the
failure message is injected too early, the application performs an early failover followed by a period
of little activity. From Figure 10, we see that the Random scheduler injects the failure message early
across all its iterations, thereby causing it to discover very few states (see Figure 11). In contrast,
PCT-3 injects the failure message at different points in the execution, allowing it to discover more
states (and, consequently, perform better on the Bugs100 metric). With the standard penalty of -1,
QL learns to inject the failure message at progressively later points in an execution, but the learning
rate is slow. A 100× increase in the penalty increases the learning rate. A penalty of 1000 (which is
Opt-2) accelerates learning even further. The failure message is injected progressively later until it
reaches the end of the test, at which point it tries injecting early again and the process iterates.

Table 3. Comparing QLd without and with the handling of data non-determinism.

Bugs100

Benchmarks QLd-NDN QLd

Raft-v1 86 99

Raft-v2 1 95

Paxos 19 66

Chord ✗ 34

CacheProvider 22 79

Effect of handling data non-determinism in QL. As we highlighted in earlier sections, QL is the
first CCT scheduler that accounts for data non-determinism in a way other than resolving it
uniformly-at-random. We evaluate its benefit in Table 3. We use QLd-NDN to denote a version of
QLd where we turn off the handling of data non-determinism (i.e., resolve it uniformly-at-random).
Table 3 highlights that QLd-NDN clearly regresses in its ability to expose bugs. In fact, these results,
taken together with those in Table 2, show that for benchmarks such as Raft-v2 and Chord, the
superior performance of QLd over all other schedulers can be attributed to its handling of data
non-determinism.
Inspecting these benchmarks, it was clear that data non-determinism plays a central role in

triggering the bug. For example, in Raft, data non-determinism is used to control the firing of
timer events that starts rounds of leader election. It is important for a timer to fire at the right
time for the bug to manifest. In Chord, data non-determinism is used to pick an arbitrary node for
termination. The terminated node must have been the one storing the key that is queried later by
the test. The case for CacheProvider was already explained in Section 2.

Coverage achieved by QL during exploration. We also measured the number of unique abstract
states covered by each of the schedulers across all iterations of the same run of P#-Tester. Figure 11
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summarizes our findings for a subset of the benchmarks; these results are representative of our
findings for the remaining benchmarks as well.
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Fig. 11. Number of unique abstract states explored by various schedulers.

Coverage is not a perfect indicator for bug-finding ability. In general, because actual state space
of a program can be very large, the type of behaviors covered matter as much as the number of
behaviors covered. Nonetheless, the experiment reveals a strong signal that contributes to the effec-
tiveness of QL in finding bugs. In many cases, QL achieves significantly better coverage (of abstract
states) compared to others, although Greedy outperforms it for SafeStack and BoundedBuffer.
The statistics for SafeStack show overall a very small number of abstract states (for all schedulers),
perhaps because the default abstraction was too coarse. Thus, QL is not able to learn effectively
and that likely contributes to its low Bugs100 value. We come back to this example in the next
subsection when we vary the abstraction.

Effect of state abstraction on QL. We investigate the effect of using the different state abstractions
with QL. Table 4 summarizes our findings. For the protocols, QLi, which tracks only the contents of
the inbox of the P# machines, sufficed to expose all bugs besides Chord, although QLd performed
better.

Hashing additional local state, as allowed by QLc may actually regress the Bugs100 metric as can
be seen for the Paxos and FailureDetector protocols in Table 4. A notable exception is SafeStack,
where the QLd abstraction was too coarse to expose the bug. Our custom abstraction involved
tracking the exact contents of the stack, which forced QLc to explore different stack contents thereby
exposing the bug much more frequently. Once again, this custom abstraction involved tracking a
component which is central to the logic of the program, and is not based on our knowledge of the
bug.

Performance overhead of QL. It is common to use CCT with a fixed iteration budget as opposed to
a fixed time budget. We also found this to be the typical usage scenario among P# users, which
is why the experiment of Table 2 used a 10𝐾 iteration budget for each run of P#-Tester. This is
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Table 4. Effect of using different state abstractions on QL.

Bugs100

Benchmarks QLi QLd QLc

Raft-v1 100 99 100

Raft-v2 100 95 100

Paxos 30 66 33

Chord ✗ 34 2

FailureDetector 38 99 78

SafeStack n/a 1 31

useful because: (𝑖) it makes the testing independent of the machine configuration and the current
CPU load (with a fixed time budget, the amount of testing will depend on how fast is the machine).
Also, (𝑖𝑖) it makes the testing independent of the length of each iteration, and (𝑖𝑖𝑖) the testing
experience for two different developers will be the same, regardless of their machine configurations.
Nonetheless, we do note that QL, in general, is slower than schedulers like Random or PCT that
hardly do any computation to decide the next worker to execute.

Table 5 summarizes the time taken by P#-Tester to run 10𝐾 iterations under the various schedulers.
We notice that QL makes testing around 1.49× to 1.84× slower compared to other schedulers.
However, the overall test experience remains about the same because QL compensates for the
slower testing with faster increase in coverage. Table 6 repeats the Bugs100 experiment with a fixed
time budget of 2 minutes per invocation of P#-Tester, over a subset of the benchmarks. The overall
trend displayed in the table remains the same as with a fixed-iteration budget.

Table 5. Running times (in seconds) for a single invocation of P#-Tester with a 10𝐾 iteration budget.

Running Time (seconds)

Benchmarks QLd Random Greedy PCT-3 PCT-10 PCT-30 IDB

P
ro
to
co

ls

Raft-v1 292 178 237 177 171 146 164

Raft-v2 276 187 153 126 130 151 181

Paxos 164 126 161 223 120 111 74

Chord 133 45 46 46 47 48 44

FailureDetector 153 133 148 157 164 165 133

G-Mean ×-slowdown 1.61× 1.47× 1.49× 1.67× 1.69× 1.84×

Dependence on the 𝛼 and 𝛾 parameters . Two key parameters in the Q-Learning algorithm are 𝛼
(learning rate) and 𝛾 (discount factor) parameters used in Equation 2. We evaluated the protocols
for different combinations of 𝛼 and 𝛾 , and we did not find a significant variation in the Bugs100

value due to the choices. We settled for 𝛼 = 0.3 and 𝛾 = 0.7 since it strikes a reasonable balance
in Equation 2 between weighing immediate versus future rewards. While the default values of 𝛼
and 𝛾 worked well for all our benchmarks, we do not claim that these values will generalize for
all programs. The 𝛼 and 𝛾 are referred to as hyperparameters, and a large body of work exists on
hyperparameter tuning (see, for example, Fernandez and Caarls [2018] and Eriksson et al. [2003]).
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Table 6. Bugs100 metric for the schedulers on the protocols and multithreaded benchmarks, with each

invocation of P#-Tester having a 2-minute time-budget.

Bugs100

Benchmarks QLd Random Greedy PCT-3 PCT-10 PCT-30 IDB

P
ro
to
co

ls

Raft-v1 95 99 80 1 10 44 35
Raft-v2 91 7 5 ✗ ✗ 1 ✗

Paxos 65 8 19 11 93 94 25
Chord 44 ✗ ✗ ✗ ✗ ✗ ✗

FailureDetector 98 ✗ 1 12 100 99 34

M
u
lt
it
h
re
a
d
e
d Fib-Bench-2 100 100 100 ✗ 100 100 100

Fib-Bench-Longest-2 100 100 100 ✗ ✗ 9 100
Triangular-2 100 93 100 ✗ ✗ ✗ 77
Triangular-Longest-2 99 ✗ 86 ✗ ✗ ✗ ✗

SafeStack 2 31 26 ✗ ✗ 15 59
BoundedBuffer 100 11 89 ✗ ✗ ✗ ✗

G-Mean Bugs100 61.5(11) 33.9(8) 32.9(10) 5.1(3) 55.2(4) 24.7(7) 54.1(7)

7 RELATED WORK

Controlled Concurrency Testing. Controlled concurrency testing has been the subject of extensive
research, given the elusive nature of concurrency bugs and the lack of practical techniques to find
them. Several tools have come out of this research; we only list a few of them here. VeriSoft
[Godefroid 2005] popularized the use stateless model-checking algorithm on real software (as
opposed to models of software). The Chess tool [Musuvathi and Qadeer 2008; Musuvathi et al.
2008] showed the effectiveness of iterative context-bounding, and later delay-bounding [Emmi et al.
2011], for finding bugs in multi-threaded software. These were extended and implemented in Zing

for asynchronous (message-passing) systems [Desai et al. 2015]. The Cuzz tool introduced and
implemented PCT [Burckhardt et al. 2010] to showcase the power of randomized testing. Several
tools also exist for distributed systems, including dBug [Simsa et al. 2011], MoDist [Yang et al.
2009], and Samc [Leesatapornwongsa et al. 2014]. The presence of such a large number of tools
clearly indicates the importance of CCT.
Implementing CCT for real systems naturally requires considerable engineering to ensure that

all concurrency in the system can be controlled by the tool. Our concern in this paper is orthogonal
to this engineering. We instead focus on the search algorithm, called a scheduling strategy in this
paper. While we only used P# as the implementation vehicle, the hope is that our strategies can be
adopted by any CCT tool. [Thomson et al. 2016] provides a nice survey and empirical comparison of
several stateless strategies in a common framework and we also describe some of them in Section 3.

Most of the schedulers considered in this paper are randomized, i.e., they rely on randomness to
explore the state space of the program. Systematic exploration, on the other hand, guarantees to
explore all interleavings of the program in the limit. Systematic techniques often rely on a DFS-
style of exploration, aided by dynamic partial-order reduction (DPOR) [Flanagan and Godefroid
2005] that skips an interleaving if an equivalent interleaving [Mazurkiewicz 1986] was already
covered. A straightforward implementation of DFS+DPOR in P# performed quite poorly compared
to other schedulers and was subsequently dropped out of support. (Among the requirements of a
CCT framework, mentioned in the beginning of Section 5, implementing DPOR further requires
capturing dependency among the actions in order to construct the partial-order representation
of a trace. This imposes an additional burden on the CCT framework that other schedulers do
not require.) However, more recent work has shown considerable improvements over DPOR by
more aggressively pruning the space of interleavings [Chalupa et al. 2018; Huang 2015; Huang and
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Huang 2017]. It would be interesting future work to compare these techniques against randomized
strategies in terms of coverage or bug-finding ability.

Learning based Software Testing. Learning algorithms have been applied to the problem of fuzzing
program inputs [Böttinger et al. 2018; Godefroid et al. 2017; Patil and Kanade 2018; She et al. 2018].
In particular, Böttinger et al. [Böttinger et al. 2018] formalizes input fuzzing as an RL problem, and
applies deep Q-learning to learnmutations that yield new program inputs that are likely to maximize
code coverage. Zheng et al. [Zheng et al. 2003, 2006] applies supervised learning techniques to
automatically identify program features or instrumentation predicates which are likely to trigger a
bug, based on a data set comprising user reports of program executions. Mariani et al. [Mariani
et al. 2012] leverages Q-learning to generate test cases for testing GUI-based applications. The
problem of input fuzzing is orthogonal to CCT: the former is about input values but the latter is
primarily about controlling scheduling decisions.

Veanes et al. [Veanes et al. 2006] formalizes the problem of conformance checking between a model
and an implementation as a Markov Decision Process, and uses heuristics inspired from reinforce-
ment learning to solve the problem. Unlike our work, the paper assumes limited communication
between concurrently executing agents, and also assumes the agents’ actions being deterministic.
Moreover, their implementation handles a small toy example, whereas our implementation can
scale to production code.

Baskiotis et al. [Baskiotis et al. 2007] aims to maximize path coverage in sequential programs by
identifying distinct feasible paths in the control flow graph with high probability, using an adaptive
sampling mechanism. In contrast, our QL scheduler can handle concurrent programs and does not
require an explicit control flow graph representation.

8 LIMITATIONS AND FUTURE WORK

The performance of QL crucially depends on the state abstraction being used. While we showed in
Section 6 that the default state abstraction provided by P# sufficed in our experiments for a range
of benchmarks, we do not claim that this generalizes to other settings. Further experimentation
would be required, for instance with custom state abstractions, but the default one should likely be
used as a baseline. Similarly, the parameters 𝛼 and 𝛾 may also need to be tuned for a particular
application, in general.

An interesting direction to explore would be the coupling of QL with static analyses to guide the
selection of the best state abstraction. Evaluating the performance of other exploration techniques
from the reinforcement learning literature (such as SARSA [Rummery and Niranjan 1994]) and
other policies (such as 𝜖-greedy) is also interesting future work.

9 CONCLUSION

In this paper, we proposed a controlled concurrency testing (CCT) scheduler, called QL, which
leverages Q-Learning to explore a user-defined abstraction of a program’s state space. QL is geared
towards maximizing coverage and adapts to the application under test. It is effective at finding con-
currency bugs without using any pre-defined biases towards certain bug patterns. QL is also the first
scheduler that accounts for data non-determinism.We implemented QL in an open-source industrial-
strength CCT framework. In our benchmarks, comprising complex protocols and production cloud
services, we showed that QL outperforms state-of-the-art CCT strategies.
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