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Abstract. Current face recognition systems robustly recognize identi-
ties across a wide variety of imaging conditions. In these systems recog-
nition is performed via classification into known identities obtained from
supervised identity annotations. There are two problems with this cur-
rent paradigm: (1) current systems are unable to benefit from unlabelled
data which may be available in large quantities; and (2) current systems
equate successful recognition with labelling a given input image. Hu-
mans, on the other hand, regularly perform identification of individuals
completely unsupervised, recognising the identity of someone they have
seen before even without being able to name that individual. How can
we go beyond the current classification paradigm towards a more human
understanding of identities? We propose an integrated Bayesian model
that coherently reasons about the observed images, identities, partial
knowledge about names, and the situational context of each observa-
tion. While our model achieves good recognition performance against
known identities, it can also discover new identities from unsupervised
data and learns to associate identities with different contexts depend-
ing on which identities tend to be observed together. In addition, the
proposed semi-supervised component is able to handle not only acquain-
tances, whose names are known, but also unlabelled familiar faces and
complete strangers in a unified framework.

1 Introduction

For the following discussion, we decompose the usual face identification task into
two sub-problems: recognition and tagging. Here we understand recognition as
the unsupervised task of matching an observed face to a cluster of previously
seen faces with similar appearance (disregarding variations in pose, illumination
etc.), which we refer to as an identity. Humans routinely operate at this level of
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abstraction to recognise familiar faces: even when people’s names are not known,
we can still tell them apart. Tagging, on the other hand, refers to putting names
to faces, i.e. associating string literals to known identities.

Humans tend to create an inductive mental model of facial appearance for
each person we meet, which we then query at new encounters to be able to
recognise them. This is opposed to a transductive approach, attempting to match
faces to specific instances from a memorised gallery of past face observations—
which is how identification systems are often implemented [17].

An alternative way to represent faces, aligned with our inductive recognition,
is via generative face models, which explicitly separate latent identity content,
tied across all pictures of a same individual, from nuisance factors such as pose,
expression and illumination [16,22,19]. While mostly limited to linear projections
from pixel space (or mixtures thereof), the probabilistic framework applied in
these works allowed tackling a variety of face recognition tasks, such as closed-
and open-set identification, verification and clustering.

A further important aspect of social interactions is that, as an individual
continues to observe faces every day, they encounter some people much more
often than others, and the total number of distinct identities ever met tends
to increase virtually without bounds. Additionally, we argue that human face
recognition does not happen in an isolated environment, but situational contexts
(e.g. ‘home’, ‘work’, ‘gym’) constitute strong cues for the groups of people a
person expects to meet (Fig. 1b).

With regards to tagging, in daily life we very rarely obtain named face ob-
servations: acquaintances normally introduce themselves only once, and not re-
peatedly whenever they are in our field of view. In other words, humans are
naturally capable of semi-supervised learning, generalising sparse name anno-
tations to all observations of the corresponding individuals, while additionally
reconciling naming conflicts due to noise and uncertainty.

In contrast, standard computational face identification is fully supervised (see
Fig. 1a), relying on vast labelled databases of high-quality images [1]. Although
many supervised methods achieve astonishing accuracy on challenging bench-
marks (e.g. [27,26]) and are successfully employed in practical biometric appli-
cations, this setting has arguably limited analogy to human social experience.

Expanding on the generative perspective, we introduce a unified Bayesian
model which reflects all the above considerations on identity distributions, context-
awareness and labelling (Fig. 1b). Our nonparametric identity model effectively
represents an unbounded population of identities, while taking contextual co-
occurrence relations into account and exploiting modern deep face representa-
tions to overcome limitations of previous linear generative models. Our main
contributions in this work are twofold:

1. We propose an unsupervised face recognition model which can explicitly
reason about people it has never seen; and

2. We attach to it a novel robust label model enabling it to predict names by
learning from both named and unnamed faces.
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(a) Standard face recognition (b) Context-aware model of identities

Fig. 1: Face recognition settings. Points represent face observations and boxes
are name labels.

Related Work

Other face recognition methods (even those formulated in a Bayesian framework)
[33,34,9,28,18], often limit themselves to point estimates of parameters and pre-
dictions, occasionally including ad-hoc confidence metrics. A distinct advantage
of our approach is that it is probabilistic end-to-end, and thus naturally pro-
vides predictions with principled, quantifiable uncertainties. Moreover, we em-
ploy modern Bayesian modelling tools—namely hierarchical nonparametrics—
which enable dynamically adapting model complexity while faithfully reflecting
the real-world assumptions laid out above.

Secondly, although automatic face tagging is a very common task, each prob-
lem setting can impose wildly different assumptions and constraints. Typical ap-
plication domains involve the annotation of personal photo galleries [33,34,3,13],
multimedia (e.g. TV) [28,18] or security/surveillance [17]. Our work focuses on
egocentric human-like face recognition, a setting which seems largely unexplored,
as most of the work using first-person footage appears to revolve around other
tasks like object and activity recognition, face detection, and tracking [4]. As we
explained previously, the dynamic, online nature of first-person social experience
brings a number of specific modelling challenges for face recognition.

Finally, while there is substantial prior work on using contexts to assist face
recognition, we emphasize that much (perhaps most) of it is effectively comple-
mentary to our unified framework. Notions of global context such as timestamp,
geolocation and image background [31,34,3,9] can readily be used to inform our
current context model (Section 2.1). In addition, we can naturally augment the
proposed face model (Section 2.3) to leverage further individual context features,
e.g. clothing and speech [34,3,28,18]. Integration of these additional factors opens
exciting avenues for future research.
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Fig. 2: Overview of the proposed generative model, encompassing the context
model, identity model, face model and label model. Unfilled nodes repre-
sent latent variables, shaded nodes are observed, the half-shaded node is observed
only for a subset of the indices and uncircled nodes denote fixed hyperparam-
eters. π0 and (πc)

C
c=1 are the global and context-wise identity probabilities, ω

denotes the context probabilities, (c∗m)Mm=1 are the frame-wise context labels, in-
dexed by the frame numbers (fn)Nn=1, (zn)Nn=1 are the latent identity indicators,
(xn)Nn=1 are the face observations and (yn)Nn=1 are the respective name annota-
tions, (θ∗i )∞i=1 are the parameters of the face model and (y∗i )∞i=1 are the identities’
name labels. See text for descriptions of the remaining symbols.

2 A Model of Identities

In this section, we describe in isolation each of the building blocks of the proposed
approach to facial identity recognition: the context model, the identity model and
the face model. We assume data is collected in the form of camera frames (either
photographs or a video stills), numbered 1 to M , and faces are cropped with some
face detection system and grouped by frame number indicators, fn ∈ {1, . . . ,M}.
The diagram in Fig. 2 illustrates the full proposed graphical model, including
the label model detailed in Section 3.

2.1 Context Model

In our identity recognition scenario, we imagine the user moving between con-
texts throughout the day (e.g. home–work–gym...). Since humans naturally use
situational context as a strong prior on the groups of people we expect to en-
counter in each situation, we incorporate context-awareness in our model of
identities to mimic human-like face recognition.

The context model we propose involves a categorical variable cn ∈ {1, . . . , C}
for each observation, where C is some fixed number of distinct contexts.3 Cru-

3 See footnote 4.
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cially, we assume that all observations in frame m, Fm = {n : fn = m}, share
the same context, c∗m (i.e. ∀n, cn = c∗fn).

We define the identity indicators to be independent given the context of the
corresponding frames (see Section 2.2, below). However, since the contexts are
tied by frame, marginalising over the contexts captures identity co-occurrence
relations. In turn, these allow the model to make more confident predictions
about people who tend to be seen together in the same environment.

This formalisation of contexts as discrete semantic labels is closely related to
the place recognition model in [31], used there to disambiguate predictions for
object detection. It has also been demonstrated that explicit incorporation of a
context variable can greatly improve clustering with mixture models [20].

Finally, we assume the context indicators c∗m are independently distributed
according to probabilities ω, which themselves follow a Dirichlet prior:

ω ∼ Dir(γ) (1)

c∗m | ω ∼ Cat(ω) , m = 1, . . . ,M , (2)

where M is the total number of frames. In our simulation experiments, we use
a symmetric Dirichlet prior, setting γ = (γ0/C, . . . , γ0/C).

2.2 Identity Model

In the daily-life scenario described in Section 1, an increasing number of unique
identities will tend to appear as more faces are observed. This number is ex-
pected to grow much more slowly than the number of observations, and can be
considered unbounded in practice (we do not expect a user to run out of new
people to meet). Moreover, we can expect some people to be encountered much
more often than others. Since a Dirichlet process (DP) [11] displays properties
that mirror all of the above phenomena [29], it is a sound choice for modelling
the distribution of identities.

Furthermore, the assumption that all people can potentially be encountered
in any context, but with different probabilities, is perfectly captured by a hi-
erarchical Dirichlet process (HDP) [30]. Making use of the context model, we
define one DP per context c, each with concentration parameter αc and shar-
ing the same global DP as a base measure.4 This hierarchical construction thus
produces context-specific distributions over a common set of identities.

We consider that each of the N face detections is associated to a latent
identity indicator variable, zn. We can write the generative process as

π0 ∼ GEM(α0) (3)

πc | π0 ∼ DP(αc,π0) , c = 1, . . . , C (4)

zn | fn = m, c∗, (πc)c ∼ Cat(πc∗m) , n = 1, . . . , N , (5)

4 One could further allow an unbounded number of latent contexts by incorporating
a nonparametric context distribution, resulting in a structure akin to the nested DP
[24,5] or the dual DP described in [32]. See Appendix A for details.
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where GEM(α0) is the DP stick-breaking distribution, π0i = βi
∏i−1
j=1(1− βj),

with βi ∼ Beta(1, α0) and i = 1, . . . ,∞. Here, π0 is the global identity distribu-
tion and (πc)

C
c=1 are the context-specific identity distributions.

Although the full generative model involves infinite-dimensional objects, DP-
based models present simple finite-dimensional marginals. In particular, the pos-
terior predictive probability of encountering a known identity i is

p(zN+1 = i | cN+1 = c, z, c∗,π0) =
αcπ0i +Nci
αc +Nc·

, (6)

where Nci is the number of observations assigned to context c and identity i and
Nc· is the total number of observations in context c.

Finally, such a nonparametric model is well suited for an open-set identifica-
tion task, as it can elegantly estimate the prior probability of encountering an
unknown identity:

p(zN+1 = I + 1 | cN+1 = c, z, c∗,π0) =
αcπ

′
0

αc +Nc·
, (7)

where I is the current number of distinct known identities and π′0 =
∑∞
i=I+1 π0i

denotes the global probability of sampling a new identity.

2.3 Face Model

In face recognition applications, it is typically more convenient and meaningful
to extract a compact representation of face features than to work directly in a
high-dimensional pixel space.

We assume that the observed features of the nth face, xn, arise from a para-
metric family of distributions, FX. The parameters of this distribution, θ∗i , drawn
from a prior, HX, are unique for each identity and are shared across all face fea-
ture observations of the same person:

θ∗i ∼ HX , i = 1, . . . ,∞ (8)

xn | zn,θ∗ ∼ FX(θ∗zn) , n = 1, . . . , N . (9)

As a consequence, the marginal distribution of faces is given by a mixture model :
p(xn | cn = c,θ∗,πc) =

∑∞
i=1 πciFX(xn | θ∗i ).

In the experiments reported in this paper, we used the 128-dimensional em-
beddings produced by OpenFace, a publicly available, state-of-the-art neural net-
work for face recognition [2], implementing FaceNet’s architecture and method-
ology [26]. In practice, this could easily be swapped for other face embeddings
(e.g. DeepFace [27]) without affecting the remainder of the model. We chose
isotropic Gaussian mixture components for the face features (FX), with an em-
pirical Gaussian–inverse gamma prior for their means and variances (HX).
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3 Robust Semi-Supervised Label Model

We expect to work with only a small number of labelled observations manually
provided by the user. Since the final goal is to identify any observed face, our
probabilistic model needs to incorporate a semi-supervised aspect, generalising
the sparse given labels to unlabelled instances. Throughout this section, the
terms ‘identity’ and ‘cluster’ will be used interchangeably.

One of the cornerstones of semi-supervised learning (SSL) is the premise
that clustered items tend to belong to the same class [8, §1.2.2]. Building on this
cluster assumption, mixture models, such as ours, have been successfully applied
to SSL tasks [6]. We illustrate in Fig. 3 our proposed label model detailed below,
comparing it qualitatively to nearest-neighbour classification on a toy example.

With the motivation above, we attach a label variable (a name) to each clus-
ter (identity), here denoted y∗i . This notation suggests that there is a single true
label ỹn = y∗zn for each observation n, analogously to the observation parame-
ters: θn = θ∗zn . Finally, the observed labels, yn, are potentially corrupted through
some noise process, FY. Let L denote the set of indices of the labelled data. The
complete generative process is presented below:

HY ∼ DP(λ, L) (10)

y∗i |HY ∼ HY , i = 1, . . . ,∞ (11)

yn | zn,y∗, HY ∼ FY(y∗zn ;HY) , n ∈ L . (12)

As mentioned previously, a related model for mixture model-based SSL with
noisy labels was proposed in [6]. Instead of considering an explicit noise model
for the class labels, the authors of that work model directly the conditional label
distribution for each cluster. Our setting here is more general: we assume not
only an unbounded number of clusters, but also of possible labels.

3.1 Label Prior

We assume that the number of distinct labels will tend to increase without
bounds as more data is observed. Therefore, we adopt a further nonparametric
prior on the cluster-wide labels:

HY ∼ DP(λ, L) , (13)

where L is some base probability distribution over the countable but unbounded
label space (e.g. strings).5 We briefly discuss the choice of L further below.

All concrete knowledge we have about the random label prior HY comes from
the set of observed labels, yL. Crucially, if we marginalise out HY, the predictive
label distribution is simply [29]

y∗I+1 | y∗ ∼
1

λ+ I

(
λL+

∑
`∈Y

J`δ`

)
, (14)

5 One could instead consider a Pitman–Yor process if power-law behaviour seems more
appropriate than the DP’s exponential tails [21].
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Fig. 3: Hard label predictions of the proposed semi-supervised label model (right)
and nearest-neighbour classification (left). Points represent unlabelled face ob-
servations, squares are labelled and the black contours on the right show identity
boundaries. The proposed label model produces more natural boundaries, assign-
ing the ‘unknown’ label (white) to unlabelled clusters and regions distant from
any observed cluster, while also accommodating label noise (‘Bob’ → ‘Alice’)
without the spurious boundaries introduced by NN.

which we will denote ĤY(y∗I+1 | y∗). Here, Y is the set of distinct known labels
among yL and J` = |{i : y∗i = `}|, the number of components with label ` (note
that

∑
` J` = I).

In addition to allowing multiple clusters to have repeated labels, this formu-
lation allows us to reason about unseen labels. For instance, some of the learned
clusters may have no labelled training points assigned to them, and the true (un-
observed) labels of those clusters may never have been encountered among the
training labels. Another situation in which unseen labels come into play is with
points away from any clusters, for which the identity model would allocate a
new cluster with high probability. In both cases, this model gives us a principled
estimate of the probability of assigning a special ‘unknown’ label.

The base measure L may be defined over a rudimentary language model. For
this work, we adopted a geometric/negative binomial model for the string length
|`|, with characters drawn uniformly from an alphabet of size K:

Lφ,K(`) = Geom(|`|; 1
φ ) Unif(`;K |`|) =

1

φ− 1

(
φ− 1

φK

)|`|
, (15)

where φ is the expected string length.

3.2 Label Likelihood

In the simplest case, we could consider FY(·) = δ·, i.e. noiseless labels. Although
straightforward to interpret and implement, this could make inference highly
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unstable whenever there would be conflicting labels for an identity. Moreover,
in our application, the labels would be provided provided by a human user who
may not have perfect knowledge of the target person’s true name or its spelling,
for example.

Therefore, we incorporate a label noise model, which can gracefully handle
conflicts and mislabelling. We assume observed labels are noisy completely at
random (NCAR) [12, §II-C], with a fixed error rate ε:6

F̂Y(` | y∗i ;y∗) =

1− ε , ` = y∗i

ε ĤY(`|y∗)

1−ĤY(y∗i |y∗)
, ` 6= y∗i

. (16)

Intuitively, an observed label, yn, agrees with its identity’s assigned label, y∗zn ,
with probability 1 − ε. Otherwise, it is assumed to come from a modified label
distribution, in which we restrict and renormalise ĤY to exclude y∗zn . Here we

use ĤY in the error distribution instead of L to reflect that a user is likely to
mistake a person’s name for another known name, rather than for a completely
random string.

3.3 Label Prediction

For label prediction, we are only concerned with the true, noiseless labels, ỹn.
The predictive distribution for a single new sample is given by

p(ỹN+1 = ` | xN+1, z, c
∗,y∗,θ∗,π0)

=
∑

i≤I:y∗i =`

p(zN+1 = i | xN+1, z, c
∗,θ∗,π0)

+ ĤY(y∗I+1 = ` | y∗) p(zN+1 = I + 1 | xN+1, z, c
∗,θ∗,π0) .

(17)

The sum in the first term is the probability of the sample being assigned to any
of the existing identities that have label `, while the last term is the probability
of instantiating a new identity with that label.

4 Evaluation

One of the main strengths of the proposed model is that it creates a single
rich representation of the known world, which can then be queried from various
angles to obtain distinct insights. In this spirit, we designed three experimental
setups to assess different properties of the model: detecting whether a person has
been seen before (outlier detection), recognising faces as different identities in
a sequence of frames (clustering, unsupervised) and correctly naming observed
faces by generalising sparse user annotations (semi-supervised learning).

6 The ‘true’ label likelihood FY(` | y∗
i ;HY) is random due to its dependence on the

unobserved prior HY. We thus define F̂Y as its posterior expectation given the known
identity labels y∗. See Appendix B for details.
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In all experiments, we used celebrity photographs from the Labelled Faces
in the Wild (LFW) database [14].7 We have implemented inference via Gibbs
Markov chain Monte Carlo (MCMC) sampling, whose conditional distributions
can be found in Appendix C, and we run multiple chains with randomised initial
conditions to better estimate the variability in the posterior distribution. For all
metrics evaluated on our model, we report the estimated 95% highest posterior
density (HPD) credible intervals over pooled samples from 8 independent Gibbs
chains, unless stated otherwise.

4.1 Experiment 1: Unknown Person Detection

In our first set of experiments, we study the model’s ability to determine whether
or not a person has been seen before. This key feature of the proposed model
is evaluated based on the probability of an observed face not corresponding to
any of the known identities, as given by Eq. (7). In order to evaluate purely the
detection of unrecognised faces, we constrained the model to a single context
(C = 1) and set aside the label model (L = ∅).

This task is closely related to outlier/anomaly detection. In particular, our
proposed approach mirrors one of its common formulations, involving a mixture
of a ‘normal’ distribution, typically fitted to some training data, and a flatter
‘anomalous’ distribution8 [7, §7.1.3].

We selected the 19 celebrities with at least 40 pictures available in LFW and
randomly split them in two groups: 10 known and 9 unknown people. We used
27 images of each of the known people as training data and a disjoint test set
of 13 images of each of the known and unknown people. We therefore have a
binary classification setting with well-balanced classes at test time. Here, we ran
our Gibbs sampler for 500 steps, discarding the first 100 burn-in iterations and
thinning by a factor of 10, resulting in 320 pooled samples.

In Fig. 4a, we visualise the agreements between maximum a posteriori (MAP)
identity predictions for test images:

ẑn = arg max
i
p(zn = i | xn, z, c∗,π0,θ

∗) , (18)

where i ranges from 1 to I + 1, the latter indicating an unknown identity, ab-
sent from the training set, and n indexes the test instances. Despite occasional
ambiguous cases, the proposed model seems able to consistently group together
all unknown faces, while successfully distinguishing between known identities.

As a simple baseline detector for comparison, we consider a threshold on the
distance to the nearest neighbour (NN) in the face feature space [7, §5.1]. We
also evaluate the decision function of a one-class SVM [25], using an RBF kernel
with γ = 10, chosen via leave-one-person-out cross-validation on the training set
(roughly equivalent to thresholding the training data’s kernel density estimate
with bandwidth 1/

√
2γ ≈ 0.22). We compare the effectiveness of both detection

approaches using ROC curve analysis.

7 Available at: http://vis-www.cs.umass.edu/lfw/
8 The predictive distribution of xn for new identities is a wide Student’s t.

http://vis-www.cs.umass.edu/lfw/
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Fig. 4: Results of the unknown person detection experiment on test images

Figure 4b shows that, while all methods are highly effective at detecting
unknown faces, scoring 95%+ AUC, ours consistently outperforms, by a small
margin, both the NN baseline and the purpose-designed one-class SVM. Taking
the MAP prediction, our model achieves [92.3%, 94.3%] detection accuracy.

4.2 Experiment 2: Identity Discovery

We then investigate the clustering properties of the model in a purely unsuper-
vised setting, when only context is provided. We evaluate the consistency of the
estimated partitions of images into identities with the ground truth in terms of
the adjusted Rand index [23,15].

Using simulations, besides having an endless source of data with ground-truth
context and identity labels, we have full control over several important aspects
of experimental setup, such as sequence lengths, rates of encounters, numbers of
distinct contexts and people and amount of provided labels. Below we describe
the simulation algorithm used in our experiments and illustrated in Fig. 5.

In our experiments we aim to simulate two important aspects of real-world
identity recognition settings: 1. Context : knowing the context (e.g. location or
time) makes it more likely for us to observe a particular subset of people; and 2.
Temporal consistency : identities will not appear and disappear at random but
instead be present for a longer duration.

To reproduce contexts, we simulate a single session of a user meeting new
people. To this end we first create a number of fixed contexts and then assign
identities uniformly at random to each context. For these experiments, we defined
three contexts: ‘home’, ‘work’ and ‘gym’. At any time, the user knows its own
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Fig. 5: The simulation used in Experiment 2, showing identities coming in and
out of the camera frame. Identities are shown grouped by their context (far
right), and shading indicates identities present in the user’s current context.

context and over time transitions between contexts. Independently at each frame,
the user may switch context with a small probability.

To simulate temporal consistency, each person in the current context enters
and leaves the camera frame as an independent binary Markov chain. As shown in
Fig. 5 this naturally produces grouped observations. The image that is observed
for each ‘detected’ face is sampled from the person’s pictures available in the
database. We sample these images without replacement and in cycles, to avoid
observing the same image consecutively.

For this set of experiments, we consider three practical scenarios:

– Online: data is processed on a frame-by-frame basis, i.e. we extend the train-
ing set after each frame and run the Gibbs sampler for 10 full iterations

– Batch: same as above, but enqueue data for 20 frames before extending the
training set and updating the model for 200 steps

– Offline: assume entire sequence is available at once and iterate for 1000 steps

In the interest of fairness, the number of steps for each protocol was selected
to give them roughly the same overall computation budget (ca. 200 000 frame-
wise steps). In addition, we also study the impact on recognition performance
of disabling the context model, by setting C = 1 and c∗m = 1,∀m.

We show the results of this experiment in Fig. 6. Clearly it is expected that,
as more identities are met over time, the problem grows more challenging and
clustering performance tends to decrease. Another general observation is that
online processing produced much lower variance than batch or offline in both
cases. The incremental availability of training data therefore seems to lead to
more coherent states of the model.

Now, comparing Figs. 6a and 6b, it is evident that context-awareness not
only reduces variance but also shows marginal improvements over the context-
oblivious variant. Thus, without hurting recognition performance, the addition
of a context model enables the prediction of context at test time, which may be
useful for downstream user-experience systems.
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Fig. 6: Identity clustering consistency. Markers on the horizontal axis ( ) indicate
when new people are met for the first time.

4.3 Experiment 3: Semi-Supervised Labelling

In our final set of experiments, we aimed to validate the application of the
proposed label model for semi-supervised learning with sparse labels.

In the context of face identification, we may define three groups of people:

– Acquainted: known identity with known name
– Familiar: known identity with unknown name
– Stranger: unknown identity

We thus selected the 34 LFW celebrities with more than 30 pictures, and split
them roughly equally in these three categories at random. From the acquainted
and familiar groups, we randomly picked 15 of their images for training and
15 for testing, and we used 15 pictures of each stranger at test time only. We
evaluated the label prediction accuracy as we varied the number of labelled
training images provided for each acquaintance, from 1 to 15.

For baseline comparison, we evaluate nearest-neighbour classification (NN)
and label propagation (LP) [35], a similarity graph-based semi-supervised algo-
rithm. We computed the LP edge weights with the same kernel as the SVM in
Section 4.1. Recall that the face embedding network was trained with a triplet
loss to explicitly optimise Euclidean distances for classification [2]. As both NN
and LP are distance-based, they are therefore expected to hold an advantage
over our model for classifying labelled identities.

Figure 7a shows the label prediction results for the labelled identities (ac-
quaintances). In this setting, NN and LP performed nearly identically and slightly
better than ours, likely due to the favourable embedding structure. Moreover, all
methods predictably become more accurate as more supervision is introduced in
the training data.

More importantly, the key distinctive capabilities of our model are demon-
strated in Fig. 7b. As already discussed in Section 4.1, the proposed model is
capable of detecting complete strangers, and here we see that it correctly pre-
dicts that their name is unknown. Furthermore, our model can acknowledge that
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Fig. 7: Label prediction accuracy. Note that NN and LP effectively have null ac-
curacy for the familiar and strangers groups, as they cannot predict ‘unknown’.

familiar faces belong to different people, whose names may not be known. Nei-
ther of these functionalities is provided by the baselines, as they are limited to
the closed-set identification task.

5 Conclusion

In this work, we introduced a fully Bayesian treatment of the face identification
problem. Each component of our proposed approach was motivated from human
intuition about face recognition and tagging in daily social interactions. Our
principled identity model can contemplate an unbounded population of identi-
ties, accounting for context-specific probabilities of meeting them.

We demonstrated that the proposed identity model can accurately detect
when a face is unfamiliar, and is able to incrementally learn to differentiate
between new people as they are met in a streaming data scenario. Lastly, we
verified that our approach to dealing with sparse name annotations can handle
not only acquaintances, whose names are known, but also familiar faces and com-
plete strangers in a unified manner—a functionality unavailable in conventional
(semi-) supervised identification methods.

Here we considered a fully supervised context structure. As mentioned in
Section 1, one could imagine an unsupervised approach involving global visual
or non-visual signals to drive context inference (e.g. global image features, time
or GPS coordinates), in addition to extensions to the face model with individual
context information (e.g. clothing, speech). Yet another interesting research di-
rection is to explicitly consider time dependence, e.g. by endowing the sequence
of latent contexts with a hidden Markov model-like structure [31].

Acknowledgement. This work was partly supported by CAPES, Brazil (BEX
1500/2015-05).
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A Random Measure Interpretation

While the exposition in the main text considers the explicit representation of
the nonparametric model in terms of weights (π0 and (πc)

C
c=1) and atom loca-

tions ((θ∗i , y
∗
i )∞i=1), here we also provide the interpretation in terms of random

measures:

HY ∼ DP(λ, L) (A.1)

G0 |HY ∼ DP(α0, HX ⊗HY) (A.2)

Gc |G0 ∼ DP(αc, G0) , c = 1, . . . , C (A.3)

ω ∼ Dir(γ) (A.4)

c∗m | ω ∼ Cat(ω) , m = 1, . . . ,M (A.5)

(θn, ỹn) | fn = m, c∗, (Gc)c ∼ Gc∗m , n = 1, . . . , N (A.6)

xn | θn ∼ FX(θn) , n = 1, . . . , N (A.7)

yn | ỹn, HY ∼ FY(ỹn) , n ∈ L . (A.8)

Note that, under this perspective,

G0 =

∞∑
i=1

π0iδ(θ∗i ,y∗i ) and Gc =

∞∑
i=1

πciδ(θ∗i ,y∗i ) .

Now, if we let C →∞ as mentioned in footnote 4, assuming that ∀c, αc = α,
and γ = (γ0C , . . . ,

γ0
C ), we obtain the following nested-hierarchical Dirichlet pro-

cess:

Q |G0 ∼ DP(γ0,DP(α,G0)) (A.9)

Gn |Q ∼ Q , n = 1, . . . , N (A.10)

(θn, ỹn) |Gn ∼ Gn , n = 1, . . . , N , (A.11)

replacing Eqs. (A.3) to (A.6).

https://doi.org/10.1109/TPAMI.2008.87
https://doi.org/10.1145/957013.957090
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B Label Likelihood

Given the label prior, HY, we can formulate the following likelihood model:

FY(` | y∗i ) =

{
1− ε , ` = y∗i
ε HY(`)
1−HY(y∗i )

, ` 6= y∗i
. (B.1)

Note that Eq. (B.1) depends on the unobserved label prior HY. Fortunately,
we are able to marginalise over HY to obtain the following convenient result,
given ` 6= y∗i :

E
[

HY(`)

1−HY(y∗i )

∣∣∣∣y∗] =
ĤY(` | y∗)

1− ĤY(y∗i | y∗)
, (B.2)

where ĤY is defined as in Eq. (14) (main paper). This straightforward equiv-
alence arises from the fact that posterior weights in a DP follow a Dirichlet
distribution and are therefore neutral: after removing one weight, the propor-
tions between the remaining ones are independent of its value, and they simply
follow a Dirichlet distribution with that component discarded.

We can then formulate an alternative likelihood, which depends on y∗:

F̂Y(` | y∗i ;y∗) =

1− ε , ` = y∗i

ε ĤY(`|y∗)

1−ĤY(y∗i |y∗)
, ` 6= y∗i

. (B.3)

Although the marginalisation in Eq. (B.2) breaks the conditional independence of
the true component labels, it gives us a simple, tractable form for the likelihoods
of observed labels.

The simpler case of uniform label noise, discussed in [12], could not easily be
extended to our context with infinite support, as this would result in an improper
likelihood FY.

C Gibbs Sampler Conditionals

Joint posterior:
p(z,y∗,θ∗,π |X,yL, c∗)

C.1 Global Weights

As suggested in [30], we augment our Markov chain state with the weights of
the global DP G0, such that the context DPs (Gc)c become conditionally inde-
pendent and can be sampled in parallel:

π0 = (π01, . . . , π0I , π
′
0) |T ∼ Dir(T·1, . . . , T·I , α0) , (C.1)

where I is the current number of distinct identities, π′0 is the weight of G0’s base

measure (π′0 =
∑∞
i=I+1 π0i) and T·i =

∑C
c=1 Tci are auxiliary variables counting
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the total number of ‘tables’ (context-wise clusters) having ‘dish’ (global cluster)
i, in the Chinese restaurant analogy [30].

Finally, to sample the table counts T conditioned on the global weights π
and identity and context assignments z and c∗, we use a similar scheme to the
one presented in [10]:

Tci =

Nci∑
n=1

1

[
un ≤

αcπ0i
αcπ0i + n

]
, (C.2)

where (un)Nci
n=1 are uniformly sampled from [0, 1].

C.2 Identity Assignments

For the unlabelled instances, we have

p(zn|X,yL, z−n, c∗,y∗,θ∗,π0) ∝

{
FX(xn | θ∗i ) p(zn = i | z−n, c∗,π0) ,

F̃X(xn) p(zn new | z−n, c∗,π0) ,
(C.3)

where F̃X(x) =
∫
FX(x | θ)HX(θ) dθ, the prior predictive distribution of the

observations. The Chinese restaurant franchise conditionals p(zn | z−n, c∗,π0)
are given by [30]

p(zn = i | z−n, c∗,π0) ∝

{
N−ncni + αcnπ0i , N−ncni > 0

αcnπ
′
0 , i new

, (C.4)

where Nci = |{n : cn = c ∧ zn = i}|, i.e. the number of samples in context c
assigned to cluster i.

The global weights π are updated whenever an instance gets assigned to
a new cluster, by splitting π′0 according to the stick-breaking process: sample
β ∼ Beta(1, α0), then set π0,I+1 ← βπ′0 and π′0 ← (1− β)π′0 [30].

For n ∈ L, there is an additional term accounting for the likelihood of the
observed label:

p(zn |X,yL, z−n, c∗,y∗,θ∗,π0)

∝ FX(xn | θ∗zn) F̂Y(yn | y∗zn ;y∗) p(zn | z−n, c∗,π0) . (C.5)

C.3 Contexts

p(c∗m |X,yL, z, c∗−m,y∗,θ
∗,π0) ∝ p(zFm

| z−Fm
, c∗,π0) p(c∗m | c∗−m) (C.6)

The context posterior predictive distribution is

p(c∗m = c | c∗−m) ∝ γ0
C

+M−mc , (C.7)

where M−mc is the number of frames assigned to context c, excluding frame m.
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The conditional distribution for the identities in frame m can be computed
via sequential application of Eq. (C.4):

p(zFm
| z−Fm

, c∗,π0) =

|Fm|∏
r=1

p(z
(r)
Fm
| z(<r)Fm

, z−Fm
, c∗,π0) , (C.8)

where r indexes observations within each single frame. Note that, due to ex-
changeability of the HDP, the order of iteration of r is inconsequential.

C.4 Labels

Let J−i` = |{j : y∗j = ` ∧ j 6= i}|, the number of identities with label ` excluding

identity i, and L(i) = {n ∈ L : zn = i}, the indices of labelled observations
assigned to identity i. We can then write the Gibbs identity label predictive as

ĤY(y∗i | y∗−i) =
1

λ+ I − 1

{
λL(`) + J−i` , y∗i = ` ∈ Y
λ(1− L(Y)) , y∗i /∈ Y

, (C.9)

where Y is the set of all known labels, whether allocated to components or not.
Additionally, recall that the label likelihood is

F̂Y(y | `;y∗) = (1− ε)1[y=`]
[
ε

ĤY(y | y∗)
1− ĤY(` | y∗)

]1[y 6=`]
. (C.10)

The probability of assigning a label ` to identity i, given the remaining iden-
tity labels, can be computed as

p(y∗i = ` | yL, zL,y∗−i) ∝ ĤY(` | y∗−i)
∏

n∈L(i)

F̂Y(y | `;y∗)

∝
λL(`) + J−i`
λ+ I − 1

(1− ε)|L
(i)
` |

∏
k∈Y\{`}

[
ε(λL(k) + Jk)

λ+ I − (λL(`) + J`)

]|L(i)
k |

,

(C.11)

where L(i)
` = {n ∈ L(i) : yn = `}.
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First, let us consider the probability of assigning a known label to identity i:

p(y∗i = ` ∈ Y | yL, zL,y∗−i)

∝
λL(`) + J−i`
λ+ I − 1

(1− ε)|L
(i)
` |
[

ε(λL(`) + J`)

λ+ I − (λL(`) + J`)

]−|L(i)
` |

×
∏
k∈Y

[
ε(λL(k) + Jk)

λ+ I − (λL(`) + J`)

]|L(i)
k |

≈
λL(`) + J−i`
λ+ I − 1

(1− ε)|L
(i)
` |
[
ε(λL(`) + J`)

λ+ I − J`

]−|L(i)
` |∏

k∈Y

[
ε(λL(k) + Jk)

λ+ I − J`

]|L(i)
k |

=
λL(`) + J−i`
λ+ I − 1

[
(1− ε)(λ+ I − J`)
ε(λL(`) + J`)

]|L(i)
` |
∏
k∈Y [ε(λL(k) + Jk)]|L

(i)
k |

(λ+ I − J`)|L(i)|

∝
λL(`) + J−i`

(λ+ I − J`)|L(i)|

[
(1− ε)(λ+ I − J`)
ε(λL(`) + J`)

]|L(i)
` |

. (C.12)

where the approximation assumes that λL(`)� λ+I−J`, ∀`, which is generally
the case for sensible choices of λ and L.

We can analogously estimate the probability of assigning an unknown label
to an identity as follows:

p(y∗i /∈ Y | yL, zL,y∗−i) =
∑
`/∈Y

p(y∗i = ` | yL, zL,y∗−i)

∝
∑
`/∈Y

λL(`)

λ+ I − 1

∏
k∈Y

[
ε(λL(k) + Jk)

λ+ I − λL(`)

]|L(i)
k |

≈
∑
`/∈Y

λL(`)

λ+ I − 1

∏
k∈Y

[
ε(λL(k) + Jk)

λ+ I

]|L(i)
k |

=
λ(1− L(Y))

λ+ I − 1

∏
k∈Y

[
ε(λL(k) + Jk)

λ+ I

]|L(i)
k |

∝ λ(1− L(Y))

(λ+ I)|L(i)| , (C.13)

noting that J` = J−i` = |L(i)
` | = 0 for ` /∈ Y and using a similar approximation

as in Eq. (C.12).
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Finally, combining Eqs. (C.12) and (C.13), we can summarise

p(y∗i |X,yL, z, c∗,y∗−i,θ
∗,π0)

∼∝


λL(`) + J−i`

(λ+ I − J`)|L(i)|

[
(1− ε)(λ+ I − J`)
ε(λL(`) + J`)

]|L(i)
` |

, y∗i = ` ∈ Y

λ(1− L(Y))

(λ+ I)|L(i)| , y∗i /∈ Y
, (C.14)

where
∼∝ means approximately proportional to.

C.5 Face Feature Parameters

p(θ∗i |X,yL, z, c∗,y∗,θ
∗
−i,π0) ∝ HX(θ∗i )

∏
n:zn=i

FX(xn | θ∗i ) , (C.15)

which will be analytically tractable if FX and HX are a conjugate pair.
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