
Generating ClarifyingQuestions for Information Retrieval
Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck

Microsoft
{hazamani,sdumais,nickcr,pauben,gordonl}@microsoft.com

ABSTRACT
Search queries are often short, and the underlying user intent may
be ambiguous. This makes it challenging for search engines to pre-
dict possible intents, only one of which may pertain to the current
user. To address this issue, search engines often diversify the result
list and present documents relevant to multiple intents of the query.
An alternative approach is to ask the user a question to clarify
her information need. Asking clarifying questions is particularly
important for scenarios with “limited bandwidth” interfaces, such
as speech-only and small-screen devices. In addition, our user stud-
ies and large-scale online experiments show that asking clarifying
questions is also useful in web search. Although some recent studies
have pointed out the importance of asking clarifying questions, gen-
erating them for open-domain search tasks remains unstudied and
is the focus of this paper. Lack of training data even within major
search engines for this task makes it challenging. To mitigate this
issue, we first identify a taxonomy of clarification for open-domain
search queries by analyzing large-scale query reformulation data
sampled from Bing search logs. This taxonomy leads us to a set
of question templates and a simple yet effective slot filling algo-
rithm. We further use this model as a source of weak supervision
to automatically generate clarifying questions for training. Further-
more, we propose supervised and reinforcement learning models
for generating clarifying questions learned from weak supervision
data. We also investigate methods for generating candidate answers
for each clarifying question, so users can select from a set of pre-
defined answers. Human evaluation of the clarifying questions and
candidate answers for hundreds of search queries demonstrates the
effectiveness of the proposed solutions.
ACM Reference Format:
Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord
Lueck. 2020. Generating Clarifying Questions for Information Retrieval.
In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3366423.3380126

1 INTRODUCTION
Search queries are often short and ambiguous, which makes it dif-
ficult for retrieval systems to identify the actual user intents. A
standard solution to mitigate this issue in modern search engines
is result list diversification [43]. This helps the system to satisfy
multiple intents of the query in the first result page. An alternative

Most of the work was done while Hamed Zamani was affiliated with the University of
Massachusetts Amherst and was an intern at Microsoft.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380126

Figure 1: An example of clarifying questions in web search.1

solution would be asking questions of the users to clarify their
information needs. This is of particular importance in interactive
information seeking systems with “limited bandwidth” interfaces,
such as conversational search systems using speech-only and small-
screen devices [14, 15]. The reason is that in such information
seeking scenarios, users cannot easily go through a diversified re-
sult list and find the document that satisfies their needs. In other
words, due to interface limitations, the system can only return a
limited number of results, thus being confident about the retrieval
performance becomes even more important, which can achieve by
asking clarifying questions [2]. In addition, asking natural language
questions is the most convenient interaction form in conversational
systems and users enjoy such interactions [25]. In addition to con-
versational systems, we claim that asking clarifying questions is of
significance in web search. Figure 1 shows an example of clarifying
question and a set of candidate answers in response to the query
“headaches”. Our user studies showed that users enjoy seeing clari-
fying questions in web search, not only because of their functional
benefits, but also due to their emotional benefits. In other words,
asking clarifying questions about the user query gives a sense of
confidence to the user, since the search engine looks more intel-
ligent. To understand the value of asking clarifying questions in
web search instead of just showing the candidate answers (similar
to query suggestion), we ran a large-scale online experiment and
observed over 48% clickthrough rate improvement (see Section 3 for
more information). This substantial improvement in a real-world
setting clearly describes the value of clarifying questions in web
search.

Despite the importance and usefulness of clarifying questions
for both web and conversational search, it is relatively less explored
in the literature. Recently, Aliannejadi et al. [2] studied the task of
asking clarifying questions for open-domain information retrieval.
They asked human annotators to generate different clarifying ques-
tions for a given query and focused on selecting a good clarifying
question from the human-generated question set. However, in a real
system, a major challenge is how to generate a clarifying question.
In addition to its modeling complexity, another challenge is that
no data is available for supervised training of such systems (even

1Retrieved on August 15, 2019. We noticed that this feature is not yet available for
some international markets.

https://doi.org/10.1145/3366423.3380126
https://doi.org/10.1145/3366423.3380126
https://doi.org/10.1145/3366423.3380126

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck

in major search industry). At the same time, developing a question
generation model for an open-domain setting requires large-scale
training set, which is quite expensive to collect.

In this paper, we address these challenges by proposing clarifying
question generation models that are trained using weak supervi-
sion. We believe that a good clarifying question can be generated,
if the systems is aware of different aspects of the query. Therefore,
we propose to use query reformulation data to identify different
query aspects. In more detail, we first performed a large-scale query
log analysis using the data collected by the Bing search engine to
identify a taxonomy of different clarification types required in open-
domain information retrieval (Section 4). Our attempts to produce
human-generated clarifying questions for different clarification
types help us understand that many clarifying questions can be for-
mulated using a small number of question templates. Based on such
observation, we propose a simple yet effective rule-based model
for selecting and filling out pre-defined question templates (Sec-
tion 5.2). This rule-based model uses query aspects and query entity
type information for generating clarifying questions. We further
propose a machine learning model trained based on maximum like-
lihood using the data generated by the rule-based model. In fact,
the rule-based model produces weak supervision data for training
our question generation model, which is a sequence-to-sequence
model based on recurrent neural networks (Section 5.3). We also
propose to further train the model using a reinforcement learning
algorithm whose reward function is a non-differentiable function
estimating the clarification utility (Section 5.4).

In addition to clarifying questions, we propose a solution to gen-
erate candidate answers for a given pair of query and clarifying
question. The objective in our model is a monotone submodular
function, which allows us to use an efficient greedy approxima-
tion algorithm for optimization. Intuitively, our model selects the
phrases that are good answers for the given clarifying question in
the context of the query (Section 5.5).

To evaluate our models, we use human annotations for a diverse
set of real search queries. We ask the trained annotators to evaluate
the generated clarifying questions and candidate answers. Our
results demonstrate that the weakly supervised models improve the
weak labeling model (i.e., the rule-based model). In addition, the
reinforcement learning model performs the best with the quality of
producing 38% Good, 60.4% Fair, and 1.5% Bad questions with the
standards of a real-world production system. 28.4% of the generated
questions are specific questions. We have also evaluated the quality
of candidate answers and the secondary result page quality obtained
by clicking on each of the candidate answers.

2 RELATEDWORK
In this section, we review prior work on asking clarifying questions,
query reformulation in search, and weak supervision.

Asking Clarifying Question. Research on clarifying questions
has attracted considerable attention in natural language process-
ing and information retrieval [2, 41, 45]. The studies on human-
generated dialogues on question answering websites have provided
analysis on the intent of each utterance [37], including clarifying
questions [8]. Generating questions whose answers appeared in a
given passage has been extensively studied in the machine reading
comprehension literature [19, 23, 60]. There is a more relevant line

of research that focuses on asking clarifying questions for point-
ing out missing information in a passage. For example, Rao and
Daumé III [42] proposed a model for generating a clarifying ques-
tion for identifying missing information in a closed-domain setting.
They proposed a reinforcement learning model that maximizes a
utility function based on the added value obtained by the potential
response to the clarifying question [41]. Trienes and Balog [49]
focused on identifying unclear CQA posts that require further clar-
ification. Asking clarifying questions have been also studied in
other contexts, such as speech recognition [45] and dialogue sys-
tems [7, 16, 32, 38], which are fundamentally different from asking
a question to clarify the information need of users.

In the realm of IR, Kiesel et al. [25] studied the impact of voice
query clarification on user satisfaction and concluded that users
like to be prompted for clarification. Earlier in the TREC HARD
Track [3], participants could submit a form containing clarifying
questions in addition to their runs. The importance of asking for
clarification in conversational search has been also raised by Radlin-
ski and Craswell [39]. Yang et al. [53] proposed a model for retriev-
ing the next question in conversation. Most recently, Aliannejadi
et al. [2] studied the task of selecting clarifying questions from a
set of human-generated questions for open-domain information
seeking. Unlike these studies, our work focuses on generating clari-
fying questions for open-domain information retrieval. Coden et al.
[13] studied the task of asking clarifying questions for entity dis-
ambiguation mostly in the form of “did you mean A or B?”. This
approach is only useful for entity disambiguation, and cannot be
applied to many queries, including faceted queries.

Much work has been also done on conversational recommender
systems by asking questions about different item attributes for
providing more accurate recommendation [46, 59]. For instance,
Christakopoulou et al. [12] designed a system that can interact
with users to collect more information about their preferences for
venue recommendation. The unique challenges and techniques used
for identifying different aspects of search queries and generating
clarifying questions in response to real queries are fundamentally
different from those reviewed in this section.

Query Reformulation, Suggestion, and Auto-Completion.
Previous work [21, 29] showed that an overlapping query syntax
between two consecutive queries in a session is an indication of low
satisfaction with the first query, and users describe their intents
more clearly in the second query. Based on such observation, in
this paper, we focus on additive overlapping query reformulations
to identify different aspects and intents behind the original query
(see Section 5.1). Query reformulation data has been previously
used for various IR tasks, including query suggestion and query
auto-completion [9, 34, 52]. The goal of query suggestion is rec-
ommending a set of possible queries that are likely to be searched
by the user. Boldi et al. [4, 5] used query reformulation data to
construct a query flow graph. Later on, Diaz [18] looked at query
reformulation as a discrete optimization problem by constructing
an unweighted graph of queries. Szpektor et al. [48] employed
entity type information together with query reformulation data
for improving the query suggestion quality in tail queries. In this
work, we also found entity type information useful for generating
clarifying questions for tail queries. Although query suggestions
are also often generated from query reformulation data, they are

Generating ClarifyingQuestions for Information Retrieval WWW ’20, April 20–24, 2020, Taipei, Taiwan

fundamentally different from candidate answers to a clarifying
question. The reason is that in our case, the candidate answers
should clarify the information need of the user behind the current
search query. While, in query suggestion, the next search query
might be in another topic that are usually searched together. For
example, a sensible next query for “parkinson” can be “alzheimer”.
Query auto-completion is similar to candidate answer selection in
the sense that they both focus on additive reformulations. However,
any possible reformulation is not necessarily a good candidate an-
swer for clarification. Despite these fundamental differences, we
use a few query auto-completion and suggestion baselines in our ex-
periments to evaluate the quality of candidate answers. In addition,
our online experiments in Section 3.3 show the substantial impact
of clarifying questions on user engagement in terms of clickthrough
rate (i.e., over 48% improvement).

Weak Supervision. Limited training data has been a perennial
problem in information retrieval, and many machine learning-
related domains [58]. This hasmotivated researchers to trainmodels
using pseudo-labels. As widely known, deep neural networks often
require large-scale data for training. Training neural IR models
based on pseudo-labels has been shown to produce successful re-
sults in various tasks, including ad-hoc retrieval [17, 57], query
performance prediction [56], and query disambiguation [28]. This
learning approach is called weak supervision. Dehghani et al. [17]
proposed training a neural ranking model for ad-hoc retrieval based
on the labels generated by an existing retrieval model, such as BM25.
Following these studies, the idea of training neural IR models with
weak supervision has been further employed in [31, 35, 56]. Re-
cently, Zamani and Croft [55] provided theoretical foundations for
explaining the successful empirical results achieved by weakly su-
pervised IR models. In this paper, we also use a weak supervision
strategy to train our model based on the output of a rule-based
question generation model. The main difference between our work
and the existing weak supervision models in IR is that our weak
signals is a text that should be generated, rather than a single label.

3 ON THE USEFULNESS OF SEARCH
CLARIFICATION

One of the major motivations for asking clarifying question in IR
is closing the gap between the traditional “query-response” para-
digm and interactive conversational information seeking systems.
Kiesel et al. [25] showed that asking clarifying questions in case of
ambiguous and faceted queries is a convenient interaction form in
conversational system and users enjoy such interactions. In addi-
tion, modern search engines often return a diversified result list in
response to ambiguous or faceted queries in order to satisfy differ-
ent possible query intents. However, most conversational systems
provide a speech-only or a small screen interface. These interfaces
do not allow information systems to present a long diversified result
list. Therefore, when it comes to conversational systems, under-
standing query intent for providing confident and accurate results
becomes even more important. This can be achieved by asking
questions to clarify the user information need [2].

In addition to conversational systems, we claim that clarification
is also useful in typical web search interfaces. Figure 1 demonstrates
an example of using clarification in web search. In such case, the

system produces a clarifying question and a set of clickable candi-
date answers. To study the usefulness of clarification for web search,
we rely on users. In the rest of this section, we use the method used
for generating clarifying questions in Bing, and present a set of
user studies and online experiments to highlight the usefulness of
clarifying questions in web search. Since this is not the core of the
paper, we keep brevity in the analysis reported here.

3.1 User Study I
In the first user study, we interviewed five participants, including
three female and twomale participants aged 24 to 48 years old, from
five different states in the United States and different educational
backgrounds. We defined four diverse scenarios, and asked them
to use the search engine we provided (the interface is shown in
Figure 1). The scenarios include:

• You have acquired a lot of favorites in your web browser, but
they are old and you want to get rid of them.

• You are moving to San Clemente, CA, and your teenaged relative
is going to start at San Clemente High School.

• Your doctor has recommended you start taking a new supplement
called Vitar C Capsule Extended Release.

• You are interested in learning more about Irish castles.

After completion of the task, all participants showed high en-
thusiasm for the clarification pane which includes both clarifying
question and candidate answers. When the clarification pane was
relevant, the participants described it as “convenient and easy”,
and they believed that “it saves time and steps”. Interestingly, they
mentioned that “it sometimes cues the user to things they may not
have considered”. They believed that the clarification pane “helped
them find more relevant results”.

They were also asked to provide their opinion on non-relevant
or low quality clarifications. Interestingly, they did not think that
the search experience was degraded. One participants mentioned
“It’s like when I look at iPhones, and eBay says ’since you looked at
iPhones you may be interested in these hair curlers!’ And I’m like,
well that’s weird, whatever”. We believe that this happens because
of the high quality of search result list. On the other hand, the
participants believed that the quality of the secondary result page
(after clicking on one of the candidate answers in the clarification
pane) perceived the usefulness of the clarification pane. Motivated
by this observation, we also evaluate the quality of the secondary
result page in our experiments (see Section 6.5).

3.2 User Study II
Followed by the positive feedback received from the first user study,
we conducted a second round with a bit larger participant pool and
a more realistic setting. We provided 24 participants with the same
search engine that features the clarification pane. Similar to the
previous user study, the participants were diverse in terms of gen-
der, location in the United States, and educational background. We
asked the participants to perform their everyday searches through
our system for two weeks. The participants were further inter-
viewed in four different sessions to give us their honest opinion.
The participants have been asked a set of questions, such as “how
do you feel about the search engine asking a question back to you?”.
The summary of the interviews are as follows:

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck

• They believed that it has functional benefits. In particular, they
pointed out that “questions help guide users in the right direction
and to the right conclusion”.

• They believed that clarification pane also has some emotional
benefits. In more detail, it brings to users a sense of confidence
that the search engine understands what the user wants. More-
over, it gives the users a sense of security and coming to the
right conclusion. They pointed out that sometimes, especially
when it comes to product search, they feel less stress when the
search engine asks questions on different features of the prod-
uct. Because without it, they often feel they forgot to check all
necessary properties of the product.
They are finally asked to rate every feature in the search engine

result page (including the entity card, query suggestion, similar
questions, etc). The clarification panewas amongst themost favorite
features with the rating of 9.14 out of 10.
3.3 Online Experiment
As the last step to identify the usefulness of clarification pane for
web search, we performed an online experiment using Bing. The
main goal of our online experiment was to understand the benefit of
clarifying questions, as opposed to just showing some options, such
as query suggestion. We consider the following two treatments: (1)
clarifying questions and candidate answers, and (2) a static title
(i.e., “select one to refine your search”) and candidate answers.

In other words, this experiment shows the importance of asking
clarifying questions. Note that all other details, such as interface
design, position in the SERP, and search result quality were the
same in both treatments. We ran the experiment for one week with
2.5 million users from the EN-US market for each treatment. We
obtained 48.57% more engagements (relative) using the clarifica-
tion pane with clarifying question, compared to the one with static
title (i.e., similar to query suggestion). The engagement is mea-
sured by clickthrough rate, and the improvements were statistically
significant based on paired t-test (p < 10−20).
3.4 Summary of Findings
This section provides multiple evidence to show the importance of
clarification in information seeking systems, summarized as below:
• In conversational information seeking, asking question is the
most convenient interaction to clarify the user information need.
Interfaces with small or no screen (speech-only) signify the im-
portance of asking for clarification.

• In our user studies, clarification pane was found useful by the
users. They pointed out its both functional and emotional benefits.
Emotional benefits include the sense of confidence and security.

• Over 48% relative clickthrough rate improvement compared to
query suggestion in our large-scale online experiment demon-
strates the usefulness of clarifying questions in web search.

4 TAXONOMY OF CLARIFICATION TYPES
This section summarizes a number of different type of clarifica-
tion required in an open-domain information seeking system, such
as web search. This taxonomy was derived by analyzing a large-
scale query log. We looked at thousands of query reformulations
sampled from the Bing query logs. Existing query reformulation
taxonomies [6, 24, 27, 29] cover broad types of reformulations (e.g.,
generalization, specialization, change in topic or search domain). In

this paper we focus on refining the types of specializations that are
important in generating clarifying questions. The general idea in
creating this taxonomy is that the specializations seen in query re-
formulations indicate the types of clarifications that will be required
for open-domain information seeking. For example, when the query
“trec” is followed by the query “trec conference”, it gives us infor-
mation about one intent of the original query. The clarifications we
identified are summarized below.
Disambiguation: Some queries are ambiguous and could refer to
different concepts or entities. For example, the query “trec” can
refer to either “Text Retrieval Conference” or “Texas Real Estate
Commission”. A clarifying questions could ask about whether the
user’s intent is to find the conference or the real estate commission.
Preference: Other queries are not ambiguous, but a clarifying
question can help identify a more precise information need. Four
major subcategory of preference clarifications are:
- Personal information (“for whom”): personal information, such as
gender, age, language, and expertise, can limit the search space.
For example, a query about “sneakers” might be followed by
“for women” or by “for kids”, which suggest useful clarifying
questions.

- Spatial information (“where”): spatial information is also reflected
in reformulations in many cases. For example, a user looking for
an apartment to rent may have different neighborhood prefer-
ences, which can be clarified by asking a question.

- Temporal information (“when”): some queries have a temporal
aspect which can be clarified by the system. For example, the
query “wsdm” can refer to either “wsdm 2019” or “wsdm 2020”.

- Purpose (”for what purpose”): if the answer to a query depends
on the purpose of user, a clarifying question can seek to identify
the purpose. For example, a user searching for “apartment” may
be interested in renting or buying.

Topic: If the topic of the user’s query is too broad, the system can
ask for more information about the exact need of the user. Topic
clarifications include:
- Sub-topic information: The user might be interested in a specific
sub-topic of the query.

- Event or news: based on an event or breaking news, many users
often search for a topic related to the news, while the query out
of the context of that event or news may have different meaning.

Comparison: Comparing a topic or entity with another one may
help the user find the information they need. For example, for a
user who wants to purchase a gaming console, the system may ask
whether the user wants to compare xbox with play station.

Note that different reformulations of the same query may lie in
multiple categories in this taxonomy.

5 GENERATING CLARIFYING QUESTIONS
Given different clarification types required in an open-domain in-
formation seeking system (see Section 4), in this section, we in-
troduce three approaches for generating clarifying questions. Fig-
ure 1 and Table 6 show some examples of clarifying questions. Our
first approach (called RTC) is a simple yet effective model based
on a rule-based slot filling algorithm (Section 5.2). We then intro-
duce our second model (called QLM) which is a weakly supervised

Generating ClarifyingQuestions for Information Retrieval WWW ’20, April 20–24, 2020, Taipei, Taiwan

text generation model based on recurrent networks trained using
maximum likelihood (Section 5.3). We finally present our third
model (called QCM) which maximizes a clarification probability us-
ing reinforcement learning (Section 5.4). Since creating large-scale
human-generated clarifying questions for open-domain informa-
tion retrieval is costly and time consuming, none of our methods
rely on supervised clarifying questions for training. In fact, QLM
and QCM are trained based on weakly supervised data generated
by the rule-based model.

In addition to clarifying questions, we propose a model for gen-
erating candidate answers in Section 5.5. All of these models rely
on a query aspects generation method presented below.
5.1 Query Aspects Generation
In order to generate an appropriate clarifying question, we must
identify different aspects of the query. One can employ different
information sources for identifying query aspects, including query
reformulation data, clickthrough data, and retrieved documents.

In this paper, we focus on query reformulation data with the
goal of finding query reformulations that reveal different aspects
of the query. Regarding our initial query log analysis, the users
mostly clarify their information needs by adding one or more terms
to their original query. This is often called query specialization [27].
Therefore, we are interested in the query reformulations in which
the reformulated query specifies what aspect of the query is in the
need of user. In more detail, we follow the steps below:
(1) We first collect large-scale web search query logs (see Sec-

tion 6.1).
(2) We then extract a set of query reformulation triples (q,qq′, c)

(or (q,q′q, c)), which denotes that the query q is followed by the
query qq′ (or q′q) in the same search session (i.e., immediate
successive queries) with a frequency of c , when it is aggregated
over the whole query log data for all users. Note that qq′ is
the concatenation of the query text q and a term or phrase
q′, where |q′ | > 0. Note that if q′ starts with (or ends with) a
stopword, we drop that stopword. Throughout this paper, we
use the following notation for such reformulation: q

c
−−→ q′. For

example, if the query “running shoes” is followed by “running
shoes for women” with the frequency of 10, then we have:
“running shoes”

10
−−→ “women”. Similarly, if the query “shoes”

is followed by the query “running shoes” with a frequency of
12, we have: “shoes”

12
−−→ “running”.

(3) Query reformulation data can be extremely sparse, especially
for tail queries. To mitigate this issue, we aim at predicting un-
seen reformulations. This is similar to a standard collaborative
filtering task. Therefore, we used neural collaborative filter-
ing (NCF) [22], a state-of-the-art collaborative filtering model,
for predicting possible missing reformulations. We used mean
squared error (MSE) as the loss function and trained the model
for 20 epochs. We took 5 random negative samples per positive
instance (each positive instance is a unique query reformulation
in the data). We used 50 latent factors per query. After training,
we can compute a weight for each possible query reformulation.

(4) We lastly compute a probability distribution for query aspects as
follows: p(q −→ q′) =

weight(q,q′)∑
q′′ weight(q,q′′)

, which is the normalized
values obtained by the NCF model.

5.2 RTC: A Template-based Approach
A major challenge in generating clarifying questions for open-
domain information retrieval is the lack of training data. Writing
a number of clarifying questions for a number of random queries
made it clear to us that most clarifying questions can be formulated
using a few question templates. Therefore, we went through the
clarification types taxonomy discussed in Section 4 and produced
the following question templates that cover most clarification types:
(1) What do you want to know about QUERY?
(2) What do you want to know about this QUERY_ENTITY_TYPE?
(3) What ASPECT_ENTITY_TYPE are you looking for?
(4) Whom are you looking for?
(5) Who are you shopping for?

We found a simple yet effective rule-based template completion
(RTC) model. For each query, we first compute three variables: (1)
QUERY: query string, (2) QUERY_ENTITY_TYPE: entity type of
the query; null, if unknown, and (3) ASPECT_ENTITY_TYPE: the
entity type for the majority aspects of the query. If the percentage
of query aspects with the entity type et exceeds a threshold τ , this
variable would be equal to et, otherwise null. We empirically set
τ to 70%.

We then select a question template using the following rule-
based algorithm:
- If ASPECT_ENTITY_TYPE is related to personal information,
such as gender or age, and if QUERY_ENTITY_TYPE is a product
(or related), we choose template (5). If QUERY_ENTITY_TYPE is
not a product, we choose template (4).

- If still no template is selected and if ASPECT_ENTITY_TYPE is
not null, we choose template (3).

- If still no template is selected and if QUERY_ENTITY_TYPE is
not null, we choose template (2).

- If still no template is selected, we choose template (1).
In fact, the template numbers show their priority, and we select

the template with the highest priority that can match the query
given the above rules. Despite its simplicity, this rule-based ap-
proach often generates appropriate clarifying questions.

5.3 QLM: Question Likelihood Maximization
In this subsection, we describe QLM, a weakly supervised neural
question generation model based on maximum likelihood train-
ing. QLM first encodes the query and its different aspects, then
generates a natural language clarifying question using a decoding
component. The architecture of the model is presented in Figure 2.
As shown in the figure, QLM consists of a hierarchical encoder with
the following components:
• Query Encoder: The query encoder takes the query text in addi-
tion to its entity type (which can be “unknown”) and returns a
d-dimensional representation for the query.

• Single Aspect Encoder: This component learns a representation
for each q −−→ q′ extracted by the Query Aspect Generation
model (see Section 5.1). Note that the parameters for all the
Single Aspect Encoders are shared.

• Query Aspects Encoder: This component takes the representa-
tions for the top k query aspects (sorted based on their probability
computed by the Query Aspects Generationmodel) and computes
a high-dimensional representation.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

𝑖ଵ 𝑖ଶ 𝑖ଷ 𝑖

…

…

LSTM LSTM LSTM LSTM

<start>

…

𝑤ଵ 𝑤ଶ 𝑤ଷ <end>

…

…

Single Aspect
Encoder

Single Aspect
Encoder

Single Aspect
Encoder

𝑞#𝑞ଵ
ᇱ #et(𝑞ଵ

ᇱ) 𝑞#𝑞ଶ
ᇱ #et(𝑞ଶ

ᇱ) 𝑞#𝑞
ᇱ #et(𝑞

ᇱ)

…

…

Query Aspects Encoder

Query
Encoder

𝑞 # et(𝑞)

Decoder (Question Generator)

clarifying question Decoder

Sequence Encoder

encoder
outputs

Question Generation Component

Figure 2: An overview of the question generation component (left) and the network
architectures for the decoder (top right) and all the encoders (bottom right).

Query Aspect
Generation

Question Generation

Candidate Answers
Generation Clarification Estim

ation
(Rew

ard function)

query

Figure 3: Overview of the QCM
framework.

All of these encoding components are modeled using a bidirec-
tional long short-term memory network (BiLSTM) [44], shown in
the bottom right of Figure 2. In fact, an input sequence (either term
representation or single aspect representation) is fed to the BiLSTM
network. Due to the short length of inputs in our case, the BiLSTM
network works sufficiently efficient and effective. In Query Aspect
Encoder, each single aspect representation is a sequence input, or-
dered by its weight. The BiLSTM network can be simply replaced
by any other sequence encoder, such as Transformers [50].

The decoding component takes the concatenated representations
learned by Query Encoder and Query Aspects Encoder in order to
generate a natural language clarifying question. The architecture
of this decoding component is shown in the upper right of Figure 2,
which is similar to the one used in the seq2seq model [47]. As
depicted, the encoder outputs are used as the initial memory for
the first LSTM cell and a start token is fed to the cell. This LSTM
cell generates a representation with d dimensions. By feeding this
representation to a fully connected network with a single layer and
the layer size of vocabulary size, and applying a softmax function to
the output of this network, we can obtain a probability distribution
over all vocabulary terms (i.e., unigram language model). We train
our models based on seq2seq training [47]. In more detail, we use
the cross entropy loss function to minimize the divergence between
the generated unigram distribution and the true distribution. In
true distribution, the target term has a probability of 1 and the other
terms have zero probability.

Our model is trained based on the clarifying questions generated
by RTC as a weak supervision data. We expect QLM to generalize
the observed training set and perform better than the RTC model.
The reason is that entity type information plays a key role in RTC,
and it can be incomplete. Therefore, QLM that has access to different
query reformulations can automatically generate an appropriate
clarifying question, even if the query entity type is missing.

At inference time, we take the term with highest probability
from the generated unigram distribution, and feed that term to the
next LSTM cell as the input (see Figure 2). Using this procedure,
the model keeps generating terms until observing an END token.

5.4 QCM: Query Clarification Maximization
As explained earlier, QLM maximizes the likelihood of generating
the questions observed in the training set. Therefore, it tends to
generate common questions in the training set. This has also been

observed by Rao and Daumé III [42]. This even gets worse when
the training data is noisy, which is the case in weak supervision.

To address this issue, we propose QCM, a machine learning
model that generates clarifying questions by maximizing a clari-
fication utility function. As we will see later, this utility function
is not differentiable. Therefore, we optimize our model using re-
inforcement learning. The architecture of the QCM framework is
shown in Figure 3. In fact, this model generates clarifying questions
and candidate answers simultaneously, and the reward function
measures their clarification utility. The network architecture of
the question generation model in this framework is the same as
the QLM model. The query aspects generation component is also
the same as the one described in Section 5.1. We will describe the
candidate answer generation model later in Section 5.5. Here we
explain how the optimization in QCM works.

We use the mixed incremental cross-entropy REINFORCE al-
gorithm (MIXER) [40] for training our model. The reason is that
since our reward function only measures the clarification utility,
which makes it difficult to force the model to generate natural lan-
guage clarifying questions. In such cases, MIXER takes advantage
of maximum likelihood training to make sure that the generated
questions are similar to those in the training set and then it uses
the exploration-exploitation property of REINFORCE to maximize
the ultimate reward function. In more detail, we first train our ques-
tion generation model using maximum likelihood (same as QLM).
We further train this pre-trained model using REINFORCE [51] by
minimizing the following loss function:

L = −(r (q∗) − r (q∗QLM))

T∑
t=1

logp(q∗t |q
∗
1, · · · ,q

∗
t−1)

where r (·) denotes the reward function, q∗QLM is the question gen-
erated by QLM, q∗ is the question generated by QCM, and T is the
sequence length. Minimizing this loss function using gradient-based
optimization methods pushes the sequence likelihood distribution
towards the one with the highest reward value. To let the model
explore the question generation space, instead of taking the term
with highest probability (as done in QLM) we randomly sample a
term from the unigram distribution generated by the model.

In the following subsection, we explain our clarification utility
that is used as the reward function.
5.4.1 Clarification Utility Estimation. To compute the reward
function, we estimate the clarification probability for a pair of

Generating ClarifyingQuestions for Information Retrieval WWW ’20, April 20–24, 2020, Taipei, Taiwan

query and clarifying question. In other words, this component
computes the probability that the clarifying question q∗ clarifies
the information need of user when submitting the queryq. Formally,
the goal is to estimate p(c = 1|q,q∗) where c is a binary variable
for clarification. Given the law of total probability, this probability
is computed as follows:

p(c = 1|q,q∗) =
∑
a∈A

p(c = 1|a,q,q∗)p(a |q,q∗)

where A is the set of all possible candidate answers. Intuitively,
the clarification probability of a clarifying question is computed
based on the clarification probability of each candidate answer (i.e.,
p(c = 1|a,q,q∗)) and the quality of each candidate answer (i.e.,
p(a |q,q∗)).

Estimating p(c = 1|a,q,q∗) depends on the intent of the user. In
other words, a candidate answer may clarify an intent behind the
query, while may not clarify another intent. Therefore, we estimate
this probability as follows:

p(c = 1|a,q,q∗) =
∑
i ∈Iq

p(c = 1|i,a,q,q∗)p(i |a,q,q∗)

where Iq is the set of all possible intents behind the query q. In this
equation, p(c = 1|i,a,q,q∗) computes the clarification probability
of each candidate answer for each query intent, and p(i |a,q,q∗)
computes the probability of each intent.

The intent set Iq is generally unknown. However, it can be es-
timated based on the top n query aspects computed using the ap-
proach presented in Section 5.1 (n = 20).
Estimating p(i|a, q, q∗): The intent behind a query only depends
on the user and the query she submitted, and thus is independent
of the clarifying question and its candidate answers. Therefore,
p(i |a,q,q∗) can be estimated using maximum likelihood estimation,
which will be equal to p(q −→ i) (see Section 5.1).
Estimating p(c = 1|i, a, q, q∗): For estimating the clarification prob-
ability, we hypothesize that the more similar the candidate answer
a to the intent i , the higher the clarification probability. On the
other hand, the user only clicks on one candidate answer, therefore,
we would like to have a diverse set of candidate answers that cover
different intents behind the query. Taking all these into account,
we estimate this probability as follows:

p(c = 1|i,a,q,q∗) =

{
sim(a, i) if a = argmaxa′∈A sim(a′, i)

0 otherwise
where the similarity function is computed using the normalized
cosine similarity of average word embeddings [54]. In more detail,
the most similar candidate answer to an intent can only get a simi-
larity score for clarifying the intent. This equation makes sure that
the candidate answers are diverse.
Estimating p(a|q, q∗): We should estimate the probability of a
being an answer to q∗ in the context of q. This probability depends
on the query, its entity type, and the answer type required by the
clarifying question. Therefore, we estimate this probability using
the following information: (1) query text, (2) query entity type, and
(3) answer entity type (if the clarifying questions specifies the entity
type of answers, then it should be taken into account for computing
the answer probability).

Therefore, we train a feed-forward network with a single hidden
layer (similar to the word2vec model [33]). In more detail, we con-
catenate the average word embedding of the query terms, the query

entity type embedding, and the answer entity type embedding as
the input of the network, and all possible candidate answers as the
output. We train the model using the noise contrastive estimation
(NCE) loss. We train this component using the query reformula-
tion data, described in Section 5.1. In other words, based on each
unique reformulation q −−→ q′, we create a training input example
(q, entity type(q), entity type(q′)) and training label q′. Similar to
the word2vec idea, this model can generalize over different entity
types and similar texts. The word embedding matrix is initialized
by pre-trained vectors (see Section 6.2 for more information).
5.5 Candidate Answer Selection
For each clarifying question, we are interested in generating up to
m candidate answers. To do so, we generate a candidate answer
set A that maximizes the clarification probability p(c = 1|q,q∗) (see
Section 5.4.1). Given the discrete nature of the candidate answer set,
solving this problem is NP-hard. However, the way that we estimate
this probability in Seciont 5.4.1 makes it a monotone submodular
function. For the sake of space, we omit the straightforward sub-
modularity proof. Thus, a greedy algorithm can lead to a 1 − 1

e
approximation. Therefore, we use a greedy algorithm that gener-
ates candidate answers one by one, called CAS. This speeds up the
candidate answer generation process. Its computation complexity
ism |V |, where V denotes the vocabulary set. At each step i where
i < m, if the utility gain compared to the previous step is less than
a threshold τ ′ we stop selecting options and also drop the last one.
Since CAS is used as a component in the reinforcement learning of
QCM, its efficiency is crucial for efficient training. To speed up the
CAS, for each query q, we select the candidate answers from the
top 30 words in the p(q −−→ ·) distribution (see Section 5.1).

6 EXPERIMENTS
Evaluating the quality of clarifying questions and candidate answers
is challenging. We use trained human annotators to evaluate the
quality of clarifying questions (Section 6.4), quality of candidate
answer set (Section 6.5), and quality of secondary result page by
clicking on candidate answers (Section 6.6).
6.1 Data
The proposed methods require query reformulation data (for query
aspects generation) and entity type information.

Query Reformulation Data: The query reformulation data
was obtained from the Bing search query logs, randomly sub-
sampled from the data collected in a 1.5 year period of the EN-US
market. This data is a set of triples (q,q′, c), where c is the frequency
of the q −−→ q′ query reformulation in the same session. We only
kept the query reformulations with a minimum frequency of 2. The
data contains over 1.6 billion unique query reformulation pairs and
over 500 million unique queries.

Entity Type Data: Since we would like to have entity types
with high coverage, existing knowledge bases do not meet our
expectations. Therefore, we decided to use an open information ex-
traction toolkit to extract “is a” relations from a large-scale corpus.
Since web search queries and web documents cover a wide range
of topics, we decided to create a corpus based on a diverse sample
of Bing search snippets. This resulted in an over 35 petabyte text
corpus. We then ran Reverb [20], an open-source IE toolkit, on the
collected data and kept the “is a” relations with the confidence of at

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck

Table 1: Question generation evaluation results. †/‡ denote significant improvements compared to RTC/QLM, respectively.

Model
Quality Specificity Quality-Specificity Corr.

Good Fair Bad score
(linear)

score
(exp) Specific Fair General score

(linear)
score
(exp) Pearson’s ρ Kendall’s τ

RTC 27.6% 71.2% 1.2% 1.264 1.540 7.6% 52.8% 39.6% 0.680 0.756 -0.35 -0.34
QLM 32.8% 66.4% 0.8% 1.320 1.648 22.4% 44.8% 32.8% 0.896† 1.120† -0.40 -0.38
QCM 38.0% 60.4% 1.6% 1.364†‡ 1.744†‡ 28.4% 46.0% 25.6% 1.028†‡ 1.312†‡ -0.18 -0.16

least 96%. This results in over 27 millions relations for over 20 mil-
lions unique phrases. The data contains over 6 millions entity types,
out of which over 17,000 entity types have a minimum frequency of
10. This data covers the entity types for over 40% of search queries.

In the following, we describe our query sampling strategy:
TrainingQuery Set forWeak Supervision: Asmentioned above,

the proposed machine learning models are trained using weak su-
pervision. To construct the training set, we first generated clarifying
questions for all the queries in the sampled query logs (i.e., over
500 million unique queries) using the RTC model. Out of which,
we sampled 100k queries for training the QLM model. In our query
sampling, we made sure to include the queries that cover a wide
range of clarifying questions. This is necessary to allow the model
learn to generate different clarifying questions, and avoid overfit-
ting on general questions.We sampled an additional 5k queries with
the same strategy to create a validation set. For training the QCM
model, we used 80k of the training query set for pre-training the
question generation model and the remaining 20k for fine tuning
the model using reinforcement learning.

Evaluation Query Set: To evaluate our models, we randomly
sampled 250 queries from the Bing query logs. This query set has a
uniform distribution across the following four buckets (i.e., 62 or 63
queries per bucket): (1) Head & Many Reformulations, (2) Head &
Few Reformulations, (3) Tail & Many Reformulations, and (4) Tail &
Few Reformulations. If a query has over 20 unique reformulations,
it is considered as a query with many reformulations, while few
reformulations means less than or equal to 5 unique reformulations.
Being “head” or “tail” is determined based on the frequency of
the query in the search logs. We made sure that the intersection
between the training, validation, and evaluation sets are empty.

6.2 Implementation Details
We implemented our model using TensorFlow [1]. In all experi-
ments, the network parameters were optimized using the Adam
optimizer [26] with its default hyper-parameters. The batch size in
all the experiments was set to 128. We selected the learning rate
from {1 × 10−5, 5 × 10−4, 1 × 10−4, 5 × 10−4, 1 × 10−3} based on
the loss value on the validation set. The size of hidden parameters
in LSTM cells was set to 64. In all the experiments, we used the
standard early stopping strategy to avoid overfitting. The param-
eters k (the number of aspects encoded in the question genera-
tion model) andm (maximum number of candidate answers per
clarifying question) were set to 10 and 5, respectively. The word
embedding dimensionality was set to 100 and the embedding ma-
trix was initialized by the pre-trained GloVe [36] vectors learned
from Wikipedia 2014 and Gigawords 5. For text pre-processing, we
removed non-alphanumerical characters and lower-cased all text.
We further filtered out queries with detrimental contents using a
proprietary tool. We use NLTK [30] for text tokenization.

6.3 Human Annotation
We evaluate our models using human annotation. We assigned
each human intelligent task (HIT) to three annotators and obtained
the labels based on majority voting. The hired annotators were
well trained and informed about the task and its applications. Each
labeling task asks the annotators to choose between Good, Fair, Bad,
and Detrimental labels. Detrimental refers to the sensitive contents
that are harmful for real commercial systems. As mentioned in
Section 6.2, we removed detrimental contents from the data and thus
we did not observe any detrimental label in our human annotations.
Therefore, hereafter, we do not mention this label. In some rare
cases (less than 4%), there is no agreement between the annotators
(i.e., no label with more than 1 voter). In such cases, we considered
Fair (i.e., the middle label) as the label. The overall Fleiss’ kappa
inter-annotator agreement is 64.58%, which is considered as good.

Each HIT is designed for a single query. It starts with a SERP
Review step that asks annotators to read and review three pages of
the search results returned by Bing. The goal is to make sure that
the annotators are familiar with different aspects of the query. We
further present some labeling tasks to the annotators. In the next
section, we describe each labeling task and discuss the results.

6.4 Evaluating Question Quality
In this subsection, we evaluate the quality of the generated clarify-
ing questions, independent of candidate answers. In our HIT, after
reviewing the search engine result page, we present the generated
clarifying question to the annotator and ask for a question quality
label. At this stage, annotators are not aware of the candidate an-
swers. We gave detailed definitions, guidelines, and examples for
each of the Good, Fair, and Bad labels. In summary, the guideline
indicates that a Good question should correctly address and clarify
different intents of the query, and should be fluent and grammat-
ically correct. If a question fails in terms of any of these factors,
but still an acceptable question to be asked in a real system, the
label Fair is desired. Otherwise, we asked the annotators to give
a Bad label to the question. We also identify the specificity of the
generated questions. The results are reported in Table 1. In addition
to the percentage of each label obtained from the annotators, we
compute two scores for question quality. (1) The linear score is
obtained by assigning the weight 0, 1, and 2 to Bad, Fair, and Good
labels, respectively. (2) The exponential score is computed by re-
spectively using 0, 1, and 3 as the weights for the Bad, Fair, and
Good labels. This is similar to the gain function in the NDCG for-
mula (i.e., 2w −1) which favors the Good label. Therefore, the linear
and exponential scores are bounded by [0, 2] and [0, 3], respectively.
We compute these scores for specificity as well by assigning higher
weights to more specific questions. Statistically significant differ-
ences of these scores were computed using the two-tailed paired
t-test with Bonferroni correction at a 95% confidence level.

Generating ClarifyingQuestions for Information Retrieval WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: Clarifying questions quality by query type.

Model Head & Many Reform. Head & Few Reform.
Good Fair Bad Good Fair Bad

RTC 30.6% 67.8% 1.6% 20.6% 79.4% 0.0%
QLM 37.1% 62.9% 0.0% 19.0% 79.4% 1.6%
QCM 48.4% 48.4% 3.2% 39.7% 60.3% 0.0%

Model Tail & Many Reform. Tail & Few Reform.
Good Fair Bad Good Fair Bad

RTC 28.6% 68.2% 3.2% 30.6% 69.4% 0.0%
QLM 33.3% 66.7% 0.0% 41.9% 56.5% 1.6%
QCM 25.4% 74.6% 0.0% 38.7% 58.1% 3.2%

According to Table 1, QCM outperforms QLM which performs
better than the RTC model in terms of both quality scores. The
results also show that all the models barely generate Bad questions,
and QCM (the best model) generates Good questions in 38% of
the times. It is interesting that QCM also generates more specific
questions compared to the first two models. Note that generat-
ing specific good questions is important. From these results, one
may think that annotators tend to give better scores to specific
questions. To validate this hypothesis, we compute the correla-
tion between the question quality and specificity. The results in
terms of Pearson’s ρ and Kendall’s τ are reported in the last two
columns of Table 1. According to the results, the quality of all mod-
els have negative correlations with the specificity score, meaning
that specific questions tend to have lower quality. The reason is
that generating “good” specific questions is difficult, while general
questions often get Fair or Good labels. The results show that QCM
has the least negative quality-specificity correlation. This means
that QCM generates higher quality specific questions compared to
the other methods. The results suggest that both specificity and
quality should be computed for evaluating clarifying questions.

For a deeper analysis, we provide the results for each query type
in Table 2. Note that the evaluation queries are uniformly distributed
across these four query types (see Section 6.1 for more information).
According to the table, QCM substantially outperforms the other
models for the head queries. In case of tail queries with many
reformulations, QLM performs much better than the other models.
The reason is that in case of many reformulation, it is more difficult
to compute a proper reward function. The highest improvement is
obtained for head queries with few reformulations.
6.5 Evaluating Candidate Answer Set
In the next experiment, we ask human annotators to evaluate the
quality of candidate answer set. To do so, we present the query,
the clarifying question, and the candidate answer set (up to five
candidate answers) to the user. Note that the annotator has already
reviewed multiple pages of the result list to understand different
possible intents behind the query. We ask the annotators to evaluate
the candidate answer set in terms of usefulness for clarification,
comprehensiveness, coverage, understandability, grammar, diver-
sity, and importance order. We give them clear definition of each
label. To summarize, they are asked to assign the Good label, if
the candidate answer set satisfies all the mentioned aspects. While,
the Fair label should be given to an acceptable (with production
standards) candidate answer set that does not satisfy at least one
of the above criteria. Otherwise, the Bad label should be chosen.

Table 3: Candidate answer set evaluation. †/‡ denote signifi-
cant improvements compared to MLE/MMR, respectively.

Model Good Fair Bad score
(linear)

score
(exp)

MLE 0.4% 82.4% 17.2% 0.832 0.836
MMR 0.4% 94.4% 5.2% 0.952† 0.956†

CAS 4.8% 87.2% 8.0% 0.968† 1.016†‡

Table 4: Secondary result page evaluation. †/‡ denote signif-
icant improvements compared to MLE/MMR, respectively.

Model Good Fair Bad score
(linear)

score
(exp)

MLE 69.9% 18.0% 12.1% 1.578 2.278
MMR 66.8% 24.1% 9.1% 1.578 2.246
CAS 87.3% 6.0% 6.7% 1.806†‡ 2.678†‡

Although there is no existing model for generating candidate
answers for clarifying questions, we considered the following nat-
ural baselines to evaluate our candidate answer selection model:
MLE: This model is based on maximum likelihood estimation over
the output of neural collaborative filtering (see Section 5.1). In fact,
this model is similar to query auto-completion models that try
to generate the next phrases for a query. To do so, we order all
possible candidate answers based on the reformulation probability
p(q −−→ q′) and choose the topm phrases with highest probabilities.
This model is similar to the BPMF model in [10].
MMR: This is a model based on maximal marginal relevance [11]
that finds the candidate answers that are relevant to the query
(based on the reformulation probabilities p(q −−→ q′)) and far from
each other (based on word embedding similarity). The intuition is
to produce a diverse set of candidate answers, similar to [10].

The results are presented in Table 3.2 The linear and exponential
scores and the significance tests are computed in the same way as
question evaluation. According to the table, most candidate answer
sets are given a Fair label. The reason is that covering all possible
intents for each querywithmaximumfive options is difficult or even
impossible in many cases. Note that the Fair label in our guideline
still meets the production standards, thus the obtained results are
considered as a successful candidate answer set for production, but
not optimal. The results show that CAS and MMR significantly
outperform MLE. The reason is that both CAS and MMR have
a notion of diversity which helps them increase intent coverage.
Among the tested models CAS performs the best.

6.6 Secondary Search Result Evaluation
When the user selects a candidate answer, we revise the search
results by concatenating the initial query and the candidate answer
and submitting the obtained query to the search engine. This is
called secondary search result page. Our user study suggests that
disappointing secondary search results degrade the satisfaction
of users from the clarification pane (see Section 3.3 for more de-
tail). Motivated by this observation, in the next experiment we ask
the annotators to click on each individual candidate answer and
evaluate the SERP quality (including result list, answers, etc). A

2For the sake of space, the results by query type is not reported. They are mainly
uniformly distributed across different query types.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Zamani, Susan T. Dumais, Nick Craswell, Paul N. Bennett, and Gord Lueck

Table 5: Secondary result page evaluation by query type.

Model Head & Many Reform. Head & Few Reform.
Good Fair Bad Good Fair Bad

MLE 80.3% 11.9% 7.8% 53.7% 24.1% 22.2%
MMR 75.7% 17.8% 6.5% 55.3% 29.4% 15.3%
CAS 93.7% 2.0% 4.3% 80.5% 10.6% 8.9%

Model Tail & Many Reform. Tail & Few Reform.
Good Fair Bad Good Fair Bad

MLE 78.7% 13.7% 7.6% 67.1% 22.3% 10.6%
MMR 70.4 % 22.6% 7.0% 66.0% 26.5% 7.4%
CAS 89.4% 4.7% 5.9% 85.4% 6.8% 7.8%

secondary result page is considered as Good, if the answer to all
possible information needs behind ‘query + selection option’ can be
easily found in a prominent location in the page (e.g., an answer box
on top of the page or the top three retrieved documents) and the
retrieved information correctly satisfies the possible information
needs. If the result page is still useful, but finding the answer is not
easy or is not on top of the page, the Fair label should be chosen.
Otherwise, the secondary page is Bad.

In this experiment, we use the same baselines as those introduced
in Section 6.5 (i.e., MLE and MMR). The results are reported in
Table 4. According to the results, most secondary result pages are
labeled as good for all models. CAS substantially outperforms the
other two models; over 87% of secondary result pages obtained by
CAS are labeled as Good. It is interesting that while both MMR and
CAS diversify the candidate answer list, the quality of candidate
answers generated by these two models are substantially different.

Table 5 reports the results per query types. According to the
table, queries with many reformulations generally have higher
quality candidate answers. The reason is that the candidate answer
selection algorithms have access to several good follow up options.

6.7 Case Study
We report some example outputs of the proposed QCM model in
Table 6, which uses CAS for candidate answer selection. For the
example “rytary” the model generates a question about this medi-
cation and the candidate answer set consists of its different aspects.
The query “acts 17:16” is an example of tail query in our data, and
the generated candidate answers are different bible translations. By
observing a couple of these translations in the query reformulation
data, the model identifies that this is related to bible and should
use the information generalized from other bible-related queries.
The last example, “alan turing” is a head query with many refor-
mulations. The selected candidate answers clearly demonstrate the
power of CAS in selecting diverse options. Although it is not a
complete answer set (e.g., the Turing award is missing), the selected
options are sensible.

7 LIMITATIONS AND FUTURE DIRECTIONS
This work has several limitations that can be improved in the future:

• Beyond query logs: To identify different aspects of each query,
we rely on query reformulation data, which is not always avail-
able. Going beyond query logs by analyzing the retrieved docu-
ments or other information sources (e.g., clicked documents and
anchor text) is a desired future direction.

Table 6: Example outputs of the QCMmodel.

Query rytary
Question what do you want to know about this medication?
Options dosage, coupon, side effects, cost, information

Query acts 17:16
Question what bible translation are you looking for?
Options american standard version, kjv, esv, niv, nlt

Query that’s how i got to memphis
Question what song information are you looking for?
Options lyrics, stream, download, artist

Query alan turing
Question what do you want to know about this british math-

ematician?
Options movie, suicide note, quotes, biography

• Answer coherency: Modifying the clarification utility function
by considering answer coherency is interesting for future work.

• Multi-turn conversation: In this work, we do not study multi-
turn interactions, in which the users answer to multiple clarifica-
tions. The user behavior and their preference may change in a
multi-turn setting which is worth exploring.

• Personalized and session-aware clarification: This work does
not consider short- and long-term user histories. Generating per-
sonalized and session-aware clarification would be important.

• Utilizing user feedback: It is important to think ahead on how
to collect feedback from users for improve question generation
models. It is an important and interesting research question.

8 CONCLUSIONS
In this paper, we introduced and addressed the task of generating
clarifying questions for open-domain information seeking systems.
We presented a clarification type taxonomy based a large-scale
search log analysis. We presented three models for asking clarifying
questions: (1) a simple yet effective rule-based template selection
and slot filling model, (2) a neural question generation model based
on maximizing the likelihood of generating clarifying questions,
and (3) a reinforcement learning model that maximizes a clarifica-
tion utility function. Our machine learning models were trained
using weak supervision, where the training clarifying questions
were generated using the proposed rule-based model. We also in-
troduced a greedy algorithm for selecting candidate answers in
response to a given pair of query and clarifying question. We eval-
uated our models using human annotation, and showed that the
presented reinforcement learning model produces the best results
by generating 38% good, 60.4% fair, and 1.6% bad questions indepen-
dent of the clarifying question. Our proposed solution also achieved
87.3% good secondary result pages by selecting candidate answers.

9 ACKNOWLEDGEMENTS
The authors acknowledge the contributions of Flint Luu and Saman-
tha Neufeld in conducting the user studies presented in Sections 3.1
and 3.2. We also would like to thank Behnam Shahbazi and Bodo
von Billerbeck for providing the data used in our experiments. This
work would have not been possible without their help.

Generating ClarifyingQuestions for Information Retrieval WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensorflow.org.
[2] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce Croft.

2019. Asking Clarifying Questions in Open-Domain Information-Seeking Con-
versations. In SIGIR ’19 (Paris, France). 475–484.

[3] James Allan. 2004. HARDTrack Overview in TREC 2004: High Accuracy Retrieval
from Documents. In TREC ’04 (Gaithersburg, Maryland).

[4] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis,
and Sebastiano Vigna. 2008. The Query-flow Graph: Model and Applications. In
CIKM ’08 (Napa Valley, CA, USA). 609–618.

[5] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, and Sebastiano Vi-
gna. 2009. Query Suggestions Using Query-flow Graphs. InWSCD ’09 (Barcelona,
Spain). 56–63.

[6] Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna. 2011. Query
reformulation mining: models, patterns, and applications. Inf. Retr. 14, 3 (2011),
257–289.

[7] Marco De Boni and Suresh Manandhar. 2003. An Analysis of Clarification
Dialogue for Question Answering. In NAACL ’03 (Edmonton, Canada). 48–55.

[8] Pavel Braslavski, Denis Savenkov, Eugene Agichtein, and Alina Dubatovka. 2017.
What Do You Mean Exactly?: Analyzing Clarification Questions in CQA. In CHIIR
’17 (Oslo, Norway). 345–348.

[9] Fei Cai and Maarten de Rijke. 2016. A Survey of Query Auto Completion in
Information Retrieval. Now Publishers Inc.

[10] Fei Cai, Ridho Reinanda, and Maarten De Rijke. 2016. Diversifying Query Auto-
Completion. ACM Trans. Inf. Syst. 34, 4 (2016), 25:1–25:33.

[11] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based
Reranking for Reordering Documents and Producing Summaries. In SIGIR ’98
(Melbourne, Australia). 335–336.

[12] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. Towards
Conversational Recommender Systems. In KDD ’16 (San Francisco, CA, USA).
815–824.

[13] Anni Coden, Daniel Gruhl, Neal Lewis, and Pablo N. Mendes. 2015. Did you mean
A or B? Supporting Clarification Dialog for Entity Disambiguation. In SumPre
’15 (Portoroz, Slovenia).

[14] W. Bruce Croft. 2019. The Importance of Interaction for Information Retrieval.
In SIGIR ’19 (Paris, France). 1–2.

[15] J. Shane Culpepper, Fernando Diaz, and Mark D. Smucker. 2018. Research Fron-
tiers in Information Retrieval: Report from the Third Strategic Workshop on
Information Retrieval in Lorne (SWIRL 2018). SIGIR Forum 52, 1 (2018), 34–90.

[16] Marco De Boni and Suresh Manandhar. 2005. Implementing Clarification Di-
alogues in Open Domain Question Answering. Nat. Lang. Eng. 11, 4 (2005),
343–361.

[17] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In SIGIR ’17 (Shin-
juku, Tokyo, Japan). 65–74.

[18] Fernando Diaz. 2016. Pseudo-Query Reformulation. In ECIR ’16 (Padua, Italy).
521–532.

[19] Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou. 2017. Question Generation
for Question Answering. In EMNLP ’17 (Copenhagen, Denmark). 866–874.

[20] Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying Relations
for Open Information Extraction. In EMNLP ’11 (Edinburgh, United Kingdom).
1535–1545.

[21] Ahmed Hassan, Xiaolin Shi, Nick Craswell, and Bill Ramsey. 2013. Beyond
clicks: query reformulation as a predictor of search satisfaction. In CIKM ’13 (San
Francisco, CA, USA). 2019–2028.

[22] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
2017. Neural Collaborative Filtering. In WWW ’17 (Perth, Australia). 173–182.

[23] Michael Heilman and Noah A. Smith. 2010. Good Question! Statistical Ranking
for Question Generation. In NAACL ’10 (Los Angeles, CA, USA). 609–617.

[24] Bernard J. Jansen, Danielle L. Booth, and Amanda Spink. 2009. Patterns of Query
Reformulation During Web Searching. J. Am. Soc. Inf. Sci. Technol. 60, 7 (2009),
1358–1371.

[25] Johannes Kiesel, Arefeh Bahrami, Benno Stein, Avishek Anand, and Matthias
Hagen. 2018. Toward Voice Query Clarification. In SIGIR ’18 (Ann Arbor, MI,
USA). 1257–1260.

[26] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR ’15 (San Diego, CA, USA).

[27] Tessa Lau and Eric Horvitz. 1999. Patterns of Search: Analyzing and Modeling
Web Query Refinement. In UM ’99, Judy Kay (Ed.). 119–128.

[28] Zhen Liao, Xinying Song, Yelong Shen, Saekoo Lee, Jianfeng Gao, and Ciya Liao.
2017. Deep Context Modeling for Web Query Entity Disambiguation. In CIKM
’17 (Singapore, Singapore). 1757–1765.

[29] Chang Liu, Jacek Gwizdka, Jingjing Liu, Tao Xu, and Nicholas J. Belkin. 2010.
Analysis and Evaluation of Query Reformulations in Different Task Types. In
ASIS&T ’10 (Pittsburgh, PA, USA). 17:1–17:10.

[30] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit. In
ETMTNLP ’02 (Philadelphia, PA, USA). 63–70.

[31] Cheng Luo, Yukun Zheng, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma.
2017. Training Deep Ranking Model with Weak Relevance Labels. In ADC ’17
(Brisbane, Australia). 205–216.

[32] Pont Lurcock, Peter Vlugter, and Alistair Knott. 2004. A framework for utterance
disambiguation in dialogue. In ALTA ’04 (Sydney, Australia).

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In NeurIPS ’13 (Lake Tahoe, CA, USA). 3111–3119.

[34] Bhaskar Mitra. 2015. Exploring Session Context Using Distributed Representa-
tions of Queries and Reformulations. In SIGIR ’15 (Santiago, Chile). 3–12.

[35] Yifan Nie, Alessandro Sordoni, and Jian-Yun Nie. 2018. Multi-level Abstraction
Convolutional Model with Weak Supervision for Information Retrieval. In SIGIR
’18 (Ann Arbor, MI, USA). 985–988.

[36] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In EMNLP ’14 (Doha, Qatar). 1532–1543.

[37] Chen Qu, Liu Yang, W. Bruce Croft, Johanne R. Trippas, Yongfeng Zhang, and
Minghui Qiu. 2018. Analyzing and Characterizing User Intent in Information-
seeking Conversations. In SIGIR ’18 (Ann Arbor, MI, USA). 989–992.

[38] Luis Quintano and Irene Pimenta Rodrigues. 2008. Question/Answering Clarifi-
cation Dialogues. In MICAI ’08 (Atizapán de Zaragoza, Mexico). 155–164.

[39] Filip Radlinski and Nick Craswell. 2017. A Theoretical Framework for Conversa-
tional Search. In CHIIR ’17 (Oslo, Norway). 117–126.

[40] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2016.
Sequence Level Training with Recurrent Neural Networks. In ICLR ’16 (San Juan,
Puerto Rico).

[41] Sudha Rao and Hal Daumé III. 2018. Learning to Ask Good Questions: Ranking
Clarification Questions using Neural Expected Value of Perfect Information. In
ACL ’18 (Melbourne, Australia). 2737–2746.

[42] Sudha Rao and Hal Daumé III. 2019. Answer-based Adversarial Training for
Generating Clarification Questions. In NAACL ’19 (Minneapolis, MN, USA).

[43] Rodrygo L. T. Santos, Craig Macdonald, and Iadh Ounis. 2015. Search Result
Diversification. Found. Trends Inf. Retr. 9, 1 (2015), 1–90.

[44] M. Schuster and K.K. Paliwal. 1997. Bidirectional Recurrent Neural Networks.
Trans. Sig. Proc. 45, 11 (1997), 2673–2681.

[45] Svetlana Stoyanchev, Alex Liu, and Julia Hirschberg. 2014. Towards Natural
Clarification Questions in Dialogue Systems. In AISB ’14 (London, UK), Vol. 20.

[46] Yueming Sun and Yi Zhang. 2018. Conversational Recommender System. In
SIGIR ’18 (Ann Arbor, MI, USA). 235–244.

[47] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In NeurIPS ’14 (Montreal, Canada). 3104–3112.

[48] Idan Szpektor, Aristides Gionis, and Yoelle Maarek. 2011. Improving Recom-
mendation for Long-tail Queries via Templates. In WWW ’11 (Hyderabad, India).
47–56.

[49] Jan Trienes and Krisztian Balog. 2019. Identifying Unclear Questions in Commu-
nity Question Answering Websites. In ECIR ’19 (Cologne, Germany). 276–289.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS ’17 (Long Beach, CA, USA). 5998–6008.

[51] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Mach. Learn. 8, 3-4 (1992), 229–256.

[52] Hui Yang, Dongyi Guan, and Sicong Zhang. 2015. The Query Change Model:
Modeling Session Search As a Markov Decision Process. ACM Trans. Inf. Syst. 33,
4 (2015), 20:1–20:33.

[53] Liu Yang, Hamed Zamani, Yongfeng Zhang, Jiafeng Guo, andW. Bruce Croft. 2017.
Neural Matching Models for Question Retrieval and Next Question Prediction in
Conversation. In NeuIR ’17 (Shinjuku, Tokyo, Japan).

[54] Hamed Zamani and W. Bruce Croft. 2016. Estimating Embedding Vectors for
Queries. In ICTIR âĂŹ16 (Newark, DE, USA). 123âĂŞ132.

[55] Hamed Zamani and W. Bruce Croft. 2018. On the Theory of Weak Supervision
for Information Retrieval. In ICTIR ’18 (Tianjin, China).

[56] Hamed Zamani, W. Bruce Croft, and J. Shane Culpepper. 2018. Neural Query
Performance Prediction using Weak Supervision from Multiple Signals. In SIGIR
’18 (Ann Arbor, MI, USA). 105–114.

[57] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap
Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse
Representation for Inverted Indexing. In CIKM ’18 (Torino, Italy). 497–506.

[58] Hamed Zamani, Mostafa Dehghani, Fernando Diaz, Hang Li, and Nick Craswell.
2018. SIGIR 2018 Workshop on Learning from Limited or Noisy Data for Infor-
mation Retrieval. In SIGIR’18 (Ann Arbor, MI, USA). 1439–1440.

[59] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W. Bruce Croft. 2018.
Towards Conversational Search and Recommendation: SystemAsk, User Respond.
In CIKM ’18 (Torino, Italy). 177–186.

[60] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou.
2018. Neural Question Generation from Text: A Preliminary Study. In NLPCC ’18
(Hohhot, China). 662–671.

	Abstract
	1 Introduction
	2 Related Work
	3 On the Usefulness of Search Clarification
	3.1 User Study I
	3.2 User Study II
	3.3 Online Experiment
	3.4 Summary of Findings

	4 Taxonomy of Clarification Types
	5 Generating Clarifying Questions
	5.1 Query Aspects Generation
	5.2 RTC: A Template-based Approach
	5.3 QLM: Question Likelihood Maximization
	5.4 QCM: Query Clarification Maximization
	5.5 Candidate Answer Selection

	6 Experiments
	6.1 Data
	6.2 Implementation Details
	6.3 Human Annotation
	6.4 Evaluating Question Quality
	6.5 Evaluating Candidate Answer Set
	6.6 Secondary Search Result Evaluation
	6.7 Case Study

	7 Limitations and Future Directions
	8 Conclusions
	9 Acknowledgements
	References

