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ABSTRACT

Diffracted scattering and occlusion are important acoustic effects in
interactive auralization and noise control applications, typically re-
quiring expensive numerical simulation. We propose training a con-
volutional neural network to map from a convex scatterer’s cross-
section to a 2D slice of the resulting spatial loudness distribution.
We show that employing a full-resolution residual network for the re-
sulting image-to-image regression problem yields spatially detailed
loudness fields with a root-mean-squared error of less than 1 dB, at
over 100x speedup compared to full wave simulation.

Index Terms— Diffraction, occlusion, scattering, convolutional
neural network, wave simulation

1. INTRODUCTION

Fast evaluation of wave scattering and occlusion from general object
shapes is important for diverse applications, such as optimizing baf-
fle shape in outdoor noise control [1,2], and real-time auralization in
games and mixed reality [3,4]. Modeling diffraction is critical since
acoustical wavelengths span everyday object sizes. Wave solvers
capture diffraction and can achieve real-time execution in restricted
cases [5, 6] but in general they remain quite expensive, even with
hardware acceleration [7, 8]. While pre-computed wave simulation
is viable for real-time auralization [4], it disallows arbitrary shape
changes at run-time. Geometric (ray-based) approaches can handle
dynamic geometry but diffraction remains challenging due to the in-
herent zero-wavelength approximation [9].

We propose a machine learning approach for fast modeling of
diffracted occlusion and scattering. Previously, machine learning has
been successfully applied in acoustic signal processing problems in-
cluding speech synthesis [10, 11], source localization [12, 13], blind
estimation of room acoustic parameters from reverberated speech
[14, 15], binaural spatialization [16], and structural vibration [17].
Pèrez et al. [18] used a fully-connected neural network to learn the
effect of re-configuring the furniture layout of a single room on
acoustical parameters, including reverberation time (T60) and sound
pressure level (SPL), at a few listener locations.

Pulkki and Svensson [19] trained a small fully-connected neural
network to learn exterior scattering from rectangular plates as pre-
dicted by the Biot-Tolstoy-Medwin (BTM) diffraction model [20].
The input was a carefully designed low-dimensional representation
of the geometric configuration of source, plate, and listener based
on knowledge of diffraction physics. The output was a set of pa-
rameters of low-order digital filters meant to auralize the effect.
The authors report plausible auralization of scattering effects de-
spite some inaccuracies. However, due to relying on a hand-crafted
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Fig. 1: Acoustic scattering formulated as 2D image-to-image regres-
sion. Input object shape is specified as a binary image (left). A point
source, not shown, is placed to the left of the object. Numerical wave
simulation is used to produce reference scattered loudness fields in
frequency bands (top row). Our CNN produces a close approxima-
tion at over 100× speedup (bottom row).

low-dimensional parameterization, the method is not designed to
generalize beyond rectangular plates.

In this paper, we report the first study on whether a neural net-
work can effectively learn the mapping from a large class of shapes
(convex prisms) to the resulting frequency-dependent loudness field,
as illustrated in Fig. 1. We restrict the problem to convex shapes to
rule out reverberation and resonance effects in this initial study. In
contrast to [19], our goal is to design a neural network that gener-
alizes well for a variety of input shapes by formulating the problem
as high-dimensional image-to-image regression which allows appli-
cation of state-of-the-art convolutional neural networks (CNNs) that
have been successfully applied in computer vision [21–23].

We design a CNN that ingests convex prism geometries repre-
sented by their 2D cross-sections discretized onto binary occupancy
grids. The predicted outputs are the corresponding loudness fields in
octave bands along a horizontal slice passing through the source, rep-
resented as floating point images in decibels (dB). Our input–output
mapping of acoustic scattering in terms of a spatial grid reveals spa-
tial coherence, such as the smooth change in loudness across the
geometric shadow edge. CNNs are particularly well-adapted to such
tasks. Further, using CNNs allows us to train a single network un-
like [19], where occluded and unoccluded cases had to be treated
separately with distinct networks.

Experimental results and generalization tests indicate that the
proposed neural network model is surprisingly effective at capturing
detailed spatial variations in diffracted scattering and occlusion (e.g.,
compare top vs. bottom row in Fig. 1). Relative to wave simulated
reference, the RMS error is below 1dB while providing over 100x
speedup, with evaluation time of about 50ms on a high-end GPU.
To foster further research, we have shared our complete dataset at:
https://github.com/microsoft/AcousticScatteringData.

https://github.com/microsoft/AcousticScatteringData


2. PROBLEM FORMULATION

2.1. Acoustic loudness fields

Consider the exterior acoustics problem of an object insonified with
a point source at location x0 = (x0, y0, z0) emitting a Dirac im-
pulse. Object shape can be abstractly described with an indicator
function, O(x) = {0, 1}, where 1 indicates the object is present
at a 3D spatial location x, and 0 indicates otherwise. Scattering
from the object results in a time-varying pressure field denoted by
G(x, t;x0) termed the Green’s function, which evaluates the pres-
sure at any point x = (x, y, z) at time t. Semi-colon denotes pa-
rameters to be held fixed; in this case the source location, x0. The
Green’s function must satisfy the scalar wave equation,[

∂2
t − c2∇2]G(x, t;x0) = δ(x− x0, t), (1)

where c = 343 m/s is the speed of sound and∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

is the Laplacian operator, subject to the impedance boundary condi-
tion on the object’s surface based on its material, and the Sommer-
feld radiation condition at infinity [24].

Analytical solutions to (1) are unavailable beyond simple ge-
ometries such as a sphere or an infinite wedge [24]. Therefore, nu-
merical solvers must be employed that perform computationally ex-
pensive sub-wavelength sampling of space. For applications such as
modeling dynamic occlusion in virtual reality or optimizing baffle
shape in noise control, the energetic properties of G are of particu-
lar interest, obtained by measuring its loudness in frequency bands.
Therefore, the focus of our study is the sensitive, non-linear effect of
object shape on the scattered loudness field.

Formally, denoting the temporal Fourier transform as F , we de-
fine the Green’s function in the frequency domain for angular fre-
quency, ω: Ĝ(x, ω;x0) ≡ F [G (x, t;x0)] and define octave-band
loudness fields as

Li(x;x0) ≡ 10 log10
‖x− x0‖2

ωi+1 − ωi

∫ ωi+1

ωi

|Ĝ(x, ω;x0)|2dω, (2)

where i ∈ {1, 2, 3, 4} denotes the index of four octave bands
[ωi, ωi+1), ωi ≡ 2π × 125 × 2i−1 rad/s, which together span the
frequency range of [125, 2000] Hz. The factor ‖x − x0‖2 normal-
izes Li for free-space distance attenuation, so that in the absence of
any geometry, Li(x;x0) = 0. That is, all loudness fields are 0 dB
everywhere in the absence of a scatterer and they capture the per-
turbation on free-space energy distribution induced by the presence
of object geometry, which is often the primary quantity of interest.
Distance attenuation can be easily included later via a compensating
factor of 1/‖x− x0‖2.

2.2. Scattering functional

From (1), the loudness fields Li depend both on the object geom-
etry O and source location x0. We observe that the latter can be
restricted to the negative x-axis, simplifying the formulation, as
the D’Alembert operator,

[
∂2
t − c2∇2

]
is invariant to the choice of

frame of reference [24]. Thus, given any x0 in one frame of refer-
ence with origin at object center, one can find a unique coordinate
system rotation R such that R(x0) lies on the negative x-axis in
the new coordinate system. The object must also be rotated so that
R(O) and evaluations of the loudness fields similarly transformed
to the rotated system. Therefore, the source can be restricted to
the negative x-axis without any loss of generality because we are
approximating scattering from arbitrary convex shapes and rotation
preserves convexity.

Fig. 2: Random object generating process. A polygon with 3-20
vertices is randomly generated by sampling angles on a circle, then
rotated, scaled, and extruded in height to yield a convex prism object.

Fig. 3: Examples objects in our training dataset.

The remaining free parameter for the source is its radial distance
to object center. In this initial study, distance is assumed to be fixed.
This simplification allows dropping the dependence on x0 entirely.
The problem can then be formalized as computing the scattering
functional, S : O 7→ {Li} which takes object shape as input and
outputs a set of loudness fields in frequency bands. The functional is
typically evaluated using a numerical solver for (1) coupled with an
encoder that implements (2), such as in the “Triton” system [4] that
we employ as baseline. The underlying solver has been validated in
outdoor scenes [25]. Here we investigate whether neural networks
may be used to provide a substantially faster approximation of S.

2.3. Acoustic scattering as image-to-image regression

In order to learn S successfully using a neural network, the choice
of discrete representation for input O, output Li, and neural net-
work architecture are critical inter-dependent considerations. We
observe that shapes and loudness fields exhibit joint spatial coher-
ence, containing smoothly varying regions, occasionally interrupted
by abrupt changes such as near the object’s edges, or near the ge-
ometric shadow boundary. Convolutional neural networks (CNNs)
have been used extensively in the computer vision community for
signals with such piece-wise smooth characteristics, motivating our
current investigation. However, CNNs typically work on images rep-
resented as 2D grids of values. Therefore, we cast our input–output
representation to 2D by restricting our shapes to convex prisms that
have a uniform cross-section in height, i.e., along the z-axis, and
training the neural network to map from this 2D convex cross-section
to a 2D slice of the resulting 3D loudness fields. The simulation
setup is shown in Fig. 4 and detailed in Section 3.2. Thus, the task
is simplified to that of image-to-image regression, as illustrated in
Fig. 1. The input is a binary image specifying presence of object,O,
at each pixel, and output is a multi-channel image with four channels
corresponding to the four octave-band loudness fields Li.

3. DATA GENERATION

The data generation consists of generating random convex-prism in-
put shapes and computing the corresponding output loudness fields.



Fig. 4: A convex-prism object is insonified with a point source
marked with gray dot. Simulation is performed inside a contain-
ing cuboidal region. Object and loudness field data is extracted on a
2D slice shown with dashed red square. Dimensions not to scale.

3.1. Input shape generation

The generation of random convex prisms is illustrated in Fig. 2.
Given a target number of vertices, N, of the convex cross-section,
the angles θi, i = [1, · · · ,N] are drawn randomly from [0, 2π] and
then sorted. The ordered set of points (x, y) = (2 cos θi, 2 sin θi)
describes a convex polygon with all its vertices on the inscribed cir-
cle of a 4 × 4 m2 object region. A random rotation in [0, 2π) is
performed about the origin, followed by scaling in x and y indepen-
dently with scaling factors drawn randomly from [0.25, 1]. Finally,
the rotated and scaled convex polygon is extruded along the z-axis
to obtain a convex prism. All random numbers are drawn from the
uniform distribution. The procedure results in objects with signifi-
cant cross-section diversity, see Fig. 3. For each cross-section vertex
count, N ∈ [3, 20], K random convex prisms are generated, where
Ktr = 6000 for the training set, Kcv = 60 for the validation set,
Kte = 20 for the test set, resulting in a total of 108 000, 1080 and
360 samples for training, validation and test, respectively.

3.2. Output loudness field generation

For each convex prism object, we compute the corresponding out-
put loudness fields using the Triton system [4] that employs the fast
ARD pseudo-spectral wave solver [26] to solve (1) combined with
a streaming encoder to evaluate (2). The scattering object resides in
a 4 × 4 × 2 m3 object region. The center of this object region is
the origin of our coordinate system. We assume a nearly-rigid and
frequency-independent acoustic impedance corresponding to Con-
crete material, with pressure reflectivity of 0.95. High reflectivity is
chosen to ensure there is substantial reflection from the object.

The simulation is performed on a larger 26×16×2 m3 cuboidal
region of space, as illustrated in Fig. 4, with perfectly matched layers
absorbing any wavefronts exiting this region. A point sound source
is placed on the negative x-axis at (−6, 0, 0) m. The solver is con-
figured for a usable bandwidth up to 2000 Hz, resulting in an update
rate of 11 765 Hz. The solver executes on a discrete spatial grid with
uniform spacing of 6.375 cm in all dimensions.

For extracting the input-output data for training purposes our
region of interest is the 16×16 m2 2D slice that symmetrically con-
tains the object region, with corners (−8,−8, 0) to (+8,+8, 0) m,
shown with red square in Fig. 4. The solver already discretizes the
object and fields onto a 3D spatial grid for simulation purposes, so
we merely extract the relevant samples lying on our 2D slice of in-
terest from the 3D arrays, without requiring any interpolation. The
extracted 2D arrays are then padded to 256×256 pixel images. This
results in a pair of an input binary image for an object and an output
set of four loudness fields, constituting one entry in our dataset.

We ensure the training and test sets are disjoint by exhaustively
checking that none of the object binary images in the test set have
an exact match in the training set. Dataset generation was run in
parallel for all shapes on a high-performance cluster, taking 3 days.
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Fig. 5: Full-resolution residual network (FRRN), adapted from [27].
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Fig. 6: Full-resolution residual unit (FRRU), adapted from [27].

Each entry took 4 minutes for simulation and encoding, excluding
task preparation time. An example is shown in Fig. 1, top row.

4. FULL-RESOLUTION RESIDUAL NETWORK (FRRN)

We adopt the full-resolution residual network (FRRN) [27] to model
the scattering functional defined in Section 2.2 using the training
data generated in the previous section. As shown in Fig. 5, an FRRN
is composed of two basic streams: a pooling stream and a residual
stream. In general, data abstraction with multiple resolutions in the
pooling stream enables the FRRN to integrate both fine local details
and general transitions of loudness fields. The residual stream of full
resolution ensures that loudness fields are output at the input spatial
resolution and that backpropagation converges faster [21, 28].

The core component of an FRRN is the full-resolution residual
unit (FRRU), shown in Fig. 6. There are 27 FRRUs in our FRRN
(3 in each FRRU block in Fig. 5), which is the depth of our neural
network. In each FRRU, the full-resolution input residual stream zn
is down-sampled to the same resolution as the input pooling stream
yn and is then concatenated to yn. The concatenation is fed into
two consecutive convolutional units to generate the output pooling
stream yn+1, which serves as the input pooling stream of the next
FRRU. Further, the stream yn+1 propagates into another convolu-
tional unit and is upsampled to the same resolution as zn. The
upsampled stream is added back to zn to form the output residual
stream zn+1, which is subsequently added back to the main stream
of full resolution. Such bidirectional downsampling and upsampling
of features between the residual and pooling streams allows to learn
features at successive layers of FRRN at different spatial resolutions.

5. EXPERIMENTAL EVALUATION AND DISCUSSION

We employ the source code of FRRN provided by [29] in our study.
Since the FRRN from [29] was originally designed for classifying
pixels of images into multiple categories and modeling the scattering
functional is a regression problem, we modified the source code and
selected the mean squared error (MSE) as our loss function. We
also modified the implementation so that the input and output of the
neural network are respectively one-channel and four-channel 256×
256 images, indicated by Fig. 1. We set the batch size as 8 and
adopted a stochastic-gradient-descent (SGD) optimizer, a learning



Fig. 7: Generalization tests comparing reference vs CNN prediction.
CNN is able to model detailed scattering and occlusion variations.

rate of 1.0e−4, a momentum of 0.99 and a weight decay of 5.0e−4.
The FRRN was trained on 108 000 examples for 50 000 iterations on
a Tesla P100 GPU. Evaluating the CNN after training takes about
50 ms. The wave simulation takes 4 minutes on a multi-core CPU
and can be accelerated by 10× if also performed on the GPU [30].
Adjusting for hardware differences, then our method is 100-1000×
faster.

To test the generalization capability of our model, we created
four prisms extruded from a bar, square, circle and ellipse, all
of which cause the network to extrapolate beyond the randomly-
generated training set. The CNN provides a surprisingly good
reproduction of the spatial loudness variation, as shown in Fig. 7.
Notice the reflected lobe from the bar prism (top row), which shows
scattered energy propagating downwards. In comparison, reflection
from the square prism (second row) is symmetric about the x-axis.
The CNN successfully predicts these different acoustic features,
even though it has only learned from random polygons. The CNN
does introduce a degree of spatial smoothing on the scattered lobes,
a trend we observe consistently. Also note the brightening at low
frequencies at edges facing the source. This is due to constructive
interference between incident and reflected signals. The CNN is
also able to capture diffracted shadowing behind the object in all
cases, along with smooth variation around the geometric shadow
that gets more abrupt as frequency increases. Our results indicate

Fig. 8: Root-mean-squared error (RMSE) and maximum absolute er-
ror (MaxAE) computed over 360 test cases for each frequency band.

that learning spatial fields of perceptual acoustic quantities is quite
advantageous compared to learning acoustic responses at a few
points, since fields provide the network with extensive information
about the constraints on spatial variation imposed by wave physics.

As a statistical test of accuracy, we fed the 360 objects in the test
set into the trained network and evaluated the root-mean-squared er-
rors (RMSE) and the maximum absolute errors (MaxAE) on all pix-
els in all frequency bands against the reference simulated results.
These are shown in Fig. 8. The RMS errors are below 1 dB for all
frequency bands. MaxAE provides a more detailed look at errors
within particular test cases. At each pixel it shows the largest abso-
lute error over all 360 test cases. As illustrated in Fig. 8, the errors
are concentrated in the occluded region behind the object. This phe-
nomenon can be explained as follows. Observe in Fig. 7 that our
CNN is able to successfully predict the spatially-detailed light and
dark streaks in the occluded region. These streaks are interference
fringes due to diffracted wave-fronts wrapping around the object and
meeting behind. Fringes oscillate faster in space for smaller wave-
lengths so that slight displacements in the fringes can cause large
per-pixel errors due to subtracting two oscillatory functions with a
small relative translation. This explanation fits the observation that
MaxAE has a worsening trend with increasing frequency. Even so,
our pessimistic MaxAE estimate is of the order of 4 dB, which, while
larger than the best-case just-noticeable-difference of 1 dB, is suffi-
cient for plausible auralization with spatially smooth effects.

6. CONCLUSION AND OUTLOOK

We investigated the application of convolutional neural networks
(CNNs) to the problem of acoustic scattering from arbitrary convex
prism shapes. By formulating the problem as 2D image-to-image
regression and employing full-resolution residual networks we show
that surprisingly detailed predictions can be obtained. Generaliza-
tion tests indicate that the network hasn’t just memorized. Network
evaluation is over 100× faster than direct simulation. Our results
suggest that CNNs are a promising avenue for the tough problem of
fast acoustic occlusion and scattering, meriting further study.

This initial study had several restrictions: convex prism shapes
only, fixed object material, fixed source distance, and training on 2D
slices. Our formulation is designed so it generalizes beyond these
restrictions. A natural extension of the current approach could be
to employ 3D CNNs [31] for handling arbitrary shapes and corre-
sponding 3D loudness fields. The limitation of fixed source distance
could be addressed by providing an additional floating point input to
the neural network that parameterizes the input–output mapping. We
intend to pursue such extensions in future work, and hope our results
and dataset foster parallel investigations in this exciting direction.



7. REFERENCES

[1] D. A. Bies, C. Hansen, and C. Howard, Engineering noise con-
trol. CRC press, 2017.

[2] L. L. Beranek and I. L. Ver, “Noise and vibration control
engineering-principles and applications,” Noise and vibration
control engineering-Principles and applications John Wiley &
Sons, Inc., 814 p., 1992.

[3] M. Vorländer, Auralization: Fundamentals of Acoustics,
Modelling, Simulation, Algorithms and Acoustic Virtual Real-
ity (RWTHedition), 1st ed. Springer, Nov. 2007.

[4] N. Raghuvanshi and J. Snyder, “Parametric directional coding
for precomputed sound propagation,” ACM Trans. Graph.,
vol. 37, no. 4, pp. 108:1–108:14, July 2018.

[5] L. Savioja, “Real-Time 3D Finite-Difference Time-Domain
Simulation of Mid-Frequency Room Acoustics,” in 13th In-
ternational Conference on Digital Audio Effects, Sept. 2010.

[6] A. Allen and N. Raghuvanshi, “Aerophones in Flatland:
Interactive Wave Simulation of Wind Instruments,” ACM
Trans. Graph., vol. 34, no. 4, July 2015.

[7] Z. Fan, T. Arce, C. Lu, K. Zhang, T. W. Wu, and K. McMullen,
“Computation of head-related transfer functions using graphics
processing units and a pereptual validation of the computed
HRTFs against measured HRTFs,” in Proc. Conf. Audio Eng.
Soc., Aug 2019.

[8] N. Raghuvanshi, B. Lloyd, N. Govindaraju, and M. C.
Lin, “Efficient numerical acoustic simulation on graphics
processors using adaptive rectangular decomposition,” in Pro-
ceedings of the EAA Symposium on Auralization. European
Acoustics Association, June 2009.

[9] L. Savioja and U. P. Svensson, “Overview of geometrical room
acoustic modeling techniques,” The Journal of the Acoustical
Society of America, vol. 138, no. 2, pp. 708–730, Aug. 2015.

[10] H. Ze, A. Senior, and M. Schuster, “Statistical parametric
speech synthesis using deep neural networks,” in Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP).
IEEE, 2013, pp. 7962–7966.

[11] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep
neural networks employing multi-task learning and stacked
bottleneck features for speech synthesis,” in Proc. IEEE Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP).
IEEE, 2015, pp. 4460–4464.

[12] W. He, P. Motlicek, and J.-M. Odobez, “Deep neural networks
for multiple speaker detection and localization,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 74–79.

[13] E. L. Ferguson, S. B. Williams, and C. T. Jin, “Sound source lo-
calization in a multipath environment using convolutional neu-
ral networks,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP). IEEE, 2018, pp. 2386–2390.

[14] J. Eaton, N. D. Gaubitch, H. Moore, Alastair, and P. A. Naylor,
“Estimation of room acoustic parameters: The ace challenge,”
IEEE Trans. Audio, Speech, Language Processing, vol. 24,
no. 10, pp. 1681–1693, 2016.

[15] A. F. Genovese, H. Gamper, V. Pulkki, N. Raghuvanshi, and
I. J. Tashev, “Blind room volume estimation from single-
channel noisy speech,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), May 2019, pp. 231–
235.

[16] R. A. Tenenbaum, F. O. Taminato, and V. S. Melo, “Room
acoustics modeling using a hybrid method with fast auraliza-
tion with artificial neural network techniques,” in Proc. Inter-
national Congress on Acoustics (ICA), 2019, pp. 6420–6427.

[17] D. E. Tsokaktsidis, T. V. Wysocki, F. Gauterin, and S. Marburg,
“Artificial neural network predicts noise transfer as a function
of excitation and geometry,” in Proc. International Congress
on Acoustics (ICA), 2019, pp. 4392–4396.
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