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ABSTRACT

Recently, the recurrent neural network transducer (RNN-T) architec-
ture has become an emerging trend in end-to-end automatic speech
recognition research due to its advantages of being capable for on-
line streaming speech recognition. However, RNN-T training is
made difficult by the huge memory requirements, and complicated
neural structure. A common solution to ease the RNN-T training is
to employ connectionist temporal classification (CTC) model along
with RNN language model (RNNLM) to initialize the RNN-T pa-
rameters. In this work, we conversely leverage external alignments
to seed the RNN-T model. Two different pre-training solutions are
explored, referred to as encoder pre-training, and whole-network
pre-training respectively. Evaluated on Microsoft 65,000 hours
anonymized production data with personally identifiable informa-
tion removed, our proposed methods can obtain significant improve-
ment. In particular, the encoder pre-training solution achieved a
10% and a 8% relative word error rate reduction when compared
with random initialization and the widely used CTC+RNNLM ini-
tialization strategy, respectively. Our solutions also significantly
reduce the RNN-T model latency from the baseline.

Index Terms— RNN transducer, end-to-end, alignments,
speech recognition, pre-training.

1. INTRODUCTION

In recent years, we have witnessed significant progress in automatic
speech recognition (ASR) mainly due to the use of deep learning al-
gorithms [1, 2]. Deep model based ASR systems mainly focus on
the hybrid framework and consist of many components, including
acoustic model (AM), pronunciation model, language model (LM).
Those components are trained separately using different objective
functions, and extra expert linguistic knowledge may be needed. Re-
cently, an emerging trend in the ASR community is to rectify this
disjoint training issue by replacing hybrid systems with end-to-end
(E2E) systems [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The three major
E2E approaches are built on the Connectionist Temporal Classifi-
cation (CTC) [13, 14, 15], Attention-based Encoder-Decoder (AED)
[16, 17, 18, 19, 5], and recurrent neural network transducer (RNN-T)
[20, 21, 22]. Different from training conventional hybrid models, to-
ken alignment information between input acoustic frames and output
token sequence is not required when training the E2E models.

CTC maps the input speech frames to target label sequence by
marginalizing all the possible alignments. A dynamic program-
ming based forward-backward algorithm is usually used to train the
model. An advantage of the CTC approach is that it does frame-
level decoding as the conventional hybrid model, and hence can be
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applied for online speech recognition. However, one disadvantage
is the conditional independence assumption given the input acoustic
frames. AED, on the other hand, does not have such an assumption,
and is presumably more powerful than CTC for the speech recog-
nition task. However, one drawback of the AED model is that the
entire input sequence is required to start the decoding process due
to the global attention mechanism, which makes it challenging for
real-time streaming ASR, despite some recent attempts along this
direction [23, 24].

RNN-T is an extension to CTC, which consists of three compo-
nents: an encoder, a prediction network, and a joint network which
integrates the outputs of encoder and prediction networks together to
predict the target labels. RNN-T overcomes the conditional indepen-
dence assumption of CTC with the prediction network; moreover, it
allows streaming ASR because it still preforms frame-level mono-
tonic decoding. Hence, there has been a significant research effort in
promoting this approach in the ASR community [22, 21, 25, 26, 27],
and RNN-T has recently been successfully deployed in embedding
devices [28].

However, compared to CTC or AED, RNN-T is much more dif-
ficult to train due to the model structure, and the synchronous decod-
ing constraint. Besides, its training is very memory demanding due
to the 3-dimensional output tensor [21, 22]. In [22], an approach is
proposed to reduce the memory cost, and it enables large mini-batch
training. To tackle the training difficulty, initializing the encoder
and prediction networks of an RNN-T with a CTC model and an
RNNLM respectively is proven to be beneficial [21, 27]. In this pa-
per, we explore other model initialization approaches to overcome
the training difficulty of RNN-T models. Specifically, we propose
to utilize external token alignment information to pre-train RNN-
T. Two types of pre-training methods are investigated, which are
referred to as encoder pre-training and whole-network pre-training
respectively. Encoder pre-training refers to initializing the encoder
in the RNN-T only, while the other components are trained from
the random initialization. The whole-network pre-training, as its
name suggests, pre-trains the whole network by an auxiliary objec-
tive function instead of the RNN-T loss. The proposed methods are
evaluated on 3400 hours voice assistant data and 65,000 hours pro-
duction data. The experimental results show that the accuracy of
RNN-T model can be significantly improved with our proposed pre-
training methods, with up-to 28% relative word error rate (WER)
reduction.

The rest of this paper is organized as follows: Section 2 briefly
introduces the basic RNN-T model, including the model training and
decoding. The proposed two types of pre-training methods are de-
scribed in Section 3 and Section 4, respectively. Next, Section 5
shows the experimental results and analysis. Section 6 gives the con-
clusions.
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Fig. 1. RNN-Transducer model structure.

2. RNN TRANSDUCER MODEL

The RNN-T model was proposed in [20] as an extension to the CTC
model. A typical RNN-T model has three components, as shown in
the Figure 1, namely encoder, prediction network and joint network.
Compared with CTC, RNN-T does not have the conditional indepen-
dence assumption because of the prediction network, which emits an
output tokens conditioned on the previous prediction results.

To be more precise, the encoder in an RNN-T model is an RNN
that maps each acoustic frame xt to a high-level feature representa-
tion henc

t , where t is the time index:

henc
t = fenc(xt). (1)

The prediction network, which is also based on RNNs, converts pre-
vious non-blank output token yu−1 to a high-level representation
hpre
u , where u is the label index of each output token.

hpre
u = fpre(yu−1). (2)

Given the hidden representations of both acoustic features and
labels from the encoder and prediction network, the joint network
integrates the information using a feed-forward network as:

zt,u = f joint(henc
t , hpre

u ). (3)

The posterior probability P (y|t, u) can be obtained by taking
the Softmax operation on the output of the joint network. Then
a forward-backward algorithm [20] is performed on the three-
dimension output to compute the total probability P (y|x) of the
output sequence y, conditioned on the input sequence x. The nega-
tive log-loss of the target sequence is used as the objective function
to train the model,

LRNN−T = −log P (y|x). (4)

The decoding of RNN-T is operated in a frame-by-frame fash-
ion. Starting from the first frame fed to encoder, if the current output
is not blank, then the prediction network is updated with that output
token. Otherwise, if the output is blank, then the encoder is updated
with the next frame. The decoding terminates when the last frame of
input sequence is consumed. In this way, real-time streaming is sat-
isfied. Greedy search and beam search can be used in the decoding
stage, which stores different numbers of intermediate states.

3. ENCODER PRE-TRAINING

In an RNN-T model, encoder and prediction network usually have
different model structures, which make it difficult to train them well
at the same time. Directly training RNN-T from random initializa-
tion may get a biased model toward one of the model components,
i.e., dominated by the acoustic or the language input. Most groups
adopt a initialization strategy that initializes the encoder with a CTC
model and the prediction network with a RNNLM [27, 21, 29]. How-
ever, the output sequence of CTC is a series of spikes, separated by
the blank [13]. Thus after CTC based pre-training, most encoder
output henc

t leads to generate blank, which results in wrong infer-
ence for the RNN-T model.

In our work, we propose to utilize external alignments to pre-
train the encoder with the Cross Entropy (CE) criterion. The encoder
is regarded as a token classification model rather than a CTC model.
As shown in the right part of Figure 2, an RNN based token clas-
sification model is trained first with the CE loss. In this paper we
use ’CE loss’ to represent the cross entropy loss function, and ’CTC
loss’ to represent the CTC forward-backward algorithm based loss
function, and ’RNN-T loss’ to represent the RNN-T loss function.

In our experiments, we use word piece units as target tokens
[30], which have been explored in the context of machine transla-
tion, and successfully applied in E2E ASR [21, 15]. With word-level
alignments, we can get the boundary frame index of each word. For
the word divided into more than one word piece, we equally allocate
the total frames inside the word boundary to its word pieces. There
will be a marginal case in which a word contains more word pieces
than frames, which prevents us from generating token alignments.
The total ratio of this special case is less than 0.01% of all the train-
ing utterances, so we just remove those utterance in the pre-training
stage. In this way, we can obtain the hard alignments of target tokens
for all the frames.
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Fig. 2. Illustration of encoder pre-training for RNN-T. Dashed arrow
means initializing from a pre-trained model.

Based on the encoder structure, one extra fully connected layer
is added on top of the encoder, in which the output henc

t is used for
token classification. The objective is

Lenc = −
K∑

k=1

yt,k ∗ log (softmax (ffc(henc
t,k ))), (5)

where ffc represents a fully connected layer, k is the label index
and K denotes the target dimension, which is also the dimension of
zt,u. And yt is the word piece label for each input frame xt. After



the encoder pre-training, each output henc
t , which is the high-level

representation of input acoustic features, is expected to contain the
information about the alignments.

4. WHOLE-NETWORK PRE-TRAINING

Among encoder pre-training methods, encoder is regarded to per-
form token mapping (CTC loss pre-training) or token aligning (CE
loss pre-training). However, these pre-training methods only con-
sider part of the RNN-T model. In this paper, we also explore the
whole-network pre-training method with the use of external token
alignments information. Different from other models, the output of
the RNN-T is three-dimensional. Thus, the key challenge for the the
whole-network pre-training is the label tensor y design. The opti-
mizer reduces the CE loss between the output z of the model and a
crafted three-dimensional label tensor y.
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Fig. 3. Examples of three designed label tensors for whole-network
pre-training. Each grid represents an one-hot vector. The example
8-frame utterance is ’A B s C’, and its alignment is ’A A A B B s
C C’. In each label tensor, ’s’ means space and ’Φ’ means blank.
From left to right, each sub-figure represents y1 to y3 as the order.
Only gray grids are used for CE computing. The read arrow in y2

represents the decoding path when decoding.

Three different types of label tensor y are explored in this study,
and examples are given in Figure 3. In each label tensor, the hori-
zontal axis represents the time dimension, and the vertical axis rep-
resents the output token dimension. We represent blank as an ad-
ditional class, and it is shown as one-hot vector in the label tensor.
At the first label tensor y1, we set all the output target grids of each
frame in y1 to the one-hot vector corresponding to its alignment
label. The last row of the label tensor is set to all blank, which in-
dicates the end of the utterance. Thus, after pre-training, encoder
output henc

t is supposed to contain the alignment information. How-
ever, y1 only considers the frame-by-frame alignment, but ignores
the output token level information. If we directly perform the RNN-
T decoding on y1, we can not obtain the correct inference sequence.

Thus, taken the decoding process into consideration, we design
another label tensor y2. Each frame is assigned to its token align-
ment. Target token position is determined by its sequence order.
When perform pre-training, we only compute the CE from the non-
empty part of the label tensor. blank token is inserted under each
target token to ensure the correct decoding results. If we directly
perform the RNN-T decoding algorithm on the label tensor y2, cor-
rect results should be obtained. The decoding path is illustrated by
the red arrow on the label tensor y2 in Figure 3. Thus, by directly
performing the decoding on y2 of the given example, the inference
result is ’A Φ Φ Φ B Φ Φ s Φ C Φ Φ’. After removing blank tokens,
the final result is ’A B s C”, which is the same with the alignment of
this utterance.

However, in y2, almost half of the valid part is blank, so that
blank tokens dominate the pre-training process. Therefore, we de-
sign the label tensor y3, which only keeps the non-blank part of

y2. The label tensor only remains one grid with its corresponding
alignment for each frame. In order to provide the blank information
during the pre-training stage, we set short-pause (space token less
than 3 frames) of each utterance to blank. That means some space
in the valid part of the label tensor will become blank. After the
pre-training is done, we replace the CE loss with the RNN-T loss,
and proceed to the standard RNN-T training.

5. EXPERIMENTS AND ANALYSIS

5.1. Experimental setup

The proposed methods are evaluated on the 3400-hour Cortana voice
assistant data, and 65,000-hour Microsoft production data. For the
Cortana data, the training and test sets consist of approximately
3400 hours and 6 hours of English audio, respectively. The 65,000
hours production data are transcribed data from all kinds of Mi-
crosoft products. The test sets cover 13 application scenarios such
as Cortana and far-field speaker, with totally 1.8 million (M) words.
Training and test material is anonymized, with personally identifi-
able information removed. In this work, we evaluate the methods on
Cortana data at first, and then evaluate the selected best method on
very large scale 65,000-hour production data.

The input feature is a vector of 80-dimension log Mel filter bank
for every 10 milliseconds (ms) of speech. Eight vectores are stacked
together to form an input frame to the encoder, and the frame shift
is 30 ms. All RNN-T models adopt the configuration recommended
in [22, 28]. All encoders (Enc.) have 6 hidden-layer LSTMs, and
all prediction networks (Pred.) have 2 hidden-layer LSTMs. The
joint network has two linear layers without any activation functions.
Layer normalization is used in all LSTM layers, and the hidden di-
mension is 1280 with the projection dimension equal to 640. The
output layer models 4000 word piece units together with blank to-
ken. The word piece units are generated by running byte pair encod-
ing [31] on the acoustic training texts.

5.2. Evaluation on Cortana data

Experimental results of whole-network pre-training are shown in the
Table 1. The RNN-T baseline is trained from random initialization.
For pre-trained models, the whole network is pre-trained with CE
loss, then it is trained with RNN-T loss. Using the pre-trained net-
work as a seed model, the final word error rate (WER) can be signif-
icantly reduced. All designed label tensors can improve the RNN-T
training, achieving 10% to 12% relative WER reduction.

Table 1. WER comparison of different whole-network pre-training
methods on 3400 hours Cortana data. Pre-train (all align) uses y1,
Pre-train (correct decoding) uses y2, and Pre-train (align path - sp
blank) uses y3 as the target label sensors, respectively.

Model WER(%)
RNN-T 15.11
+ Pre-train (all align) 13.53
+ Pre-train (correct decoding) 13.66
+ Pre-train (align path - sp blank) 13.23

In Table 2, we evaluate the encoder pre-training method on 3400
hours Cortana data. Using a pre-trained CTC model to initialize the
encoder does not improve the accuracy. This is because the output
of CTC is a sequence of spikes, in which there are lots of blank



tokens without any meaning. Hence, if we use the pre-trained CTC
as the seed for the encoder of RNN-T, most encoder output henc

t will
generate blank, which does not help the RNN-T training. When we
use CE loss pre-trained encoder to initialize the encoder of RNN-T,
it achieves significant improvement compared with training from the
random initialization. It obtains 28% relative WER reduction from
the RNN-T baseline and CTC based encoder pre-training.

Table 2. WER comparison of different encoder pre-training meth-
ods on 3400 hours Cortana data. Greedy search is used. ’CTC’
means pre-training of CTC loss with target sequence, ’CE’ means
pre-training of CE loss with target alignment. ’no’ means training
from the random initialization.

Model Enc. Pre-train WER (%)
RNN-T baseline no 15.11
+ Pre-train CTC 15.07
+ Pre-train CE 10.83

Among all the encoder pre-training experiments in Table 2, pre-
diction network and joint network are all trained from the random
initialization. The only difference is the parameters seed of encoder.
When comparing CTC loss and CE loss based encoder pre-training
methods, there is a huge WER gap between these two approaches.
Initializing the encoder as a token aligning model rather than a se-
quence mapping model results in the much better accuracy. This is
because the RNN-T encoder performs the frame-to-token aligning,
which extracts the high-level features of each input frame.

5.3. Evaluation on very large scale data

From our experiments, both the encoder pre-training and the whole-
network pre-training can improve the performance of RNN-T model.
In order to get more convincing results, we evaluate our proposed
methods on very large scale data, where we use the 65,000 hours
Microsoft production data set. The results are shown in Table 3. Due
to the very large resource requirement and computation cost, we only
evaluate CE-based encoder pre-training method, which obtained the
best accuracy in Cortana experiments. All the results are obtained
using beam search, and the beam width is 5.

Besides our proposed methods, we evaluate the widely used
CTC-RNNLM pre-training strategy [21, 29, 27] as comparison.
It used a well trained CTC model to initialize the encoder, and
a well trained RNNLM to initialize the prediction network. This
CTC+RNNLM initialization approach reduced the average WER
from 12.63 to 12.29 in 13 test scenarios with 1.8 M words. In
contrast, our proposed approach, which pre-trains the encoder with
alignments using the CE loss, outperforms the other methods sig-
nificantly, achieving a 11.41 WER on the average. Compared with
training from the random initialization, our proposed method can
obtain 10% relative WER reduction in the very large scale task.

Table 3. WER comparison of different encoder pre-training methods
on the task with 65,000 hours production training data.

Model WER (%)
RNN-T baseline 12.63
+ Pre-train (Enc. CTC, Pred. LM) [21] 12.29
+ Pre-train (Enc. CE) 11.34

5.4. Output time delay comparison

Although RNN-T is a natural streaming model, it still has latency
compared to hybrid models [22]. With the help of alignments for
model initialization, we hope to reduce the latency of RNN-T. To
better understand the advantages of our proposed pre-training meth-
ods, we compare the gap between the ground truth word alignment
and the word alignment generated by greedy decoding from differ-
ent RNN-T models. The visualization is performed on the test set of
Cortana data. As shown in the Figure 4, the central axis represents
the ground truth word alignment. The output alignment distribu-
tions are normalized to the normal distribution. The horizontal axis
represents the number of frames away from the ground truth word
alignment, and the vertical axis represents the ratio of words.

Fig. 4. Frame delay difference between ground truth word alignment
and the word alignment generated from different RNN-T models.

From the Figure 4, different RNN-T models have different time
delay compared with the ground truth. That’s because the RNN-T
model tends to see several future frames, which can provide more
information for the token recognition. The baseline RNN-T model
has around 10 frames average delay. In contrast, when performed
the proposed pre-training methods, the average delay can be sig-
nificantly reduced. Using CE pre-trained encoder to initialize the
RNN-T model can reduce the average delay to 6 frames, and using
whole-network pre-training method can reduce it to 5 frames. The
reason for the time delay reduction is that pre-training provides the
alignment information to the RNN-T model, which will guide the
model to make decision earlier. This shows the advantage of our
proposed pre-training methods in terms of time delay during the de-
coding stage.

6. CONCLUSION

In this work, we explore the training strategy of an RNN-T model
and propose two pre-training approaches with the use of external
alignment information. Two types of pre-training methods have been
evaluated, referred to as encoder pre-training and whole-network
pre-training. Encoder pre-training used CE loss to pre-train the en-
coder of RNN-T only. Whole-network pre-training pre-trains the
whole RNN-T model with CE loss. Three kinds of designed label
tensors are used for the whole-network pre-training. The proposed
methods are evaluated on 3400 hours Cortana data and 65000 hours
production data. When compared with training from the random
initialization, the whole-network pre-training obtains a 12% relative
WER reduction. And the encoder pre-training obtains a 28% and
a 10% relative WER reduction on 3400 hours Cortana and 65,000
hours production data, respectively. Compared to the widely used
CTC+RNNLM initialization strategy on very large scale data, en-
coder pre-training still outperforms it by a 8% relative WER reduc-
tion. Our proposed methods can also significantly reduce the time
delay of RNN-T model.
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