
RECPARSER: A Recursive Semantic Parsing Framework for Text-to-SQL Task
Yu Zeng1∗ , Yan Gao2 , Jiaqi Guo3∗ , Bei Chen2 , Qian Liu4∗ , Jian-Guang Lou2 ,

Fei Teng†1 , Dongmei Zhang2

1Southwest Jiaotong University, Chengdu, China
2Microsoft Research Asia, Beijing, China
3Xi’an Jiaotong University, Xi’an, China

4Beihang University, Beijing, China
1zengyutk@my.swjtu.edu.cn, 2{Yan.Gao, beichen, jlou, dongmeiz}@microsoft.com,

3jasperguo2013@stu.xjtu.edu.cn, 4qian.liu@buaa.edu.cn, 1fteng@swjtu.edu.cn

Abstract
Neural semantic parsers usually fail to parse
long and complicated utterances into nested SQL
queries, due to the large search space. In this pa-
per, we propose a novel recursive semantic pars-
ing framework called RECPARSER to generate the
nested SQL query layer-by-layer. It decomposes
the complicated nested SQL query generation prob-
lem into several progressive non-nested SQL query
generation problems. Furthermore, we propose a
novel Question Decomposer module to explicitly
encourage RECPARSER to focus on different com-
ponents of utterance when predicting SQL queries
in different layers. Experiments on Spider dataset
show that our approach is more effective compared
to the previous works at predicting the nested SQL
queries. In addition, we obtain an overall accu-
racy that is comparable with the state-of-the-art ap-
proaches.

1 Introduction
Text-to-SQL is one of the most important sub-task of seman-
tic parsing in natural language processing (NLP). It maps
natural language utterances to corresponding SQL queries.
By helping non-experts to interact with ever increasing
databases, the task has many important potential applica-
tions in real life, and thus receives a great deal of interest
from both industry and academia [Li and Jagadish, 2016;
Zhong et al., 2017; Affolter et al., 2019].

Composing nested SQL queries is a challenging prob-
lem in Text-to-SQL task. Several works [Guo et al., 2019;
Zhang et al., 2019b; Bogin et al., 2019; Yu et al., 2018a] have
attempted to deal with this problem on the recently proposed
dataset Spider [Yu et al., 2018b], which contains nested SQL
queries over different databases with multiple tables. How-
ever, due to the large search space, existing neural seman-
tic parsers do not perform well on composing nested SQL
queries [Zhang et al., 2019a; Affolter et al., 2019].
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Utterance: 
list all song names by singers age above the 
average singer age.

SQL Query: 
SELECT song_name FROM singers 
WHERE age > (SELECT avg(age) FROM singers) 

Figure 1: An example of the component mapping relationship be-
tween the nested SQL query and its corresponding utterance.

In this paper, we focus on the problem of composing nested
SQL queries in Text-to-SQL task. Firstly, as we know the
nested SQL query representation is formalized as a kind of
recursive structure, thus a nested SQL query generation prob-
lem could be decomposed into several progressive non-nested
SQL query generation problems by nature. Furthermore, we
found that there is a strong component mapping relationship
between the nested SQL query and its corresponding utter-
ance. Figure 1 shows an example of the component map-
ping relationship between the nested SQL query and its cor-
responding utterance. As we can see, for this nested SQL
query, the outside layer “SELECT song name FROM singers
WHERE age >” and the inside layer “SELECT avg(age)
FROM singers” correspond to different utterance components
“list all song names by singers age above” and “the average
singer age” respectively.

Inspired by these observations, we propose a recursive se-
mantic parsing framework called RECPARSER to generate
the nested SQL query layer-by-layer from outside to inside.
Furthermore, we propose a novel Question Decomposer mod-
ule to explicitly encourage RECPARSER to focus on differ-
ent parts of utterance when predicting SQL queries in differ-
ent layers. RECPARSER consists of four modules: Initial
Encoder, Iterative Encoder, Question Decomposer and SQL
Generator. In the initialization stage, we encode the user
utterance and the database schema with the Initial Encoder.
Then, by recursively calling the Question Decomposer, the
Iterative Encoder and the SQL Generator modules, we gen-
erate the nested SQL query layer-by-layer. Finally, we com-
pose them into the whole SQL query when encountering a
recursive termination condition. Concretely, in each recur-
sion round, the Question Decomposer updates the utterance
representation with a soft-attention-mask mechanism and a
recursive-attention-divergency loss proposed by us for next



recursion; The Iterative Encoder contextualizes the schema
representation with the updated utterance representation; The
SQL Generator takes the contextualized schema representa-
tion as input and generates the non-nested SQL query of the
current layer. Our SQL Generator is a simple yet effective
multi-task classification model.

We argue that RECPARSER has two advantages. Firstly,
in this divide-and-conquer faction, we simplify the difficulty
of the nested query generation problem. Our SQL Gen-
erator only learns to generate non-nested SQL queries in-
stead of the whole nested SQL query, thus largely reduc-
ing the search space and alleviating the training difficulties.
Secondly, through updating the utterance representation re-
cursively with the soft-attention-mask mechanism and the
recursive-attention-divergency loss, RECPARSER could fo-
cus on different parts of utterance when predicting different
SQL query layers, thus minimizing the interference of irrele-
vant parts.

On Spider benchmark [Yu et al., 2018b], RECPARSER
achieves a state-of-the-art 39.5% accuracy on the nested SQL
query and a comparable 54.3% accuracy on the overall SQL
query. When augmented with BERT [Devlin et al., 2018],
RECPARSER reaches up to a state-of-the-art 46.8% accu-
racy on the nested SQL query and a state-of-the-art 63.1%
accuracy on the overall SQL query. Our contributions are
summarized as follows.

• We propose a recursive semantic parsing framework
called RECPARSER to decompose a complicated nested
SQL query generation problem into several progressive
non-nested SQL query generation problems.

• We propose a novel Question Decomposer module
with a soft-attention-mask mechanism and a recursive-
attention-divergency loss to explicitly encourage REC-
PARSER to focus on different parts of the utterance
when predicting SQL queries in different layers.

• Our approach is more effective compared to previous
works at predicting nested SQL queries. In addition, we
obtain an overall accuracy that is comparable with state-
of-the-art approaches.

2 Related Works
Composing Nested SQL Query. The problem of compos-
ing nested SQL queries has been studied for decades [An-
droutsopoulos et al., 1995]. Most of the early proposed
systems are rule-based methods [Popescu et al., 2003; Li
and Jagadish, 2014]. Recently, with the development of
advanced neural approaches and the release of the com-
plex and cross-domain Text-to-SQL dataset Spider [Yu et al.,
2018b], several neural semantic parsers [Guo et al., 2019;
Zhang et al., 2019b; Bogin et al., 2019; Lee, 2019] have at-
tempted to generate the nested SQL queries with a compli-
cated grammar-based decoder. However applying grammar-
based decoders to general programming languages such as
SQL query is very challenging [Lin et al., 2019] and dif-
ficult to generalize to other semantic parsing tasks. Also,
Finegan-Dollak et al. [2018] shows that the sequence-to-tree
approach was inefficient when generating complicated SQL

queries from an utterance. Our work differs from them in our
use of a divide-and-conquer generation procedure.

Recursive Mechanism in Semantic Parsing. Recursive
mechanism has been successfully used in complicated se-
mantic parsing tasks [Andreas et al., 2016; Rabinovich et
al., 2017]. Recently, several works [Yu et al., 2018a;
Lee, 2019] also employ the recursive mechanism to gener-
ate nested SQL queries in Text-to-SQL task. SyntaxSQL-
Net [Yu et al., 2018a] employs a SQL specific syntax tree-
based decoder that calls a collection of recursive modules
for decoding. RCSQL [Lee, 2019] proposes a SQL clause-
wise decoding architecture. It recursively calls different SQL
clause decoders to predict nested SQL queries. Compared
with their approaches, we recursively call both encoder mod-
ule and SQL generator module for each recursion, while they
only call a set of SQL generator modules. In addition, we
propose a novel Question Decomposer module to capture the
mapping relationship between different SQL query layers and
their corresponding components in utterance.

Decomposing Complicated Question. Decomposing
complicated question is widely used in many semantic
parsing works [Iyyer et al., 2016; Talmor and Berant, 2018;
Zhang et al., 2019a]. They utilize the decompositionality
of complicated questions to help question understanding.
Inspired by them, we use the soft-attention-mask mechanism
and the recursive-attention-divergency loss to model the de-
composing process of the utterance and update the utterance
representation for next recursion round. In this way, we don’t
need to make hard decisions and it could be learned in an
end-to-end fashion without extra labeling work.

Multi-Task Learning in Text-to-SQL Task. In multi-task
learning, the Text-to-SQL task is decomposed into several
sub-tasks, each predicting a part of the final SQL program.
Compared with sequence-to-sequence-style models, multi-
task learning does not require the SQL queries to be serial-
ized and thus avoid the “ordering issue” [Xu et al., 2018].
Existing state-of-the-art multi-task learning methods [Hwang
et al., 2019; He et al., 2019] have already surpassed human
performance on WikiSQL [Zhong et al., 2017] dataset. How-
ever, existing methods are limited to the specific SQL sketch
of WikiSQL, which only supports very simple queries. In this
work, we propose a simple yet effective multi-task classifica-
tion model to generate arbitrary non-nested SQL query as the
SQL Generator module in our framework.

3 Methodology
In this section, we will describe our RECPARSER framework
in detail. As described in Figure 2, RECPARSER consists of
four modules: Initial Encoder, Iterative Encoder, Question
Decomposer and SQL Generator. At first, we get the initial
representation of utterance and database schema with the Ini-
tial Encoder. Then, by recursively calling the Iterative En-
coder, the Question Decomposer, and the SQL Generator, we
generate the nested SQL query layer-by-layer from outside to
inside. Finally, we compose them into the whole SQL query
when encountering a recursive termination condition.
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Figure 2: RECPARSER Architecture

3.1 Initial Encoder
Given a user input utteranceU and its corresponding database
schema S, the Initial Encoder generates the initial repre-
sentation hinitU and hinitS . Let U = (u1, .., uk, .., ul) and
S = {t1, c11, ..., ti, cij,...}, where uk denotes the k-th utter-
ance token, l is the length of utterance, ti denotes the i-th
table name in database schema, and cij denotes the j-th col-
umn name in the i-th table. Following Hwang et al. [2019],
we first concatenate the utterance U and the database schema
S as a single sequence separated by token [CLS], [TAB],
[COL], and [SEP ] as follows.

[CLS], [TAB], t1, [COL], c11.., [COL], cij ..[SEP ], u1..ul, (1)

where we put [CLS] token at the beginning of the sequence
to capture the contextualized representation of the whole se-
quence. Then we employ a Bidirection LSTM [Hochre-
iter and Schmidhuber, 1997] to get the hinitU and the
hinitS , where hinitU = (hu1

, .., huk
, .., hul

) and hinitS =
(ht1 ..., hti , hcolij , ...). Concretely, for each table and column
in database schema, we use the representation of the separator
[TAB] and [COL] before each table and column as their cor-
responding representations. Moreover, we use hCLS denotes
the representation of token [CLS]. By concatenating the ut-
terance and the database schema together, we could capture
the relationship between the utterance and the corresponding
database schema and get the contextualized representations.

3.2 Iterative Encoder
Let n denote the n-th recursion round. Given h(n)U , hinitCLS and
hinitS as inputs, the goal of the Iterative Encoder is to generate
the database schema representation h(n)S and the [CLS] rep-
resentation h(n)CLS of the n-th recursion round. Then, h(n)S and
h
(n)
CLS will be used as the inputs of the SQL Generator to gen-

erate the current layer SQL query. Note that if it is the 0-th
recursion round, we use hinitU as h0U . Specifically, following
Hwang et al. [2019], we concatenate hinitCLS , hinitS and h
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Figure 3: An overview of the SQL Generator

in a single representation h(n). Then we apply self-attention
mechanism [Vaswani et al., 2017] to update h(n) as follows.

α(n) = softmax(
QKT

√
d

)

h(n) = V α(n),

(2)

where Q = wqh
(n), K = wkh

(n), V = wvh
(n) and wq ∈

Rd, wk ∈ Rd, wv ∈ Rd are trainable parameter.

3.3 SQL Generator
Given the database schema representation h(n)S and the [CLS]
representation h(n)CLS , the goal of the SQL Generator is to gen-
erate the non-nested SQL query at the current recursion round
n. According to the syntactical grammar of the SQL query,
we transform the non-nested SQL query generation problem
to a slot-filling problem. Concretely, we design a local tem-
plate that indicates the property of each column in each SQL
clause (e.g., SELECT clause) and a global template that indi-
cates the property of the SQL query.

Firstly, we generateN×M local templates whereN is the
number of columns in the given database schema S and M
is the number of SQL clauses. Each template has three local
slots, i.e., Aggregator, Operator and Nest. Notice that the slot
Nest is used to indicate whether the column in corresponding
clause has nested SQL query or not. Figure 3 presents all can-
didates of the Aggregator, the Operator and the Nest. Notice
that EMPTY means that the column is not in the correspond-
ing SQL clause. As shown in Figure 3, they are predicted
by three classifiers, i.e., AGG-CLS, OP-CLS and NES-CLS
respectively. Taking the OP-CLS as an example, the proba-
bility of the operator op for colij in clausem is computed as
following:

h′
(n)
colij

= h
(n)
colij

+ eclausem

P (colij ,m)
op = softmax(Woph

′(n)
colij

+ bop),
(3)

where eclausem is the m-th clause embedding. Wop ∈
Rnop×d, bop ∈ Rnop ,Wclausej ∈ Rd are trainable parameters



and nop is the number of operator types. The same way can
be also applied to the AGG-CLS and NES-CLS to calculate
P

(colij ,m)
agg and P (colij ,m)

nes . Specially, we have 7 kinds of SQL
clauses (e.g., SELECT, WHERE AND, WHERE OR, OR-
DER ASC, ORDER DES, GROUP, and HAVING), in which
the original WHERE clause is divided into whereand and
whereor to distinguish two different connectors (i.e., AND
and OR) in the WHERE clause. Similarly, the ORDER clause
is also divided into orderasc and orderdes to distinguish two
different sort types (i.e., DES and ASC).

Next, we generate one global template which has two
global slots, i.e., Limit and IUE. Limit indicates if the SQL
query contains keyword LIMIT. IUE indicates whether the
SQL query contains structures such as Intersect, Union, Ex-
cept or not. We use another two classifiers, i.e., LIMIT-CLS
and IUE-CLS to predict them respectively. In IUE-CLS, the
probability of the candidate iue is calculated as follows.

Piue = softmax(Wih
(n)
CLS + bi), (4)

where Wi ∈ Rni×d, bi ∈ Rni are trainable parameters, ni is
the number of IUE types. Plimit is calculated in the same way
by LIMIT-CLS. After filling all the slots of all the templates,
we use a heuristic method to compose these templates to a
SQL query according to the SQL grammar.

At last, after predicting all the other clauses, similar
to [Lee, 2019], we use a heuristics to generate the FROM
clause of the current SQL query layer. We first collect all the
columns that appear in the predicted SQL, and then we JOIN
tables that include these predicted columns.

3.4 Question Decomposer
The goal of the Question Decomposer is to update the utter-
ance representation for next recursion round. Intuitively, we
hope that RECPARSER could learn to decompose the utter-
ance layer-by-layer and focus on different components of ut-
terance when predicting SQL queries in different layers. We
achieve this target by two simple yet effective methods: (1)
Soft Attention Mask. Inspired by Kim et al. [2018] which
leverages a soft attention mask mechanism to do feature se-
lection, we proposed a novel method to soft mask the parts of
utterance that has already been focused by previous recursion
rounds. (2) Recursive Attention Divergence Loss. Inspired
by Wei et al. [2019] which use JS divergence loss to minimize
the attention divergence in code generation task, we proposed
a novel regularization loss to encourage the model to maxi-
mize the attention divergence between the adjacent recursion
rounds. In this way, we explicitly encourage RECPARSER to
focus on different components of utterance when predicting
different SQL query layers, thus minimizing the interference
of irrelevant components of the utterance.

Soft Attention Mask
Let α(n)

U ∈ R1×l denote the attention weights of token [CLS]
on utterance U , and l is the length of U , which is produced
by Equation 2. Intuitively, to help the model focus on differ-
ent components of utterance in the next recursion, we want
to mask the component that has been focused in the current
recursion. Instead of directly masking the token of the utter-

ance, we generate the utterance representation of next recur-
sion by a soft-attention-mask method as follows.

E
(n)
mask = α

(n)
U Wmask

h
(n+1)
U =WUh

(n)
U +WmE

(n)
mask,

(5)

where E(n)
mask ∈ Rl×d is the soft mask embedding, l is the

length of utterance and Wmask ∈ R1×d,WU ∈ Rd,Wm ∈
Rd are trainable parameter.

Recursive Attention Divergence Loss
To encourage the model to focus on different components of
utterance in each recursion round, we design the Recursive
Attention Divergence Loss Ldiv to regularize the attention di-
vergence between the attention weights of the adjacent recur-
sion rounds.

Let α(n)
U ∈ Rl×l and α(n−1)

U ∈ Rl×l denotes the attention
weights of the adjacent recursion rounds for a same utterance.
We apply the negative Jensen–Shannon divergence [Fuglede
and Topsoe, 2004], a symmetric measurement of similarity
between two probability distributions, to maximize the dis-
tance between these two attention weights. Let P denotes the
α
(n)
U and Q denotes the α(n−1)

U :

Ldiv = −1

2
(DKL(P ||

P +Q

2
) +DKL(Q||

P +Q

2
)), (6)

where DKL is the Kullback–Leibler divergence, defined as
DKL(p||q) ==

∑
x p(x)log(

p(x)
q(x) ) which measures how one

probability distribution q diverges from another probability
distribution p.

3.5 Composing the Final SQL Query
The final SQL query is obtained through backtracking. The
SQL Generator will return a SQL query segment after the
end of the recursive calling. The recursive termination condi-
tion is that the IUE slot and all NEST slots are NO. Specifi-
cally, if the slot NEST is YES, we return a SQL query with a
placeholder token [SUBQUERY] after its corresponding col-
umn that is in its clause (e.g., SELECT name FROM singers
WHERE age > [SUBQUERY] and sex = ‘male’). Similarly,
if the IUE slot is not NO, we put corresponding placeholder
token after the returned SQL query result (e.g., SELECT
name FROM singers [EXCEPT]). Finally, we construct the fi-
nal SQL by replacing the placeholder token with the returned
SQL query segment.

3.6 Loss function
The loss function of RECPARSER is defined as follows.

L = λAGGLAGG + λOPLOP + λNESLNES

+λIUELIUE + λLIMITLLIMIT + λdivLdiv,
(7)

where LAGG, LOP , LNES , LIUE , LLIMIT are the loss
function of AGG-CLS, OP-CLS, NES-CLS, IUE-CLS and
LIMIT-CLS in the SQL Generator respectively. All loss func-
tion of the classifiers are cross-entropy loss. Ldiv is the Re-
cursive Attention Divergence Loss described in Equation 6.
λAGG, λOP , λNES , λIUE , λLIMIT , λdiv are loss weights
and all of them are hyper parameters.



Approach Accuracy Accuracy (BERT)
SyntaxSQLNet 0 -
Global-GNN 33.0% -

EditSQL - 40.4%
IRNET 34.2% 41.8%

RECPARSER(no DB) 38.0% 46.8%
RECPARSER 39.3% 46.8%

Table 1: Nested SQL Exact Matching accuracy on Spider develop-
ment set. “no DB” means the database content is not used; “BERT”
means the results are obtained with BERT enhanced approaches and
“-” means the methods are not proposed in corresponding settings,
e.g., with or without BERT.

4 Experiments
In this section, we evaluate the effectiveness of RECPARSER
on both nested SQL query and all SQL query by comparing
it to state-of-the-art approaches and ablating several design
choices in RECPARSER to understand their contributions.

4.1 Experiment Setup
Dataset. We conduct our experiments on Spider [Yu et
al., 2018b]. It is a large-scale, human annotated and cross-
domain Text-to-SQL benchmark, which contains 7,000/1,034
question-SQL query pairs in train and development set. Espe-
cially, there are 503/79 question and nested-SQL query pairs
in train and development set1. We evaluate RECPARSER and
other approaches using SQL Exact Matching and Component
Matching accuracy metrics proposed by Yu et al. [2018b].
Baselines. We use the following methods for comparison
evaluation: SyntaxSQLNet [Yu et al., 2018a], RCSQL [Lee,
2019], Global GNN [Bogin et al., 2019], EditSQL [Zhang et
al., 2019b], and IRNET [Guo et al., 2019]. All of them em-
ploy an encoder-decoder architecture, but with different de-
sign choices: SyntaxSQLNet is a sequence-to-set model with
a SQL specific syntax tree-based decoder; RCSQL employs
a SQL clause-wise decoding network with recursive mecha-
nism; Global GNN reasons over the DB structure and ques-
tions to make global decision; EditSQL proposes an editing
mechanism-based network; IRNET uses schema linking in-
formation and predicts an intermediate representation instead
of the SQL query. Note that SyntaxSQLNet, RCSQL, Edit-
SQL and IRNet do not use the database content, while Global
GNN and RECPARSER use the database content.
Implementations. We implement RECPARSER and the
baseline approaches with PyTorch. The dropout rate is 0.2.
We use Adam with 1e-3 learning rate for optimization. Batch
size is set to 64. Word embeddings are initialized with Glove.
The dimensions of word embedding, type embedding and
hidden vectors are set to 300. λAGG, λOP , λNES , λIUE ,
λLIMIT , λdiv in Equation 7 are set as 1, 1, 1, 0.1, 0.1, and
0.2 respectively. We use the database content to find the col-
umn whose value is exactly mentioned in the utterance and
put a special token [VALUE] in front of that column.

1We don’t use the test set of Spider, since the test set is blind to us
and we can’t obtain the nested SQL query of the test set to evaluate
the effectiveness of our approach.

Approach Accuracy
SyntaxSQLNet 24.8%
RCSQL 28.5%
Global-GNN 52.7%
IRNET 53.2%
RECPARSER 54.3%
Edit-SQL(BERT) 57.6%
RECPARSER(BERT, no DB) 60.5%
IRNET(BERT) 61.9%
RECPARSER(BERT) 63.1%

Table 2: SQL Exact matching accuracy on Spider development set
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SELECT WHERE GROUPBY ORDERBY KEYWORDS

SyntaxSQLNet IRNET RECPARSE(no DB) RECPARSE

Figure 4: F1 scores of component matching accuracy of Syn-
taxSQLNet, IRNET, RECPARSER(no DB) and RECPARSER. All
methods are augmented with BERT.

BERT. Language model pre-training has shown to be ef-
fective for learning universal language representations. To
further study the effectiveness of our approach, we leverage
BERT [Devlin et al., 2018] to encode question and database
schema to replace the bi-directional LSTM in the Initial En-
coder. Our approach with BERT-base is denoted as REC-
PARSER(BERT).

4.2 Model Comparison
Table 1 presents the nested SQL Exact Matching accuracy of
RECPARSER and various baselines on the development set.
The result shows that RECPARSER clearly outperforms all
the baselines with or without DB content used on the nested
SQL query accuracy. Comparing to the methods that use var-
ious techniques to predict nested SQL query, such as com-
plicated intermediate representation (e.g., IRNet) and other
grammar-based decoders (e.g., EditSQL and Global-GNN),
RECPARSER achieves a prominent improvement by employ-
ing a novel recursive generation framework. For example,
it obtains 5.0% absolute improvement than the state-of-art
method IRNET when both of them incorporate with BERT.

Next, we evaluate the overall exact matching accuracy of
RECPARSER and various baselines on the development set
of Spider. As shown in Table 2 RECPARSER(BERT,no DB)
achieves a 60.5% exact matching accuracy without using any
rule-based schema linking techniques or intermediate repre-
sentation that are used in IRNet(BERT). It demonstrates that
RECPARSER(BERT) could obtain a comparable overall ac-
curacy than the state-of-the-art approaches at the same setting
with minimum efforts. When incorporating the database con-



Case 1

With 
QD

Round 1: What is the number of cars with a greater accelerate than the accelerate of car with the most horsepower?
Round 2: What is the number of cars with a greater accelerate than the accelerate of car with the most horsepower?
Result: SELECT count(*) FROM cars_data WHERE accelerate > (SELECT accelerate FROM cars_data ORDER BY horsepower DESC LIMIT 1 )

√

Without
QD

Round 1: What is the number of cars with a greater accelerate than the accelerate of car with the most horsepower?
Round 2: What is the number of cars with a greater accelerate than the accelerate of car with the most horsepower?
Result: SELECT count(*), accelerate FROM cars_data WHERE accelerate > ( SELECT accelerate FROM cars_data ORDER BY horsepower DESC LIMIT 1 )

×

Case 2

With 
QD

Round 1: Find the names of museums which have more staff than the minimum staff number of all museums opened after 2010.
Round 2: Find the names of museums which have more staff than the minimum staff number of all museums opened after 2010.
Result: SELECT name FROM museum WHERE num_of_staff > (SELECT min(num_of_staff) FROM museum WHERE open_year > 2010)

√

Without
QD

Round 1: Find the names of museums which have more staff than the minimum staff number of all museums opened after 2010.
Round 2: Find the names of museums which have more staff than the minimum staff number of all museums opened after 2010.
Result: SELECT name FROM museum WHERE num_of_staff > (SELECT name, min(num_of_staff) FROM museum WHERE open_year > 2010)

×

Figure 5: Some examples where Question Decomposer (QD) for RECPARSER leads to correct prediction. In the first example, RECPARSER
without QD selects the wrong column in the outside SQL layer which belong to the inner SQL layer. In the second example, RECPARSER
without QD selects the wrong column in the inner SQL layer which belong the outside SQL layer.

Base-framework 57.4%
+ QD (- RAD loss) 58.5%
+ QD 60.8%
+ QD + DB 63.1%

Table 3: Ablation study results. Base-framework doesn’t use the
Question Decomposer (QD) and the database content (DB). ‘QD (-
RAD loss)’ means that the QD does not use the recursive-attention-
divergency loss.

tent, RECPARSER(BERT) gets a 63.1% exact matching ac-
curacy and obtains a 1.2% absolute improvement over state-
of-the-art method. It demonstrates the effectiveness of REC-
PARSER(BERT).

To further study the performance of RECPARSER in de-
tail, following Yu et al. [2018a], we measure the average
F1 score on different SQL query components on the devel-
opment set. Here, we take BERT enhanced methods as an
example. As shown in Figure 4, RECPARSER outperforms
SyntaxSQLNet and IRNET on all components except KEY-
WORDS. Importantly, because of the well performance of
RECPARSER on nested SQL query which belongs to the
WHERE clause, there is a 3.4% absolute improvement com-
pared to IRNET in WHERE clause. When incorporating with
database content, the improvement is boosted to 5.4%.

4.3 Ablation Study
We conduct ablation studies on RECPARSER(BERT) to an-
alyze the contribution of each design choice. In detail, we
first evaluate a base framework that does not use the Ques-
tion Decomposer (QD) and the database content (DB). Then,
we gradually apply each component on the base model. The
ablation study is conducted on the development set. Table 3
shows the results of ablation study.

Firstly, it is clear that our base model significantly out-
performs the well designed complicated architecture meth-
ods (e.g., Global-GNN and SyntaxSQLNet) by using the
recursive framework with the simple yet effective multi-
task SQL Generator module. Secondly, using the Ques-
tion Decomposer without the recursive-attention-divergency
loss improves the performance of RECPARSER about 1.1%.
It demonstrates the effectiveness of using the soft-mask-
attention to update the utterance representation. Thirdly,

adding the recursive-attention-divergency loss further brings
a 2.3% improvement. It demonstrates the effectiveness of
our loss function. We observed that for those nested SQL
queries, the base framework has the problem that tends to
put the columns in the outside layer to the inside layer. The
number of examples suffering from this problem decreases
by 53% when using the Question Decomposer. It means that
the Question Decomposer helps to minimize the interference
between different SQL layers. At last, using the database con-
tent helps to recognize the value mentioned in the utterance,
which brings a 2.3% improvement of performance.

4.4 Qualitative Analysis
Here we conduct a qualitative analysis on the effectiveness
of the Question Decomposer (QD). Firstly, Figure 5 visual-
izes the attention weights αu from Equation 2 in different
rounds of the two examples, in which color intensity reflects
the attention weight. As we can see, when incorporating the
QD module, RECPARSER is much easier to focus on dif-
ferent components in utterance between different rounds than
removing the QD module. Secondly, according to the pre-
diction results of the two examples, when removing the QD
module, RECPARSER tends to be confused about the correct
layer position of the selected column. When incorporating
with the QD module, both of the two examples get the cor-
rect SQL queries. It demonstrates that the QD module could
help RECPARSER to minimize the interference between dif-
ferent utterance components that correspond to different SQL
query layers.

5 Conclusion
In this paper, we propose a novel recursive semantic parsing
framework called RECPARSER to decompose the compli-
cated nested SQL generation problem into several progressive
non-nested SQL query generation problems. Experiments on
Spider dataset show that our approach is more effective com-
pared to previous work at predicting the nested SQL queries.
In addition, we obtains a comparable overall accuracy than
the state-of-the-art approaches.
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