
This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

Safe Velocity: A Practical Guide to Software
Deployment at Scale using Controlled Rollout
Tong Xia

Microsoft Corporation
Redmond, WA, USA

toxia@
microsoft.com

Sumit Bhardwaj
Microsoft Corporation
Redmond, WA, USA

subhardw@
microsoft.com

Pavel Dmitriev
Outreach.io

Seattle, WA, USA
pavel.dmitriev@

outreach.io

Aleksander Fabijan
Microsoft Corporation,
Redmond, WA, USA
aleksander.fabijan@

microsoft.com

Abstract—Software companies are increasingly adopting
novel approaches to ensure their products perform correctly,
succeed in improving user experience and assure quality. Two
approaches that have significantly impacted product
development are controlled experiments – concurrent
experiments with different variations of the same product, and
phased rollouts - deployments to smaller audiences (rings)
before deploying broadly. Although powerful in isolation,
product teams experience most benefits when the two
approaches are integrated. Intuitively, combining them may
seem trivial. However, in practice and at a large scale, this is
difficult. For example, it requires careful data analysis to
correctly handle exposed populations, determine the duration of
exposure, and identify the differences between the populations.
All of these are needed to optimize the likelihood of successful
deployments, maximize learnings, and minimize potential harm
to users of the products. In this paper, based on case study
research at Microsoft, we introduce controlled rollout (CRL),
which applies controlled experimentation to each ring of a
traditional phased rollout. We describe its implementation on
several products used by hundreds of millions of users along
with the complexities encountered and overcome. In particular,
we explain strategies for selecting the length of the rollout period
and metrics of focus, and defining the pass criterion for each of
the rings. Finally, we evaluate the effectiveness of CRL by
examining hundreds of controlled rollouts at Microsoft Office.
With our work, we hope to help other companies in optimizing
their software deployment practices.

Keywords—Controlled rollout, controlled experiment,
software development, phased rollout

I. INTRODUCTION

 In late November 2017, Wired magazine reported that
Mozilla will be releasing Firefox Quantum and that based on
the reporter’s evaluation, it was the browser to use. From a
software engineering perspective, the interesting part here is
how Firefox was released. Long before this press article, a
subset of users was using pre-release versions of Firefox
providing telemetry to Mozilla which was using this data and
the users’ verbatim feedback as the software was being
developed. Mozilla Corporation – the company building
Firefox – is not an exception here. Almost every software –
open-source or proprietary – has an early-access program
usually called the “beta” or “insider” program that allows a
subset of users to see the upcoming features and provide
feedback to the developers. For example, Microsoft Windows
Insiders [1] has over 1 million users. This approach of
gradually rolling out a new version of software rather than
making the release available to all users instantly is known as
phased rollout [2]. The value of phased rollout comes from

providing a feedback mechanism from the users to the
developers, attempting to ensure that the software meets
quality standards and satisfies users’ needs.
 However, as we discuss below, phased rollouts suffer
from several problems: they often take a long time, the early
audience is not representative of the overall population, it is
difficult to accurately measure the impact of the changes, and
as a result the feedback and the input into the next iteration
of the product are limited.
 A widely used tool for accurately evaluating the impact
of a new feature in software is Online Controlled Experiment
(OCE), or A/B test [3], [4]. In an OCE, the new feature is
made available for a randomly sampled group of users of the
product – also known as treatment, and the impact of the
feature on the quality of the software is compared to that of
an equivalent group of users who have a different version of
the feature or do not have the feature – also known as control.
If the difference (or delta) between treatment and control is
statistically significant, then with high probability the change
(i.e., the new feature) caused the observed difference.
Establishing this causal relationship between the change
made to the product and the difference in the quality of
software is something that the phased rollout does not
provide.
 OCEs however, are inherently riskier, requiring a true
random sample of production users to obtain trustworthy
results. They also do not produce as much useful verbatim
feedback, compared to the early stages of phased rollout [5],
[6].
 In this work, we introduce a hybrid approach that we call
controlled rollout (CRL), which integrates OCE into phased
rollout process and addresses some of the problems
mentioned above. Controlled rollout works across different
software development methodologies, such as agile, waterfall,
hybrid, and can be used by software development teams of
any size.

While the concept of controlled rollout is simple, its
implementation in practice is non-trivial and requires careful
data analysis and engineering skills to answer several
important questions to ensure optimal and correct usage. In
this paper, we discuss these questions and the framework to
derive the optimal answers based on our experience of
implementing controlled rollouts at Microsoft. We use Office
client applications as an example to illustrate how we apply
controlled rollouts to streamline and inform release
management in products.
 Although the difference between phased rollout and
controlled rollout appears to be small, the implications are

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

profound – both in terms of the value provided and the impact
on software development and deployment. For example,
controlled rollout enables measurement of the impact of an
individual feature in isolation which is not possible with
phased rollout. As a result, the product team can formulate
hypotheses on whether their change will lead to impact in the
quality of software and if the hypothesis is not borne out in
data, and alter the subsequent decisions on software
development. One can think of controlled rollout providing a
closed loop for software development with the user in the
middle.

The key contributions of this paper are as follows:
 We discuss the challenges in modern release deployment

management, and why neither phased rollout nor
controlled experiments in isolation is adequate;

 We propose controlled rollout, a hybrid approach that
combines the strength of controlled experiments and
those of phased rollout;

 We describe the challenges of implementing and correctly
applying controlled rollout, the data analysis that needs to
be performed to do it correctly, illustrate the discussion
with real examples from Microsoft, and evaluate the
impact on a dataset of hundreds of real controlled rollouts
that ran at Microsoft;

 We discuss practical challenges of introducing controlled
rollout into large mature software products.

 The remainder of the paper is organized as follows. We
first provide a background on several related topics in Section
II and discuss our research method in Section III. We
introduce controlled rollout and discuss implementation
choices and guidelines in Section IV. Sections V discusses
challenges of introducing controlled rollout into established
engineering processes. We conclude and list directions for
future work in Section VI.

II. BACKGROUND

A. Software Deployment

 Software deployment is the process of releasing a new
software build (a set of new functionalities, updates, and bug
fixes) to the users [2]. Depending on the type of software and
the software engineering process used by the development
team, the size (amount of changes in the build) and frequency
of deployments vary. Organizations that have adopted agile
software development [7], especially continuous delivery and
deployment [2], [8], generally see higher frequencies of
releases which are also smaller in size, compared to those
following traditional software development methodologies
such as waterfall.

 Due to the distributed nature of development and
deployment of modern software, the variety of operating
scenarios such as devices, OS versions, network types,
increasing use of artificial intelligence (A.I.) that learns from
users and updates over time, and the fact that software is
frequently connected to various services which are deployed
independently, it is extremely challenging, perhaps
impossible, and expensive to comprehensively test and
ensure software quality via internal testing or in the lab [9].
Complexity of modern software also makes it increasingly
difficult to control technical debt [10] (removing or

refactoring old code) while ensuring there is no degradation
in quality. Deploying the software to users and customers is
required to obtain good validation coverage of the scenarios
mentioned above [11]. To obtain such exposure and ensure
the quality of builds, both agile and traditional software
engineering companies are employing the process of phased
rollout, where the new build is deployed in several steps or
phases [12].

Phased rollout proceeds as follows. The deployment of the
build starts with a small group of users, the build’s quality
and the value of the product is validated within that group,
after which it is deployed to a larger group, and so on until
the build reaches all users. We will refer to these groups of
users as rings. Fig. 1 shows a possible split of all users of a
product into a sequence of rings. Typically, the first one or
two rings would be internal, including only company
employees, followed by 1-3 external rings, before reaching
the production ring that includes all users. Naturally, users in
the initial rings will be exposed to the highest number of build
releases, many of which may be rolled back due to issues,
while users in the later rings will receive less frequent, more
stable builds. For example, Microsoft Windows uses two
internal rings and allows external users to opt into one of the
three external rings: fast, slow, and release preview [1].
Google Chrome has four rings (aka channels): canary, dev,
beta, and stable [13]. Many other products and companies
follow a similar approach.

Fig. 1. Users of a product are split into rings.

The selection of users into rings is typically an opt-in process,
attracting early adopters [14], bloggers, system and website
administrators, as well as developers who want to take early
advantage of new features. The validation of build quality
inside a ring is done using two main approaches:
1. Verbatim user feedback: Users who opted into rings are

typically more proactive and have more interest in
ensuring the quality of the software than the general
audience, resulting in higher willingness to provide
verbatim feedback as well as ability to provide more
precise and actionable feedback.

2. Monitoring of quality metrics: Key quality metrics,
such as crash rate and load time, are monitored. An
increase in such a metric after the deployment of a new
build indicates a quality issue with the build.
This process of ensuring quality of builds, while widely

used, has several problems. First, the process is slow. The

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

build needs to stay in a ring for a considerable period to both
allow users the time to use the feature and provide enough
feedback, and to collect enough data to ensure there are no
quality regressions in metrics that are monitored which may
be highly variable due to the day of week, holiday, and other
external factors. There is no natural notion of the “optimal”
time to keep the build in each ring, resulting in ad-hoc and
highly variable procedures used in practice. These issues
slow down the process, increasing the time to detect an issue
and the time it takes for a good build to make it to production.

 Second, only sufficiently large quality issues can be
detected during the phased rollout process. Users will only
provide feedback on the features they notice or experience,
and, due to high variability of metric values over time, metric
monitoring process typically can only reliably detect large
changes in metrics, e.g. 10% or larger. Issues affecting a
segment of the population not well represented in a specific
ring are likely to go unnoticed as well [15].

 Third, the process is mostly concerned with the reliability
aspect of build quality, such as crashes and performance,
rather than with the impact of the build on user experience
and the ability of users to successfully and in a timely manner
achieve their objective. But, as described in [16], most new
features do not have the intended positive effect on users that
the developers hoped for, leading to increased desire to
measure the impact on the success of users to complete their
objectives in addition to ensuring the build’s quality.
Learning about the impact of the new build on user
experience as early as possible is also important for
estimating the value of feature for the customers, as well as
for informing the design of the next iteration of the product.
While verbatim feedback often contains qualitative
information about how much users like or dislike new
features [5], this feedback is highly skewed - users who
disliked the feature are generally more likely to provide
feedback than those who liked it – and does not provide an
objective way to evaluate the overall impact. Also, since in
established products new releases have only slight
incremental impact on user experience, the change in user
experience is often too small to be detected.

The issues mentioned above serve as a motivation for us
to combine phased rollout with controlled experiments - a
proven mechanism for evaluating the impact of changes.

B. Online Controlled Experiments

Online Controlled Experiments, or A/B tests, are widely
used by data-driven companies to evaluate the impact of new
features on user experience in websites [17], [18], mobile and
desktop apps, gaming consoles, social networks [19], and
operating systems [20]. In the simplest controlled
experiment, users are randomly assigned to one of the two
variants: control (A) or treatment (B). Usually control is the
existing system and treatment is the system with a new
feature added, say, feature X. User interactions with the
system are recorded and from that, metrics are computed. If
the experiment was designed and executed correctly, the only
thing consistently different between the two variants is the
feature X. External factors such as seasonality, impact of
other feature launches, moves by competition, etc. are
distributed evenly between control and treatment and
therefore do not impact the results of the experiment. Hence,
any difference in metrics between the two groups can be

attributed to either the feature X or noise. The noise
hypothesis is ruled out using statistical tests such as t-test [21].
This establishes a causal relationship between the change
made to the product and the change in user behavior, which
is the key reason for widespread use of controlled
experiments [4].

Controlled experiments address the three problems with
ensuring the software quality discussed above [9]. A power
calculation can be done to determine the optimal length of
time to run an experiment to detect the impact we are
interested in, which, because of the increased sensitivity in
detecting changes, is usually much shorter than the full
rollout process. Due to all external factors being randomized
between control and treatment, very small changes in metrics
(e.g. less than 1%) can often be reliably detected. Finally,
rather than focusing on what users say they do, like, or dislike,
experiment analysis focuses, via a rich set of metrics, on what
users actually do, resulting in a more precise and unbiased
evaluation of the new feature.

The above advantages of controlled experiments resulted
in more and more companies starting to evaluate changes to
their products with experiments, in addition to validating
build quality with phased rollout [22]. The two techniques are
generally used complementarily. First, a build containing a
number of inactive, or dark, features is rolled out to
production. Then, experiments are run on these features to
determine their impact. The winning features are then
activated for all users. In subsequent builds, the
experimentation configurations are removed to make these
features the default experience, reducing the technical debt
introduced during the process [23]. At Microsoft, many
products employ both controlled experiments and phased
rollout.
 The problem with the above approach, however, is
increased risk. To obtain unbiased results, experiments need
to be run on the production population. But launching a new
feature to production always carries a risk of an undetected
bug causing a crash, hang, or other severe degradation.
Another problem is that less verbatim feedback is obtained
during the evaluation. Only a randomly sampled subset of the
inner ring users would see the feature during the evaluation
and be able to submit the feedback. Finally, the above
approach still suffers from the slowness of the traditional
phased rollout process that the new build needs to go through
before being evaluated via an experiment.

 In section IV, we describe a solution that combines the
benefits of phased rollout and controlled experiments, while
addressing the above problems.

III. RESEARCH METHOD

 The research presented in this paper has been induced
through a case study at Microsoft Corporation in the USA
between July 2017 and August 2018. The authors of this
paper are or have been employed at the Analysis and
Experimentation (A&E) team of Microsoft. The A&E team
provides a platform and services for running controlled
experiments and rollouts. Its data scientists, engineers and
program managers are involved with product teams and
departments across Microsoft every day. In a year, over ten
thousand trustworthy controlled experiments and rollouts are
conducted and analyzed.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

 In the remainder of this section, we briefly describe our
case study based on the recommendations described by
Runeson and Höst [24].
 Data Collection. The primary sources of data were the
following. First, we used historical data such as product logs,
experiment scorecards, experiment metadata, and meeting
minutes. Second, we collected internal documentation such
as documents describing the experimentation process,
platform, and the aforementioned phased rollout approach.
Third, we collected notes and screenshots of real experiments
that ran at MS Office (see e.g. Fig. 3). Finally, the first three
authors of this paper had daily hands-on experience in
running experiments and access to workshops, meetings and
tutorials with other practitioners at Microsoft.
 Data Analysis. We employed both qualitative and
quantitative approaches to data analysis. First, the authors of
this paper jointly analyzed the collected data through
thematic coding [25] to identify, for example, the common
characteristics of a ring such as its size and average length of
the experiments in that ring. This analysis was particularly
useful to empirically induce a description of our main
contribution – the CRL approach. On the other hand, to
evaluate our proposed approach, we analyzed several
hundreds of experiments that ran at MS Office through
descriptive statistics. In particular, we examined how many
experiments in a CRL provided insightful results to product
teams for a quicker reaction when compared to releases that
were done through the traditional phased rollout. We provide
more details about this part of the analysis in Section V.
 Threats to Validity. Runeson and Höst [24] recommend
the use of different kinds of triangulation in order to mitigate
several kinds of threats to validity in case study research. We
applied several of these triangulation techniques, in
particular, using confirming evidence from multiple sources
(getting the same answers from data scientists, engineers, and
program managers), using different methodologies
(employing quantitative and qualitative methods), and having
several data collectors. Despite these efforts, however, our
research risks several threats to validity [24].

Construct validity. To mitigate construct validity threats,
we conducted the research in a setting where everyone was
very well familiar with the terminology and elements of
experimentation, phased rollout etc. through prolonged
involvement [26].

External validity. The theory induced in this research is
applicable and most valuable for product organizations and
companies that share common characteristics with our case
company. In particular, these are the companies that are able
to release software in phases to different audiences and have
the knowhow and infrastructure to conduct online controlled
experiments.

Reliability. To mitigate reliability threats, we employed
member-checking and peer-debrief techniques [26]. In
particular, multiple researchers reviewed the data as well as
the induced theory, and over a dozen of practitioners working
at the case company that were not directly involved in this
study provided feedback on our work.

IV. PRACTICAL GUIDE TO CONTROLLED ROLLOUT

 In this section, we introduce the approach of Controlled
Rollout (CRL). In particular, we discuss the strategies for

designing and organizing rollout metrics, for deciding on
rollout durations, and strategies for designing and decision
making in individual rings. We illustrate our approach and
the individual contributions with a practical example.

A. Controlled Rollout Essentials

In a CRL, the deployment follows the phased rollout
process described in the previous sections. The main
difference is that during each phase of the rollout (in each ring)
a controlled experiment is run. The reliability and impact of
the build on the users in the ring is measured, and, if pre-
specified criteria are met, the rollout proceeds to the next ring
starting a new experiment there, while fully deploying the
build to the preceding ring.

 While the idea of CRL is simple, its implementation in
practice poses many challenges: the audience within a
specific ring is typically not representative for all production
users, different users may be installing the build and getting
into the experiment at different points in time creating further
bias towards early adopters, the number of users in early rings
may be small, the criteria for advancing to the next phase
need to be defined so as to balance the reliability of the build,
the learnings about user impact, and the speed of moving to
the next phase.

Since each ring has different type and number of users,
the types of metrics and statistical criteria for advancing to
the next phase should also differ from ring to ring. The larger
the number of users in the experiment, the smaller the
magnitude of changes in metrics that the experiment is able
to detect [27]. Therefore, in general, in the early and small
rings, one should focus on larger effects, such as harmful
degradations in software quality. In later and larger rings, one
should shift the focus to smaller effects, positive or negative,
on user engagement and satisfaction. Table 1 summarizes our
recommendations for the basic ring setup described in Fig. 1
above, which we elaborate in more details below.

B. Rollout Metrics

 A rich set of metrics is required for different phases of a
controlled rollout. In this subsection, we review the major
types of metrics that are created for most controlled rollouts
at Microsoft. We differentiate between global metrics (e.g.
Data Quality, Guardrail and Success metrics), which are
applicable to most controlled rollouts, and local metrics,
which are applicable to individual rollouts. We hope that the
structure below can be used as a practical guide for metric
design and interpretation of results of controlled rollouts.
 Data quality metrics. These metrics are created to ensure
that each phase of a controlled rollout is set up correctly and
that the results of the experiment are trustworthy. Statistically
significant difference on any of these metrics in any direction
indicates an issue. One of the most important data quality
metrics is the ratio of the number of users in each group, or
sample ratio. A Sample Ratio Mismatch (SRM) happens
when the observed ratio is different from expected, indicating
that either the controlled rollout was not set up correctly or
there is some missing data / redundancy issue that impacts the
treatment and the control groups unevenly.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

TABLE 1. Rings of an example of controlled rollout.

SRM violates the basic principle of controlled experiments
that the treatment and the control groups must be selected
randomly, and typically completely invalidates the results.
Other common data quality metrics measure the rate of data
delay and loss, reliability of instrumentation, cookie churn,
etc. The first step in analyzing any phase of a controlled
rollout is to ensure that data quality metrics did not move.
 Guardrail metrics. These metrics represent important
business constraints that should not degrade as a result of the
rollout. Examples of guardrail metrics are application crash
and hang rate, service load time, number of page views, etc.
One of the major goals of phased and controlled rollout is to
ensure that guardrail metrics do not degrade with the
deployment of a new build.
 Success metrics. Also referred to as Overall Evaluation
Criteria (OEC) [28]. These are the key metrics which indicate
that the new build or feature are likely to lead to an increase
in long-term business goals, such as user engagement and
retention. Good success metrics are often difficult to define,
as many obvious choices do not work. For example, short-
term revenue is generally not a good choice because it is easy
to increase it by, e.g., showing users more ads, which may
result in user dissatisfaction and abandonment over the long
term. Accurately estimating the long-term impact involves
many factors and is challenging [29], [30].
 Local metrics. These are metrics that directly measure
users’ engagement with the new features being tested. While
data quality, guardrail, and success metrics apply equally to
all controlled rollouts and therefore are often referred to as
“global metrics”, local metrics are of interest specific to the
rollout and the new feature. One of the most important types
of local metrics is “feature usage metrics”. These metrics
track whether the new feature is triggered correctly and
measure how frequently users interact with it. For example,
if a new menu item was added to the product, the number of
clicks on that item could be a good feature usage metric. In
many cases, feature usage metrics do not apply to the control
group which was not exposed to the new feature. Feature
owners monitor these metrics to check if the feature is
triggering and working as expected. Besides, there should
also be local metrics that measure the impact of the new
feature at a higher level, and these metrics should be applied
to both the treatment and control groups. Following the menu

item example, suppose the new item is an extra way of
sharing a Word document with other users. Feature owners
should consider creating metrics that measure document
share activities and users’ engagement with the menu as a
whole. Such metrics are an important indication of whether
users’ needs to complete their objectives are met. They show
the level of engagement with the new features relative to
other existing features, and help to understand deeper and
debug the movements observed in global, guardrail and
success metrics.
 Local metrics are usually closer to specific feature
changes, and because of that many learnings for future
iterations of the product come from understanding which
local metric changes lead to improvements in global metrics.
While phased rollout can capture some local metric changes,
controlled rollout is able to measure more changes more
accurately due to much higher sensitivity.

C. Length of Rollout Periods

Another key question is how long the controlled rollout
should run at each ring. This is a trickier problem than it
seems. On one hand, the running period needs to be long
enough so that feature owners can collect the data they need.
On the other hand, it cannot be too long since feature owners
want to iterate quickly in the current ring and move forward
to the next ring. The optimal solution should align with the
objectives of the ring and the availability of data.

In this subsection we describe a practical method to
determine the length of the experiment period based on the
theory of hypothesis tests. In the next subsection we will
discuss how to combine this theory and the objectives of the
ring to choose the proper rollout period for each ring.

In a typical controlled experiment, a two-sample t-test is
applied to each metric to determine whether its values in the
treatment and the control groups are significantly different
from each other. The t-test constructs the test statistic by
dividing the difference on the mean value of the two samples
by the combined sample standard deviation. This test statistic
follows a t-distribution with degree of freedom equaling to
the total sample size minus two. When the sample sizes of the
experiment groups are large, which is the case for the
majority of online products, the distribution of the test

Ring Name Size (user count) Length of
Rollout Phase

Focused Metrics Pass Criterion

Dogfood Very small. From less
than one hundred to
several hundreds.

From days to 1
week.

Guardrail metrics,
Local metrics

Feature is being triggered and users are engaging
with it.

No serious bug or crash that moves guardrail
metrics by over ~10%.

Internal Small. Hundreds to
thousands.

Up to 1 week.
Guardrail metrics No serious bug or crash that moves guardrail

metrics by over ~10%.
No negative impact on product usage.

Insiders Medium to large.

Tens to hundreds of
thousands.

2-4 weeks.
OEC metrics,
Local metrics,

Guardrail metrics

Positive movement on local metrics that measure
the direct impact.

No negative impact on guardrail, OEC or other
local metrics.

Production Very large. Hundreds
of thousands to

millions.

2-4 weeks or
longer.

OEC metrics
Local metrics

Guardrail metrics

Effectiveness of the new feature, which is reflected
by improvement on OEC or local metrics.

May require a trade-off between gains and losses
among different metrics.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

statistic approximates to the standard normal distribution.
This distribution will be used for making the final inference.

Let 1-α be the confidence level, β be the statistical power
and 𝑧(⋅) be the inverse cumulative distribution function of
the standard normal distribution. For simplicity, assume the
treatment and the control groups have the same number of
users. It can be shown that, in order to be able to detect a Δ%
change of a metric at confidence level 1-α and power β, we
need at least 𝑛 users in each group, where

𝑛 = ൮
𝑠 ൬𝑧 ቀ

𝛼
2

ቁ + 𝑧(𝛽)൰

𝜇Δ%
൲

ଶ

(1)

Here µ is the mean value of the metric in the control group,
and 𝑠 is the standard deviation of the metric. In practice, α
and β are set to be 0.05 and 0.8 respectively for most cases. µ
and 𝑠 can be estimated from the data.
 Another option is to use the approximation formula as
described in [31].

𝑛 =
16𝜎ଶ

(𝛥%)ଶ𝜇ଶ
(2)

Feature owners need to set the proper target of Δ% based

on the size of the ring and the objective. It can be seen from
(1) or (2) that the required number of users 𝑛 is inversely
proportional to the square of the sensitivity Δ%. In the early
rings “Dogfood” and “Internal”, where the set of users is
usually small, Δ% has to be relatively large so that the user
count 𝑛 that makes the equation hold can be achieved within
a reasonable period of time. When the controlled rollout
enters later rings, the available number of users becomes
much larger. Hence feature owners can set up a more
aggressive target on Δ%.

Once feature owners have a target on Δ%, they can
substitute it together with other parameters into Formula (1)
or (2) and get the number of users needed to achieve the goal.
They should then choose an experimental period which is
long enough to collect this number of users.

If feature owners plan to run controlled rollouts on a new
product, they should run an A/A test on each of the rings first.
An A/A test is a trial experiment where the treatment and
control groups are exposed to exactly the same experience.
This test ensures that the experiment configuration works
correctly in the new setting, and it also help feature owners
learn about the data. How many users do they collect in a
given period of time? What are the metric values µ and
standard deviation 𝑠? With this learning, feature owners can
set a realistic target on the sensitivity Δ%, calculate the
required user count 𝑛 from Formula (1) or (2), and decide on
the length of the controlled rollout.

D. Strategies for Each Ring

The controlled rollout is conducted through different rings
each having a different number and type of users. Therefore,
feature owners need to define the goal, choose the exposure
duration, select the set of metrics, and determine the pass
criterion separately for each ring.

 Dogfood. This group includes developers of the product
and internal employees who volunteered to test the new
features. It is the earliest ring of controlled rollout. At this
beginning stage, the first goal is to verify that the new feature
is triggered correctly. Feature owners should check the
feature usage metrics and make sure the values are expected.
Quality of instrumentation and correctness of new metrics
should also be verified using local metrics. At this early stage,
new features are usually not fully mature, and have a
relatively high possibility to behave unexpectedly. Therefore,
the second goal in this ring should be trying to identify
egregious events, such as crashes and bugs, within a short
period of time. Feature owners should check for dramatic
(10+%) negative movement on guardrail metrics. If such
movement is observed and identified as statistically
significant, they should shut down the current rollout as soon
as possible to stop hurting users. Then they will need to debug
their feature based on the guidance from the metrics and
quickly start a new iteration. Normally, controlled rollouts
will stay in this ring for several iterations before all bugs are
fixed. When no significantly negative movement on guardrail
metrics is observed, feature owners should promptly move
forward to the next ring.
 Fig. 2 plots the detectable change on a representative
crash metric against the length of the rollout period for Office
365 in the “Dogfood” ring.

The values are estimated using the method described in the
previous subsection. For our example, it can be seen that the
rollout needs to be run for at least 7 days in order to detect a
10% change in this metric. On the other hand, increasing the
duration from 7-day to 14-day, we only see ~20% more new
users in the rollout, which improves the detectable percentage
change to about 8%. This improvement, in general, makes
only a small difference in the results. Considering both the
improvement in metric sensitivity and the time cost, 7-day is
the optimal duration.
 Internal. This ring includes internal employees who use
the product regularly. The size of this ring is slightly larger
than the previous one, ranging from hundreds to thousands of
users, depending on the organization. The objective of
controlled rollout in this ring is similar to the “Dogfood” ring.
Feature owners should still focus on checking for crashes and
bugs. But since most of the egregious events have been
cleared off in the “Dogfood” ring, feature owners can focus
on less sensitive guardrail metrics.
 At the early rings “Dogfood” and “Internal”, compared to
the traditional phased rollout technique, controlled rollouts

Fig. 2. User count and detectable change vs rollout duration.

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

are more sensitive in detecting the impact of new features. If
there is a seriously harmful effect, a controlled rollout can
usually identify it in days as double-digit percentage change
on its guardrail metrics. At Microsoft, we have a monitoring
and alerting pipeline coupled with our rollout system. Data
scientists and feature owners will be notified immediately
when there is a significant movement on a metric that exceeds
the pre-defined threshold. They can even require the system
to automatically shut down the rollout if the effect is
"extremely harmful", which is defined as dramatic negative
movement on some key metrics. This mechanism allows
feature owners to quickly iterate on their new features. On the
other hand, if there is no egregious event, the controlled
rollout is able to confirm this within 7 days and allow feature
owners to move to the next ring. In contrast, in a phased
rollout, feature owners may have to wait for weeks to gather
enough feedback from dogfood users and paid testers, then
analyze it and decide whether their feature is safe to be
promoted to the next ring.
 Insiders. This ring includes external users who opted in
to try new features of a product before they are officially
released. In this ring, there is a much larger set of users,
normally hundreds of times larger than the earlier rings. This
enables feature owners to detect much smaller percentage
change on most metrics. Therefore, their objectives should be
adjusted accordingly. The first goal is to still check for
guardrail metrics. Although the most harmful bugs were
already identified and fixed, it’s not uncommon to find
single-digit percentage point degradations in guardrail
metrics which were not detected in the earlier rings. In
addition, the behavior of users in this ring can be very
different from the previous two rings. Users in “Dogfood” or
“Internal” use the product in a somewhat homogeneous way,
since they are from the same organization and work on
similar tasks. In contrast, users in the “Insiders” ring tend to
be more diverse and are likely to trigger new bugs. The
second goal is to start monitoring OEC and local metrics.
Local metrics which measure the direct impact of the new
feature should show significant positive movement in this
ring. Otherwise, it may indicate that the new feature is not
being noticed by the users or may not be functioning
correctly. Also, OEC metrics should be at least flat. Any
significantly negative movement on OEC metrics will be an
alarming sign. When this happens, feature owners need to
dive into the data to understand the reason before moving to
the next ring. In [15], we described an effective approach to
analyze such cases.

At Microsoft, based on the data that we collect in the
“Insiders” ring, the detectable percentage change Δ% is
around 3% for guardrail and some of the local metrics, and
around 1% for OEC metrics. Using the estimation method
discussed in the previous subsection, we found that most
controlled rollouts should run for 2 weeks. This time period
is not just for collecting enough data points to meet the goal
on Δ%, but is also the minimum length required by some
OEC and local metrics. For example, the "retention rate"
metric, by definition, only counts users whose activities cross
a given time span, such as 7 days. Typically, the controlled
rollout needs to run for at least twice as long for these metrics
to be valid and gather enough users.
 In the traditional phased rollout process, one of the most
important ways to evaluate the new feature at the Insiders ring

is to analyze user feedback. Although it directly reflects the
impression to the new feature of some users, user feedback
does not provide a full picture. For example, users only
provide feedback on what they see, but hardly noticeable
features can sometimes have huge business impact. An
example of such feature is the tuning of the font colors of
Bing.com search result pages in 2013 (page 3 of [32]). The
change was so small that almost no one could tell the
difference until seeing both treatment and control colors side
by side. However, that change generated an additional ~10
million dollars annually for Bing. User feedback alone cannot
provide a comprehensive evaluation on efficiency, user
retention, performance cost and crashes, which controlled
rollouts do. Feedback can also be biased. Users who leave
feedback generally engage with the product more actively
than users who do not. If product owners just look at user
feedback, the impact of the product on less active users may
be ignored. Controlled rollout complements user feedback
with its rich set of well-designed metrics calculated from tens
or even hundreds of thousands of users.
 We illustrate the last point in the previous paragraph with
an example of a controlled rollout which ran at Microsoft in
the first half of 2017. The Word product team in the Office
group conducted a controlled rollout on a feature that
changed the default view of Word on Android devices from
the "print layout view" to the "mobile view" (Fig. 3), which
allocated more screen space to the document, and zoomed in
to make it easier to edit.

Fig. 3. The print layout view (control, left) and the mobile view (treatment, right)
for Word on Android.

 When the rollout was executed in the Insiders ring,
feature owners also collected user feedback. Most users said
they really liked this new view because they could easily edit
the document. However, the experiment results were mixed.
The engagement metrics moved positively only for users who
had modified at least one document (through either create or
edit action) during the experiment period. This group of users
was more active than the other group, but they only accounted
for about 30% of the whole user set. For the remaining group,
which contained users who just opened and read documents,
the engagement metrics actually moved in the opposite
direction. In addition, the feature owners observed a 13%
increase in "quick view switches", which is a local metric that
measures how often users switched to the non-default view

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

within 5 seconds after the document was opened. This result
suggested that setting the mobile view as default was not well
accepted by all users. As a result, the Word team decided to
redesign the feature. They eventually rolled out a less
aggressive version, which showed the mobile view by default
only on those documents which users opened before and
closed while in the mobile view.
 Production. This ring includes the general group of
external users of the product. When the controlled rollout
completes at this last ring, feature owners need to decide
whether they should officially release their feature, and they
should mainly rely on OEC metrics to make this decision. In
general, in order to ship a feature, there need to be significant
positive movements on OEC metrics. Some controlled
rollouts, however, are for minor feature changes which
themselves may not have significant impact on OEC metrics,
in which case local metrics can be used, provided that OEC
and guardrail metrics do not degrade. The “Production” ring
is the largest of all the rings of controlled rollouts. At
Microsoft, most products have millions to hundreds of
millions of users in this ring. Such a large user set allows us
to set very aggressive targets on the detectable percentage
change Δ%, usually at around 0.5% or smaller. This is
necessary at least for the OEC metrics, which, in general, are
hard to move [32]. In order to detect such small change,
controlled rollouts need to run for at least 2-4 weeks.
 In contrast, the traditional phased rollout process
evaluates the impact of the new feature by comparing the pre-
period data to that in the post-period (after the release of the
feature). This analysis can easily be biased by many factors,
such as periodical / seasonal effects or the interference of
other features that were rolled out during the same period.
The traditional method can only reliably detect changes of
10% or higher, the magnitude rarely observed in OEC
metrics.

Fig. 4. Metric values on two variants in the cases of phased rollout (top) and
controlled rollout (bottom).

Fig. 4 plots the values of one of the OEC metrics of the
“mobile view” rollout described above. The top part shows
what the metric looks like if we keep the current “print layout
view” in the first week, and roll the new “mobile view” out
in the following week. It can be seen that the metric values
change from day to day, and it is very difficult to decide
which view has a higher value on this metric. In contrast, the
bottom part shows the values of this metric in the controlled
rollout. In this case, it is much more obvious that the metric
value for the “print layout view” (control group) is
consistently lower than the value for the “mobile view”
(treatment group). From hypothesis test, it can be shown that
on average, the metric is about 2.5% higher for the “mobile
view” when compared to the “print layout view”. The p-value
is less than 10ିଶହ, which indicates that the difference is very
significant. This example shows that controlled rollouts are
able to detect much smaller percentage changes. As a result,
it allows feature owners to detect changes in a much wider
range of metrics in a much more detailed way.

V. EVALUATION OF CRL

 In this section, we evaluate the effectiveness of controlled
rollout technique by examining the logs of controlled rollouts
on Microsoft Office client apps during a several months long
period of time in 2018.
 MS Office. At Microsoft Office, there are hundreds of
controlled rollouts in each ring. For each rollout, there are
scorecards [15] that contain the corresponding metrics for
periods of the first 3 days, first 7 days and longer time ranges
(14, 21 or 28 days if the rollout ran for that long).

In reviewing the logs, and to evaluate the effectiveness
of controlled rollouts, we try to answer the following
questions: (1) How often do controlled rollouts
“outperform” the traditional phased rollout process? in
terms of, e.g., detected issues, moved to the next ring faster,
or provided more insights, and (2) was the length of rollout
periods selected by our strategies appropriate? To reduce
the rate of false positive, we use 0.01 as the p-value threshold
for the two-sample t-tests.

Dogfood & Microsoft. In the “Dogfood” and “Microsoft
(Internal)” rings, 35% of the controlled rollouts in our
evaluation sample had significant movement in guardrail
metrics. Of this subset of controlled rollouts, 79% of them
detected significant movements within the first 3 days. The
percentage change of the majority of these movements are in
the range of 10%-50%. In our experience, this magnitude of
difference is very challenging to be detected in such a short
period by the traditional phased rollout process. Thus,
controlled rollout allows feature owners to start investigating
the issues and iterating much earlier than the traditional
rollout process.

For the remaining 21% of the controlled rollouts which
had significant movement in guardrail metrics, the signal was
first detected on the 7-day scorecards. This verifies our claim
that controlled rollouts need to run for at least 7 days (given
no signal was detected earlier) in these rings. For most of the
rollouts in these two rings, there were no scorecards for 14-
day periods. However, we can estimate the p-values of the
14-day results by assuming the same percentage delta and

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

standard deviations1 as on the 7-day scorecards, and scaling
the sample size by 1.2 (based on our observation that 14-day
rollouts acquire around 20% more users in these two rings
than 7-day rollouts). Using this method, we predict that just
3% of the rollouts will show significant guardrail metric
movements on the 14-day scorecard but not on the 7-day one.
Therefore, a 14-day rollout period is not necessary for most
of the rollouts. In contrast, a 7-day rollout period would be a
better choice.

Insiders and Production. In the “Insiders” and
“Production” rings, about 30% of the controlled rollouts had
significant movement in guardrail metrics, and 61% of the
controlled rollouts had significant movement in OEC or local
metrics. Except for some very sensitive local metrics, the
majority of these metric movements had percentage change
within the ±10% interval. This magnitude of difference is
difficult to be detected in the earlier rings, and almost
impossible to be detected in the traditional phased rollout
process by collecting user feedbacks or comparing data
before and after the rollout. In contrast, controlled rollouts
successfully capture these signals and provide feature owners
with valuable insights.

VI. CHALLENGES OF INTRODUCING CRL

 In this section, we highlight four key practical challenges
that companies can expect to experience with the introduction
of controlled rollout. As this was not the primary goal of this
study, the list is not exhaustive. Instead, we highlight the most
frequent challenges that were identified during data analysis
and through authors’ experience in controlled rollouts.
 Controlled rollouts introduce critical dependency on data.
As a result, all the challenges associated with having data in
the loop will have to be solved for controlled rollouts. First,
users need to be provided value such that they want to use
their bandwidth to send data, and users need to trust that their
data will be used in a manner consistent with privacy laws
including the European General Data Protection Regulation
(GDPR)2. At Microsoft, our Trusted Cloud is built on our
commitments to privacy, security, transparency, and
compliance. While diagnostic data may contain "personal
data" as defined by Article 4 of the GDPR, all diagnostic data
Microsoft collects during the use of Office applications and
services, is pseudonymized as defined in ISO/IEC
19944:20173, section 8.3.3.
 Second, collecting comprehensive telemetry is essential
for controlled rollouts and requires building systems for
collecting this data, transforming it to a form suitable for
experimentation, and then processing large scale data to
draw meaningful insights. These are large-scale system
design challenges that need to be solved (e.g. [5]).
 Third, telemetry collection is further complicated when
the software is installed in a client with variable bandwidth,
including some periods of not being connected to the internet.
In these cases, the data processing system needs to account
for missing and delayed data.

1 This assumption may not be true for count based metrics e.g. “Number of
Crashes per User”, whose standard deviation increases with the length of
analysis period. However, most of the guardrail metrics in our case are ratio
based, e.g. “ratio of activities with crashes”, whose value is between 0 and 1
and hence have much more stable standard deviation.
2 The full document of this regulation can be found at https://eur-
lex.europa.eu/eli/reg/2016/679/oj

 Fourth, since controlled experiments are an essential
component of controlled rollout, another set of challenges
involve building the infrastructure for experimentation
[33]. For example, assigning variants – treatment and control
– is a critical part of experimentation infrastructure that needs
to be analytically validated before the results of
experimentation can be trusted. This process, in our
experience, takes multiple months. While there are tools for
building basic experimentation infrastructure, a deeper
integration of experimentation with the rest of the software
development process is a substantial challenge.

Finally, a secondary effect of integrating
experimentation with software development and deployment
is the requirement of integrating data science as a discipline
in the software development team. Introducing expertise on
controlled experiments and statistics takes time and might
seem to be slowing down the core tasks of the development
team, but this is a necessary step to avoid pitfalls in
experiment design and result interpretation [34].

VII. CONCLUSION AND FUTURE WORK

 Ensuring that software meets quality standards and
satisfies users’ needs is critical for every company, and very
challenging to get right at a large scale [34]. For this purpose,
controlled experiments and phased rollouts are two novel
approaches that are gaining momentum across the software
product industry [3], [4], [22]. Based on our experience,
however, the union of the two approaches yields the most
value for product development.

In this paper, we introduced controlled rollout as a hybrid
approach that combines the strength of controlled
experiments with that of phased rollouts. We described the
challenges of implementing and correctly applying controlled
rollout, illustrating the discussion with real examples of
controlled rollouts done at Microsoft. Next, we evaluated
controlled rollout at MS Office and confirmed its
effectiveness. Finally, we discussed practical challenges of
introducing controlled rollouts into large mature software
products and proposed a number of mitigations.

Since the process of controlled rollout can be viewed as
controlled experimentation with different rings which may
have disparate behavior, the question of what to measure at
each ring and how long to run the rollout to get meaningful
results is an active area of research. While our contribution
proposes one answer to this question, we believe different
business problems could lead to different answers. Another
active area of research is on what to do when some of the
rings have small sample sizes. While power analysis can
provide some guidance, the problem itself is an active area of
research in controlled experimentation.

Just as controlled experiments can have multiple
treatments, controlled rollouts can have multiple variations
and this possibility introduces new areas of research.
Consider a controlled rollout with a rare bug – can this bug
be detected by using multiple variations? Extending the idea

3 Information technology — Cloud computing — Cloud services and
devices: Data flow, data categories and data use.
https://www.iso.org/standard/66674.html

This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada. May 29 - 31, 2019.

of multiple variations to a large number, say hundreds, of
variations turns the controlled rollout process into an
optimization mechanism, leading to an interesting set of
questions on data pipelines and analytical processes, such as
multiple comparison problems with hundreds of variants.

ACKNOWLEDGMENT

We would like to acknowledge our partners within
Microsoft who have worked closely with us to evolve our
thinking in this space. In particular, we would like to thank
the teams in Office that works to integrate controlled rollouts
into the release process. We would also like to thank
everyone that shared their experiences and examples for this
paper.

REFERENCES
[1] “Overview of Microsoft Windows insider program.” [Online].

Available: https://insider.windows.com/en-us/how-to-overview/.
[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation, Pearson
Education, 2011.

[3] F. Auer and M. Felderer, “Current state of continuous experimentation:
a systematic mapping study,” in Proceedings of the 2018 44rd
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2018.

[4] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “Online controlled
experimentation at scale: an empirical survey on the current state of
A/B testing,” in Proceedings of the 2018 44rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), 2018.

[5] A. Fabijan, H. H. Olsson, and J. Bosch, “Customer feedback and data
collection techniques in software R&D: a literature review,” in
Proceedings of Software Business, ICSOB 2015, 2015, vol. 210, pp.
139–153.

[6] P. Bosch-Sijtsema and J. Bosch, “User involvement throughout the
innovation process in high-tech industries,” J. Prod. Innov. Manag.,
vol. 32, no. 5, pp. 1–36, 2014.

[7] “Agile software development,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Agile_software_development

[8] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, “Adopting continuous
delivery and deployment,” Proc. 21st Int. Conf. Eval. Assess. Softw.
Eng. - EASE’17, no. i, pp. 384–393, 2017.

[9] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The benefits of
controlled experimentation at scale,” in Proceedings of the 2017 43rd
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2017, pp. 18–26.

[10] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, and L.-M.
Sainio, “The relationship between business model experimentation and
technical debt,” Softw. Business, Icsob 2015, vol. 210, pp. 17–29,
2015.

[11] G. Schermann, J. J. Cito, and P. Leitner, “Continuous experimentation:
challenges, implementation techniques, and current research,” IEEE
Softw., vol. 35, no. 2, pp. 26–31, Mar. 2018.

[12] “Software release life cycle,” Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Software_release_life_cycle.

[13] “Chrome release channels.” [Online]. Available:
https://www.chromium.org/getting-involved/dev-channel.

[14] E. von Hippel, “Lead users: a source of novel product concepts,”
Manage. Sci., vol. 32, no. 7, pp. 791–805, 1986.

[15] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “Effective online
experiment analysis at large scale,” in Proceedings of the 2018 44rd

Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2018.

[16] R. Kohavi and S. Thomke, “The surprising power of online
experiments,” Harvard Business Review, no. October, 2017.

[17] R. L. Kaufman, J. Pitchforth, and L. Vermeer, “Democratizing online
controlled experiments at Booking.com,” arXiv Prepr.
arXiv1710.08217, pp. 1–7, 2017.

[18] K. Kevic, B. Murphy, L. Williams, and J. Beckmann, “Characterizing
experimentation in continuous deployment: a case study on Bing,” in
2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP),
2017, pp. 123–132.

[19] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin, “From
infrastructure to culture: A/B testing challenges in large scale social
networks,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015, no.
Figure 1, pp. 2227–2236.

[20] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: survey and practical guide,” Data
Min. Knowl. Discov., vol. 18, no. 1, pp. 140–181, Feb. 2009.

[21] J. L. Devore and K. N. Berk, Modern Mathematical Statistics with
Applications, Springer, 2011.

[22] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. C. Gall, “We’re
doing it live: a multi-method empirical study on continuous
experimentation,” Inf. Softw. Technol., Mar. 2018.

[23] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature
toggles: practitioner practices and a case study,” Proc. 13th Int. Work.
Min. Softw. Repos. - MSR ’16, pp. 201–211, 2016.

[24] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empir. Softw. Eng., vol. 14,
no. 2, pp. 131–164, 2008.

[25] H.-F. Hsieh and S. E. Shannon, “Three approaches to qualitative
content analysis.,” Qual. Health Res., vol. 15, no. 9, pp. 1277–88, Nov.
2005.

[26] M. Crotty, The foundations of social research: meaning and perspective
in the research process. 1998.

[27] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann,
“Online controlled experiments at large scale,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’13, 2013, p. 1168.

[28] R. Kohavi and R. Longbotham, Online Controlled Experiments and
A/B Testing, no. Ries 2011. Boston, MA: Springer US, 2017.

[29] H. Hohnhold, D. O’Brien, and D. Tang, “Focusing on the long-term,”
in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’15, 2015, pp. 1849–
1858.

[30] P. Dmitriev, B. Frasca, S. Gupta, R. Kohavi, and G. Vaz, “Pitfalls of
long-term online controlled experiments,” in 2016 IEEE International
Conference on Big Data (Big Data), 2016, pp. 1367–1376.

[31] G. van Belle, Statistical Rules of Thumb: Second Edition. 2008.
[32] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu, “Seven rules of thumb

for web site experimenters,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD ’14, 2014, pp. 1857–1866.

[33] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The evolution of
continuous experimentation in software product development,” in
Proceedings of the 39th International Conference on Software
Engineering ICSE’17, 2017.

[34] P. Dmitriev, S. Gupta, K. Dong Woo, and G. Vaz, “A dirty dozen:
twelve common metric interpretation pitfalls in online controlled
experiments,” in Proceedings of the 23rd ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’17, 2017.

