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Abstract—Software companies are increasingly adopting 
novel approaches to ensure their products perform correctly, 
succeed in improving user experience and assure quality. Two 
approaches that have significantly impacted product 
development are controlled experiments – concurrent 
experiments with different variations of the same product, and 
phased rollouts - deployments to smaller audiences (rings) 
before deploying broadly. Although powerful in isolation, 
product teams experience most benefits when the two 
approaches are integrated. Intuitively, combining them may 
seem trivial. However, in practice and at a large scale, this is 
difficult. For example, it requires careful data analysis to 
correctly handle exposed populations, determine the duration of 
exposure, and identify the differences between the populations. 
All of these are needed to optimize the likelihood of successful 
deployments, maximize learnings, and minimize potential harm 
to users of the products. In this paper, based on case study 
research at Microsoft, we introduce controlled rollout (CRL), 
which applies controlled experimentation to each ring of a 
traditional phased rollout. We describe its implementation on 
several products used by hundreds of millions of users along 
with the complexities encountered and overcome. In particular, 
we explain strategies for selecting the length of the rollout period 
and metrics of focus, and defining the pass criterion for each of 
the rings. Finally, we evaluate the effectiveness of CRL by 
examining hundreds of controlled rollouts at Microsoft Office. 
With our work, we hope to help other companies in optimizing 
their software deployment practices.  

Keywords—Controlled rollout, controlled experiment, 
software development, phased rollout 

I. INTRODUCTION 

      In late November 2017, Wired magazine reported that 
Mozilla will be releasing Firefox Quantum and that based on 
the reporter’s evaluation, it was the browser to use. From a 
software engineering perspective, the interesting part here is 
how Firefox was released. Long before this press article, a 
subset of users was using pre-release versions of Firefox 
providing telemetry to Mozilla which was using this data and 
the users’ verbatim feedback as the software was being 
developed. Mozilla Corporation – the company building 
Firefox – is not an exception here. Almost every software – 
open-source or proprietary – has an early-access program 
usually called the “beta” or “insider” program that allows a 
subset of users to see the upcoming features and provide 
feedback to the developers. For example, Microsoft Windows 
Insiders [1] has over 1 million users. This approach of 
gradually rolling out a new version of software rather than 
making the release available to all users instantly is known as 
phased rollout [2]. The value of phased rollout comes from 

providing a feedback mechanism from the users to the 
developers, attempting to ensure that the software meets 
quality standards and satisfies users’ needs.  
      However, as we discuss below, phased rollouts suffer 
from several problems: they often take a long time, the early 
audience is not representative of the overall population, it is 
difficult to accurately measure the impact of the changes, and 
as a result the feedback and the input into the next iteration 
of the product are limited. 
      A widely used tool for accurately evaluating the impact 
of a new feature in software is Online Controlled Experiment 
(OCE), or A/B test [3], [4]. In an OCE, the new feature is 
made available for a randomly sampled group of users of the 
product – also known as treatment, and the impact of the 
feature on the quality of the software is compared to that of 
an equivalent group of users who have a different version of 
the feature or do not have the feature – also known as control. 
If the difference (or delta) between treatment and control is 
statistically significant, then with high probability the change 
(i.e., the new feature) caused the observed difference. 
Establishing this causal relationship between the change 
made to the product and the difference in the quality of 
software is something that the phased rollout does not 
provide.   
      OCEs however, are inherently riskier, requiring a true 
random sample of production users to obtain trustworthy 
results. They also do not produce as much useful verbatim 
feedback, compared to the early stages of phased rollout [5], 
[6].  
      In this work, we introduce a hybrid approach that we call 
controlled rollout (CRL), which integrates OCE into phased 
rollout process and addresses some of the problems 
mentioned above. Controlled rollout works across different 
software development methodologies, such as agile, waterfall, 
hybrid, and can be used by software development teams of 
any size. 

While the concept of controlled rollout is simple, its 
implementation in practice is non-trivial and requires careful 
data analysis and engineering skills to answer several 
important questions to ensure optimal and correct usage. In 
this paper, we discuss these questions and the framework to 
derive the optimal answers based on our experience of 
implementing controlled rollouts at Microsoft. We use Office 
client applications as an example to illustrate how we apply 
controlled rollouts to streamline and inform release 
management in products.   
      Although the difference between phased rollout and 
controlled rollout appears to be small, the implications are 
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profound – both in terms of the value provided and the impact 
on software development and deployment. For example, 
controlled rollout enables measurement of the impact of an 
individual feature in isolation which is not possible with 
phased rollout. As a result, the product team can formulate 
hypotheses on whether their change will lead to impact in the 
quality of software and if the hypothesis is not borne out in 
data, and alter the subsequent decisions on software 
development. One can think of controlled rollout providing a 
closed loop for software development with the user in the 
middle.  
 
The key contributions of this paper are as follows:  
 We discuss the challenges in modern release deployment 

management, and why neither phased rollout nor 
controlled experiments in isolation is adequate;  

 We propose controlled rollout, a hybrid approach that 
combines the strength of controlled experiments and 
those of phased rollout;  

 We describe the challenges of implementing and correctly 
applying controlled rollout, the data analysis that needs to 
be performed to do it correctly, illustrate the discussion 
with real examples from Microsoft, and evaluate the 
impact on a dataset of hundreds of real controlled rollouts 
that ran at Microsoft;  

 We discuss practical challenges of introducing controlled 
rollout into large mature software products. 
 

     The remainder of the paper is organized as follows. We 
first provide a background on several related topics in Section 
II and discuss our research method in Section III. We 
introduce controlled rollout and discuss implementation 
choices and guidelines in Section IV. Sections V discusses 
challenges of introducing controlled rollout into established 
engineering processes. We conclude and list directions for 
future work in Section VI.  

II. BACKGROUND 

A. Software Deployment 

      Software deployment is the process of releasing a new 
software build (a set of new functionalities, updates, and bug 
fixes) to the users [2]. Depending on the type of software and 
the software engineering process used by the development 
team, the size (amount of changes in the build) and frequency 
of deployments vary. Organizations that have adopted agile 
software development [7], especially continuous delivery and 
deployment [2], [8], generally see higher frequencies of 
releases which are also smaller in size, compared to those 
following traditional software development methodologies 
such as waterfall.  

 Due to the distributed nature of development and 
deployment of modern software, the variety of operating 
scenarios such as devices, OS versions, network types, 
increasing use of artificial intelligence (A.I.) that learns from 
users and updates over time, and the fact that software is 
frequently connected to various services which are deployed 
independently, it is extremely challenging, perhaps 
impossible, and expensive to comprehensively test and 
ensure software quality via internal testing or in the lab [9]. 
Complexity of modern software also makes it increasingly 
difficult to control technical debt [10] (removing or 

refactoring old code) while ensuring there is no degradation 
in quality.  Deploying the software to users and customers is 
required to obtain good validation coverage of the scenarios 
mentioned above [11]. To obtain such exposure and ensure 
the quality of builds, both agile and traditional software 
engineering companies are employing the process of phased 
rollout, where the new build is deployed in several steps or 
phases [12].   

Phased rollout proceeds as follows. The deployment of the 
build starts with a small group of users, the build’s quality 
and the value of the product is validated within that group, 
after which it is deployed to a larger group, and so on until 
the build reaches all users. We will refer to these groups of 
users as rings. Fig. 1 shows a possible split of all users of a 
product into a sequence of rings. Typically, the first one or 
two rings would be internal, including only company 
employees, followed by 1-3 external rings, before reaching 
the production ring that includes all users. Naturally, users in 
the initial rings will be exposed to the highest number of build 
releases, many of which may be rolled back due to issues, 
while users in the later rings will receive less frequent, more 
stable builds. For example, Microsoft Windows uses two 
internal rings and allows external users to opt into one of the 
three external rings: fast, slow, and release preview [1]. 
Google Chrome has four rings (aka channels): canary, dev, 
beta, and stable [13]. Many other products and companies 
follow a similar approach.  

 
Fig. 1. Users of a product are split into rings. 

The selection of users into rings is typically an opt-in process, 
attracting early adopters [14], bloggers, system and website 
administrators, as well as developers who want to take early 
advantage of new features. The validation of build quality 
inside a ring is done using two main approaches:  
1. Verbatim user feedback: Users who opted into rings are 

typically more proactive and have more interest in 
ensuring the quality of the software than the general 
audience, resulting in higher willingness to provide 
verbatim feedback as well as ability to provide more 
precise and actionable feedback. 

2. Monitoring of quality metrics: Key quality metrics, 
such as crash rate and load time, are monitored. An 
increase in such a metric after the deployment of a new 
build indicates a quality issue with the build. 
This process of ensuring quality of builds, while widely 

used, has several problems. First, the process is slow. The 
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build needs to stay in a ring for a considerable period to both 
allow users the time to use the feature and provide enough 
feedback, and to collect enough data to ensure there are no 
quality regressions in metrics that are monitored which may 
be highly variable due to the day of week, holiday, and other 
external factors. There is no natural notion of the “optimal” 
time to keep the build in each ring, resulting in ad-hoc and 
highly variable procedures used in practice. These issues 
slow down the process, increasing the time to detect an issue 
and the time it takes for a good build to make it to production.  

 Second, only sufficiently large quality issues can be 
detected during the phased rollout process. Users will only 
provide feedback on the features they notice or experience, 
and, due to high variability of metric values over time, metric 
monitoring process typically can only reliably detect large 
changes in metrics, e.g. 10% or larger. Issues affecting a 
segment of the population not well represented in a specific 
ring are likely to go unnoticed as well [15]. 

 Third, the process is mostly concerned with the reliability 
aspect of build quality, such as crashes and performance, 
rather than with the impact of the build on user experience 
and the ability of users to successfully and in a timely manner 
achieve their objective. But, as described in [16], most new 
features do not have the intended positive effect on users that 
the developers hoped for, leading to increased desire to 
measure the impact on the success of users to complete their 
objectives in addition to ensuring the build’s quality. 
Learning about the impact of the new build on user 
experience as early as possible is also important for 
estimating the value of feature for the customers, as well as 
for informing the design of the next iteration of the product. 
While verbatim feedback often contains qualitative 
information about how much users like or dislike new 
features [5], this feedback is highly skewed - users who 
disliked the feature are generally more likely to provide 
feedback than those who liked it – and does not provide an 
objective way to evaluate the overall impact. Also, since in 
established products new releases have only slight 
incremental impact on user experience, the change in user 
experience is often too small to be detected. 

The issues mentioned above serve as a motivation for us 
to combine phased rollout with controlled experiments - a 
proven mechanism for evaluating the impact of changes. 

B. Online Controlled Experiments 

Online Controlled Experiments, or A/B tests, are widely 
used by data-driven companies to evaluate the impact of new 
features on user experience in websites [17], [18], mobile and 
desktop apps, gaming consoles, social networks [19], and 
operating systems [20].  In the simplest controlled 
experiment, users are randomly assigned to one of the two 
variants: control (A) or treatment (B). Usually control is the 
existing system and treatment is the system with a new 
feature added, say, feature X. User interactions with the 
system are recorded and from that, metrics are computed. If 
the experiment was designed and executed correctly, the only 
thing consistently different between the two variants is the 
feature X. External factors such as seasonality, impact of 
other feature launches, moves by competition, etc. are 
distributed evenly between control and treatment and 
therefore do not impact the results of the experiment. Hence, 
any difference in metrics between the two groups can be 

attributed to either the feature X or noise. The noise 
hypothesis is ruled out using statistical tests such as t-test [21]. 
This establishes a causal relationship between the change 
made to the product and the change in user behavior, which 
is the key reason for widespread use of controlled 
experiments [4].  

Controlled experiments address the three problems with 
ensuring the software quality discussed above [9]. A power 
calculation can be done to determine the optimal length of 
time to run an experiment to detect the impact we are 
interested in, which, because of the increased sensitivity in 
detecting changes, is usually much shorter than the full 
rollout process. Due to all external factors being randomized 
between control and treatment, very small changes in metrics 
(e.g. less than 1%) can often be reliably detected. Finally, 
rather than focusing on what users say they do, like, or dislike, 
experiment analysis focuses, via a rich set of metrics, on what 
users actually do, resulting in a more precise and unbiased 
evaluation of the new feature.   

The above advantages of controlled experiments resulted 
in more and more companies starting to evaluate changes to 
their products with experiments, in addition to validating 
build quality with phased rollout [22]. The two techniques are 
generally used complementarily. First, a build containing a 
number of inactive, or dark, features is rolled out to 
production. Then, experiments are run on these features to 
determine their impact. The winning features are then 
activated for all users. In subsequent builds, the 
experimentation configurations are removed to make these 
features the default experience, reducing the technical debt 
introduced during the process [23]. At Microsoft, many 
products employ both controlled experiments and phased 
rollout.   
      The problem with the above approach, however, is 
increased risk. To obtain unbiased results, experiments need 
to be run on the production population. But launching a new 
feature to production always carries a risk of an undetected 
bug causing a crash, hang, or other severe degradation. 
Another problem is that less verbatim feedback is obtained 
during the evaluation. Only a randomly sampled subset of the 
inner ring users would see the feature during the evaluation 
and be able to submit the feedback. Finally, the above 
approach still suffers from the slowness of the traditional 
phased rollout process that the new build needs to go through 
before being evaluated via an experiment.  

 In section IV, we describe a solution that combines the 
benefits of phased rollout and controlled experiments, while 
addressing the above problems.  

III. RESEARCH METHOD 

      The research presented in this paper has been induced 
through a case study at Microsoft Corporation in the USA 
between July 2017 and August 2018. The authors of this 
paper are or have been employed at the Analysis and 
Experimentation (A&E) team of Microsoft. The A&E team 
provides a platform and services for running controlled 
experiments and rollouts. Its data scientists, engineers and 
program managers are involved with product teams and 
departments across Microsoft every day. In a year, over ten 
thousand trustworthy controlled experiments and rollouts are 
conducted and analyzed.  
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      In the remainder of this section, we briefly describe our 
case study based on the recommendations described by 
Runeson and Höst [24]. 
      Data Collection. The primary sources of data were the 
following. First, we used historical data such as product logs, 
experiment scorecards, experiment metadata, and meeting 
minutes. Second, we collected internal documentation such 
as documents describing the experimentation process, 
platform, and the aforementioned phased rollout approach. 
Third, we collected notes and screenshots of real experiments 
that ran at MS Office (see e.g. Fig. 3). Finally, the first three 
authors of this paper had daily hands-on experience in 
running experiments and access to workshops, meetings and 
tutorials with other practitioners at Microsoft. 
      Data Analysis. We employed both qualitative and 
quantitative approaches to data analysis. First, the authors of 
this paper jointly analyzed the collected data through 
thematic coding [25] to identify, for example, the common 
characteristics of a ring such as its size and average length of 
the experiments in that ring. This analysis was particularly 
useful to empirically induce a description of our main 
contribution – the CRL approach. On the other hand, to 
evaluate our proposed approach, we analyzed several 
hundreds of experiments that ran at MS Office through 
descriptive statistics. In particular, we examined how many 
experiments in a CRL provided insightful results to product 
teams for a quicker reaction when compared to releases that 
were done through the traditional phased rollout. We provide 
more details about this part of the analysis in Section V. 
      Threats to Validity. Runeson and Höst [24] recommend 
the use of different kinds of triangulation in order to mitigate 
several kinds of threats to validity in case study research. We 
applied several of these triangulation techniques, in 
particular, using confirming evidence from multiple sources 
(getting the same answers from data scientists, engineers, and 
program managers), using different methodologies 
(employing quantitative and qualitative methods), and having 
several data collectors. Despite these efforts, however, our 
research risks several threats to validity [24].  

Construct validity. To mitigate construct validity threats, 
we conducted the research in a setting where everyone was 
very well familiar with the terminology and elements of 
experimentation, phased rollout etc. through prolonged 
involvement [26].   

External validity. The theory induced in this research is 
applicable and most valuable for product organizations and 
companies that share common characteristics with our case 
company. In particular, these are the companies that are able 
to release software in phases to different audiences and have 
the knowhow and infrastructure to conduct online controlled 
experiments.  

Reliability. To mitigate reliability threats, we employed 
member-checking and peer-debrief techniques [26]. In 
particular, multiple researchers reviewed the data as well as 
the induced theory, and over a dozen of practitioners working 
at the case company that were not directly involved in this 
study provided feedback on our work.  

IV. PRACTICAL GUIDE TO CONTROLLED ROLLOUT 

      In this section, we introduce the approach of Controlled 
Rollout (CRL). In particular, we discuss the strategies for 

designing and organizing rollout metrics, for deciding on 
rollout durations, and strategies for designing and decision 
making in individual rings. We illustrate our approach and 
the individual contributions with a practical example. 

A. Controlled Rollout Essentials 

In a CRL, the deployment follows the phased rollout 
process described in the previous sections. The main 
difference is that during each phase of the rollout (in each ring) 
a controlled experiment is run. The reliability and impact of 
the build on the users in the ring is measured, and, if pre-
specified criteria are met, the rollout proceeds to the next ring 
starting a new experiment there, while fully deploying the 
build to the preceding ring.   

 While the idea of CRL is simple, its implementation in 
practice poses many challenges: the audience within a 
specific ring is typically not representative for all production 
users, different users may be installing the build and getting 
into the experiment at different points in time creating further 
bias towards early adopters, the number of users in early rings 
may be small, the criteria for advancing to the next phase 
need to be defined so as to balance the reliability of the build, 
the learnings about user impact, and the speed of moving to 
the next phase.  

Since each ring has different type and number of users, 
the types of metrics and statistical criteria for advancing to 
the next phase should also differ from ring to ring. The larger 
the number of users in the experiment, the smaller the 
magnitude of changes in metrics that the experiment is able 
to detect [27]. Therefore, in general, in the early and small 
rings, one should focus on larger effects, such as harmful 
degradations in software quality. In later and larger rings, one 
should shift the focus to smaller effects, positive or negative, 
on user engagement and satisfaction. Table 1 summarizes our 
recommendations for the basic ring setup described in Fig. 1 
above, which we elaborate in more details below.  

B. Rollout Metrics 

      A rich set of metrics is required for different phases of a 
controlled rollout. In this subsection, we review the major 
types of metrics that are created for most controlled rollouts 
at Microsoft. We differentiate between global metrics (e.g. 
Data Quality, Guardrail and Success metrics), which are 
applicable to most controlled rollouts, and local metrics, 
which are applicable to individual rollouts. We hope that the 
structure below can be used as a practical guide for metric 
design and interpretation of results of controlled rollouts.   
      Data quality metrics. These metrics are created to ensure 
that each phase of a controlled rollout is set up correctly and 
that the results of the experiment are trustworthy. Statistically 
significant difference on any of these metrics in any direction 
indicates an issue. One of the most important data quality 
metrics is the ratio of the number of users in each group, or 
sample ratio. A Sample Ratio Mismatch (SRM) happens 
when the observed ratio is different from expected, indicating 
that either the controlled rollout was not set up correctly or 
there is some missing data / redundancy issue that impacts the 
treatment and the control groups unevenly.  
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TABLE 1. Rings of an example of controlled rollout. 

SRM violates the basic principle of controlled experiments 
that the treatment and the control groups must be selected 
randomly, and typically completely invalidates the results. 
Other common data quality metrics measure the rate of data 
delay and loss, reliability of instrumentation, cookie churn, 
etc. The first step in analyzing any phase of a controlled 
rollout is to ensure that data quality metrics did not move. 
      Guardrail metrics. These metrics represent important 
business constraints that should not degrade as a result of the 
rollout. Examples of guardrail metrics are application crash 
and hang rate, service load time, number of page views, etc. 
One of the major goals of phased and controlled rollout is to 
ensure that guardrail metrics do not degrade with the 
deployment of a new build.  
      Success metrics.  Also referred to as Overall Evaluation 
Criteria (OEC) [28]. These are the key metrics which indicate 
that the new build or feature are likely to lead to an increase 
in long-term business goals, such as user engagement and 
retention. Good success metrics are often difficult to define, 
as many obvious choices do not work. For example, short-
term revenue is generally not a good choice because it is easy 
to increase it by, e.g., showing users more ads, which may 
result in user dissatisfaction and abandonment over the long 
term. Accurately estimating the long-term impact involves 
many factors and is challenging [29], [30]. 
      Local metrics. These are metrics that directly measure 
users’ engagement with the new features being tested. While 
data quality, guardrail, and success metrics apply equally to 
all controlled rollouts and therefore are often referred to as 
“global metrics”, local metrics are of interest specific to the 
rollout and the new feature.  One of the most important types 
of local metrics is “feature usage metrics”. These metrics 
track whether the new feature is triggered correctly and 
measure how frequently users interact with it. For example, 
if a new menu item was added to the product, the number of 
clicks on that item could be a good feature usage metric. In 
many cases, feature usage metrics do not apply to the control 
group which was not exposed to the new feature. Feature 
owners monitor these metrics to check if the feature is 
triggering and working as expected. Besides, there should 
also be local metrics that measure the impact of the new 
feature at a higher level, and these metrics should be applied 
to both the treatment and control groups. Following the menu 

item example, suppose the new item is an extra way of 
sharing a Word document with other users. Feature owners 
should consider creating metrics that measure document 
share activities and users’ engagement with the menu as a 
whole. Such metrics are an important indication of whether 
users’ needs to complete their objectives are met. They show 
the level of engagement with the new features relative to 
other existing features, and help to understand deeper and 
debug the movements observed in global, guardrail and 
success metrics.  
      Local metrics are usually closer to specific feature 
changes, and because of that many learnings for future 
iterations of the product come from understanding which 
local metric changes lead to improvements in global metrics. 
While phased rollout can capture some local metric changes, 
controlled rollout is able to measure more changes more 
accurately due to much higher sensitivity. 

C. Length of Rollout Periods 

Another key question is how long the controlled rollout 
should run at each ring. This is a trickier problem than it 
seems. On one hand, the running period needs to be long 
enough so that feature owners can collect the data they need. 
On the other hand, it cannot be too long since feature owners 
want to iterate quickly in the current ring and move forward 
to the next ring. The optimal solution should align with the 
objectives of the ring and the availability of data.  

In this subsection we describe a practical method to 
determine the length of the experiment period based on the 
theory of hypothesis tests. In the next subsection we will 
discuss how to combine this theory and the objectives of the 
ring to choose the proper rollout period for each ring.    

In a typical controlled experiment, a two-sample t-test is 
applied to each metric to determine whether its values in the 
treatment and the control groups are significantly different 
from each other. The t-test constructs the test statistic by 
dividing the difference on the mean value of the two samples 
by the combined sample standard deviation. This test statistic 
follows a t-distribution with degree of freedom equaling to 
the total sample size minus two. When the sample sizes of the 
experiment groups are large, which is the case for the 
majority of online products, the distribution of the test 

Ring Name Size (user count) Length of 
Rollout Phase 

Focused Metrics Pass Criterion 

Dogfood Very small. From less 
than one hundred to 
several hundreds. 

From days to 1 
week. 

Guardrail metrics, 
Local metrics 

Feature is being triggered and users are engaging 
with it. 

No serious bug or crash that moves guardrail 
metrics by over ~10%. 

Internal Small. Hundreds to 
thousands. 

Up to 1 week. 
Guardrail metrics No serious bug or crash that moves guardrail 

metrics by over ~10%. 
No negative impact on product usage. 

Insiders Medium to large. 

Tens to hundreds of 
thousands. 

2-4 weeks. 
OEC metrics, 
Local metrics, 

Guardrail metrics 

Positive movement on local metrics that measure 
the direct impact. 

No negative impact on guardrail, OEC or other 
local metrics. 

Production Very large. Hundreds 
of thousands to 

millions. 

2-4 weeks or 
longer. 

OEC metrics 
Local metrics 

Guardrail metrics 

Effectiveness of the new feature, which is reflected 
by improvement on OEC or local metrics. 

May require a trade-off between gains and losses 
among different metrics. 
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statistic approximates to the standard normal distribution. 
This distribution will be used for making the final inference.    

Let 1-α be the confidence level, β be the statistical power 
and 𝑧(⋅) be the inverse cumulative distribution function of 
the standard normal distribution. For simplicity, assume the 
treatment and the control groups have the same number of 
users. It can be shown that, in order to be able to detect a Δ% 
change of a metric at confidence level 1-α and power β, we 
need at least 𝑛 users in each group, where  

 

𝑛 = ൮
𝑠 ൬𝑧 ቀ

𝛼
2

ቁ + 𝑧(𝛽)൰

𝜇Δ%
൲

ଶ

(1) 

 
Here µ is the mean value of the metric in the control group, 
and 𝑠 is the standard deviation of the metric. In practice, α 
and β are set to be 0.05 and 0.8 respectively for most cases. µ 
and 𝑠 can be estimated from the data.  
        Another option is to use the approximation formula as 
described in [31]. 
 

𝑛 =  
16𝜎ଶ 

(𝛥%)ଶ𝜇ଶ
(2) 

 
Feature owners need to set the proper target of Δ% based 

on the size of the ring and the objective. It can be seen from 
(1) or (2) that the required number of users 𝑛 is inversely 
proportional to the square of the sensitivity Δ%. In the early 
rings “Dogfood” and “Internal”, where the set of users is 
usually small, Δ% has to be relatively large so that the user 
count 𝑛 that makes the equation hold can be achieved within 
a reasonable period of time. When the controlled rollout 
enters later rings, the available number of users becomes 
much larger.  Hence feature owners can set up a more 
aggressive target on Δ%. 

Once feature owners have a target on Δ%, they can 
substitute it together with other parameters into Formula (1) 
or (2) and get the number of users needed to achieve the goal. 
They should then choose an experimental period which is 
long enough to collect this number of users.  

If feature owners plan to run controlled rollouts on a new 
product, they should run an A/A test on each of the rings first. 
An A/A test is a trial experiment where the treatment and 
control groups are exposed to exactly the same experience. 
This test ensures that the experiment configuration works 
correctly in the new setting, and it also help feature owners 
learn about the data. How many users do they collect in a 
given period of time? What are the metric values µ and 
standard deviation 𝑠? With this learning, feature owners can 
set a realistic target on the sensitivity Δ%, calculate the 
required user count 𝑛 from Formula (1) or (2), and decide on 
the length of the controlled rollout. 

D. Strategies for Each Ring 

The controlled rollout is conducted through different rings 
each having a different number and type of users. Therefore, 
feature owners need to define the goal, choose the exposure 
duration, select the set of metrics, and determine the pass 
criterion separately for each ring.  

      Dogfood. This group includes developers of the product 
and internal employees who volunteered to test the new 
features. It is the earliest ring of controlled rollout. At this 
beginning stage, the first goal is to verify that the new feature 
is triggered correctly. Feature owners should check the 
feature usage metrics and make sure the values are expected. 
Quality of instrumentation and correctness of new metrics 
should also be verified using local metrics. At this early stage, 
new features are usually not fully mature, and have a 
relatively high possibility to behave unexpectedly. Therefore, 
the second goal in this ring should be trying to identify 
egregious events, such as crashes and bugs, within a short 
period of time. Feature owners should check for dramatic 
(10+%) negative movement on guardrail metrics. If such 
movement is observed and identified as statistically 
significant, they should shut down the current rollout as soon 
as possible to stop hurting users. Then they will need to debug 
their feature based on the guidance from the metrics and 
quickly start a new iteration. Normally, controlled rollouts 
will stay in this ring for several iterations before all bugs are 
fixed. When no significantly negative movement on guardrail 
metrics is observed, feature owners should promptly move 
forward to the next ring.                    
      Fig. 2 plots the detectable change on a representative 
crash metric against the length of the rollout period for Office 
365 in the “Dogfood” ring.  

The values are estimated using the method described in the 
previous subsection. For our example, it can be seen that the 
rollout needs to be run for at least 7 days in order to detect a 
10% change in this metric. On the other hand, increasing the 
duration from 7-day to 14-day, we only see ~20% more new 
users in the rollout, which improves the detectable percentage 
change to about 8%. This improvement, in general, makes 
only a small difference in the results. Considering both the 
improvement in metric sensitivity and the time cost, 7-day is 
the optimal duration.  
      Internal. This ring includes internal employees who use 
the product regularly. The size of this ring is slightly larger 
than the previous one, ranging from hundreds to thousands of 
users, depending on the organization. The objective of 
controlled rollout in this ring is similar to the “Dogfood” ring. 
Feature owners should still focus on checking for crashes and 
bugs. But since most of the egregious events have been 
cleared off in the “Dogfood” ring, feature owners can focus 
on less sensitive guardrail metrics.  
      At the early rings “Dogfood” and “Internal”, compared to 
the traditional phased rollout technique, controlled rollouts 

Fig. 2. User count and detectable change vs rollout duration. 
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are more sensitive in detecting the impact of new features. If 
there is a seriously harmful effect, a controlled rollout can 
usually identify it in days as double-digit percentage change 
on its guardrail metrics. At Microsoft, we have a monitoring 
and alerting pipeline coupled with our rollout system. Data 
scientists and feature owners will be notified immediately 
when there is a significant movement on a metric that exceeds 
the pre-defined threshold. They can even require the system 
to automatically shut down the rollout if the effect is 
"extremely harmful", which is defined as dramatic negative 
movement on some key metrics. This mechanism allows 
feature owners to quickly iterate on their new features. On the 
other hand, if there is no egregious event, the controlled 
rollout is able to confirm this within 7 days and allow feature 
owners to move to the next ring. In contrast, in a phased 
rollout, feature owners may have to wait for weeks to gather 
enough feedback from dogfood users and paid testers, then 
analyze it and decide whether their feature is safe to be 
promoted to the next ring.  
      Insiders. This ring includes external users who opted in 
to try new features of a product before they are officially 
released. In this ring, there is a much larger set of users, 
normally hundreds of times larger than the earlier rings. This 
enables feature owners to detect much smaller percentage 
change on most metrics. Therefore, their objectives should be 
adjusted accordingly. The first goal is to still check for 
guardrail metrics. Although the most harmful bugs were 
already identified and fixed, it’s not uncommon to find 
single-digit percentage point degradations in guardrail 
metrics which were not detected in the earlier rings. In 
addition, the behavior of users in this ring can be very 
different from the previous two rings. Users in “Dogfood” or 
“Internal” use the product in a somewhat homogeneous way, 
since they are from the same organization and work on 
similar tasks. In contrast, users in the “Insiders” ring tend to 
be more diverse and are likely to trigger new bugs. The 
second goal is to start monitoring OEC and local metrics. 
Local metrics which measure the direct impact of the new 
feature should show significant positive movement in this 
ring. Otherwise, it may indicate that the new feature is not 
being noticed by the users or may not be functioning 
correctly. Also, OEC metrics should be at least flat. Any 
significantly negative movement on OEC metrics will be an 
alarming sign. When this happens, feature owners need to 
dive into the data to understand the reason before moving to 
the next ring. In [15], we described an effective approach to 
analyze such cases.  

At Microsoft, based on the data that we collect in the 
“Insiders” ring, the detectable percentage change Δ% is 
around 3% for guardrail and some of the local metrics, and 
around 1% for OEC metrics. Using the estimation method 
discussed in the previous subsection, we found that most 
controlled rollouts should run for 2 weeks. This time period 
is not just for collecting enough data points to meet the goal 
on Δ%, but is also the minimum length required by some 
OEC and local metrics. For example, the "retention rate" 
metric, by definition, only counts users whose activities cross 
a given time span, such as 7 days. Typically, the controlled 
rollout needs to run for at least twice as long for these metrics 
to be valid and gather enough users.  
      In the traditional phased rollout process, one of the most 
important ways to evaluate the new feature at the Insiders ring 

is to analyze user feedback. Although it directly reflects the 
impression to the new feature of some users, user feedback 
does not provide a full picture. For example, users only 
provide feedback on what they see, but hardly noticeable 
features can sometimes have huge business impact. An 
example of such feature is the tuning of the font colors of 
Bing.com search result pages in 2013 (page 3 of [32]). The 
change was so small that almost no one could tell the 
difference until seeing both treatment and control colors side 
by side. However, that change generated an additional ~10 
million dollars annually for Bing. User feedback alone cannot 
provide a comprehensive evaluation on efficiency, user 
retention, performance cost and crashes, which controlled 
rollouts do. Feedback can also be biased. Users who leave 
feedback generally engage with the product more actively 
than users who do not. If product owners just look at user 
feedback, the impact of the product on less active users may 
be ignored. Controlled rollout complements user feedback 
with its rich set of well-designed metrics calculated from tens 
or even hundreds of thousands of users. 
      We illustrate the last point in the previous paragraph with 
an example of a controlled rollout which ran at Microsoft in 
the first half of 2017. The Word product team in the Office 
group conducted a controlled rollout on a feature that 
changed the default view of Word on Android devices from 
the "print layout view" to the "mobile view" (Fig. 3), which 
allocated more screen space to the document, and zoomed in 
to make it easier to edit.  

 
Fig. 3. The print layout view (control, left) and the mobile view (treatment, right) 
for Word on Android. 
 
      When the rollout was executed in the Insiders ring, 
feature owners also collected user feedback. Most users said 
they really liked this new view because they could easily edit 
the document. However, the experiment results were mixed. 
The engagement metrics moved positively only for users who 
had modified at least one document (through either create or 
edit action) during the experiment period. This group of users 
was more active than the other group, but they only accounted 
for about 30% of the whole user set. For the remaining group, 
which contained users who just opened and read documents, 
the engagement metrics actually moved in the opposite 
direction. In addition, the feature owners observed a 13% 
increase in "quick view switches", which is a local metric that 
measures how often users switched to the non-default view 



This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International 
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada.  May 29 - 31, 2019. 

within 5 seconds after the document was opened. This result 
suggested that setting the mobile view as default was not well 
accepted by all users. As a result, the Word team decided to 
redesign the feature. They eventually rolled out a less 
aggressive version, which showed the mobile view by default 
only on those documents which users opened before and 
closed while in the mobile view. 
      Production. This ring includes the general group of 
external users of the product. When the controlled rollout 
completes at this last ring, feature owners need to decide 
whether they should officially release their feature, and they 
should mainly rely on OEC metrics to make this decision. In 
general, in order to ship a feature, there need to be significant 
positive movements on OEC metrics. Some controlled 
rollouts, however, are for minor feature changes which 
themselves may not have significant impact on OEC metrics, 
in which case local metrics can be used, provided that OEC 
and guardrail metrics do not degrade. The “Production” ring 
is the largest of all the rings of controlled rollouts. At 
Microsoft, most products have millions to hundreds of 
millions of users in this ring. Such a large user set allows us 
to set very aggressive targets on the detectable percentage 
change Δ%, usually at around 0.5% or smaller. This is 
necessary at least for the OEC metrics, which, in general, are 
hard to move [32]. In order to detect such small change, 
controlled rollouts need to run for at least 2-4 weeks.  
      In contrast, the traditional phased rollout process 
evaluates the impact of the new feature by comparing the pre-
period data to that in the post-period (after the release of the 
feature). This analysis can easily be biased by many factors, 
such as periodical / seasonal effects or the interference of 
other features that were rolled out during the same period. 
The traditional method can only reliably detect changes of 
10% or higher, the magnitude rarely observed in OEC 
metrics.  

 
Fig. 4. Metric values on two variants in the cases of phased rollout (top) and 
controlled rollout (bottom). 

       
Fig. 4 plots the values of one of the OEC metrics of the 
“mobile view” rollout described above. The top part shows 
what the metric looks like if we keep the current “print layout 
view” in the first week, and roll the new “mobile view” out 
in the following week. It can be seen that the metric values 
change from day to day, and it is very difficult to decide 
which view has a higher value on this metric. In contrast, the 
bottom part shows the values of this metric in the controlled 
rollout. In this case, it is much more obvious that the metric 
value for the “print layout view” (control group) is 
consistently lower than the value for the “mobile view” 
(treatment group). From hypothesis test, it can be shown that 
on average, the metric is about 2.5% higher for the “mobile 
view” when compared to the “print layout view”. The p-value 
is less than 10ିଶହ, which indicates that the difference is very 
significant. This example shows that controlled rollouts are 
able to detect much smaller percentage changes. As a result, 
it allows feature owners to detect changes in a much wider 
range of metrics in a much more detailed way. 

V. EVALUATION OF CRL 

      In this section, we evaluate the effectiveness of controlled 
rollout technique by examining the logs of controlled rollouts 
on Microsoft Office client apps during a several months long 
period of time in 2018.  
      MS Office. At Microsoft Office, there are hundreds of 
controlled rollouts in each ring. For each rollout, there are 
scorecards [15] that contain the corresponding metrics for 
periods of the first 3 days, first 7 days and longer time ranges 
(14, 21 or 28 days if the rollout ran for that long). 

In reviewing the logs, and to evaluate the effectiveness 
of controlled rollouts, we try to answer the following 
questions: (1) How often do controlled rollouts 
“outperform” the traditional phased rollout process?  in 
terms of, e.g., detected issues, moved to the next ring faster, 
or provided more insights, and (2) was the length of rollout 
periods selected by our strategies appropriate? To reduce 
the rate of false positive, we use 0.01 as the p-value threshold 
for the two-sample t-tests. 

Dogfood & Microsoft. In the “Dogfood” and “Microsoft 
(Internal)” rings, 35% of the controlled rollouts in our 
evaluation sample had significant movement in guardrail 
metrics. Of this subset of controlled rollouts, 79% of them 
detected significant movements within the first 3 days. The 
percentage change of the majority of these movements are in 
the range of 10%-50%. In our experience, this magnitude of 
difference is very challenging to be detected in such a short 
period by the traditional phased rollout process. Thus, 
controlled rollout allows feature owners to start investigating 
the issues and iterating much earlier than the traditional 
rollout process.  

For the remaining 21% of the controlled rollouts which 
had significant movement in guardrail metrics, the signal was 
first detected on the 7-day scorecards. This verifies our claim 
that controlled rollouts need to run for at least 7 days (given 
no signal was detected earlier) in these rings. For most of the 
rollouts in these two rings, there were no scorecards for 14-
day periods. However, we can estimate the p-values of the 
14-day results by assuming the same percentage delta and 



This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the proceedings of the 41st International 
Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP '19), Montreal, Canada.  May 29 - 31, 2019. 

standard deviations1 as on the 7-day scorecards, and scaling 
the sample size by 1.2 (based on our observation that 14-day 
rollouts acquire around 20% more users in these two rings 
than 7-day rollouts). Using this method, we predict that just 
3% of the rollouts will show significant guardrail metric 
movements on the 14-day scorecard but not on the 7-day one. 
Therefore, a 14-day rollout period is not necessary for most 
of the rollouts. In contrast, a 7-day rollout period would be a 
better choice. 

Insiders and Production. In the “Insiders” and 
“Production” rings, about 30% of the controlled rollouts had 
significant movement in guardrail metrics, and 61% of the 
controlled rollouts had significant movement in OEC or local 
metrics. Except for some very sensitive local metrics, the 
majority of these metric movements had percentage change 
within the ±10% interval. This magnitude of difference is 
difficult to be detected in the earlier rings, and almost 
impossible to be detected in the traditional phased rollout 
process by collecting user feedbacks or comparing data 
before and after the rollout. In contrast, controlled rollouts 
successfully capture these signals and provide feature owners 
with valuable insights. 

VI. CHALLENGES OF INTRODUCING CRL 

      In this section, we highlight four key practical challenges 
that companies can expect to experience with the introduction 
of controlled rollout. As this was not the primary goal of this 
study, the list is not exhaustive. Instead, we highlight the most 
frequent challenges that were identified during data analysis 
and through authors’ experience in controlled rollouts. 
      Controlled rollouts introduce critical dependency on data. 
As a result, all the challenges associated with having data in 
the loop will have to be solved for controlled rollouts. First, 
users need to be provided value such that they want to use 
their bandwidth to send data, and users need to trust that their 
data will be used in a manner consistent with privacy laws 
including the European General Data Protection Regulation 
(GDPR)2. At Microsoft, our Trusted Cloud is built on our 
commitments to privacy, security, transparency, and 
compliance. While diagnostic data may contain "personal 
data" as defined by Article 4 of the GDPR, all diagnostic data 
Microsoft collects during the use of Office applications and 
services, is pseudonymized as defined in ISO/IEC 
19944:20173, section 8.3.3. 
      Second, collecting comprehensive telemetry is essential 
for controlled rollouts and requires building systems for 
collecting this data, transforming it to a form suitable for 
experimentation, and then processing large scale data to 
draw meaningful insights. These are large-scale system 
design challenges that need to be solved (e.g. [5]).  
      Third, telemetry collection is further complicated when 
the software is installed in a client with variable bandwidth, 
including some periods of not being connected to the internet. 
In these cases, the data processing system needs to account 
for missing and delayed data.  

                                                           
1  This assumption may not be true for count based metrics e.g. “Number of 
Crashes per User”, whose standard deviation increases with the length of 
analysis period. However, most of the guardrail metrics in our case are ratio 
based, e.g. “ratio of activities with crashes”, whose value is between 0 and 1 
and hence have much more stable standard deviation.  
2 The full document of this regulation can be found at https://eur-
lex.europa.eu/eli/reg/2016/679/oj 

      Fourth, since controlled experiments are an essential 
component of controlled rollout, another set of challenges 
involve building the infrastructure for experimentation 
[33]. For example, assigning variants – treatment and control 
– is a critical part of experimentation infrastructure that needs 
to be analytically validated before the results of 
experimentation can be trusted. This process, in our 
experience, takes multiple months. While there are tools for 
building basic experimentation infrastructure, a deeper 
integration of experimentation with the rest of the software 
development process is a substantial challenge. 

Finally, a secondary effect of integrating 
experimentation with software development and deployment 
is the requirement of integrating data science as a discipline 
in the software development team. Introducing expertise on 
controlled experiments and statistics takes time and might 
seem to be slowing down the core tasks of the development 
team, but this is a necessary step to avoid pitfalls in 
experiment design and result interpretation [34]. 

VII. CONCLUSION AND FUTURE WORK 

      Ensuring that software meets quality standards and 
satisfies users’ needs is critical for every company, and very 
challenging to get right at a large scale [34]. For this purpose, 
controlled experiments and phased rollouts are two novel 
approaches that are gaining momentum across the software 
product industry [3], [4], [22]. Based on our experience, 
however, the union of the two approaches yields the most 
value for product development. 

In this paper, we introduced controlled rollout as a hybrid 
approach that combines the strength of controlled 
experiments with that of phased rollouts. We described the 
challenges of implementing and correctly applying controlled 
rollout, illustrating the discussion with real examples of 
controlled rollouts done at Microsoft. Next, we evaluated 
controlled rollout at MS Office and confirmed its 
effectiveness. Finally, we discussed practical challenges of 
introducing controlled rollouts into large mature software 
products and proposed a number of mitigations. 

Since the process of controlled rollout can be viewed as 
controlled experimentation with different rings which may 
have disparate behavior, the question of what to measure at 
each ring and how long to run the rollout to get meaningful 
results is an active area of research. While our contribution 
proposes one answer to this question, we believe different 
business problems could lead to different answers. Another 
active area of research is on what to do when some of the 
rings have small sample sizes. While power analysis can 
provide some guidance, the problem itself is an active area of 
research in controlled experimentation. 

Just as controlled experiments can have multiple 
treatments, controlled rollouts can have multiple variations 
and this possibility introduces new areas of research. 
Consider a controlled rollout with a rare bug – can this bug 
be detected by using multiple variations? Extending the idea 

 
3  Information technology — Cloud computing — Cloud services and 
devices: Data flow, data categories and data use. 
https://www.iso.org/standard/66674.html 
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of multiple variations to a large number, say hundreds, of 
variations turns the controlled rollout process into an 
optimization mechanism, leading to an interesting set of 
questions on data pipelines and analytical processes, such as 
multiple comparison problems with hundreds of variants. 
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