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ABSTRACT

This work introduces a fast and lightweight homomorphic-encryption
pipeline that enables privacy-preserving machine learning for phish-
ing web page recognition. The primary goals are to use visual
features to train an accurate model and to implement an inference
pipeline with practical runtime and communication costs. To do
so, we deploy a variety of techniques that cover deep learning and
optical character recognition to extract salient visual features, and
optimize the inner mechanisms of state-of-the-art homomorphic
encryption schemes to reduce the encryption-related costs. Our pre-
sented system is able to achieve over 90% on the visual classification
task, while using less than 250 KB of communication bandwidth and
around 0.7 seconds of computation time. We hope our work not only
demonstrates a private visual phishing detection pipeline, but also
outlines techniques to practically utilize homomorphic encryption in
a variety of machine learning tasks.

Index Terms— Phishing, Classification, Homomorphic En-
cryption

1. INTRODUCTION

Phishing attacks attempt to fool users into revealing sensitive data
and personal information, and an especially prevalent technique is
to create a fake web page that visually imitates an authentic login
page and harvests credentials from the unsuspecting user [1]. Lever-
aging the visual attributes of web pages using deep learning-based
computer vision techniques could provide valuable signals to detect
and screen phishing attacks, greatly enhancing existing tools which
currently use only URL information and other simple metadata [2].
However, there are serious privacy concerns involved in displaying
the visual screenshot of a user’s internet activity to third-party ser-
vices, which may include snapshots of banking information, email
correspondences, corporate trade secrets, etc. This provides a strong
motivation to create a privacy-preserving approach that allows for
cloud computation while keeping the end user’s data secure. A tech-
nique highly relevant to this use case is fully homomorphic encryp-
tion (HE), a specialized form of cryptography designed for private
computation [3].

HE was first developed by Gentry et al., [3] and encompasses
techniques, which preserve homomorphisms when performing oper-
ations on encrypted data. At a high level, this means that encrypted
data can be sent over the internet to a third party, who can perform
arbitrary computational steps without ever having access to the raw
user data, thus protecting the privacy of the user. The most efficient
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fully HE schemes support additions and multiplications, which en-
able the computation of dot products and hence, naturally lend them-
selves to neural-network models [4]. The caveat, however, is that
HE is known for its high computation and communication costs, and
specialized schemes need to be developed for practical deployment
of HE in real-world applications.

In this work, we demonstrate a privacy-preserving system that
leverages visual features of a web page to identify the brand that was
phished by a doppelganger page. The proposed approach introduces
a new method of producing a compact yet salient feature vector for
training a machine learning model, and in addition, uses a variety
of novel techniques to speed up homomorphic encryption run-times
and communication costs. For this paper, Microsoft’s open source
SEAL library [5] is used to perform HE. This work is one of the first
demonstrations of a practical use-case of homomorphic encryption
in a highly relevant, real-world scenario. The following sections will
detail the methods used for both the machine learning and homomor-
phic encryption aspects of the aforementioned pipeline, and discuss
the experimental results that indicate the efficacy of the proposed
approach.

2. METHODS

Task Setting. Before presenting our methods, we first cover the task
setting under consideration. In our envisioned use case, a client’s
browser efficiently queries a cloud phishing-detection service with-
out revealing its plain input data or output results. The client ma-
chine (end-user’s local machine) collects screenshots of web pages
and/or emails the user is accessing, and collects visual features of the
page. Following this, the client encodes the computed features and
transmits the encrypted data to the cloud. In this setup, we implicitly
assume the client has the computing power to perform preprocessing
on the image as well as the encryption/decryption tasks.

In the cloud, the proprietary model performs inference on the
encrypted features, batches the encrypted probabilities together and
sends this back to the client, where the secret key is used to decrypt
the probabilities and a decision engine is used to identify the type of
phishing web page (e.g., Facebook, Outlook). If the system detects
that it is a phishing page, a warning message is shown to the end
user. The end-to-end workflow for this process is clearly illustrated
in Figure 1.

It should be noted that in this work, we are considering visual
signals for brand recognition and not other usable metadata such as
URLs and IP addresses. Essentially, our machine learning task fo-
cuses on analyzing visual similarity for brand recognition rather than
direct phishing classification, to avoid misclassifying malicious web
sites that are visually indistinguishable from a legitimate web page.
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Fig. 1. End-to-end Pipeline of the Proposed Phish Brand Recognition system

Methods: Machine Learning. As mentioned earlier, the first step is
to extract relevant features from the web page screenshot that com-
prise the visual information in the image. The following steps are
used for featurization:

1. The first set of features are obtained by evaluating the image
which is a model ResNet-52 model [6] where the final output
layer has been removed. This model includes a series of con-
volutional layers that have been pretrained on the ImageNet
dataset [7]. The features are essentially the outputs of the
penultimate layer of the network.

2. In addition, a second set of features are computed by evalu-
ating the image with an optical character recognition (OCR)
engine to extract text in the web page. This text is then en-
coded using a TF-IDF featurizer [8].

The reasons for this choice of featurizers are as follows. The
convolutional layers in the ResNet are intended to capture visual el-
ements (look and feel) of the page. However, using a model that
is pretrained on the ImageNet data entails downsizing the web page
screenshot, originally of dimensions 1000 x 750, to a much smaller
size of 224 x 224. The effect of this downsampling results in severe
degradation of textual information in the image. This loss is coun-
teracted by the second set of features that extract OCR text from the
original image.

Subsequently, these features are concatenated, and then en-
crypted (as described in the following section) prior to transmission
to the cloud. We implement a logistic regression classifier using HE
in the cloud that performs inference on the encrypted features. It
should be noted that the linear model is trained on an unencrypted
feature set - only the inference happens on encrypted feature vectors.
The choice of a homomorphically encrypted linear model is due to
the following reasons:

• Since the web page’s image is first processed by a ResNet-
52 model on the client, we found that including additional
encrypted dense fully connected layers did not improve the
overall detection performance and increases the noise budget
as well as the inference time on the encrypted features.

• The entire phishing detection model is intended to be oper-
ationalized for real-time phishing protection, and in such a
setting, latency is of consequence as it impacts the end-user
experience. Thus, a linear model, by its formulation, enables
rapid inference on the generated features.

Methods: Fully Homomorphic Encryption. There are numerous
methods to enable privacy-preserving oblivious inference, of which
we elect to use HE as our technical basis for our techniques. Se-
cure Multiparty Computation (SMC) is a separate encrypted compu-
tation paradigm that involves two parties performing joint computa-
tion without ever leaking information [9]. SMC’s primary drawback
is related to its prohibitively high communication cost, a severe limi-
tation in our cloud-based task setting. Secure hardware enclaves [10]
require the use of specialized hardware, which are not widely avail-
able on our cloud servers. In addition, this approach is also not based
on cryptographic primitives and are not as theoretically secure.

That said, HE is still known for its high computational costs [11],
and has thus seen limited adoption in practical use cases. In this sec-
tion, we cover techniques that can be used to reduce both the runtime
and the communication cost of the HE-based privacy-preserving
pipeline. These techniques work specifically on linear models under
the assumption of single examples rather than batched, where users
send over individual inputs and expect a prompt output rather than
an intermediary sending over a collection of inputs and the server
performing a batched computation.

Currently, Microsoft’s SEAL library implements two popular
HE schemes, namely BFV [12] and CKKS [13]. In the following
section, we conduct experiments with both schemes and compare
their performance.

We start with the most naı̈ve approach we can take to implement
homomorphic encryption for linear models. If we have an input vec-
tor of dimension x and y number of possible output classes, we know
our weight vector will have dimensionality of (x,x,y) and the bias to
have dimension y. The computation involves performing a dot prod-
uct on the input vector and the weights and adding the output to the
bias vector. We can encode each individual value within each of
these vectors as a ciphertext, and perform each individual operation
using the widely used HE scheme BFV. Because BFV only supports
integer encoding and does not provide rescaling, we also perform a
transformation to transform our vector’s floating point values to in-
tegers using a fixed-point conversion, and adjust our parameters to
account for the scale growth with each subsequent operation layer.

The first technique we focus on is batching, a powerful encoding
technique that can greatly reduce the amortized computation time of
encryption. The plaintext encodings used by HE schemes encode
the data in “slots” equal to the number of moduli, a parameter also
used to adjust the security level of the encryption. A convenient



..

a b c d

d a b c

a+d b+a b+c d+c

b+c d+c a+d b+a

a+b+c+d a+b+c+d a+b+c+d a+b+c+d

Fig. 2. Visualization of rotation/summation technique

property of these slots is that they can each hold a value, allowing
multiple values to be packed into one ciphertext and be computed
on in parallel without an increase in computational time or memory.
This technique has been used in the past to allow computation on a
batch of data, but we use this technique to parallelize the dot product
and addition operations in our linear model. We can pack our entire
input into one vector and our weight and bias features into y vectors,
performing a dot product with the input plaintext and each of our
weight ciphertexts in a parallelized fashion.

Before we do so, we need to leverage another technique, summa-
tion through rotation, to complete our dot product operation. With-
out batching, we simply multiplied our arrays element-wise, then
added each of the products to perform the summation. With batch-
ing, we are able to parallelize the multiplication step, but performing
summation on all the elements packed inside the ciphertext is not
as straightforward. The server cannot decrypt the single ciphertext,
which means it cannot access the values to perform the summation,
and needs to find a way to add up all the values given only the ci-
phertext. A useful technique in this case is ciphertext rotation, where
by creating special rotation keys known as Galois keys [14], we are
able to rotate a ciphertext’s slots in place. This allows us to create
a copy of our ciphertext and rotate it element by element, adding up
each of the values to obtain the summed value in our first slot. This
approach can be improved further by rotating in increments of pow-
ers of 2 (e.g. rotate 1, 2,..2(n/2)) while adding our ciphertexts. As
we can see in Figure 2, by our last rotation/summation, each slot in
our ciphertext will contain the summed value of our ciphertext.

The approach above solves the summation problem, but there is
a noticeable inefficiency in the dot product output. There are now
multiple ciphertexts with slots containing the same value, and we
will need a ciphertext for each bias value to add to our dot prod-
uct outputs. Furthermore, assuming the model has n outputs, the
client will receive n ciphertexts as output after sending over just one
ciphertext. Collapsing these output ciphertexts into one ciphertext
will both reduce the output size and also perform the bias addition
in parallel. As seen in Figure 3, by constructing bitmasks to strate-
gically zero out slots of each ciphertext, and then by adding these
ciphertexts together, we can get a final ciphertext where each slot
holds a value corresponding to its output position.

Our next optimizations involve the use of a different encryption
scheme called CKKS, which has several distinct advantages over
BFV. CKKS supports built-in floating point encoding, although it
does so by sacrificing the number of available slots by half. The main
advantage of CKKS is that it enables “rescaling”, a technique which
allows us to reduce the parameters of CKKS with some precision
loss of our floating point values. The parameter reduction speeds up
computation times and also reduces the size of the final ciphertext.
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Fig. 3. Visualization of masked summation

Furthermore, by carefully selecting our initial parameters (polyno-
mial moduli), we can increase the number of empty segments in our
ciphertext consisting of null values, which allows us to reduce the
ciphertext even more by using a compression library.

Method Encryption Time Computation Time
Plain N/A 0.0014 sec
BFV (no batching) 13.1326 sec 211.229 sec
BFV (with batching) 0.313412 sec 1.18373 sec
CKKS 0.183926 sec 1.14705 sec
CKKS + rescale 0.008562 sec 0.689715 sec

Table 1. Homomorphic Encryption Results - Timing

3. EXPERIMENTS

Dataset. Our dataset consists of web site screenshots collected
from Microsoft’s in-house URL detonation tool, accompanied
by manually-generated labels indicating the brand that was be-
ing phished. This dataset comprises 18,854 malicious screenshots,
as well as an additional 1000 screenshots of legitimate web pages.
The classes represented within our dataset consist of 20 commonly
targeted companies, including social media web sites like Face-
book and LinkedIn, banking web sites like Bank of America and
American Express, and enterprise pages like Outlook and Adobe.
Results: Machine Learning. In Section 2, we describe how to con-
struct a feature vector by using a deep CNN as a feature extractor and
an OCR algorithm. To convert the text from OCR to a mathemati-
cal vector, we use TF-IDF which weighs rare keywords like brand
names heavily. Specifically, we use an Imagenet-pretrained ResNet-
52 model with the final fully connected layer removed and the open
sourced Tesseract software [15], each of which create a 2048 x 1
vector, which we subsequently concatenate to create a 4096 x 1 fea-
ture vector. By using open-source algorithms like ResNet-52 and
Tesseract, the user is able to construct features on their local com-
puter without the server having to send over proprietary algorithms
or models to the user, which ensures training data privacy.

As we can see from accuracy results presented in Table 3, solely
using ResNet features or OCR features can only produce a model
with mediocre accuracy, while combining the features together al-
lows our model to attain 90.57% accuracy. This is a good indicator
that the two feature vector sources encode different aspects of the
image, with the OCR-based features capturing the textual data and
the CNN-based features capturing the visual feel of the web page.
Results: Homomorphic Encryption. The homomorphic encryp-
tion timing results are summarized in Tables 1. Our final trained
model consists of 40,960 multiplicative operations and 4,106 addi-
tive operations and takes 0.0014 seconds to run in a normal setting.



Method Input Size Output Size Bit Precision
Plain 32.768KB 0.168KB N/A
BFV (no batching) 1.61GB 8.26MB 4th digit
BFV (with batching) 393.29KB 8.26MB 4th digit
CKKS 393.29KB 8.26MB No Loss (7th digit)
CKKS + masking 393.29KB 393.29KB No Loss (7th digit)
CKKS + masking/rescale 393.29KB 131.145KB 6th digit
CKKS + masking/rescale + compression 329.628KB 130.096KB 6th digit
CKKS + masking/rescale + new params for compression 246.825KB 88.94KB 4th digit

Table 2. Homomorphic Encryption Results - Memory and Precision

Features Accuracy
Resnet Features 61.1%
OCR 71.25%
Resnet Features + OCR 90.57%

Table 3. Phishing Classifier Accuracy

We can easily observe that our first naı̈ve approach requires a pro-
hibitively large amount of encryption and computation time, taking
over 3 minutes to perform both steps. With batching, we are able to
achieve a massive speedup, reducing our computational time to a lit-
tle over a second. Switching to the CKKS scheme results in a slight
amount of further speedup. Utilizing the rescale operations in CKKS
cuts our final encryption time to milliseconds and the computation
time to around 0.7 seconds, which is below the reasonable amount
of time the user would need to enter their personal information like
their passwords, preventing data theft.

We see similar benefits in Table 2 in memory consumption by
using the proposed optimization schemes. As a baseline, our plain
inputs and outputs are around 30KB and 0.2 KBs, respectively. With
our naı̈ve approach, we have a prohibitively high input size of 1.61
GB and output size of 8.26MB. With batching, we are able to cut
down our input size significantly to around 400KB; however, we
still have the same number of ciphertext outputs. We need to use
the masking trick to cut down our output to the same size as our
input. We can see that by switching to CKKS and using rescaling,
we can further cut down our output size by almost a third. Finally, we
can see that though non-optimal parameter selection does not result
in much memory reduction through compression, careful selection
of our parameters allows us to cut down our input and output sizes
further by around 30% to 250 KB and 90KB, respectively, which,
in turn, are much more practical for wireless transfers.

We also analyze the effects of our optimizations on the precision
of our computations in Table 2. The integer encoding we perform to
use BFV results in a loss of precision to about the 4th digit, which
is high enough to perform analysis like softmax to obtain reliable
results. Switching to CKKS immediately results in much higher pre-
cision due to the support of floating point encoding. By performing
rescaling, we drop our precision to around the 6th digit, and param-
eter reselection drops our precision to about the 4th digit once more.

Summary. Our experiments clearly show the benefits of our model
selection and homomorphic encryption optimizations. Our final
pipeline results in model accuracies of over 90%, computational
times under a second, and communication costs significantly below
a MB. This is achieved without any loss of client or server privacy
through our use of open-sourced models and software.

4. RELATED WORK

Many techniques have been developed using both hardware and soft-
ware to protect the privacy of computational data. Several of these
methods such as HE are designed to enable oblivious computation, a
paradigm in which the party computing on a data item is unaware of
the contents or the output of the computation [16]. SMC is another
cryptographic technique, which allows multiple parties to jointly
compute on data while keeping their own subsets private [9]. Secure
hardware enclaves are a hardware-based approach towards oblivious
computation, which utilizes practices related to physical security and
side channel mitigation rather than cryptographic primitives to pre-
serve privacy [10].

A different group of algorithms related to differential privacy
are designed to address a different notion of privacy that aims to
limit privacy leakage when data is accessed [17] [18] [19] [20] [21].
These techniques often involve transforming the dataset to normalize
the statistics of the general population in some way, whether through
removing outliers or adding random noise to a dataset [22].

Phishing defenses have long used the metadata of web sites such
as URL information and page-content to detect malicious sites [2].
One work detects attacks that substitute parts of the URL with visu-
ally similar characters (e.g., 0 for O) meant to fool users [23]. Other
works [24] have used visual aspects of the web page (color distribu-
tion, logos etc.) for phishing detection.

5. CONCLUSION

Phishing attacks continue to be a major cybersecurity problem as at-
tacks become more elaborate and targeted. The visual appearance
of a web page can hold a great deal of information for phishing de-
tection and defense, but revealing screenshots to third party services
represents a severe privacy risk. By carefully selecting how we ex-
tract signals from visual features and utilizing a multitude of homo-
morphic encryption techniques, we can create a practical pipeline
that allows cloud services to provide visual phishing classification
without any privacy loss.

Further improvements can be made to improve both our visual
signals for machine learning and homomorphic encryption costs.
Our feature vectors can be enhanced to capture other aspects of
our web page, which could involve using object detection to seg-
ment logos from web sites [25] [26]. Encrypted computation time
can also be accelerated through specialized hardware such as FP-
GAs [27]. We hope that this work demonstrates a practical privacy-
safe pipeline for not only phishing detection, but also other machine
learning tasks used in privacy-sensitive environments.
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[10] Florian Tramèr and Dan Boneh, “Slalom: Fast, verifiable
and private execution of neural networks in trusted hardware,”
2018.

[11] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi,
“Cryptodl: Deep neural networks over encrypted data,” arXiv,
2017.

[12] Shai Halevi, Yuriy Polyakov, and Victor Shoup, “An improved
rns variant of the bfv homomorphic encryption scheme,” in
Topics in Cryptology – CT-RSA 2019, Mitsuru Matsui, Ed.,
Cham, 2019, pp. 83–105, Springer International Publishing.

[13] Jung Cheon, Andrey Kim, Miran Kim, and Yongsoo Song,
“Homomorphic encryption for arithmetic of approximate num-
bers,” 11 2017, pp. 409–437.

[14] David A. McGrew and John Viega, “The security and per-
formance of the galois/counter mode (gcm) of operation,” in
Progress in Cryptology - INDOCRYPT 2004, Anne Canteaut
and Kapaleeswaran Viswanathan, Eds., Berlin, Heidelberg,
2005, pp. 343–355, Springer Berlin Heidelberg.

[15] Google, “tesseract-ocr,” 2008.

[16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa,
“Oblivious multi-party machine learning on trusted proces-
sors.,” in USENIX Security Symposium, 2016.
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