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ABSTRACT 
Mobile, wearable, and other ubiquitous computing devices 
are increasingly creating a context in which conventional key-
board and screen-based inputs are being replaced in favor of 
more natural speech-based interactions. Digital personal as-
sistants use speech to control a wide range of functionality, 
from environmental controls to information access. However, 
many deaf and hard-of-hearing users have speech patterns that 
vary from those of hearing users due to incomplete acoustic 
feedback from their own voices. Because automatic speech 
recognition (ASR) systems are largely trained using speech 
from hearing individuals, speech-controlled technologies are 
typically inaccessible to deaf users. Prior work has focused 
on providing deaf users access to aural output via real-time 
captioning or signing, but little has been done to improve 
users’ ability to provide input to these systems’ speech-based 
interfaces. Further, the vocalization patterns of deaf speech 
often make accurate recognition intractable for both automated 
systems and human listeners, making traditional approaches 
to mitigate ASR limitations, such as human captionists, less 
effective. To bridge this accessibility gap, we investigate the 
limitations of common speech recognition approaches and 
techniques—both automatic and human-powered—when ap-
plied to deaf speech. We then explore the effectiveness of 
an iterative crowdsourcing workfow, and characterize the po-
tential for groups to collectively exceed the performance of 
individuals. This paper contributes a better understanding of 
the challenges of deaf speech recognition and provides insights 
for future system development in this space. 
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Figure 1. Example interaction setup for our work. Here, a deaf or hard-
of-hearing (DHH) user interacts via speech with an intelligent agent (e.g. 
on a smartphone or Amazon Echo Show device). Based on the output 
of a speech recognition process, the system either performs an action 
(e.g. turns on a light) or provides on-screen feedback. Because most au-
tomatic speech recognition systems are trained on speech from hearing 
users, DHH users are often unable to use these devices effectively due to 
a "deaf speech" accent. Our work explores the viability of using current 
automatic and human-powered approaches to bridge this accessibility 
gap, and suggests directions and insights for future work to create more 
powerful and robust speech-based interfaces for DHH users. 
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INTRODUCTION 
Speech is becoming an increasingly common means of provid-
ing input to computing devices in our daily lives. Companies 
like Apple (Siri), Microsoft (Cortana), and Amazon (Alexa) 
have popularized digital personal assistants that simplify inter-
actions around daily tasks—such as setting timers, accessing 
information on the weather, responding to messages, changing 
the temperature in a room, and much more—via spoken nat-
ural language. Smartphones and in-home Internet-of-Things 
(IoT) devices like the Amazon Echo Show and Echo Spot 
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provide visual feedback mechanisms that improve access for 
those who cannot hear spoken responses. However, there are 
signifcant limitations to the speech recognition capabilities of 
these automated systems for people with uncommon speech 
patterns. As such, commands to these assistants are often met 
by responses like "Sorry, I’m having trouble understanding 
you right now. Please try again later." 

Technical issues with speech-based interaction due to poor 
speech recognition are inconvenient for the typical user, but 
can be frequent enough to make these devices inaccessible 
to people who are deaf or hard-of-hearing (DHH). This is 
because, depending on the recency and severity of their hear-
ing impairment, the speech patterns of DHH individuals can 
vary signifcantly from existing large-scale speech datasets. 
As a result, their speech is not well-recognized by automated 
speech recognition (ASR) systems trained on these more com-
mon datasets. Initial results have demonstrated that ASR 
and crowdsourcing approaches are far from recognizing deaf 
speech accurately enough to provide transcriptions that are 
usable in a real-world setting [3, 11]. 

Prior research has attempted to make aural information acces-
sible to DHH individuals, introducing real-time captioning in 
classrooms [16, 18, 17], wearable assistive technologies [30], 
and novel speech-to-sign systems [8]. In contrast, almost no 
work has been done to better handle the speech produced by 
DHH individuals or otherwise provide access to these increas-
ingly ubiquitous speech-based interfaces. To inform future 
research in deaf speech recognition, this paper explores the 
current scope of the problem, and seeks to better understand 
aspects that future work may be able to leverage. 

We frst test ASR and individual crowd workers on transcribing 
deaf speech, and fnd that crowd workers (individually) pro-
duce signifcantly better transcriptions than ASR (0.70 versus 
0.54 word error rate, respectively). However, these word error 
rates are too high to be used in real-world settings. We then 
evaluate an iterative crowdsourcing approach to transcription 
and fnd that crowd workers in an iterative process generate 
signifcantly better transcriptions for more intelligible deaf 
speech than individual crowd workers, but fail to improve 
quality for less intelligible deaf speech. Finally, we explore 
how context, task decomposition, and speech rate can be lever-
aged to potentially improve collective performance in future 
systems. Overall, this paper characterizes the problem of deaf 
speech transcription, and empirically explores various inroads 
towards a potential solution. 

The remainder of this paper is structured as follows: (1) we 
present background on deaf speech and existing automated 
and crowd-powered systems for captioning; (2) we evaluate 
automated and individual crowd worker approaches to speech 
recognition as baselines for the transcription of deaf speech; 
(3) we present three studies to understand how (i) modifying 
clip speed, (ii) breaking down audio into smaller segments, and 
(iii) surrounding linguistic context affect transcription quality; 
(4) we evaluate the effectiveness of an iterative crowd-powered 
workfow; and (5) we evaluate the baseline and iterative ap-
proaches in the higher-context domain of Alexa commands. 

This paper makes the following contributions: 
• A characterization of existing approaches to deaf speech 

recognition that use fully-automated approaches, individual 
human contributions, or collective (crowd) input. 

• An exploration of the techniques used to improve human 
captioning performance on deaf speech input, i.e., speed 
modifcation, audio decomposition, and iteration. 

BACKGROUND AND RELATED WORK 
Our goal is to enable deaf speech recognition by speech-based 
UIs to better support deaf speech. To do this, we apply crowd-
sourcing workfows to deaf speech transcription such that the 
results can be fed as input to these devices. Our work extends 
the literature on deaf speech and speech captioning. Below, 
we discuss prior work in these domains. 

Deaf Speech 
Because deaf (and signifcantly hard-of-hearing) people are 
unable to hear the speech produced by themselves and others, 
and consequently lack direct feedback to their own vocaliza-
tions, their speech patterns often differ from those of hearing 
individuals. Deaf speech refers to accented speech produced 
by many individuals with partial or complete hearing loss. 
The severity of this accent often depends on when the indi-
vidual lost their ability to hear and the level of hearing loss. 
Prior research studying the effects of deafness on speech have 
classifed common errors made by deaf individuals. These 
include phonological errors such substitution, omission er-
rors, and consonant-clustering errors [35]. These phonological 
and articulation errors contribute negatively to voice quality 
and speech intelligibility [31]. The pace of deaf speech is 
also considerably slower, on average, than speech produced 
by individuals without hearing impairments (hearing speech), 
due to vowel prolongation and the insertion of extraneous 
pauses [35]. This rhythmic inconsistency both within and 
between individuals has been shown to hurt speech intelli-
gibility [13]. Though experience does have some effect on 
recognition, understanding deaf speech remains a challenge 
to experienced and inexperienced listeners alike [29]. We 
build on this literature by providing empirical results for the 
application of existing transcription approaches to deaf speech, 
and show that while these errors render automated approaches 
inadequate, appropriate human computation workfows can 
be effective. Further, prior work has found that the amount 
of linguistic context present affected how well a clip could 
be understood [28, 29]. We extend this by exploring how to 
progressively build linguistic context using an iterative crowd-
sourcing workfow. 

Automated Speech Recognition 
Automated Speech Recognition (ASR) is popular for real-
time captioning and is used in many current speech-based 
systems, including personal assistants and other IoT devices. 
It performs well in ideal situations with high-fdelity audio, 
but its accuracy deteriorates quickly in real-world settings. 
Since its underlying model is largely trained on hearing speech 
patterns, it does not adapt well to heavily accented or deaf 
speech. Prior work has studied the effectiveness of ASR on 
speech that is more diffcult to understand; for example, a 
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study with dysarthric speech found that the performance of 
ASR on impaired speech was signifcantly affected by speech 
intelligibility, severity, and intra-speaker variability [33]. Vari-
ous approaches have been attempted to improve the accuracy 
of ASR for dysarthic speech by reducing the infuence of these 
factors, such as pooling hearing speech data to improve acous-
tic models [37] and training several neural networks in parallel 
to form array learners [36]. Approaches like these improve 
the performance of ASR, but require substantial computing 
power or special audio equipment, which is often unavailable 
in IoT or mobile devices. There are instances where ASR 
can be trained on the individual speaker’s specifc acoustic, 
pronunciation, and language models to improve performance 
slightly, but this is not readily available and is untested for deaf 
individuals. We present results from testing Google’s speaker-
independent speech recognition system on deaf speech. 

Human Captioning and Crowdsourcing 
In cases when automated approaches fall short, people have 
also long been used for audio transcription and captioning 
tasks [6, 19]. Professional transcription services like Commu-
nication Access Real-Time Translation (CART) are reliable 
and produce transcriptions in real-time, but are too expen-
sive for use in everyday settings (costing up to and exceeding 
$150/hr). Crowd-powered systems with non-expert captionists 
can lower this cost, supported by microtask marketplaces like 
Amazon’s Mechanical Turk (MTurk). These platforms pro-
vide availability with a large pool of crowd workers who can 
be recruited on-demand [1] and engaged in continuous tasks 
for fexible periods of time [22]. In an accessibility context, 
crowds have been studied to provide intelligent access technol-
ogy [4], answer visual questions [2, 12, 23, 38], and provide 
real-time captions [19, 21]. Other paradigms like iteration 
have been used to improve crowd performance in tasks like 
deciphering blurry text where parallel, independent workers 
perform worse than workers in an iterative process [25]. This 
paradigm has been applied to hearing speech transcription, 
and shown to be successful (achieving 96.6% accuracy) [24]. 
In contrast to prior crowd-powered systems which provide 
captions for hearing speech, this paper explores how crowds 
can be used to transcribe deaf speech. Furthermore, we test 
an iterative approach, making the conscious decision to char-
acterize crowd-based approaches that are not real-time, in an 
attempt to improve accuracy. Further, systems like Scribe [19] 
and Adrenaline [1] suggest that reducing the transcription time 
to seconds, or even faster [26], is possible. However, given the 
diffculty of accuracy at any speed that we demonstrate in this 
paper, we leave real-time generation of deaf speech captions 
as future work. 

EVALUATION METRICS 
We use word error rate as our primary metric to measure 
the performance of current automatic and human-powered 
approaches to transcribing deaf speech. In our experiments, we 
use deaf speech examples gathered from the Clarke sentences 
dataset [27]. 

Word Error Rate 
Word Error Rate (WER) is a common metric used to evaluate 
the performance of speech recognition and transcription sys-

tems. Derived from the Levenshtein distance but on a word 
level, WER measures the number of modifcations needed 
to turn a system’s output transcription (hypothesis) into the 
ground truth transcription (reference), normalized by the num-
ber of words in the reference. The hypothesis and the reference 
can have different lengths, so they are dynamically aligned 
before the minimum number of modifcations are calculated. 
While WER is technically an unbounded non-negative value, 
we limit WER between 0 and 1 inclusive, so WER can be in-
terpreted as the percentage of incorrectness in a transcription. 

S + D + I
Word Error Rate (WER) = (1)

N 

Equation 1 shows the formulation of WER, where S is the 
number of substitutions, D is the number of deletions, and I 
is the number of insertions required to transform the target 
transcript to match the ground truth answer (which itself has 
N words). When calculating WER, we removed punctuation, 
converted all text to lowercase, converted numbers to their 
word representation, and removed any indications of worker 
uncertainty in our data (e.g. "...", "<unintelligible>"). No other 
processing (e.g. stemming, lemmatization) was performed, 
and other equivalencies (e.g. abbreviation, contraction, and 
acronyms) were ignored since these were not common in the 
experimental dataset. 

Clarke Sentences Dataset 
We use the Clarke sentences dataset [27] to evaluate baseline 
approaches and our proposed workfow. The Clarke sentences 
dataset is a subset of a larger collection of audio recordings 
from 650 DHH individuals who have taken the Clarke sen-
tences intelligibility test. Examples of Clarke sentences in-
clude "Bobby had hot cereal for supper" and "The water at 
the farm was very warm." The number of words per sentence 
varies, but each sentence has exactly 10 syllables. The dataset 
also includes an intelligibility score for each individual, which 
was measured as the number of words out of 50 pre-selected 
non-stop words recognized by a designated speech pathologist. 
The intelligibility scores range from 0 to 50, with an intelligi-
bility score of 50 indicating the clip was generally intelligible, 
and 0 indicating the clip was completely unintelligible. 

For our experiments, we have selected fve audio fles from 
each of the three levels of intelligibility—30, 40, and 50—for 
a total of 15 audio fles. These fles were split into 10 clips, 
1 sentence per clip, for a total of 150 audio clips. We have 
selected batches of clips at discrete intelligibility levels to 
broadly observe the relationship between clip intelligibility 
and transcription accuracy. We conducted a preliminary study 
with clips at intelligibility levels 10 and 20, and found that 
neither ASR nor crowdsourced approaches could generate 
transcriptions for these clips (WER for level 10: ASR=1.0, 
crowd=0.97; level 20: ASR=1.0, crowd=0.98). Further, of the 
650 DHH individuals who participated in the Clarke sentences 
intelligibility test, about 50% fell between intelligibility lev-
els 40 and 50, 25% fell between intelligibility levels 30 and 
40, and 25% fell below intelligibility level 30 [11]. Given 
this, we leave intelligibility levels 10 and 20 for future work, 
as there is minimal signal for those in even baseline speech 
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Figure 2. Word error rate (WER) distribution of transcriptions gen-
erated by individual crowd workers, separated by three levels of clip 
intelligibility. A lower WER is better and indicates a more accu-
rate transcription. More intelligible clips tended to have lower WER, 
while less intelligible clips tended to have higher WER. 

recognition methods. We construct our experimental dataset 
with clips at three discrete intelligibility levels—30, 40, and 
50—encompassing a total of ∼75% of DHH individuals. 

BASELINE APPROACHES 
We use automated speech recognition (ASR) and human tran-
scription (via online crowds), two common methods for tran-
scribing speech, as our baselines. Below, we present results 
from running these two approaches on our selected Clarke 
sentences dataset. 

Baseline Study Setup 
For the automated approach, we passed each clip to Google’s 
Speech Recognition API and recorded the output transcrip-
tions with the highest confdence scores. For the human com-
putation approach, we recruited crowd workers on Amazon’s 
Mechanical Turk platform, fltered to those with over 95% 
approval rating and located in the United States. Each worker 
was shown an interface with a small set of media controls for 
one audio clip, a text box, and a short snippet of instructions 
asking them to play and transcribe the clip. Workers were 
given no indication of clip content, but were told that the task 
was expected to be diffcult and that they should provide a 
transcription to the best of their ability. In each crowd task, 
a worker transcribed a total of fve different clips selected 
randomly from our test set. We did not allow the workers to 
complete the task more than once to avoid learning effects. 
Each worker was paid $0.25 per task, an approximate pay rate 
of $8.00/hour. We collected 5 crowd worker transcriptions 
for each clip, for a total of 750 transcriptions (3 intelligibility 
levels × 50 clips per level × 5 crowd worker transcriptions). 

Baseline Results 
Transcriptions produced by ASR and individual crowd workers 
for deaf speech were poor quality, overall. ASR had an aver-
age WER of 0.70 (σ = 0.31) and the crowd-powered approach 

Figure 3. A comparison of average transcription WER with auto-
mated and individual crowd worker approaches. A lower WER is 
better and indicates a more accurate transcription. Overall, crowd 
workers generated better transcriptions than ASR, with the differ-
ence more evident at higher intelligibility levels. 

had an average WER of 0.54 (σ = 0.38). An independent-
samples t-test shows that the crowd-powered approach has sig-
nifcantly lower WER (t(807) = 4.94, p < .0001), and while 
crowd workers outperformed ASR, the WERs of both ap-
proaches are too high for any real-world scenario. To be 
usable in practice, the transcripts should not have a WER of 
greater than 0.25 [32]; however for IoT and mobile devices, 
the WER benchmark for these transcripts may have to be sig-
nifcantly lower. To overcome the remaining gap between 
our baseline approaches and acceptable error rates, the next 
section of this paper explores more complex human work-
fows that engage groups of people (e.g. crowds) to improve 
collective performance. 

The Effect of Intelligibility on Error Rate 
Audio clips with higher intelligibility levels tended to result 
in better transcriptions. We conducted separate independent-
samples t-tests with Bonferroni correction for both ASR and 
individual crowd worker approaches. The transcriptions pro-
duced by ASR had a signifcant difference in WER between 
intelligibility levels 30 and 40 (t(98) = 5.16, p < .0001), and 
levels 40 and 50 (t(98) = 5.39, p < .0001). Individual crowd 
worker transcriptions also had a signifcant difference in WER 
between intelligibility levels 30 and 40 (t(484) = 9.64, p < 
.0001), and levels 40 and 50 (t(510) = 12.15, p < .0001). Fig-
ure 2 shows the overall WER distribution of crowd workers on 
the Clarke sentences dataset for each intelligibility level, and 
Figure 3 compares the WER of transcriptions for automated 
and individual crowd worker approaches. WER increased 
signifcantly with drops in intelligibility level (Figure 2)— 
transcriptions of both approaches at intelligibility level 30 had 
the highest WER. 

Crowd workers performed increasingly better than ASR as 
the intelligibility level increased (Figure 3). Crowd worker 
transcriptions had 11%, 20%, and 43% lower WER than au-
tomatically generated transcriptions at intelligibility levels 
30, 40, and 50, respectively. An independent-samples t-test 
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with Bonferroni correction conducted for each level showed 
these differences were signifcant at intelligibility levels 30 
(t(295) = 2.96, p < .005), 40 (t(331) = 2.99, p < .005), and 
50 (t(321) = 4.70, p < .0001). A possible explanation is that 
crowd workers are able to recognize words and patterns that re-
semble hearing speech in more intelligible deaf speech, while 
ASR is less responsive to these similarities. This improvement 
lessens with lower intelligibility, as it was more dissimilar to 
hearing speech and thus less familiar to crowd workers. 

Latency 
Crowd workers are able to more quickly transcribe deaf speech 
with increasing intelligibility levels. Their transcriptions took 
57.3s (σ = 55.5s), 47.2s (σ = 36.7s), and 36.2s (σ = 36.5s) 
at intelligibility levels 30, 40, and 50, respectively. A one-way 
ANOVA showed a signifcant effect of intelligibility level on 
transcription time (F(2,781) = 15.19, p < .0001). Post hoc 
comparisons using the Tukey HSD test indicated there was a 
signifcant difference in transcription time between two pairs 
of intelligibility levels, 30 and 50, and 40 and 50 (p < 0.05). 

Random Sampling To Predict Worker Accuracy 
Most crowdsourcing systems flter out responses from low-
quality workers to improve average accuracy, often by insert-
ing gold standard questions in the task and post hoc fltering 
workers who fall below an accuracy threshold for these ques-
tions [5, 9]. We observed that for deaf speech transcription, 
individual worker performance was fairly consistent across 
all fve clips they were each asked to transcribe: some per-
formed well across all fve clips (WER < 0.1), and others 
poorly (WER = 1.0). Given this, we simulated the effect of 
using worker performance on one clip as a gold standard to 
flter or include the rest of their responses. We calculated a 
Pearson product-moment correlation coeffcient analyzing the 
relationship between one randomly sampled crowd worker 
transcription (sample) and the rest of that worker’s transcrip-
tions (outer). We used the baseline results as the dataset for 
this analysis; since workers were given clips of varying intel-
ligibility during that experiment, we measured performance 
relative to the average performance for clips of that intelligibil-
ity. There was a positive correlation between the two variables, 
sample and outer WER (r = 0.578, p < .0001). Figure 4 sum-
marizes the results in a scatterplot. This suggests that fltering 
based on worker performance on one clip could be used to 
improve average transcription quality. 

IMPROVING INDIVIDUAL WORKER PERFORMANCE 
The baseline results show that neither automated nor human 
transcription approaches are able to recognize deaf speech, 
though human computation signifcantly outperforms ASR. 
In this section we study common techniques used in crowd-
powered speech recognition systems to evaluate their effec-
tiveness for improving improving the quality of deaf speech 
transcriptions. Specifcally, we study clip speed modifcation, 
audio decomposition, and best-case iteration. 

For the following studies, crowd workers were recruited from 
Amazon Mechanical Turk. Each crowd worker completed fve 
transcription tasks per HIT, and was paid $0.25 per HIT based 
on a pay rate of $8.00/hour. To minimize learning effects, 
crowd workers could only do one HIT for each study. 

Figure 4. There was a positive correlation between the quality of one 
randomly sampled transcription generated by a unique crowd worker 
(sample), and the quality of the remainder of their transcriptions (outer). 
This suggests that fltering based on worker performance on one clip 
could be used to improve average transcription quality. 

Speed Modifcation 
We frst explore whether changes in clip speed affect a crowd 
worker’s ability to understand it. Prior crowd-powered cap-
tioning approaches have slowed down speech to allow crowd 
workers to keep up with the audio stream [20]. However, 
deaf speech is generally 1.5× to 2× slower than hearing 
speech [35] and is prone to timing errors such as pauses and 
irregular syllable duration [34]. Intuitively, transforming the 
audio to a temporal structure similar to that of hearing speech 
would make speech more familiar to non-expert listeners. We 
explore the effects of both on the transcription quality of crowd 
workers: slowing down and speeding up the audio clips. 

Study Design 
We selected fve sentences from each intelligibility level, 30, 
40, and 50. New clips were generated by time stretching each 
clip by a speed-modifcation factor of 0.7 to 1.5, in increments 
of 0.1, giving a total of 135 clips. Each modifed clip was 
transcribed by 5 crowd workers, and we measured the accuracy 
of the resulting transcriptions. 

Results 
We found that speed modifcation did not have a signifcant ef-
fect on the WER of crowd worker transcriptions at any of the 
intelligibility levels. We ran a one-way ANOVA for each 
intelligibility level: level 30 (F(8,216) = 1.09, p = .373), 
40 (F(8,223) = 0.30, p = .965), and level 50 (F(8,226) = 
1.70, p = .099). This suggests that slowing down deaf speech 
might not be needed because the main issue is not the ability to 
keep up with the audio stream, but rather the intelligibility of 
the audio itself. Similarly, for speeding deaf speech clips, our 
results imply that a naive stretching of deaf speech to normal-
ize speaking rate is ineffective. This is reasonable, since the 
slower rate of deaf speech is not due to an even prolongation 
of speech, but rather a variation in vocalization and pauses. 
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Audio Decomposition 
We next study how decomposing an audio clip of deaf speech 
into shorter segments affects crowd worker transcription qual-
ity. Intuitively, there is a relation between a clip’s length and 
the cognitive effort required from a worker to transcribe it. 
By creating shorter clips, crowd workers may better focus on 
each individual word. However, this decomposition can also 
remove linguistic context gained from the surrounding words, 
potentially resulting in adverse effects, lowering transcription 
accuracy due to the need for workers to recognize words with 
little or no context. 

Study Design 
We selected two clips for each intelligibility level, 30, 40, and 
50; each clip corresponds to one sentence. Each clip was split 
manually at word boundaries into n clips with one word each, 
and dn/2e non-overlapping clips with two words each (n = the 
number of words in the sentence). In this way, a total of 71 
decomposed clips were generated from our initial selection 
of 6 clips. Each decomposed clip was transcribed by 5 crowd 
workers. We evaluate the effectiveness of audio decomposition 
using recall, defned as a proportion of the number of words in 
the ground truth that were present in a worker’s transcription 
to the total number of words in the ground truth. 

Results 
Overall, workers could recognize more given two-word seg-
ments than one-word segments. Table 1 shows the average 
recall of worker transcriptions for clips split into one and two 
word segments. Our results suggest that trying to recognize 
deaf speech without suffcient linguistic context is diffcult, 
and that fne-grained task decomposition may have adverse 
effects on deaf speech recognition. 

Best-Case Iteration 
Groups of crowd workers working together on a task are of-
ten able to perform a task better than any individual crowd 
worker. Little et al. frst introduced this iterative crowdsourc-
ing paradigm for crowd workers in TurKit, and tested it on 
the reconstruction of a hard-to-read handwriting sample [25]. 
Their results showed that while individuals performed poorly 
in parallel (i.e., independently), asking workers to iteratively 
build upon each other’s responses enabled the reconstruction 
of most of the sample after about 15 steps. This approach is 
successful because (i) individual crowd workers relay at least 
some information to the next worker, despite poor overall per-
formance at any one step, and (ii) people are able to synthesize 
disjoint context clues in forming their own response. 

Since transcribing deaf speech is a similar style of task to 
reconstructing poor handwriting, i.e., diffcult for any indi-
vidual crowd worker but improved with additional context, 
we hypothesize that iteration may be a viable approach for 
improving our transcription accuracy. In this study, we test the 
effects of varying the amount of linguistic context on the re-
sulting transcription. We provide crowd workers with a partial 
transcription and ask them to transcribe the remainder of the 
clip. This simulates a hypothetical, best-case iteration scenario 
in which a previous step in the iterative workfow produced an 
incomplete but otherwise correct transcription. 

I-30 I-40 I-50 
1 .03 (.16) .21 (.41) .32 (.47) 
2 .07 (.18) .26 (.32) .48 (.39) 

Table 1. Results for the Audio Decomposition study, showing average re-
call and standard deviation by number of words in the audio clip. These 
results suggest audio decomposition hurts transcription quality. 

I-30 I-40 I-50 
1 .58 (.50) .79 (.41) .92 (.28) 
2 .58 (.45) .72 (.37) .87 (.27) 
3 .56 (.36) .70 (.37) .91 (.15) 
4 .57 (.36) .67 (.25) .94 (.13) 

Table 2. Results for the Best-Case Iteration study, showing average recall 
and standard deviation by number of redacted words. These results sug-
gest crowd workers are able to gather lingustic context from surround-
ing words in a partial transcription, with minimal changes in recall with 
1 to 4 redacted words. 

Study Design 
We selected two clips from each of intelligibility level, 30, 
40, and 50; each clip corresponds to one sentence. Every 
selected clip contained exactly eight words. In addition to the 
baseline transcription interface, workers were given a partial 
transcription of the clip with k consecutive words redacted 
(1≤ k ≤ 4). For example, with the 6-word sentence "The dog 
ran on the grass" and k = 4 redacted words, possible partial 
transcriptions would be 1) " the grass", 2) "The 

grass", and 3) "The dog ". We collected responses 
from 5 crowd workers for each unique redacted set of words 
per clip, and measured recall for each response. 

Results 
We found that recall decreased only slightly as the number of 
redacted words increased. Table 2 shows the average recall for 
the redacted words. This is somewhat unexpected, but suggests 
that the number of redacted words in a partial transcription 
does not strongly affect crowd worker recognition. One reason 
for this may be that crowd workers infer the redacted words 
based on linguistic context alone, and use the audio clip to 
flter between the reasonable words they had in mind. A caveat 
to note here is that we provided the correct partial transcription 
and the number of words left to transcribe as a starting point, 
which is unlikely in a real system. 

AN ITERATIVE TRANSCRIPTION WORKFLOW 
The studies above show that iteratively refning transcriptions 
using groups of crowd workers results in high recall for deaf 
speech clips. However, the previous best-case iteration study 
was performed under idealized conditions where the previous 
step’s transcription was incomplete but otherwise correct. This 
assumption affords information that would be unavailable in 
a real iterative workfow, such as the number of words in the 
clip and the relative positioning of words. Next, we test an 
iterative transcription workfow in a more realistic setting. 

Workfow Design 
To more thoroughly evaluate the effcacy of an iterative crowd-
sourcing approach, we have designed a study in which crowd 
worker transcriptions were passed through a 10-step iterative 
workfow. In each iterative step, fve workers independently 
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Figure 5. WER of transcriptions from iterative versus baseline approaches: intel 30 (left), intel 40 (center), intel 50 (right). The quality of iteratively-
generated transcriptions quickly surpassed those from automated and individual crowd worker approaches for intelligibility levels 40 and 50. However 
the iterative approach failed to produce better transcription at intelligibility level 30. 

transcribed a given clip. The worker interface was similar to 
the individual crowd worker baseline, except with a box a box 
containing the transcriptions of that clip from the fve workers 
from the previous step. We also provided instructions describ-
ing what the transcriptions were and their purpose for the 
current iteration step. In the frst step of the iterative workfow, 
workers were not given any previous transcriptions, making it 
analogous to the baseline condition. We considered providing 
crowd workers with some starting transcription (e.g. ASR out-
put) for the frst iteration. However, prior studies have found 
that crowd workers tend to give worse transcriptions if given 
poor ASR output as a starting point [10, 19]. Therefore, we 
chose not to provide automatically generated transcriptions 
for the frst set of workers. 

In subsequent steps of the iterative workfow, crowd work-
ers were given all fve of the previous steps’ transcriptions. 
We chose this fully-connected design purposefully to provide 
additional context to crowd workers as they transcribed the 
clip. With tradeoffs in time and cost, this design allows for 
more robust transcriptions and minimizes the effects of one or 
more worker errors at each step. Some systems perform tran-
scription aggregation via multiple sequence alignment [19], 
and these algorithms tend to provide minor performance gains 
when the transcriptions are reasonably accurate. We would 
expect these alignment algorithms to perform poorly when 
applied to deaf speech due to the transcriptions’ high WER 
and variance. 

Instead, our proposed iterative workfow uses human intelli-
gence to perform implicit alignment. Prior work has shown 
crowd workers are capable of identifying correct transcrip-
tions while listening to the clip more so than producing their 
own correct transcription [3]. Human intelligence can readily 
recognize sentences that are grammatically, structurally, or 
semantically reasonable, quickly rejecting the sentences that 
fail those qualifcations. By providing crowd workers with fve 
previous transcriptions instead of just one, there is a higher 
possibility of at least one accurate transcription, which the 
crowd worker would be able to distinguish from the remaining 
inaccurate transcriptions. This also allows crowd workers to 
identify correct words within any of the transcriptions. 

Experimental Setup 
The original dataset tested in the baseline study consisted of 
150 clips, 50 at each of the three intelligibility levels. For test-
ing the iterative approach, we subsampled 10 clips from each 
level, for a total experimental dataset of 30 clips. We recruited 
crowd workers on Amazon’s Mechanical Turk platform, fl-
tered to those with over 95% approval rating and located in 
the United States. Each worker was paid $0.25 per HIT, an 
approximate pay rate of $8.00/hour. Workers were not allowed 
to transcribe any one clip more than once throughout the ten 
steps of iteration. 

All transcriptions were subject to the same post-processing 
process used in previous studies before the evaluation of WER. 
Results from iteration were compared against baseline results 
for transcriptions of the clips selected for the iterative study, 
rather than the entire dataset used in the baseline study. For 
signifcance testing, we compared against the individual crowd 
worker baseline approach because it had strictly lower WER 
than the automated approach. 

Iteration Results 
On average, the WER of crowd worker transcriptions after 10 
steps of iteration was 3% lower than transcriptions by indi-
vidual crowd workers for intelligibility level 30, 52% lower 
for intelligibility level 40, and 74% lower for intelligibility 
level 50. Independent-samples t-tests found that the differ-
ence was not signifcant at intelligibility level 30 (t(93) = 
1.00, p = .32), but was signifcant at intelligibility levels 40 
(t(101) = 5.76, p < .0001) and 50 (t(99) = 4.18, p < .0001). 

For intelligibility levels 40 and 50, transcriptions generated by 
iteration had signifcantly lower WER than individual crowd 
workers by iteration step 5 (at α = .001), and the rate of 
WER began to plateau with later iteration steps. The largest 
percentage decrease in WER occurred between iteration steps 
1 and 2 for all intelligibility levels. Figure 5 shows the average 
WER at each iteration step against the WER of the automated 
baseline and the individual crowd worker baseline. 

We tested whether an ideal number of iterations exists (i.e., a 
convergence point for worker transcriptions) by calculating 
cosine similarity for transcriptions between each iteration step. 
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Figure 6. Average vector cosine similarity of crowd worker transcrip-
tions at consecutive steps of iteration. Transcriptions tended to converge 
regardless of clip intelligibility and transcription accuracy. 

For each clip, we aggregated the fve worker responses into 
a multiset, and used word multiplicity and ordering within 
sentences to construct a vector. We calculated vector cosine 
similarity between sentence vectors at each step, giving values 
in the range 0 to 1, where a similarity value of 0 represents no 
similarity between two sets of words, and a similarity value of 
1 represents that two sets of words are identical. The similarity 
between iteration steps 1 and 2 was .57 for intelligibility level 
30, .62 for intelligibility level 40, and .81 for intelligibility 
level 50. The similarity between iteration steps 9 and 10 was 
.79 for intelligibility level 30, .91 for intelligibility level 40, 
and .97 for intelligibility level 50. Because worker transcrip-
tions had more word variance at lower intelligibility levels at 
the beginning of iteration, the rate of similarity increase was 
greater for lower intelligibility levels. Overall, the similarity 
between steps had an increasing trend, reaching 85% - 95% 
similarity for most clips after the tenth step of iteration. Figure 
6 summarizes these results and illustrates the near-monotonic 
convergence of worker transcriptions. 

LEVERAGING DOMAIN-SPECIFIC CONTEXT 
We have shown that iterative crowdsourcing is effective at gen-
erating transcriptions with lower word error rates than baseline 
approaches for the Clarke sentences dataset. In this section 
we return to our original motivation and evaluate the auto-
mated, individual crowd worker, and iterative crowdsourcing 
approaches for transcription of deaf speech in the domain of 
speech-controlled devices. 

Alexa Dataset 
To simulate a real-world scenario, we use a dataset collected 
by Bigham et al. with 10 of the most common commands to 
an Amazon Alexa personal assistant, spoken aloud by a DHH 
individual [3, 7]. Example commands include "Alexa, tell 
me a joke" and "Alexa, play music by Pearl Jam." Unlike the 
Clarke sentences dataset, these clips of Alexa commands have 
no corresponding intelligibility scores. We used the Alexa data 
because of Amazon Echo’s popularity as a personal assistant 

Figure 7. WER of iterative versus baseline approaches for the dataset 
of Alexa commands. The iterative approach produced transcriptions 
with signifcantly lower WER than those produced by individual crowd 
worker approaches. Further, the WER of transcriptions tended to de-
crease with each iteration step. 

device, and because most of Alexa’s functionality is accessed 
via speech without other alternatives. 

The Impact of Thematic Context 
In contrast to the general Clarke sentences, Alexa commands 
are linked by a shared thematic context. More generally, per-
sonal assistants and other speech-controlled interfaces are 
situated in known domains, with bounded natural language 
inputs. These domain-specifc devices can utilize their known 
thematic context in improving speech recognition. Thematic 
context can be similarly integrated in crowd-powered systems 
since understanding and transcribing an audio clip may be 
easier if a general sense of the clip’s contents is known prior to 
listening. In this study we test the effects of thematic context 
on the accuracy of a crowd worker’s transcriptions. 

Study Setup 
We used the same transcription UI described in the individual-
worker baseline study. In addition, crowd workers were told 
the clips were Alexa commands in both the instructions on the 
task interface and in the task description on Mechanical Turk. 

Results 
Crowd workers who had thematic context, i.e., knew the clips 
were of Alexa commands, had improved transcription qual-
ity over crowd workers who did not, suggesting that crowd 
workers were able to internalize the additional context and use 
it to guide their transcriptions. On average, transcriptions by 
crowd workers without thematic context had a WER of 0.54 
(σ = 0.39) and transcriptions by crowd workers with thematic 
context had a WER of 0.40 (σ = 0.36), a relative improvement 
of 26%. An independent-samples t-test shows that this im-
provement in WER was signifcant (t(129) = 2.11, p < .05). 

Iterative Transcription for Alexa Commands 
Next, we compare our iterative approach to individual crowd 
workers who were given thematic context (modifed baseline 
approach), using the Alexa dataset. 
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Results 
On average, the iterative workfow generated 58% better tran-
scriptions than the modifed baseline approach on the Alexa 
dataset. The iterative approach achieved the lowest average 
WER of 0.17 (σ = 0.30) at step 10. An independent-samples 
t-test showed this difference in performance was signifcant 
(t(127) = 5.415, p < .0001). Figure 7 shows the average 
WER for each approach, illustrating how the average WER 
decreased with each iteration step. 

Automated speech recognition performed poorly on the dataset 
of Alexa commands, with an average WER of 0.84 (σ = 0.32). 
There was a greater difference between transcription accuracy 
by ASR and individual crowd workers for Alexa commands 
than for the Clarke sentences. This suggests that more specifc 
domain and inherent familiarity of the Alexa commands makes 
it relatively easier for humans to transcribe deaf speech. In 
contrast, ASR cannot distinguish between the two datasets and 
generates transcriptions irrespective of variations in content of 
the deaf speech. 

Each transcription took an average of 33.4s (σ = 25.6s) per 
clip in the crowd-powered modifed baseline. For the iterative 
approach, the longest average transcription time was in itera-
tion step 2 with 45.3s, which was 37% higher than step 1, and 
51% higher than steps 3-5. This increased latency may be be-
cause crowd workers in step 2 were the frst to receive a set of 
previous crowd worker transcriptions, which were often error-
prone. Workers in subsequent steps had a reduced cognitive 
load since they received a more refned set of transcriptions. 

Like the Clarke sentences dataset, crowd worker transcriptions 
in the iterative approach converged quickly for the Alexa com-
mands dataset. Cosine similarity started at .77 between steps 
1 and 2, and peaked at .97 between steps 8 and 9. 

LIMITATIONS AND FUTURE WORK 
With iterative transcription, we observed a biasing (or "prim-
ing" [15]) effect among crowd workers between steps—in line 
with effects found by Jiang et al. for language-based crowd 
tasks [14]. Since workers received fve previous transcriptions 
as a guide, a priming effect was introduced that made their 
transcriptions closely resemble those of the previous steps. 
While this passing of context underlies the effectiveness of 
iteration, it can also "trap" transcription accuracy in a local 
maximum. Our results show that similarity between worker 
transcriptions increases over multiple iteration steps, suggest-
ing that workers independently converge towards a transcrip-
tion that they believe to be correct. Interestingly, while worker 
transcriptions converged at intelligibility level 30, the tran-
scription quality did not improve. This shows workers were 
converging to the same incorrect transcription for each clip. 
Since it is more diffcult to provide an alternate transcription 
after being primed with a "possible" transcription, there is 
little incentive or guidance for workers to escape from this 
local quality maximum. An example was with the clip "Alexa, 
play music by Pearl Jam," which crowd workers in early steps 
transcribed as "Alexa, play music by Burn Them." Workers in 
subsequent steps tended to forward these incorrect transcrip-
tions, since it would require signifcantly more effort to reject 
the transcription momentum of previous steps and synthesize 

a new, isolated transcription. Future work may explore how 
to mitigate this bias while retaining the performance bene-
fts of iteration. One possibility is to introduce a source of 
randomness at each step, either by providing no previous tran-
scriptions to a small set of "unbiased" workers, or by including 
ASR transcriptions at each step. Albeit error-prone, these tran-
scriptions could provide the necessary stimulus to escape the 
local performance maxima. 

Though we provide transcription times for the crowd-powered 
approaches that we study, this paper focuses more on exploring 
approaches that may improve transcription quality. This has 
an understandable tradeoff in latency: the iterative approach 
we used required more time than ASR for example, but it 
also produced more accurate transcriptions. Given the latency, 
usability of the present transcriptions are generally insuffcient 
for real-world use in interactive systems. However, we believe 
future work can build on the insights that we provide to reduce 
transcription time while retaining high quality. 

CONCLUSION 
In this paper, we have explored the problem of deaf speech 
recognition through a series of empirical studies. Our exper-
iments demonstrate that individual crowd workers produced 
higher quality transcriptions of deaf speech than automated 
speech recognition, though word error rates of both approaches 
were too high for real-world applications (0.70 versus 0.54 
WER, respectively). Results from our studies of methods to 
improve individual transcription performance found that mod-
ifying the speed of a clip had no signifcant effect on quality, 
audio decomposition hurt transcription quality, and provid-
ing additional thematic context when present in the domain 
improved transcription quality by 26%. Lastly, we evaluated 
a state-of-the-art crowdsourcing approach by applying an it-
erative crowd-powered workfow as a means of improving 
collective performance. We evaluated this approach on a set 
of general sentences (Clarke dataset), as well as a dataset of 
Alexa commands spoken by a DHH user, to simulate a level 
of context that may occur in real-world settings. While it-
eration improved the transcription quality for intelligibility 
levels 40 and 50 (52% and 74%, respectively), it failed to 
improve the transcription quality for lower levels of intelligi-
bility. In summary, we have characterized the state-of-the-art 
in deaf speech transcription, evaluating methodologies ranging 
from automated approaches to both individual and iterative 
crowdsourcing approaches. Our results aim to inform future 
approaches that further improve both quality and latency to 
enable more robust, accessible interactions with speech-based 
interfaces. 

ACKNOWLEDGEMENTS 
The authors would like to thank Raja Kushalnagar and Kevin 
Zheng for their input on and contributions to this work. 

REFERENCES 
1. Michael S. Bernstein, Joel Brandt, Robert C. Miller, and 

David R. Karger. 2011. Crowds in Two Seconds: 
Enabling Realtime Crowd-powered Interfaces. In 
Proceedings of the 24th Annual ACM Symposium on User 
Interface Software and Technology (UIST ’11). ACM, 

Session 2: Supporting Speech ASSETS’18, October 22–24, 2018, Galway, Ireland

65

http:applications(0.70


New York, NY, USA, 33–42. DOI: 
http://dx.doi.org/10.1145/2047196.2047201 

2. Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg 
Little, Andrew Miller, Robert C. Miller, Robin Miller, 
Aubrey Tatarowicz, Brandyn White, Samual White, and 
Tom Yeh. 2010. VizWiz: Nearly Real-time Answers to 
Visual Questions. In Proceedings of the 23Nd Annual 
ACM Symposium on User Interface Software and 
Technology (UIST ’10). ACM, New York, NY, USA, 
333–342. DOI: 
http://dx.doi.org/10.1145/1866029.1866080 

3. Jeffrey P. Bigham, Raja Kushalnagar, Ting-Hao Kenneth 
Huang, Juan Pablo Flores, and Saiph Savage. 2017. On 
How Deaf People Might Use Speech to Control Devices. 
In Proceedings of the 19th International ACM 
SIGACCESS Conference on Computers and Accessibility 
(ASSETS ’17). ACM, New York, NY, USA, 383–384. 
DOI:http://dx.doi.org/10.1145/3132525.3134821 

4. Jeffrey P. Bigham, Richard E. Ladner, and Yevgen 
Borodin. 2011. The Design of Human-powered Access 
Technology. In The Proceedings of the 13th International 
ACM SIGACCESS Conference on Computers and 
Accessibility (ASSETS ’11). ACM, New York, NY, USA, 
3–10. DOI:http://dx.doi.org/10.1145/2049536.2049540 

5. Chris Callison-Burch. 2009. Fast, Cheap, and Creative: 
Evaluating Translation Quality Using Amazon’s 
Mechanical Turk. In Proceedings of the 2009 Conference 
on Empirical Methods in Natural Language Processing: 
Volume 1 (EMNLP ’09). Association for Computational 
Linguistics, Stroudsburg, PA, USA, 286–295. 
http://dl.acm.org/citation.cfm?id=1699510.1699548 

6. Chris Callison-Burch and Mark Dredze. 2010. Creating 
Speech and Language Data with Amazon’s Mechanical 
Turk. In Proceedings of the NAACL HLT 2010 Workshop 
on Creating Speech and Language Data with Amazon’s 
Mechanical Turk (CSLDAMT ’10). Association for 
Computational Linguistics, Stroudsburg, PA, USA, 1–12. 
http://dl.acm.org/citation.cfm?id=1866696.1866697 

7. CNET. 2017. The complete list of Alexa commands so 
far. (2017). https://www.cnet.com/how-to/ 
amazon-echo-the-complete-list-of-alexa-commands/ 

8. Stephen Cox, Michael Lincoln, Judy Tryggvason, 
Melanie Nakisa, Mark Wells, Marcus Tutt, and Sanja 
Abbott. 2002. Tessa, a System to Aid Communication 
with Deaf People. In Proceedings of the Fifth 
International ACM Conference on Assistive Technologies 
(Assets ’02). ACM, New York, NY, USA, 205–212. DOI: 
http://dx.doi.org/10.1145/638249.638287 

9. Julie S. Downs, Mandy B. Holbrook, Steve Sheng, and 
Lorrie Faith Cranor. 2010. Are Your Participants Gaming 
the System?: Screening Mechanical Turk Workers. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’10). ACM, New 
York, NY, USA, 2399–2402. DOI: 
http://dx.doi.org/10.1145/1753326.1753688 

10. Yashesh Gaur, Walter S. Lasecki, Florian Metze, and 
Jeffrey P. Bigham. 2016. The Effects of Automatic 
Speech Recognition Quality on Human Transcription 
Latency. In Proceedings of the 13th Web for All 
Conference (W4A ’16). ACM, New York, NY, USA, 
Article 23, 8 pages. DOI: 
http://dx.doi.org/10.1145/2899475.2899478 

11. Abraham T. Glasser, Kesavan R. Kushalnagar, and 
Raja S. Kushalnagar. 2017. Feasibility of Using 
Automatic Speech Recognition with Voices of Deaf and 
Hard-of-Hearing Individuals. In Proceedings of the 19th 
International ACM SIGACCESS Conference on 
Computers and Accessibility (ASSETS ’17). ACM, New 
York, NY, USA, 373–374. DOI: 
http://dx.doi.org/10.1145/3132525.3134819 

12. Anhong Guo, Xiang Chen, Haoran Qi, Samuel White, 
Suman Ghosh, Chieko Asakawa, and Jeffrey P Bigham. 
2016. Vizlens: A robust and interactive screen reader for 
interfaces in the real world. In Proceedings of the 29th 
Annual Symposium on User Interface Software and 
Technology. ACM, 651–664. DOI: 
http://dx.doi.org/10.1145/2984511.2984518 

13. Clarence Virginius Hudgins and Fred Cheffns Numbers. 
1942. An investigation of the intelligibility of the speech 
of the deaf. Genetic Psychology Monographs 25 (1942), 
289–392. 

14. Youxuan Jiang, Jonathan K Kummerfeld, and Walter S 
Lasecki. 2017. Understanding Task Design Trade-offs in 
Crowdsourced Paraphrase Collection. In Proceedings of 
the 55th Annual Meeting of the Association for 
Computational Linguistics, Vol. 2. Vancouver, Canada, 
103–109. DOI:http://dx.doi.org/10.18653/v1/P17-2017 

15. Daniel Kahneman. 2011. Thinking, fast and slow. Vol. 1. 
New York: Farrar, Straus and Giroux. 

16. Saba Kawas, George Karalis, Tzu Wen, and Richard E. 
Ladner. 2016. Improving Real-Time Captioning 
Experiences for Deaf and Hard of Hearing Students. In 
Proceedings of the 18th International ACM SIGACCESS 
Conference on Computers and Accessibility (ASSETS 
’16). ACM, New York, NY, USA, 15–23. DOI: 
http://dx.doi.org/10.1145/2982142.2982164 

17. Raja S. Kushalnagar, Walter S. Lasecki, and Jeffrey P. 
Bigham. 2012. A Readability Evaluation of Real-time 
Crowd Captions in the Classroom. In Proceedings of the 
14th International ACM SIGACCESS Conference on 
Computers and Accessibility (ASSETS ’12). ACM, New 
York, NY, USA, 71–78. DOI: 
http://dx.doi.org/10.1145/2384916.2384930 

18. Raja S. Kushalnagar, Walter S. Lasecki, and Jeffrey P. 
Bigham. 2014. Accessibility Evaluation of Classroom 
Captions. ACM Trans. Access. Comput. 5, 3, Article 7 
(Jan. 2014), 24 pages. DOI: 
http://dx.doi.org/10.1145/2543578 

Session 2: Supporting Speech ASSETS’18, October 22–24, 2018, Galway, Ireland

66

http://dx.doi.org/10.1145/2047196.2047201
http://dx.doi.org/10.1145/1866029.1866080
http://dx.doi.org/10.1145/3132525.3134821
http://dx.doi.org/10.1145/2049536.2049540
http://dl.acm.org/citation.cfm?id=1699510.1699548
http://dl.acm.org/citation.cfm?id=1866696.1866697
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands/
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands/
http://dx.doi.org/10.1145/638249.638287
http://dx.doi.org/10.1145/1753326.1753688
http://dx.doi.org/10.1145/2899475.2899478
http://dx.doi.org/10.1145/3132525.3134819
http://dx.doi.org/10.1145/2984511.2984518
http://dx.doi.org/10.18653/v1/P17-2017
http://dx.doi.org/10.1145/2982142.2982164
http://dx.doi.org/10.1145/2384916.2384930
http://dx.doi.org/10.1145/2543578
http:Collection.In
http:MechanicalTurkWorkers.In


19. Walter Lasecki, Christopher Miller, Adam Sadilek, 
Andrew Abumoussa, Donato Borrello, Raja Kushalnagar, 
and Jeffrey Bigham. 2012. Real-time captioning by 
groups of non-experts. In Proceedings of the 25th annual 
ACM symposium on User interface software and 
technology. ACM, 23–34. DOI: 
http://dx.doi.org/10.1145/2380116.2380122 

20. Walter S. Lasecki, Christopher D. Miller, and Jeffrey P. 
Bigham. 2013. Warping Time for More Effective 
Real-time Crowdsourcing. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI ’13). ACM, New York, NY, USA, 2033–2036. DOI: 
http://dx.doi.org/10.1145/2470654.2466269 

21. Walter S. Lasecki, Christopher D. Miller, Iftekhar Naim, 
Raja Kushalnagar, Adam Sadilek, Daniel Gildea, and 
Jeffrey P. Bigham. 2017. Scribe: Deep Integration of 
Human and Machine Intelligence to Caption Speech in 
Real Time. Commun. ACM 60, 9 (Aug. 2017), 93–100. 
DOI:http://dx.doi.org/10.1145/3068663 

22. Walter S Lasecki, Kyle I Murray, Samuel White, 
Robert C Miller, and Jeffrey P Bigham. 2011. Real-time 
crowd control of existing interfaces. In Proceedings of 
the 24th annual ACM symposium on User interface 
software and technology. ACM, 23–32. DOI: 
http://dx.doi.org/10.1145/2047196.2047200 

23. Walter S Lasecki, Phyo Thiha, Yu Zhong, Erin Brady, 
and Jeffrey P Bigham. 2013. Answering visual questions 
with conversational crowd assistants. In Proceedings of 
the 15th International ACM SIGACCESS Conference on 
Computers and Accessibility. ACM, 18. DOI: 
http://dx.doi.org/10.1145/2513383.2517033 

24. Beatrice Liem, Haoqi Zhang, and Yiling Chen. 2011. An 
Iterative Dual Pathway Structure for Speech-to-Text 
Transcription. In Human Computation. 

25. Greg Little, Lydia B. Chilton, Max Goldman, and 
Robert C. Miller. 2010. TurKit: Human Computation 
Algorithms on Mechanical Turk. In Proceedings of the 
23Nd Annual ACM Symposium on User Interface 
Software and Technology (UIST ’10). ACM, New York, 
NY, USA, 57–66. DOI: 
http://dx.doi.org/10.1145/1866029.1866040 

26. Alan Lundgard, Yiwei Yang, Maya L. Foster, and 
Walter S. Lasecki. 2018. Bolt: Instantaneous 
Crowdsourcing via Just-in-Time Training. In Proceedings 
of the 2018 CHI Conference on Human Factors in 
Computing Systems (CHI ’18). ACM, New York, NY, 
USA, Article 467, 7 pages. DOI: 
http://dx.doi.org/10.1145/3173574.3174041 

27. Marjorie E Magner. 1972. A speech intelligibility test for 
deaf children. Clarke School for the Deaf. 

28. Nancy S. Mcgarr. 1981. The Effect of Context on the 
Intelligibility of Hearing and Deaf Children’s Speech. 
Language and Speech 24, 3 (1981), 255–264. DOI: 
http://dx.doi.org/10.1177/002383098102400305 

29. Nancy S. McGarr. 1983. The Intelligibility of Deaf 
Speech to Experienced and Inexperienced Listeners. 
Journal of Speech, Language, and Hearing Research 26, 
3 (1983), 451–458. DOI: 
http://dx.doi.org/10.1044/jshr.2603.451 

30. Ashley Miller, Joan Malasig, Brenda Castro, Vicki L. 
Hanson, Hugo Nicolau, and Alessandra Brandão. 2017. 
The Use of Smart Glasses for Lecture Comprehension by 
Deaf and Hard of Hearing Students. In Proceedings of the 
2017 CHI Conference Extended Abstracts on Human 
Factors in Computing Systems (CHI EA ’17). ACM, New 
York, NY, USA, 1909–1915. DOI: 
http://dx.doi.org/10.1145/3027063.3053117 

31. R. B. Monsen. 1983. Voice Quality and Speech 
Intelligibility Among Deaf Children. American Annals of 
the Deaf 128, 1 (1983), 12–19. 

32. Cosmin Munteanu, Gerald Penn, Ron Baecker, Elaine 
Toms, and David James. 2006. Measuring the acceptable 
word error rate of machine-generated webcast transcripts. 
In Intl. Conference on Spoken Language Processing. 

33. Mumtaz Begum Mustafa, Fadhilah Rosdi, Siti Salwah 
Salim, and Muhammad Umair Mughal. 2015. Exploring 
the infuence of general and specifc factors on the 
recognition accuracy of an ASR system for dysarthric 
speaker. Expert Systems with Applications 42, 8 (2015), 
3924 – 3932. DOI:http://dx.doi.org/https: 
//doi.org/10.1016/j.eswa.2015.01.033 

34. Mary Joe Osberger and Harry Levitt. 1979. The effect of 
timing errors on the intelligibility of deaf children’s 
speech. The Journal of the Acoustical Society of America 
66, 5 (nov 1979), 1316–1324. DOI: 
http://dx.doi.org/10.1121/1.383552 

35. Mary Joe Osberger and Nancy S. McGarr. 1982. Speech 
Production Characteristics of the Hearing Impaired. 
Speech and Language, Vol. 8. Elsevier, 221 – 283. 
http://www.sciencedirect.com/science/article/pii/ 
B9780126086089500139 

36. Seyed Reza Shahamiri and Sayan Kumar Ray. 2015. On 
the use of array learners towards Automatic Speech 
Recognition for dysarthria. In 2015 IEEE 10th 
Conference on Industrial Electronics and Applications 
(ICIEA). IEEE, 1283–1287. DOI: 
http://dx.doi.org/10.1109/ICIEA.2015.7334306 

37. R Sriranjani, M Ramasubba Reddy, and S Umesh. 2015. 
Improved acoustic modeling for automatic dysarthric 
speech recognition. In 2015 Twenty First National 
Conference on Communications (NCC). IEEE, 1–6. DOI: 
http://dx.doi.org/10.1109/NCC.2015.7084856 

38. Yu Zhong, Walter S. Lasecki, Erin Brady, and Jeffrey P. 
Bigham. 2015. RegionSpeak: Quick Comprehensive 
Spatial Descriptions of Complex Images for Blind Users. 
In Proceedings of the 33rd Annual ACM Conference on 
Human Factors in Computing Systems (CHI ’15). ACM, 
New York, NY, USA, 2353–2362. DOI: 
http://dx.doi.org/10.1145/2702123.2702437 

Session 2: Supporting Speech ASSETS’18, October 22–24, 2018, Galway, Ireland

67

http://dx.doi.org/10.1145/2380116.2380122
http://dx.doi.org/10.1145/2470654.2466269
http://dx.doi.org/10.1145/3068663
http://dx.doi.org/10.1145/2047196.2047200
http://dx.doi.org/10.1145/2513383.2517033
http://dx.doi.org/10.1145/1866029.1866040
http://dx.doi.org/10.1145/3173574.3174041
http://dx.doi.org/10.1177/002383098102400305
http://dx.doi.org/10.1044/jshr.2603.451
http://dx.doi.org/10.1145/3027063.3053117
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.01.033
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.01.033
http://dx.doi.org/10.1121/1.383552
http://www.sciencedirect.com/science/article/pii/B9780126086089500139
http://www.sciencedirect.com/science/article/pii/B9780126086089500139
http://dx.doi.org/10.1109/ICIEA.2015.7334306
http://dx.doi.org/10.1109/NCC.2015.7084856
http://dx.doi.org/10.1145/2702123.2702437
http:Just-in-TimeTraining.In
http:MechanicalTurk.In

	Introduction
	Background and Related Work
	Deaf Speech
	Automated Speech Recognition
	Human Captioning and Crowdsourcing

	Evaluation Metrics
	Word Error Rate
	Clarke Sentences Dataset

	Baseline Approaches
	Baseline Study Setup
	Baseline Results
	The Effect of Intelligibility on Error Rate
	Latency
	Random Sampling To Predict Worker Accuracy


	Improving Individual Worker Performance
	Speed Modification
	Study Design
	Results

	Audio Decomposition
	Study Design
	Results

	Best-Case Iteration
	Study Design
	Results


	An Iterative Transcription Workflow
	Workflow Design
	Experimental Setup
	Iteration Results

	Leveraging Domain-Specific Context
	Alexa Dataset
	The Impact of Thematic Context
	Study Setup
	Results

	Iterative Transcription for Alexa Commands
	Results


	Limitations and Future Work
	Conclusion
	Acknowledgements
	REFERENCES 



Accessibility Report


		Filename: 

		fp021-fokA.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found no problems in this document.


		Needs manual check: 2

		Passed manually: 1

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed manually		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


