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Abstract- Using data statistics, we convert predicates on a
table into data induced predicates (diPs) that apply on the
joining tables. Doing so substantially speeds up multi-relation
queries because the benefits of predicate pushdown can now ap-
ply beyond just the tables that have predicates. We use diPs to
skip data exclusively during query optimization; i.e., diPs lead
to better plans and have no overhead during query execution.
We study how to apply diPs for complex query expressions
and how the usefulness of diPs varies with the data statistics
used to construct diPs and the data distributions. Our results
show that building diPs using zone-maps which are already
maintained in today’s clusters leads to sizable data skipping
gains. Using a new (slightly larger) statistic, 50% of the queries
in the TPC-H, TPC-DS and JoinOrder benchmarks can skip at
least 33% of the query input. Consequently, the median query
in a production big-data cluster finishes roughly 2x faster.

1 INTRODUCTION

In this paper, we seek to extend the benefits of predicate push-
down beyond just the tables that have predicates. Consider
the following fragment of TPC-H query #17 [19].

SELECT SUM(1_extendedprice)

FROM 1lineitem

JOIN part ON 1_partkey = p_partkey
WHERE p_brand=‘:1’ AND p_container=‘:2’

The 1ineitem table is much larger than the part table, but
because the query predicate uses columns that are only avail-
able in part, predicate pushdown cannot speed up the scan of
lineitem. However, it is easy to see that scanning the entire
lineitem table will be wasteful if only a small number of
those rows will join with the rows from part that satisfy the
predicate on part.

If only the predicate was on the column used in the join
condition, _partkey, then a variety of techniques become
applicable (e.g., algebraic equivalence [55], magic set rewrit-
ing [52, 76] or value-based pruning [85]), but predicates over
join columns are rare,' and these techniques do not apply when
the predicates use columns that do not exist in the joining ta-
bles.

'Over all the queries in TPC-H [28] and TPC-DS [26], there are zero predicates
on join columns perhaps because join columns tend to be opaque system-
generated identifiers.
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Figure 1: Example illustrating creation and use of a data-induced pred-
icate which only uses the join columns and is a necessary condition to the
true predicate, i.e., 0 = dpartkey-

Some systems implement a form of sideways information
passing over joins [21, 71] during query execution. For exam-
ple, they may build a bloom filter over the values of the join
column _partkey in the rows that satisfy the predicate on
the part table and use this bloom filter to skip rows from
the 1ineitem table. Unfortunately, this technique only ap-
plies during query execution, does not easily extend to general
joins and has high overheads, especially during parallel exe-
cution on large datasets because constructing the bloom filter
becomes a scheduling barrier delaying the scan of lineitem
until the bloom filter has been constructed.

We seek a method that can convert predicates on a table
to data skipping opportunities on joining tables even if the
predicate columns are absent in other tables. Moreover, we seek
amethod that applies exclusively during query plan generation
in order to limit overheads during query execution. Finally,
we are interested in a method that is easy to maintain, applies
to a broad class of queries and makes minimalist assumptions.

Our target scenario is big-data systems, e.g., SCOPE [47],
Spark[39, 88], Hive [84], F1 [80] or Pig [70] clusters that run
SQL-like queries over large datasets; recent reports estimate
over a million servers in such clusters [1].

Big-data systems already maintain data statistics such as the
maximum and minimum value of each column at different
granularities of the input; details are in Table 1. In the rest of
this paper, for simplicity, we will call this the zone-map statistic
and we use the word partition to denote the granularity at
which statistics are maintained.

Using data statistics, we offer a method that converts predi-
cates on a table to data skipping opportunities on the joining
tables at query optimization time. The method, an example of
which is shown in Figure 1, begins by using data statistics to
eliminate partitions on tables that have predicates. This step
is already implemented in some systems [7, 17, 47, 85]. Next,



using the data statistics of the partitions that satisfy the local
predicates, we construct a new predicate which captures all
of the join column values contained in such partitions. This
new data-induced predicate (diP) is a necessary condition of
the actual predicate (i.e., 0 = d) because there may be false-
positives; i.e., in the partitions that are included in the diP, not
all of the rows may satisfy 0. However, the diP can apply over
the joining table because it only uses the join column?; in the
case of Figure 1, the diP constructed on the part table can be
applied on the partition statistics of 1ineitem to eliminate
partitions. All of these steps happen during query optimiza-
tion; our QO effectively replaces each table with a partition
subset of that table; the reduction in input size often triggers
other plan changes (e.g., using broadcast joins which eliminate
a partition-shuflle [49]) leading to more efficient query plans.

If the above method is implemented using zone-maps, which
are maintained by many systems already, the only overhead
is an increase in query optimization time which we show is
small in §5.

For queries with joins, we show that data-induced predi-
cates offer comparable query performance at much lower cost
relative to materializing denormalized join views [48] or us-
ing join indexes [5, 25]. The fundamental reason is that these
techniques use augmentary data-structures which are costly
to maintain; yet, their benefits are limited to narrow classes
of queries (e.g., queries that match views, have specific join
conditions, or very selective predicates) [36]. Data-induced
predicates, we will show, are useful more broadly.

We also note that the construction and use of data-induced
predicates is decoupled from how the datasets are laid out.

Prior work identifies useful data layouts, for example, co-partition

tables on their join columns [53, 65] or cluster rows that sat-
isfy the same predicates [77, 82]; the former speeds up joins
and the latter enhances data skipping. In our big-data clusters,
many unstructured datasets remain in the order that they were
uploaded to the cluster. The choice of data layout can have ex-
ogenous constraints (e.g., privacy) and is query dependent;
that is, no one layout helps with all possible queries. In §5, we
we will show that diPs offer significant additional speedup
when used with the data layouts proposed by prior works and
that diPs improve query performance in other layouts as well.

To the best of our knowledge, this paper is the first to of-
fer data skipping gains across joins for complex queries be-
fore query execution while using only small per-table statis-
tics. Prior work either only offers gains during query execu-
tion [21, 52, 55, 71, 76, 85] or uses more complex structures
which have sizable maintenance overheads [s, 25, 48, 77, 82].
To achieve the above, we offer an efficient method to compute

>We call this a data-induced predicate because it is specific to the query
predicate as well as specific to the data statistics of the table that the predicate
applies upon.
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Table 1: Data statistics maintained by several systems.

Scheme [ Statistic [ Granularity
ZoneMaps [13] max and min value per col- zone
Spark [9, 17] umn file
Exadata [67] max, min and null present per table region
Vertica [61], ORC [2], | or null count per column stripe,  row-
Parquet [15] group
Brighthouse [81] histograms, char maps per col | data pack
. -
partition statsl m
#li K input ’
o = _plansthatskip {7
On“ne moreﬂ-ata

QO + diPs +

data skip.

Figure 3: A workflow which shows changes in red; using partition statis-
tics, our query optimizer computes data-induced predicates and outputs
plans that read less input.

diPs on complex query expressions (multiple joins, join cy-
cles, nested statements, other operations). This method works
with a variety of data statistics. We also offer a new statistic,
range-set, that improves query performance over zone-maps
at the cost of a small increase in space. We also discuss how to
maintain statistics when datasets evolve. In more detail, the
rest of this paper has these contributions.

o Using diPs for complex queries leads to novel challenges.

- Consider TPC-H query#17 [19] in Figure 2(left) which
has a nested sub-query on the 1ineitem table. Creating
diPs for only the fragment considered in Figure 1 still
reads the entire 1ineitem table for the nested group-by.
To alleviate this, we use new QO transformation rules to
move diPs; in this case, shown with dotted arrows, the
diP is pulled above a join, moved sideways to a different
join input and then pushed below a group-by thereby
ensuring that a shared scan of 1ineitem will suffice.

- When multiple joining tables have predicates, a second
challenge arises. Consider the 3-way join in Figure 2(middle)
where all tables have local predicates. The figure shows
four diPs: one per table and per join condition. If apply-
ing these diPs eliminates partitions on some joining table,
then the diPs that were previously constructed on that
table are no longer up-to-date. Re-creating diPs when-
ever partition subsets change will increase data skipping
but doing so naively can construct excessively many diPs
which increases query optimization time. We present
an optimal schedule for tree-like join graphs which con-
verges to fixed point and hence achieves all possible data
skipping while computing the fewest number of diPs. Star
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Figure 2: Illustrating the need to move diPs past other operations (left). On a 3-way join when all tables have predicates (middle), the optimal schedule

only requires three (parallel) steps (right).

and snowflake schemas result in tree-like join graphs. We
discuss how to derive diPs for general join graphs within
a cost-based query optimizer in §3.

e We show how different data statistics can be used to com-
pute diPs in §4 and discuss why range-sets represent a good
trade-off between space usage and potential for data skip-
ping.

e We discuss two methods to cope with dataset updates in §4.1.
The first method taints a partition when any row in that par-
tition changes; tainted partitions are never skipped; tables
that contain tainted partitions cannot originate diPs, but
they can use diPs received from joining tables to eliminate
untainted partitions. Our second method approximately
updates data statistics by ignoring deletes and growing the
statistic to cover new values. We will show in §5 that typical
range-sets can be updated in tens of nanoseconds and that
their usefulness decays gracefully as larger portions of the
tables are updated.

¢ Fundamentally, data-induced predicates are beneficial only
if the join column values in the partitions that satisfy a
predicate contain only a small portion of all possible join
column values. In §2.1, we discuss real-world use-cases that
cause this property to hold and quantify their occurrence
in production workloads.

e We report results from experiments on production clus-
ters at Microsoft that have tens of thousands of servers. We
also report results on SQL server. See Figure 3 for a high-
level architecture diagram. Our results in §5 will show that
using small statistics and a small increase in query opti-
mization time, diPs offer sizable gains on three workloads
(TPC-H [28], TPC-DS [26], JOB [12]) under a variety of
conditions.

2 MOTIVATION

We begin with an example that illustrates how data-induced
predicates (diPs) can enhance data skipping. Consider the
query expression, Oyear (date_dim) Mgate sk R. Table 2a shows
the zone-maps per partition for the predicate and join columns.
Recall that zone-maps are the maximum and minimum value
of a column in each partition, and we use partition to denote

the granularity at which statistics are maintained which could
be a file, a rowgroup etc. (see Table 1). Table 2b shows the diPs
corresponding to different predicates. The predicate column
year is only available on the date_dim table, but the diPs
are on the join column date_sk and can be pushed onto join-
ing relations using column equivalence [55]. The diPs shown
here are DNFs over ranges; if the equijoin condition has mul-
tiple columns, the diPs will be a conjunction of DNFs, one
DNF per column. Further details on the class of predicates
supported, extending to multiple joins and handling other op-
erators, are in §3.2. Table 2b also shows that the diPs contain a
small portion of the range of the join column date_sk (which
is [1000,12000]); thus, they can offer large data skipping gains
on joining relations.

It is easy to see that diPs can be constructed using any data
statistic that supports the following steps: (1) identify partitions
that satisfy query predicates, (2) merge the data statistic of the
join columns over the satisfying partitions, and (3) use the
merged statistic to extract a new predicate that can identify
partitions satisfying the predicate in joining relations. Many
data statistics support these steps [33], and different stats can
be used for different steps.

To illustrate the trade-offs in choice of data statistics, con-
sider Figure 4a which shows equi-width histograms for the
same columns and partitions as in Table 2a. A histogram with
b buckets uses b + 2 doubles® compared to the two doubles
used by zone maps (for the min. and max. value). Regardless of
the number of buckets used, note that histograms will generate
the same diPs as zone-maps. This is because histograms do
not remember gaps between buckets. Other histograms (e.g.,
equi-depth, v-optimal) behave similarly. Moreover, the fre-
quency information maintained by histograms is not useful
here because diPs only reason about the existence of values.
Guided by this intuition, consider a set of non-overlapping
ranges {[l;, u;]} which contain all of the data values; such
range-sets are a simple extension of zone-maps which are, triv-
ially, range-sets of size 1. However, range-sets also record gaps
that have no values. Figure 4b shows range-sets of size 2. It is

3b to store the frequency per bucket and two for min and max.



Table 2: Constructing diPs using partition statistics.

Column Partition #

v |2 | 3
date_sk | [3000,5000] | [1000,6000] | [7000,12000]
year [1995,2000] | [1990,2002] | [2005,2018]

(a) Zone maps [13], i.e., the maximum and minimum values, for two
columns in three hypothetical partitions of the date_dim table.

Pred. (o) Satisfying | Data-induced %
parti- Predicate total
tions range

year < 1995 {1,2} date_sk € [1000, 6000] | 45%

year € [2003,2004] 1] date_sk € [] 0%

year > 2010 {3} date_sk € [7000,12000] | 45%

(b) Data-induced predicates on the join column date_sk corresponding
to predicates on the column year; built using stats from Table 2a.

' ]
| o] et

[Te)
9]

00) |90 02

year date_sk

(a) Equiwidth histograms for the dataset in Table 2a.

Range-set Partition #
(size 2) 1 | 2 E
date_sk | {[3000,3500], {[1000,2000],{[7000,10000],

[4000,5000]} [5000, 6000]} [11000,12000]}
year {[1995,1997],| {[1990,1993],| {[2005,2014],
[1998,2000]}| [1998,2002]}| [2015,2018]}

(b) Range-set of size 2, i.e., two non-overlapping max and min values,
which contain all of the data values.

Figure 4: Other data statistics (histograms, range-sets) for the same ex-
ample as in Table 2a; range-sets yield more succinct diPs.

easy to see that range-sets give rise to more succinct diPs*. We
will show that using a small number of ranges leads to sizable
improvements to query performance in §5. We discuss how to
maintain range-sets and why range-sets perform better than
other statistics (e.g., bloom filters) in §4.

To assess the overall value of diPs, for TPC-H query #17 [19]
from Figure 2(left), Figure 5 shows the I/O size reduction from
using diPs. These results use a range-set of size 4 (i.e., 8 doubles
per column per partition). The TPC-H dataset was generated
with a scale factor of 100, skewed with a zipf factor of 2 [31],
and tables were laid out in a typical manner®. Each partition is

4For year < 1995, the diP using two ranges is date_sk ¢ {[1K,2K],
[3K,3.5K], [4K, 6K]} which covers 30% fewer values than the diP built

using a zone-map (date_sk € [1K, 6K]) in Table 2b.
Slineitem was clustered on 1_shipdate and each cluster sorted on

1_orderkey; part was sorted on its key; this layout is known to lead to

Srikanth Kandula, Laurel Orr, Surajit Chaudhuri

#Partitions remaining in... o
e
Initial 1000 26 Gbrggre I T
After predicate 1000 2 J D&L} Q'
diP: part - lineitem 50 2 lineitem part

Figure 5: For TPC-H query 17 in Figure 2 (left), the table shows the
partition reduction from using diPs. On the right, we show the plan gen-
erated using magic-set transformations which push group-by above the
join. diPs complement magic-set transformations; we see here that magic-
set tx cannot skip partitions of 1ineitem but because group-by has been
pushed above the join, moving diPs sideways once is enough unlike the
case in Figure 2(left).

~ 100MBs of data which is a typical quanta in distributed file
systems [42] and is the default in our clusters [91]. Recall that
the predicate columns are only available in the part table. The
figure shows that only two partitions of part contain rows
that satisfy the predicate and the corresponding diP eliminates
many partitions in lineitem. We will show results in §5 for
many different data layouts and data distributions. We discuss
plan transformations needed to move the diP, as shown in
Figure 2 (left), in §3.3. Overall, for the 100GB dataset, a 0.5MB
statistic reduces the initial I/O for this query by 20x; the query
can speed up by more or less depending on the work remaining
after initial I/O.

2.1 Use-cases where data-induced predicates
can lead to large I/O savings

Given the examples thus far, it is perhaps easy to see that diPs
translate into large I/O savings when the following conditions
hold.

C1 The predicate on a table is satisfied by rows belonging
to a small subset of partitions of that table.

C2 The join column values in partitions that satisfy the
predicate are a small subset of all possible join column
values.

C3 In tables that receive diPs, the join column values are
distributed such that diPs only pick a small subset of
partitions.

We identify use-cases where these conditions hold based
on our experiences in production clusters at Microsoft [47].

o Much of the data in production clusters is stored in the order
in which it was ingested into the cluster [39, 43]. A typical
ingestion process consists of many servers uploading data
in large batches. Hence, a consecutive portion of a dataset
is likely to contain records for roughly similar periods of
time, and entries from a server are concentrated into just
a few portions of the dataset. Thus, queries for a certain
time-period or for entries from a server will pick only a

good performance because it reduces re-partitioning for joins and allows date
predicates to skip partitions [3, 22, 29].
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Figure 6: Quantifying how often the conditions that lead to large I/O
skipping gains from using diPs hold in practice by using queries and
datasets from production clusters at Microsoft.

few portions of the dataset. This helps with C1. When such
datasets are joined on time or server-id, this phenomenon
also helps with C2 and C3.

e A common physical design methodology for performant
parallel plans is to hash partition a table by predicate columns
and range partition or order by the join columns [3, 22, 29,
53] and vice-versa. Performance improves since the shuffles
to re-partition for joins decrease [16, 49, 92] and predicates
can skip data. Such data layouts help with all three condi-
tions C1-C3 and, in our experiments, receive the largest I/O
savings from diPs.

e Join columns are keys which monotonically increase as new
data is inserted and hence are related to time. For example,
both the title-id of movies and the name-id of actors in the
IMDB dataset [11] roughly monotonically increase as each
new title and new actor are added to the dataset. In such
datasets, predicates on time as well as predicates that are
implicitly related to time, such as co-stars, will select only a
small range of join column values. This helps with C1 and
C2.

e Practical datasets are skewed; often times the skew is heavy-
tailed [34]. In skewed datasets, predicates and diPs that skip
over the heavy hitters are highly selective; hence, skew can
help C1-C3.

The net effect of the above cases is that the three conditions
hold often allowing diPs to enhance data skipping on joining
relations.

Figure 6 illustrates how often conditions C1 and C2 hold
for different datasets, query predicates and join columns from
production clusters at Microsoft. We used tens of datasets
and extracted predicates and join columns from thousands
of queries. The figure shows the cumulative distribution func-
tions (CDFs) of the fraction of rows satisfying each predi-
cate (red squares), the fraction of partitions containing these
rows (green pluses) and the fraction of join column values con-
tained in these partitions (orange triangles). We see that about
40% of the predicates pick less than 20% of partitions (C1)%; in
about 30% of the predicates, the join column values contained

SRead the value of green pluses line at x = 0.2 in Figure 6.

Table 3: Notation used in this paper.

Symbol | Meaning

pi Predicate on table i
Pij Equi-join condition between tables i and j
qi A vector whose x’th element is 1 if partition x of

table i has to be read and o otherwise.

disj Data-induced predicate from table i to table

j (note: data-induced predicates are asymmetric)

partition granularity at which the store maintains statis-
tics (Table 1)

in the partitions satisfying the predicate are less than 50% of
all join column values (C2)”.

3 CONSTRUCTION AND USE OF
DATA-INDUCED PREDICATES

We describe our algorithm to enhance data skipping using
data-induced predicates. Given a query £ over some input
tables, our goal is to emit an equivalent expression £’ in which
one or more of the table accesses are restricted to only read
a subset of partitions. The algorithm applies to a wide class
of queries (see §3.2) and can work with many kinds of data
statistics (see §4).

The algorithm has three building blocks: use predicates on
individual tables to identify satisfying partitions, construct
diPs for pairs of joining tables and apply diPs to further restrict
the subset of partitions that have to be read on each table. Using
the notation in Table 3, these steps can be written as:

V table i, partition x,
V tables i, j,

q7 < Satisfy(p;, x), (1)
di-.; < DataPred(q;, pij), (2)
V table j, partition x, g} < g [1;s; Satisfy(d;j,x). (3)

We defer describing how to efficiently implement these equa-
tions to §4 because the details vary based on the statistic and
focus here on using these building blocks to enhance data
skipping.

Note that the first step (Equation 1) executes once, but the
latter two steps may execute multiple times because whenever
an incoming diP changes the set of partitions that have to be
read on a table (i.e., g changes in Equation 3), then the diPs
from that table (which are computed in Equation 2 based on g)
will have to be re-computed. This effect may cascade to other
tables.

If a join graph, constructed with tables as nodes and edges
between tables that have a join condition, has n nodes and
m edges, then a naive method will construct 2m diPs using
Eq. 2, one along each edge in each direction, and will use these
diPs in Eq. 3 to further restrict the partition subsets of joining
tables. This step repeats until fixpoint is reached (i.e., no more

’Read the value of the orange triangles line at x = 0.5 in Figure 6.
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Figure 7: Illustrating the use of diPs in TPC-DS query #35. The
table labels ss, cs, ws and d correspond to the tables store_sales,
catalog-sales, web_sales and date_dim.

partitions can be eliminated). Acyclic join graphs can repeat
this step up to n — 1 times, i.e., construct up to 2m(n —1) diPs,
and join graphs with cycles can take even longer (see 9.2 for an
example). Abandoning this process before the partition subsets
converge can leave data skipping gains untapped. On the other
hand, generating too many diPs adds to query optimization
time. To address this challenge, we construct diPs in a carefully
chosen order so as to converge to the smallest partition subsets
while building the minimum number of diPs (see §3.4).

A second challenge arises when applying the above method,
which only accounts for select and join operations, to the gen-
eral case where queries contain many other interceding opera-
tions such as group-bys and nested statements. One option is
to ignore other operations and apply diPs only to sub-portions
of the query that exclusively consist of selections and joins.
Doing so, again, leaves data skipping gains untapped; in some
cases the unrealized gains can be substantial as we saw for
the query in Figure 2 (left) where ignoring the nested state-
ment (that is, restricting diPs to just the portion shown with a
shaded background in the figure) may lead to no gains since
the group-by can require reading the 1ineitem table fully. To
address this challenge, we move diPs around other relational
operators using commutativity. We list the transformation
rules used in $3.3 which cover a broad class of operators. Us-
ing these transformations extends the usefulness of diPs to
complex query expressions.

3.1 Deriving diPs within a cost-based QO

Taken together, the previous paragraphs indicate two require-
ments to quickly identify efficient plans: (1) carefully schedule
the order in which diPs are computed over a join graph and
(2) use commutativity to move diPs past other operators in
complex queries. We sketch our method to derive diPs within
a cost-based QO here.
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Let’s consider some alternative designs. (1) Could the user or
a query rewriting software that is separate from the QO insert
optimal diPs into the query? This option is problematic be-
cause the user or the query rewriter will have to re-implement
complex logic such as predicate simplification and push-down
that is already available within the QO. Furthermore, moving
diPs around other operators (see §3.3) requires plan transfor-
mation rules that are not implemented in today’s QO; specifi-
cally rules that pull up diPs or move them sideways from one
join input to another do not exist in typical QOs. As we saw
with the case of the example in Figure 2(left), without such
movement diPs may not achieve any data skipping. (2) Could
the change to QO be limited to adding some new plan transfor-
mation rules? Doing so is appealing since the QO framework
remains unchanged. Unfortunately, as we saw in the case of Fig-
ure 2(middle), diPs may have to be exchanged multiple times
between the same pair of tables, and to keep costs manageable,
diPs have to be constructed in a careful order over the join
graphs; in today’s cost-based optimizers, achieving such recur-
sion and fine-grained query-wide ordering is challenging [55].
Thus, we use the hybrid design discussed next.

We add derivation of diPs as a new phase in the QO after
plan simplification rules have applied but before exploration,
implementation, and costing rules, such as join ordering and
choice of join implementations, are applied. The input to this
phase is a logical expression where predicates have been simpli-
fied and pushed down. The output is an equivalent expression
which replaces one or more tables with partition subsets of
those tables. To speed up optimization, this phase creates max-
imal sub-portions of the query that only contain selections
and joins; we do this by pulling up group-bys, projections,
predicates that use columns from multiple relations, etc. diPs
are exchanged within these maximal select-join sub-portions
of the query expression using the schedule in §3.4. Next, using
the rules in §3.3, diPs are moved into the rest of the query.
With this method, derivation will be faster when the select-
join sub-portions are large because, by decoupling the above
steps, we avoid propagating diPs which have not converged to
other parts of the query. Note that this phase executes exactly
once for a query. The increase in query optimization time is
small, and by exploring alternative plans later, the QO can find
plans that benefit from the reduced input sizes (e.g., choose a
different join order or use broadcast join instead of hashjoin).

Example: Figure 7 illustrates this process for TPC-DS query
#35; the SQL query is in [27]. As shown in the top left of
the figure, labeled #m, diPs that are triggered by the predi-
cate on date_dim are first exchanged in maximal SJ portions:
store_sales~date_dim, catalog sales xdate_dimand
web_sales x date_dim. The query joins these portions with
another join expression after a few set operations. Hence, in
a1, we build new diPs for the customer_sk column and pull
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those up through the set operations (union and intersection
translate to logical or and and over diPs) and push down to
the customer (c) table. To do so, we use the transformation
rules in §3.3. In BN, if the incoming diP skips partitions on
the customer table, another derivation ensues within the SJ
expression on the left.® The final plan, shown in K&, effectively
replaces each table with the partition subset that has to be read
from that table.

3.2 Supported Queries

Our prototype does not restrict the query class, i.e., queries
can use any operator supported by the underlying platform.
Here, we highlight aspects that impact the construction and
use of diPs.

Predicates: Our prototype triggers diPs for predicates which
are conjunctions, disjunctions or negations over the following
clauses:

e c op v: here ¢ is a numeric column, op denotes an operation
that is either =, <, <, >, >, # and v is a value.

e ¢; op c;: here c;, ¢; are numeric columns from the same
relation and op is either =, <, <, >, >, #.

e For string and categorical columns, equality check with a
value.

Joins: Our prototype generates diPs for join conditions that
are column equality over one or more columns; although,
extending to some other conditions (e.g., band joins [4]) is
straightforward. We support inner, one-sided outer, semi, anti-
semi and self joins.

Projections: diPs commute trivially with any projection on
columns that are not used in the diP. On columns that are
used in a diP, only single-column invertible projections com-
mute with that diP because only such projects can be inverted
through zone-maps and other data statistics that we use to
compute diPs®.

Other operations: Operators that do not commute with diPs
will block the movement of diPs. As we discuss in §3.3 next,
diPs commute with a large class of operations.

8 After BN, if the partition subset on the customer table becomes further
restricted, a new diP moves in opposite direction along the path shown in
EX; we do not discuss this issue for simplicity.

9 Consider a single-column linear projection such as 7(x) = y = ax +b where
a and b are constants, x is a column and y is a derived column; in this case the
inverseis 77'(y) = x = yT_b When the diP is on the same column as such a
projection, we can pull up a changed diP. For example, if a diP is x € [0, 100]
then (diP(x)) = diP’ (7(x)) where diP is y € [b,100a +b]. Generalizing
from the above, similar transformations can be applied whenever projections
are invertible, i.e., whenever a 77" function exists that can be applied on the
values in the range predicate that is the diP.

3.3 Commutativity of data-induced predicates
with other operations

We list some query optimizer transformation rules that apply
to data-induced predicates (diPs). The correctness of these
rules follows from considering a diP as a filter on join columns.
Note that some of these transformation are not used in today’s
query optimizers. For example, pulling up diPs above a union
and a join (rule #4, #5, below) naively results in redundant
evaluation of predicates and are hence not used today; however,
as we saw in the case of Figure 7, such movements are necessary
to skip partitions elsewhere in the query. We also note that
diPs do not remain in the query plan; the diPs directly on
tables are replaced with a read of the partition subsets of that
table, and other diPs are dropped.

(1) diPs commute with any select.

(2) A diP commutes with any projection that does not af-
fect the columns used in that diP. For projections that
affect columns used in a diP, commutativity holds if and
only if the projections are invertible functions on one
column.

(3) diPscommute with a group-by if and only if the columns
used in the diP are a subset of the group-by columns.

(4) diPs commute with set operations such as union, inter-
section, semi- and anti semi-joins, as shown below.

e di(R,)nNdy(R,) = (di"ndy))(RinR,) = (dy A
dy)(Ry) N (dy A da)(R.)

e d,(R,)uUd,(R,)=(d,vd,)(di(R,)ud,(R,))

¢ d(R,)-R,=d(R,-R,)=d(R,) -d(R,)

(5) diPscan move from one input of an equijoin to the other
input if the columns used in the diP match the columns
used in the equi-join condition. For outer-joins, a diP
can move only if from the left side of a left outer join
(and vice versa). No movement is possible with a full
outer join.

° dC(Rl) Me—e Ry = dC(Rl Me=e Rz) = dC(Rl) Me=e
d.(R,); note here that ¢ and e can be sets of multiple
columns, then ¢ = e implies set equality.

Note a subtle case here: diPs whose columns do not

match but are contained within the columns in the equi-

join condition can also move.

(6) Aswesaw in Figure 7 Bl where a diP on the customer_sk
column is being pushed down to the customer table,
diPs on an inner join can push onto one of its input rela-
tions, generalizing the latter half of rule#s. This requires
the join input to contain all columns used in the diP, i.e.,
d(R,xR,) =d(d(R,) x R,) iff all columns used by
the diP d are available in the relation R,. Analogously,
in one-sided outer joins, the diP on the join can move
into the left side (right side) of a left outer join (right
outer join) if the columns used in the diP are available
on that join input.



To see these rules in action, note that diPs move in Fig-
ure 7 4 using rule#4 twice to pull up past a union and an
intersection, rule#s to move from one join input to another
at the top of the expression and rule#6 twice to push to a join
input. The example in Figure 2 (left) uses rule#s at the joins
and rule#3 to push below the group-by.

3.4 Scheduling the deriving of predicates

Given a join graph G where tables are nodes and edges corre-
spond to join conditions, the goal here is to achieve the largest
possible data skipping (which improves query performance)
while constructing the fewest number of diPs (which reduces
QO time).

Consider the example join graphs in Figure 8. The simple
case of two tables on the left only requires a single exchange
of diPs followed by an update to the partition subsets g; proof
is in §9. The other two cases require more careful handling as
we discuss next; the join graph in the middle is the popular
star-join which leads to tree-like join graphs and on the right
is a cyclic join graph.

Our algorithm to hasten convergence is shown in Pseu-
docode 9, Scheduler method at line#37. The case of acyclic join
graphs is an important sub-case because it applies to queries
with star or snowflake schema joins. Here, we construct a tree
over the graph (Treeify in line#39 picks the root that has the
smallest tree height and sets parent—child pointers; details are
in §9.1). Then, we pass diPs up the tree (lines#7-#9) and af-
terwards pass diPs down the tree (lines#10-#12). To see why
this converges, note that when line#10 begins, the partition
subsets of the table at the root of the tree would have stabilized;
Figure 8 (middle) illustrates this case with ¢, as root and shows
that convergence requires at most two (parallel) epochs and
six diPs. A proof that this algorithm is optimal, i.e., can skip all
skippable partitions in all tables while constructing the fewest
number of diPs, is in §9.

We convert a cyclic join graph into a tree over table subsets.
The conversion retains completeness; that is, all partitions that
can be skipped in the original join graph remain skippable by
exchanging diPs only between adjacent table subsets on the
tree. Furthermore, on the resulting tree, we apply the same sim-
ple schedule that we used above for tree-like join graphs with
a few changes. For example, the join graph in Figure 8(right)
becomes the following tree: t, — {t,,t;,t5} — {t;, 4, t5} —
{ty, ts, b6} — t.

Note that the join graph in Figure 8 (right) has two cycles
one of which is not a clique. Figure 10 shows the process of
converting this cyclic join graph into a tree using the junction
tree algorithm. As shown in Figure 10b, we first triangulate the
join graph; specifically, we add additional edges such that ev-
ery cycle of four or more nodes has a chord (defined as an edge
that connects two non-adjacent nodes in the cycle). Next, as

Srikanth Kandula, Laurel Orr, Surajit Chaudhuri

Inputs: G, the join graph and Vi, g; denoting partitions to be read in

table i (notation is listed in Table 3)

Output: V tables i, updated g; reflecting the effect of diPs

Func: DataPred (g, {c}) // Construct diP for columns {c} over

partitions x having g* =1; see §4.

> Func: Satisfy (d, x) // = 1if partition x satisfies predicate d; o
otherwise. See §4.

3 Func: Exchange(i, j) : //send diP from table i to table j

4 di_j < DataPred(q;, ColsOf(p;j,))

s V partition x € table j, q}‘ - q}‘ * Satisfy(d;j, x)

6 Func: TreeScheduler(T,{g;}): // a tree-like join graph
7 for h < o to height(7T") —1// bottom-up traversal do

8 foreach t € T : height(t) = h do

9 L Exchange(t, Parent(t, 7))

10 for h < height(T) to1// top-down traversal do
1 foreach t € T : height(t) = h do
12 L V child ¢ of ¢t in 7, Exchange(t, c)

13 Func: ExchangeExt (G, u,v)//send diPs from node u to v
14 foreach t, € RelationsOf (u), t, € RelationsOf(v) do

15 if IsConnected(t,, t,,G) then
16 d < DataPred(q:,, ColsOf (ps,1,,11))s
17 V partition x € table t,, gj, < q;, * Satisfy(d, x)

18 Func: ProcessNode (u) // exchange diPs within node
19 for i < o to x // repeat up to k times do

20 change < false;

21 foreach tables t,,t, € RelationsOf(u) do

2 if (t, # t,) A IsConnected(t,, t,,G) then
23 d < DataPred(q,, ColsOf (pt,1,> t1));
24 foreach partition x € t, : qj, = 1do

25 q;, < Satisfy(d, x)

26 L change < change v (q’t‘2 = o)

27 if — change then break// no new pruning;

»s Func: TreeSchedulerExt (V,G,{qi})/! for cyclic join graphs.
29 for h < o to height(V) —1// bottom-up traversal do

30 foreach u € V : height(u) = h do

3 if IsNotSingleRelation(u) then ProcessNode(u);
L ExchangeExt(G, u, Parent(u,V));

33 for h < height(V) to o // top-down traversal do

34 foreach u € V : height(t) = h do

35 if IsNotSingleRelation(u) then ProcessNode(u);
L V child v of u in V, ExchangeExt(G, u, v);

37 Func: Scheduler(G, {g;}):

38 if IsTree(G) then

39 L return TreeScheduler (Treeify(G), {q:});

40 else
4o L V <« MaxWtSpanTree(CliqueGraph(Triangulate(G)))

return TreeSchedulerExt(Treeify(V), G, {qi});

Figure 9: Pseudocode to compute a fast schedule.

shown in Figure 10c, we construct a clique-graph consisting of
nodes that are maximal cliques in the triangulated join graph
and edges between nodes that contain the same relations or
relations that are connected in the original join graph. The
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Figure 8: Schedules of exchanging diPs for different join graphs; numbers-in-circles denote the epoch; multiple diPs are exchanged in parallel in each

epoch. Details are in §3.4.
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(a) A join graph G. (b) Triangulate(G).
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(c) Result of the CliqueGraph method over the triangulated graph
above; edge weight is the number of common tables between nodes
incident on the edge.

t7
|
ti— {tp, t3,ts} — {ts, ts, ts} — {t4, ts, t}

(d) Illustrating the MaxWtSpanTree method for the above clique
graph; the schedule is in Figure 8 (right).

Figure 10: Illustrating the steps in lines#41,#42 for a join graph with
seven relations and two cycles.

weight of an edge is the number of relations that are common
between the incident nodes. Lastly, as shown in Figure 10d,
we compute the maximum weighted spanning tree over the
weighted clique graph. The net effect is to translate the cyclic
join graph into a tree of nodes corresponding to subsets of
connected relations in the join graph. On the resulting tree
we mimic the strategy used for tree-like join graphs with two
key differences. Specifically, at line#42, Treeify picks a root
with the lowest height as before. Then, diPs are exchanged
from children to parents (lines#29-#32) and from parents
to children (lines#33-#36). The key differences between the
TreeSchedulerExt and the TreeScheduler methods are: (1) as
the ProcessNode method shows, diPs are exchanged until
convergence or at most ¥ times between relations that are
contained in a node and (2) we compute multiple diPs when
exchanging information between nodes (see ExchangeExt)

whereas the Exchange method constructs at most one diP. Fig-

ure 8 (right) illustrates the resulting schedule; the root shown
in blue is the node containing {t;, t,, t5 }; epochs #2, #3 and #4
invoke ProcessNode on the triangle subsets of tables which
have the same color whereas epochs #1 and #5 exchange at
most one diP on the edges shown.

Properties of Algorithm 9: For tree-like join graphs, the
method shown is optimal (proof in §9). For a tree-like join
graph G with # tables, this method computes at most 2(n — 1)
diPs (because a tree has n — 1 edges) and requires 2height(G)
(parallel) epochs where tree height can vary from [ 2 | to [log n].
For cyclic join graphs the method shown here is approximate;
that is, it will not eliminate all partitions that can be skipped.
We show by counter-example in §9.2 that the optimal schedule
for a cyclic join graph can require a very large number of diPs;
the sub-optimality arises from limiting how often diPs are ex-
changed between relations within a node (in the ProcessNode
method). In §5.4, we empirically demonstrate that our method
for cyclic join graphs is a good trade-off between achieving
large data skipping and computing many diPs.

4 USING STATISTICS TO BUILD DIPS

Data statistics play a key role in constructing data-induced
predicates; recall that the three equations 1— 3 use statistics;
the specific statistic used determines both the effectiveness
and the cost of these operations. An ideal statistic is small,
easy to maintain, supports evaluation of a rich class of query
predicates and leads to succinct diPs. In this section, we discuss
the costs and benefits of well-known data statistics including
our new statistic, range-set, which our experiments show to
be particularly suitable for constructing diPs.

Zone-maps [13] consist of the minimum and maximum value
per column per partition and are maintained by several sys-
tems today (see Table 1). Each predicate clause listed in §3.2
translates to a logical operation over the zone-maps of the
columns involved in the predicate. Conjunctions, disjunctions
and negations translate to an intersection, an union or set
difference respectively over the partition subsets that match
each clause. For string-valued columns, zone-maps are typi-
cally built over hash values of the strings and so equality check
is also a logical equality, but regular expressions are not sup-
ported.

Note that there can be many false positives because a zone
map has no information about which values are present (except
for the minimum and maximum values).

The diP constructed using zone-maps, as we saw in the ex-
ample in Table 2b, is a union of the zone-maps of the partitions
satisfying the predicate; hence, the diP is a disjunction over
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Figure 11: Illustrating the difference between range-sets, zone-maps
and equi-depth histogram; both histograms and range-sets have three
buckets. The predicates shown in black dumbels below the axes will be
false positives for all stats except the range-set.

non-overlapping ranges. On the table that receives a diP, a
partition will satisfy the diP only if there is an overlap between
the diP and the zone-map of that partition. Note that there can
be false positives in this check as well because no actual data
row may have a value within the range that overlaps between
the diP and the partition’s zone map. It is straightforward to
implement these checks efficiently, and our results will show
that zone-maps offer sizable I/O savings (Figures 12, 15).

The false positives noted above do not affect query accu-

racy but reduce the 1/O savings. To reduce false positives, we
consider other data statistics.
Equi-depth histograms [50] can avoid some of the false pos-
itives when constructed with gaps between buckets. For e.g.,
a predicate x = 43 may satisfy a partition’s zone-map be-
cause 43 lies between the min and max values for x but can
be declared as not satisfied by that partition’s histogram if
the value 43 falls in a gap between buckets in the histogram.
However, histograms are typically built without gaps between
buckets [32, 50, 54], are expensive to maintain [54], and the
frequency information in histograms, while useful for other
purposes, is a waste of space here because predicate satisfaction
and diP construction only check for the existence of values.

Bloom filters record set membership [41]. However, we found
them to be less useful here because the partition sizes used
in practical distributed storage systems (e.g., ~ 100MBs of
data [42, 91]) result in millions of distinct values per column
in each partition, especially when join columns are keys. To
record large sets, bloom filters require large space or they will
have a high false positive rate; e.g., a 1KB bloom filter that
records a million distinct values will have 99.62% false posi-
tives [41] leading to almost no data skipping.

Alternatives such as the count-min [51] and AMS [38] sketches
behave similarly to a bloom filter for the purpose at hand. Their
space requirement is larger, and they are better at capturing the
frequency of values (in addition to set membership). However,
as we noted in the case of histograms, frequency information
is not helpful to construct diPs.

Range-set: To reduce false-positives while keeping the stat
size small, we propose storing a set of non-overlapping ranges
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over the column value, {[;, 4;]}. Note that a zone-map is a
range-set of size 1; using more ranges is hence a simple gener-
alization. The boundaries of the ranges are chosen to reduce
false positives by minimizing the total width (i.e., 3; u; — ;)
while covering all of the column values. To see why range-sets
help, consider the range-set shown in green dots in Figure 11;
compared to zone-maps, range-sets have fewer false positives
because they record empty spaces or gaps. Equi-depth his-
tograms, as the figure shows, will choose narrow buckets near
more frequent values and wider buckets elsewhere which can
lead to more false positives. Constructing a range-set over r
values takes O(rlogr) time™. Reflecting on how zone-maps
were used for the three operations in Equations 1- 3, i.e., apply-
ing predicates, constructing diPs and applying diPs on joining
tables, note that a similar logic extends to the case of a range-
set. SIMD-aware implementations can improve efficiency by
operating on multiple ranges at once. A range-set having n
ranges uses 21 doubles. Merging two unsorted range-sets as
well as checking for overlap between them uses O(nlogn)
time where 7 is the size of larger rangeset; proof is in §10". Our
results will show that small numbers of ranges (e.g., 4 or 20)
lead to substantial improvements over zone-maps (Figure 18).

4.1 Coping with data updates

When rows are added, deleted, or changed, if the data statistics
are not updated, partitions can be incorrectly skipped, i.e.,
false negatives may appear in equations 1- 3. We describe two
methods to avoid false negatives here.

Tainting partitions: A statistic agnostic method to cope with
data updates is to maintain a taint bit for each partition. A
partition is marked as tainted whenever any row in that parti-
tion changes. Tables with tainted partitions will not be used to
originate diPs (because that diP can be incorrect). However, all
tables, even those with tainted partitions, can receive incoming
diPs and use them to eliminate their un-tainted partitions.

More specifically, the operations over statistics (Equations 1-
3) are updated as shown below, where ¢} is true if and only if
the x’th partition of the i’th table is tainted.

V table i, partition x,
V tables i, j, if Vx, t¥ = o,

q7 « 7 v Satisfy(p;, x), (4)
di_j < DataPred(q;, pij), (5)

V table j, partition x, g7 < 7 v q} [Ts; Satisfy(d;j,x). (6)

Taint bits can be maintained at transactional speeds and
can be extremely effective in some cases, e.g., when updates
are mostly to tables that do not generate data-reductive diPs.

'°First sort the values, then sort the gaps between consecutive values to find a
cutoff such that the number of gaps larger than cutoff is at most the desired
number of ranges; see $10 for proof of optimality.

"'The sorting cost can be amortized; e.g., by sorting after any update, so that
merge and check are in practice ~ O(n).
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Table 4: Greedily growing a range-set in the presence of updates.

Beginning range-set: {[3,5], [10,20], [23,27]}, nr =3

Update New range-set
| Adde {[3,6],[10,20],[23,27]}
%)
2| Add 13, Delete 20, Change 5 to 15 no change
]
Add 52 {[36]. [10,27], [52.52]}

One such scenario is queries over updateable fact tables that
join with many unchanging dimension tables; predicates on
dimension tables can generate diPs that flow unimpeded by
taint on to the fact tables. Going beyond one taint bit per
partition, maintaining taint bits at a finer granularity (e.g., per
partition and per column) can improve performance with a
small increase in update cost. See results in §5.3. Taint bits do
not suffice, i.e., they will sacrifice I/O savings, if the tables that
have query predicates (and which will originate data-reductive
diPs) are updateable; for such cases, we propose a different
method below that grows the data statistics.

Approximately updating range-sets in response to updates:
The key intuition of this method is to update the range-set in
the following approximate manner: ignore deletes and grow
the range-set to cover the new values; that is, if the new value
is already contained in an existing range, there is nothing
to do; otherwise, either grow an existing range to contain
the new value or merge two consecutive ranges and add the
new value as a new range all by itself. Since these options
increase the total width of the range-set, the process greedily
chooses whichever option has the smallest increase in total
width. Table 4 shows examples of greedily growing a range-set.
Our results will show that such an update is fast (Table 7), and
the reduction in I/O savings— because the range-sets after
several such updates can have more false positives than range-
sets that are re-constructed for just the new column values—
is small (Figure 16a).

We also have hardness results regarding the non-existence of
an optimal data statistic for diPs in §10; i.e., a statistic cannot
simultaneously be small in size, mergeable and avoid false
positives on general data distributions. Optimal updates to a
range-set also appear hard; that is, as data arrives in a streaming
fashion, approximating the optimal total width of a range-set
to within a constant factor requires memory that is linear in
the number of data values (see $15).

5 EVALUATION

Using our prototypes in Microsoft’s production big-data clus-
ters and SQL server, we consider the following aspects:

e Do data-induced predicates offer sizable gains for a wide va-
riety of queries, data distributions, data layouts and statistic
choices?

e Understand the causes for gains and the value of our core
contributions.

e Understand the gap from alternatives.

We will show that using diPs leads to sizable gains across
queries from TPC-H, TPC-DS and Join Order Benchmark,
across different data distributions and physical layouts and
across statistics (§5.2). The costs to achieve these gains are
small and range-sets offer more gains in more cases than zone-
maps (§5.3). Both the careful ordering of diPs and the commu-
tativity rules to move diPs are helpful (§5.4). We also show that
diPs are complementary to and sometimes better than using
join indexes, materializing denormalized views or clustering
rows in §5.5; these alternatives have much higher maintenance
costs unlike diPs which work in-situ using small per-table
statistics and a small increase to QO time.

5.1 Methodology

Queries: We report results on TPC-H [28], TPC-DS [26] and
the join order benchmark (JOB) [63]. We use all 22 queries
from TPC-H but because TPC-DS and JOB have many more
queries we pick from them 50 and 37 queries respectively'.
We choose JOB for its cyclic join queries. We choose TPC-
DS because it has complex queries (e.g., several non foreign-
key joins, UNIONSs and nested SQL statements). Query predi-
cates are complex; e.g., q19 from TPC-H has 16 clauses over 8
columns from multiple relations. While inner-joins dominate,
the queries also have self-, semi- and outer joins.

Datasets: For TPC-H and TPC-DS we use 100GB and 1TB
datasets respectively. The default datagen for TPC-H, unlike
that of TPC-DS, creates uniformly distributed datasets which
is not representative of practical datasets; therefore, we also
use a modified datagen [31] to create datasets with different
amounts of skew (e.g., with zipf factors of 1,1.5, 2). For JOB,
we use the IMDB dataset from May 2013 [63].

Layouts and partitioning: We experiment with many dif-
ferent layouts for each dataset. The tuned layout speeds up
queries by avoiding re-partitioning before joins and enhances
data skipping®. diPs yield sizable gains on tuned layouts. To
evaluate behavior more broadly, we generate several other lay-
outs where each table is ordered on a randomly chosen column.
For each data layout, we partition the data as reccommended by
the storage system, i.e., roughly 100MB of content in SCOPE
clusters, [47, 91] and roughly 1M rows per columnstore seg-
ment in SQL Server [8].

Systems: We have built prototypes on top of two produc-
tion platforms: SCOPE clusters which serve as the primary
platform for batch analytics at Microsoft and comprise tens
of thousands of servers [47, 91] and SQL Server 2016. Both

21...40,90...99 from TPC-DS and ([1 — 9][10)* from JOB
BIn short, dimension tables are sorted by key columns and fact tables are

clustered by a prevalent predicate column and sorted by columns in the
predominant join condition; details are in §13 .
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Figure 12: Change in query performance from using data-induced predicates. The figures show cumulative density functions (CDFs) of speedups for
different benchmarks, on different platforms for the tuned data layout (see §5.1). The benefits are wide-spread, i.e., almost all queries improve; in some

cases, the improvements can be substantial. More discussion is in §5.2.

systems use cost-based query optimizers [55]. A SCOPE job
is a collection of tasks orchestrated by a job manager; tasks
read and write to a file system, and each task internally ex-
ecutes a sub-graph of relational operators which pass data
through memory. The servers are state-of-the-art Intel Xeons
with 192GB RAM, multiple disks and multiple 10Gbps net-
work interface cards. Our SQL server experiments ran on a
similar server. After each query executes in SQL server, we
flush various system buffer pools to accurately measure the
effects of I/O savings. SCOPE clusters use a partitioned row
store; for SQL server, we use both columnstores and rowstores.
SCOPE and SQL server implement several advanced optimiza-
tions such as semijoins [21], predicate pushdown to eliminate
partitions [7] and magic-set rewrites [52].

Comparisons: In addition to the above production baselines,
we compare against several alternatives. By DenormView, we
refer to a technique that avoids joins by denormalization, i.e.,
materializes a join view over multiple tables. The view is stored
in column store format in SQL server. Since the view is a single
relation, queries can skip partitions without worrying about
joins. By Joinlndexes, we refer to a technique that maintains
clustered rowstore indexes on the join columns of each relation;
for tables that join on more than one column, we build an index
on the most frequently used join column. By FineBlock, we
refer to a single relation workload-aware clustering scheme
which enhances data skipping by colocating rows that match
or do-not-match the same predicates [82]. We apply FineBlock
on the above denormalized view.

We also compare with the following variants of our scheme:
No Transforms does not use commutativity to move diPs;
Naive Schedule constructs as many diPs as our schedule but
picks at random which diP to construct at each step. Preds
uses the same statistics but only for predicate pushdown, i.e.,
it does not compute diPs.

Statistics: Many systems already store zone-maps as noted
in Table 1. We evaluate various statistics mentioned in §4. Gap
hist is our own implementation of an optimal equi-depth his-
togram with gaps between buckets. Unless otherwise stated, we

use 20 ranges for range-sets and 10 buckets for gap hists. Also,
unless otherwise stated the results use range-sets to construct
diPs.

Metrics: We measure query performance (latency and re-
source use), statistic size, maintenance costs, and increase in
query optimization time. Since diPs reduce the input size thata
query reads from the store, we also report INPUTCUT which is
the fraction of the query’s input that is read after data skipping;
if data skipping eliminates half of a query’s input, INpPUTCUT
= 2. When comparing two techniques, we report the ratio of
their metric values.

5.2 Benefits from using diPs

Figure 12 shows the performance speedup from using diPs on
different workloads in SCOPE clusters and SQL server. Results
are on the tuned layout which is popular because it avoids re-
partitioning for joins and enhances data skipping [22, 29, 53].
The results are CDFs over queries; we repeat each query at
least five times. All of the results except one of the CDFs in Fig-
ure 12¢ use range-sets. Figure 12a shows that the median TPC-
DS query finishes almost 2x faster and uses 4x fewer total
compute hours. Much larger speed-ups are seen on the tail. To-
tal compute hours improves more than latency (higher speed-
up in orange lines than in grey lines) because some of the
changes to parallel plans that result from reductions in initial
I/O add to the length of the critical path which increases query
latency while dramatically reducing total resource use; e.g.,
replacing pair joins with broadcast joins eliminates shuffles
but adds a merge of the smaller input before broadcast [49].
We see that almost all queries improve. SCOPE clusters are
shared by over hundreds of concurrent jobs, and so query
latency is subject to performance interference; the CDFs use
the median value over at least five trials, but some TPC-H
queries in Figure 12b still have a small regression in latency.
Figures 12b and 12c show that TPC-H queries receive similar
latency speedup in SCOPE clusters and SQL server. Unlike
TPC-DS and real-world datasets which are skewed, the default
datagen in TPC-H distributes data uniformly; these figures
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Figure 13: The INputCut from diPs for different benchmarks; each CDF
is over the queries listed in §5.1 and over multiple layouts of the datasets.
The table below reads out values at various percentiles; observe that in all
the benchmarks (JOB, TPC-DS and TPC-H).
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Figure 14: How input skew and data layouts affect the usefulness of diPs;
see §5.2.
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show results with different amounts of skew generated us-
ing [31]. We see that diPs produce larger speed-ups as skew
increases mainly because predicates and diPs become more
selective at larger skew. Figure 12c shows sizable latency im-
provements when using zone-maps. We have confirmed that
the query plans in the production systems, SCOPE clusters
and SQL server, reflect the effects of predicate pushdown and
bitmap filters for semijoins [7, 21, 52]; these figures show that
diPs offer sizable gains for a sizable fraction of benchmark
queries on top of such optimizations.

Figure 13 considers many different layouts, and Figure 14
also considers different skew factors. These results show the
INpuTCuUT metric which is the reduction in initial I/O read by
a query. Across data layouts, about 40% of the queries in each
benchmark obtain an INPUTCUT of at least 2x; that is, they
can skip over half of the input. About 20% of the cases receive
substantial INPUTCUT, 2.5%, 4.5x and 8x for JOB, TPC-DS

Table 5: The additional latency to derive diPs in seconds compared to
the baseline QO latency; see §5.3.

%ile

Latency(s) 10th ‘ 25th ‘ soth | 75th ‘ goth
Baseline QO 0.145 | 0.158 | 0.176 | 0.188 | 0.218
to add diPs 0.032 | 0.050 | 0.084 | 0.107 | 0.280

Table 6: Additional results for experiments in Figure 12, Figure 13
and Figure 14. The table shows data from our SCOPE cluster.

TPC-H | TPC-DS JOB
Input size 100GB 1TB 4GB
#Tables, #Columns 8, 61 24, 416 21,108
# Queries 22 50 37
Range-set size ~2MB | ~35MB | ~30KB
# Partitions ~10° | ~4%10* | ~200

Table 7: The time to greedily update range-sets of various sizes (in
nanoseconds) measured on a desktop.

Size 2 4 8 16 20 32 64
Avg. | 85 | 11.8 | 22.8 | 42.1 | 49.8 | 67.8 | 121.4
Stdev. | 0.4 | 0.4 | 0.4 | 01 | 2.4 | 3.4 3.9

and TPC-H respectively. The fraction of cases that receive at
least an order of magnitude speed-up (x=10) is 2%, 5% and
19%respectively. Figure 14 shows that lower skew leads to a
lower INpuTCUT, but diPs offer gains even for a uniformly
distributed dataset. The tuned data layout in both TPC-H and
TPC-DS leads to larger values of INPUTCUT relative to the
other data layouts; that is, diPs skip more data in the tuned
layout. This is because the tuned layouts help with all three con-
ditions C1 — C3 listed in §2; predicates skip more partitions on
each table because tuned layouts cluster by predicate columns
and ordering by join column values helps diPs eliminate more
partitions on the receiving tables. We also observe several in-
stances where a query speeds up more in a different layout
than the tuned layout; typically, such queries use different join
or predicate columns than those used by the tuned layout.

Figure 15 breaks-down the gains for each query in TPC-H
when using different statistics. Notice that zone-maps are often
as good as the gap histograms to construct diPs; compare the
third blue candlestick in each cluster with the second green
candlestick. Gap histograms are better in predicate satisfac-
tion than zone-maps but do not lead to much better diPs. As
the figure shows, range-sets (the first red candlestick in each
cluster) offer a marked improvement; they offer larger gains
on more queries and in more layouts.

5.3 Costs of using diPs

The costs to obtain this speed-up include storing statistics,
an increase to the query optimization duration (to determine
which partitions can be skipped), and maintaining statistics
when data changes. In big-data clusters, queries are read-only
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Figure 16: (Left) Effectiveness of greedy-updates for range-sets; the fig-
ure shows the average and stdev across columns. (Right) Cost to construct
range-sets measured on a desktop.

and datasets are bulk appended; so building and maintain-
ing statistics is less impactful relative to the storage space and
QO overhead. Table 5 shows that the additional QO time to
use diPs is rather small often, but it can be large on the tail.
We verify that these outliers exchange diPs between large ta-
bles which takes a long time because such diPs have many
clauses and are evaluated on many partitions. We note that
our derivation of diPs is a prototype, parts of which are in
c# for ease-of-debugging, and that evaluating diPs is embar-
rassingly parallel (e.g., apply diP to stat of each partition); we
have not yet implemented optimizations and believe that the
extra QO time can be substantially smaller. Regarding storage
overhead, Table 6 shows the size of range-sets which can be
thought of as 20 “rows” per partition (a partition is 100MB of
data in SCOPE clusters and 1M rows in a columnstore segment
in SQL server [8]) and so the space overhead for range-sets
is ~ 0.002%. Zone-maps use 10x less space because they only
record the max and min value per column, i.e., 2 “rows” per
partition. Although TPC-DS and JOB have more tables and
more columns, their ratio of stat size to input size is similar.

Costs and gains when tainting partitions: Recall from §4
that a statistic-agnostic method to cope with data updates
was to taint partitions. We evaluate this approach by using
the TPC-H data generator to generate 100 update sets each
of which change 0.1% of the orders and 1lineitem tables.
Figure 15 showed that diPs deliver sizable gains for 15 out
of the 22 TPC-H queries; among these queries, only six are
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Figure 17: How INpUTCUT varies when different methods are used to de-
rive diPs; we compare with No Transforms which does not use any trans-
formation rules and Naive schedule which constructs the same number
of diPs in a naive manner. (Results are for TPC-H skewed with zipf 2 and
TPC-DS in the tuned layout.)
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Figure 18: How INpuTCuT varies with the numbers of ranges used in the
range-set statistic. (Results are for TPC-H skewed with zipf 2 and TPC-DS
in the tuned layout; other cases behave similarly.)

unaffected by taints; specifically for {q2, qu4, q15, q16, q17,
q19}, diPs offer large I/O savings in spite of updates. The other
queries see reduced I/O savings because updates in TPC-H
target the two largest tables, lineitem and orders; when
both these relations become tainted, diPs cannot flow between
these relations, and so queries that require diPs between these
tables lose INPUTCuUT due to taints. As noted in §4, taints are
more suitable when updates target smaller dimension tables.

Greedily maintaining range-sets: Recall from $4 that our
second proposal to cope with data updates is to greedily grow
the range-set statistic to cover the new values. Table 7 shows
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that range-sets can be updated in tens of nanoseconds using
one core on a desktop; thus, the anticipated slowdown to a
transaction system is negligible. Figure 16a shows that the
greedy update procedure leads to a reasonably high quality
range-set statistic; that is, the total gap value (i.e., 3; (u;-1;) for
arange-set {[/;, u;]}) obtained after many greedy updates is
close to the total gap value of an optimal range-set constructed
over the updated dataset. The figure shows that the greedy
updates lead to a range-set with an average gap value > 80%
of optimal when up to 10% of rows in the 1ineitem table are
updated.

Range set construction time: Figure 16b shows the latency
to construct range-sets. Computing larger range-sets (e.g., 20
ranges vs. 4) has only a small impact on latency, and almost all
of the latency is due to sorting the input once (the ‘total’ lines
are indistinguishable from the ‘sort’ lines). These results use
std::sort from Microsoft Visual C++. Note that range-sets can
be constructed during data ingestion in parallel per partition
and column; construction can also piggy-back on the first
query to scan the input.

5.4 Understanding why diPs help

Comparing different methods to construct diPs: Figure 17
shows that both the commutativity rules in §3.3 and the algo-
rithm in §3.4 are necessary to obtain large gains using diPs.
The naive schedule has the same QO duration because it con-
structs the same number of diPs, but by not carefully choosing
the order in which diPs are constructed, this schedule leaves
gains on the table as shown in the figure. Not using commuta-
tivity rules leads to a faster QO time but, as the figure shows,
can lead to much smaller performance improvements because
generating diPs only for maximal select-join portions of a
query graph will not reduce I/O when queries have nested
statements and other complex operators. The more complex
queries in TPC-DS suffer a greater falloff.

How many ranges to use? Figure 18 shows that a small num-
ber of ranges achieve nearly the same amount of data skipping
as much larger range-sets. Each step in diP creation, as noted
in §4, adds false positives, and there is a limit to gains based
on the joint distribution of join and predicate columns. We
believe that achieving more I/O skipping beyond that obtained
by using just a few ranges may require much larger statistics
and/or more complex techniques.

Drilling down on why diPs help: To understand the result
in Figure 15 further, we assess how often the conditions C1-C3
noted in §2.1 for when diPs yield large gains, hold for TPC-H
queries.

e 15/22 queries receive large I/O savings; namely {q2, q3, q4,
g5, 46, 47, q10, q12, q14, 415, 416, q17, q19, 420, g21}.
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Figure 19: Impact of changing the number of partitions for the TPC-H
dataset (scale factor = 100).

e For the queries shown in red above, diPs magnify the gains
from predicate pushdown, predicates on small relations can
now eliminate many partitions on the large relations.

¢ Among the remaining queries:

- {qu, g6} have no joins; so diPs do not offer additional
value.

- {97 q14, q15, q20} have selective predicates only on the
largest table and so diPs only offer modest gains over
predicate pushdown.

- {q9, q13, q18, q22} have no predicates or predicates with
low selectivity.

- {q8, qu} violate C1 on all seven layouts, i.e., rows picked
by the predicate are spread over many partitions. {q2,
g5, 7 q16} violate C1 on most but not all of the layouts;
hence their gains from diPs vary substantially across lay-
outs.

- {qy} violates C2 and C3 on all seven layouts; {q16, q19,
q17 q20, q21} violate C2 and C3 in some but not all of the
layouts which translates to high variance in gains across
layouts.

Table 9 offers additional detail with more detailed condi-
tions than those mentioned in §2.1.

Effect of changing #partitions: Figure 19 shows the results
for TPC-H queries when varying the number of partitions.
Recall that all the other results in the paper used 10? partitions
for TPC-H (see Table 6); here, we show results for fewer and
many more partitions.

The figure shows that INPUTCUT, which is the fraction of
partitions that can be skipped using diPs, improves as the
number of partitions increase but the marginal improvement
decreases. The reason is that more partitions allow a finely
granular view of the relations which can lead to more parti-
tions being skipped; however, if a certain number of partitions
suffices to skip all of the skippable rows for a query then di-
viding the data into more partitions will not offer more data

skipping.
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Figure 20: Comparing diPs with join indices on SQL server.

While using more partitions generally improves data skip-
ping, some of the associated costs increase as noted below:

e A significant concern arises from I/O access: increasing the
number of partitions naively could lead to small partition
sizes (at extremum, each partition has just 1 row) and read-
ing small amounts of data is inefficient in most batch storage
devices. For example, on a disk that uses 4KB blocks, the
maximal disk throughput may not be realized until about
400KBs of data is read sequentially. Thus, very small parti-
tions may lead to worse query execution time even though
they facilitate greater data skipping. Recall that we use a
100GB dataset for TPC-H and so even with 10° partitions,
each partition is roughly 1tMB. Thus, more gains are possible
than is indicated by our experimental results in §5.

e The query optimization time to construct and apply diPs
can also increase because all active partitions are inspected
in these operations. In practice, the increase is not signif-
icant because diP construction and application are easily
parallelizable (e.g., an incoming diP can be evaluated on
the statistics of each partition in parallel).

o Lastly, the complexity of computing statistics does not change
(recall that this is linear in the number of rows) but the space
requirements to store statistics increases (this is linear in
the number of the partitions).

5.5 Comparing with alternatives

Join Indexes: Figure 20 compares using diPs with the JoinIn-
dexes scheme described in §5.1. Results are on SQL server
for TPC-H skewed with zipf factor 1 and a scale factor of 100.
We built clustered rowstore indexes [6] on the key columns
of the dimension tables, and on the fact tables, we built clus-
tered indexes on their most frequently used join columns (i.e.,
1_orderkey, o_orderkey, ps_partkey). Indexes are not sup-
ported on columnstores; so we use rowstores for just this exper-
iment. The figure shows that using join indexes leads to worse
query latency than not using the indexes in 19/22 queries; we
believe that this is because: (1) the predicate selectivity in sev-
eral TPC-H queries is not small enough to benefit from an
index seek and so most plans use a clustered index scan, and
(2) clustered index scans are slower than table scans. diPs are
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Figure 22: INpuTCut on TPC-H queries for FineBlock; box plots show
results for different predicates.

complementary because they reduce I/O before query execu-
tion.

diPs vs. predicate pushdown: Figure 21 shows the ratio of
improvement over Preds which can only skip partitions on
individual tables. When queries have no joins or the selec-
tive predicates are only on large relations, diPs do not offer
additional data skipping, but the figure shows that diPs of-
fer a marked improvement for a large number of queries and
layouts.

diPs vs. DenormView: We use a materialized view (denormal-
ized relation) which subsumes 16/22 queries in TPC-H; the
remaining queries require information that is absent in the
view and cannot be answered using this view (view statement
is in §14). In columnar (rowstore) format, this view occupies
2.7% (6.2x) more storage space than all of the tables combined.
Queries over the view are un-hindered by joins because all
predicates directly apply on a single relation; however, because
the relation is larger in size, queries may or may not finish
faster. We store this view in columnar format and compare
against a baseline where all tables are in a columnar layout.
Figure 22 (with + symbol) shows the speed-up in query la-
tency when using this view in SQL server (results are for 100G
dataset with zipf skew 1). We see that all of the queries slow
down (all + symbols are below 1). Materialized views speed-up
queries, in general, only when the views have selections or ag-
gregations that reduce the size of the view [36]. Unfortunately,
this does not happen in the case of the view that subsumes all
16/22 TPC-H queries (see [18]).



Pushing Data-Induced Predicates Through Joins in Big-Data Clusters: Extended Version

diPs vs. clustering rows by predicates: A recent research pro-
posal [82] clusters rows in the above view to maximize data
skipping. Training over a set of predicates, [82] learns a clus-
tering scheme that intends to skip data for unseen predicates.
Figure 22 shows with X symbols the average INPuTCUT 0b-
tained as a result of such clustering; the candlesticks around
the X symbol show the min, 25th percentile, 75th percentile
and max INPUTCuUT for different query predicates. We see
that most queries receive no INPUTCUT (x marks are at 1) due
primarily to two reasons: (1) the chosen clustering scheme
does not generalize across queries; that is, while some queries
receive gains the chosen clustering of rows does not help all
queries, and (2) the chosen clustering scheme does not gener-
alize to unseen predicates as can be seen from the large span
of the candlesticks. Figure 22 also shows with circle symbols
the average query latency when using this clustering. Only
5/22 queries improve (fastest query is ~ 100x faster) and 11/22
queries regress (slowest is 10x slower). Hence, the practical
value of such schemes is unclear.

We also note the rather large overheads to create and main-
tain indexes and views [35, 72] and to learn clusterings [82].
Also, these schemes require foreknowledge of queries and offer
gains only for queries that are similar [36, 37, 82]. In contrast,
diPs only use small and easily maintainable data statistics, re-
quire no apriori knowledge of queries and offer sizable gains
for ad-hoc and complex queries.

6 DISCUSSION

Other uses of diPs: It is possible to use diPs for purposes
other than eliminating partitions during query optimization.
For example, during query execution, a diP can be used as
a SARG-able predicate on an index [75]. A diP can also be
sent to a remote store [23] such that only data satisfying the
predicate is fetched from the store; doing so helps when storage
is disaggregated because a common bottleneck in such systems
is the path between the compute and store. In-memory engines
can also benefit from executing diPs within the query; by doing
so, even though the initial I/O remains the same, joins can
speed up because they process less data, and executing diPs can
be more efficient than constructing bloom filters or bitmaps
for semijoin optimizations [21].

Compressed or encrypted stores: Since computing and ap-
plying diPs only uses partition statistics, their gains are not im-

pacted if the underlying stores are compressed or encrypted [62].

Compaction of diPs: In some cases, a diP can have too many
clauses. For example, when using range-sets with 7, ranges, if
n, partitions match a predicate, then the diP can be a disjunc-
tion of up to n, * n, clauses. To bound the cost of evaluating
diPs, we limit each diP to have no more range clauses than
a specified threshold; optimal compaction has O(n,logn,)
complexity.

Convergence under compaction: The convergence claims
in §3.4 and §9 do not hold when diPs are compacted as above
because compaction is lossy. For the sake of simplicity, our im-
plementation uses the schedules described in §3.4 and repeats
them until no more partitions are eliminated. In practice, we
find that the additional diP computations needed are negligi-
ble.

Plan caches: When datasets change, query execution plans
that were cached [24] when the same or a similar query ex-
ecuted earlier are no longer up-to-date. Nevertheless, some
systems reuse the cached query plan as long as the number
of changes or the number of affected rows are small. The rea-
soning here is that a small number of changes may not affect
the quality of the plan, and avoiding re-optimization may be a
worthwhile trade-off. More care is required, however, when
re-using cached query plans that contain diPs. If the changes
to data affect the diPs that were used to build the plan, then
using the cached plans may lead to an incorrect query result.
Here, we mention a simple method that SQL server uses to
keep plan caches up-to-date with the data statistics used to
build such plans, and present a simple extension to consider
the case of plans containing diPs. For every query plan stored
in the plan cache, SQL server maintains a list of interesting
statistics that were used to generate that plan. Associated with
each interesting statistic, SQL server maintains a counter that
describes how often the table corresponding to that statistic
was updated. A threshold function is used on these modifi-
cation counters to determine whether the cached plan can
be reused. To extend this method to the case of query plans
that contain diPs, we propose to add the data statistic used to
compute the diPs as another interesting statistic; the counter
is updated if the corresponding table receives a taint on any
partition or if growing the statistic changes its value, and we
choose a threshold value such that plans are reused if and
only if the underlying data statistics do not change or if the
tables are untainted as the case may be. Caching plans con-
taining diPs can help in certain common use-cases such as
read-only queries which are predominant in big-data clusters
and append-only semantics for datasets which are common
in columnstore deployments. In other cases, the above small
extension to SQL server’s current operation suffices to ensure
reuse of cached query plans.

7 RELATED WORK

To the best of our knowledge, this paper is the first system to
skip data across joins for complex queries during query opti-
mization. These are fundamental differences: diPs rely only
on simple per-column statistics, are built on-the-fly in the
QO, can skip partitions of multiple joining relations, support



different join types and work with complex queries; the result-
ing plans only read subsets of the input relations and have no
execution-time overhead.

Some research works discover data properties such as func-
tional dependencies and column correlations and use them to
improve query plans [10, 44, 58, 60]. Inferring such data prop-
erties is a sizable cost (e.g., [58] uses student t-test between
every pair of columns). It is unclear if these properties can be
maintained when data evolves. More importantly, imprecise
data properties are less useful for QO (e.g., a soft functional
dependency does not preserve set multiplicity and hence can-
not guarantee correctness of certain plan transformations over
group-bys and joins). A SQL server option [10] uses the fact
that the 1_shipdate attribute of 1ineitemis between o to 9o
days larger than o_orderdate from orders [28] to convert
predicates on 1_shipdate to predicates on o_orderdate and
vice versa. Others discover similar constraints more broadly [44,
60]. In contrast, diPs exploit relationships that may only hold
conditionally given a query and a data-layout. Specifically, even
if the predicate columns and join columns are independent,
diPs can offer gains if the subset of partitions that satisfy a pred-
icate contain a small subset of values of the join columns. As
we saw in §2, such situations arise when datasets are clustered
on time or partitioned on join columns [53].

Prior work moves predicates around using column equiv-
alence and magic-set style reasoning [52, 64, 66, 76, 85, 86].
SCOPE clusters and SQL server implement such optimiza-
tions, and as we saw in §5, diPs offer gains over these baselines.
Column equivalence does not help when predicate columns
do not exist in joining relations. Magic set transformations
help only 2/22 queries in TPC-H queries and only when pred-
icates are selective [76]. By inferring new predicates that are
induced by data statistics, diPs have a wider appeal.

Auxiliary data structures such as views [30], join indices [25],
join bitmap indexes [5], succinct tries [90], column sketches [56]
and partial histograms [87] can also help speed-up queries.
Join zone maps [14] on a fact table can be constructed to in-
clude predicate columns from dimension tables; doing so ef-
fectively creates zone-maps on a larger denormalized view.
Constructing and maintaining these data structures has over-
head, and as we saw in §5, a particular view or join index does
not subsume all queries. Hence, many different structures
are needed to cover a large subset of queries which further
increases overhead. Queries with foreign-key — foreign-key
joins (e.g., store_sales and store_returns in TPC-DS
join in six different ways) can require maintaining many dif-
ferent structures. diPs can be thought off as a complementary
approach that helps with or without auxiliary structures.

While data-induced predicates are similar to the implied
integrity constraints used by [68], there are some key differ-
ences and additional contributions. (1) [68] only exchanges
constraints between a pair of relations; we offer a method
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which exchanges diPs between multiple relations, handles
cyclic joins and supports queries having group-by’s, union’s
and other operations. (2) [68] uses zone maps and two bucket
histograms; we offer a new statistic (range-set) that performs
better. (3) [68] shows no query performance improvements;
we show speed-ups in both a big-data cluster and a DBMS.
(4) [68] offers no results in the presence of data updates; we
design and evaluate two maintenance techniques that can be
built into transactional systems.

While a query executes, sideways information passing (SIP)
from one sub-expression to a joining sub-expression can prune
the data-in-flight and speed up joins [40, 59, 66, 71, 76, 79].
Several systems, including SQL server, implement SIP and we
saw in §5 that diPs offer additional speed-up. This is because
SIP only applies during query execution whereas diPs reduce
the I/O to be read from the store. SIP can reduce the cost of
a join, but constructing the necessary info at runtime (e.g.,
a bloom filter over the join column values from one input)
adds runtime overhead, needs large structures to avoid false
positives and introduces a barrier that prevents simultaneous
parallel computation of the joining relations. Also, unlike diPs,
SIP cannot exchange information in both directions between
joining relations nor does it create new predicates that can be
pushed below group-bys, unions and other operations.

A large area of related work improves data skipping using
workload aware adaptations to data partitioning or index-
ing [45, 46, 57, 65, 69, 74, 78, 82, 83, 89]; they co-locate data
that is accessed together or build correlated indices. Some use
denormalization to avoid joins [82, 89]. In contrast, diPs re-
quire no changes to the data layout and no foreknowledge of
queries.

8 CONCLUSION

As dataset sizes grow, human-digestible insights increasingly
use queries with selective predicates. In this paper, we present
a new technique that extends the gains from data skipping;
the predicate on a table is converted into new data-induced
predicates that can apply on joining tables. Data-induced pred-
icates (diPs) are possible, at a fundamental level, because of
implicit or explicit clustering that already exists in datasets.
Our method to construct diPs leverages data statistics and
works with a variety of simple statistics, some of which are
already maintained in today’s clusters. We extend the query op-
timizer to output plans that skip data before query execution
begins (e.g., partition elimination). In contrast to prior work
that offers data skipping only in the presence of complex aux-
iliary structures, workload-aware adaptations and changes to
query execution, using diPs is radically simple. Our results in
a large data-parallel cluster and a DBMS show that large gains
are possible across a wide variety of queries, data distributions
and layouts.
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9 CONVERGENCE PROOF

We will now prove that the scheduling algorithm presented
in §3.4 produces convergent schedules for tree-like (acyclic)
join graphs. This proof makes no assumptions on the statistics
used beyond those listed in §2; that is, statistics can identify
satisfying partitions and are mergeable [33]. The proof assumes
that merging statistics is not lossy; that is, the merged stat
corresponding to a set of stats has the exact same information.

Recall from §3.4 that our schedule builds a tree for an acyclic
join graph and passes data-induced predicates from the leaves
of the join tree up to the root and then back down to the leaves.
Our proof starts with some simple cases and builds towards
the general case. We use the notation from Table 3 and slightly
expand it to add epoch information. That is, g, (;) denotes the
partition subset of table ¢ at the end of epoch i, and d,_,, (;
denotes the data-induced predicate exchanged from table ¢ to
table r in epoch i.

One join: Suppose we have a single join between two relations,
table t and table 7, such as is shown in the Figure 8(left). The
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schedule for this join graph first applies local predicates to pick
partitions that satisfy the predicate on each table, say q, (o) and
qr,(0) (the (0) indicates these vectors are values before the first
epoch). It then exchanges diPs d,_,, ;) and d,_,; (,) between
the tables ¢ and r (the (1) indicates these are diPs from epoch
(1)). Lastly, each table updates their partition subsets based
on these diPs to get g, (,) and g, (), respectively.

To show that g, (,) and g, (,) are converged, suppose the
contrarian case that some partition in either table is eliminated
by another exchange of data-induced predicates. Without loss
of generality, suppose partition x in table ¢ is newly eliminated
in the second epoch; that is, g7 ,) = o but gy ) = 1. Let us
think about the rows that are present in partition x.

On the one hand, partition x must have at least one row
that satisfies the local predicate on table ¢ in epoch (o).

On the other hand, since x is newly eliminated in epoch
(2), there must have been some change in the diP from table
r to cause this; that is, some partition subset S in table » must
have been eliminated at the end of epoch (1), and the join
column values in x must only overlap with the partitions in
S in order for the elimination of partitions in S on table r
to cause the elimination of x in table t. That is, for the join
column values, x c S. Furthermore, because the partitions in
S were eliminated at epoch (1) using d._,, (,), none of their
join column values are contained in rows of table ¢ that satisfy
the local predicate on table ¢. Since, on the join column values,
x c §, none of the rows in x can satisfy the local predicate on
L.

Chain with three tables and two joins: Consider a join graph
r - s — t with three tables. The algorithm in §3.4 has the
following steps. First, all tables apply local predicates if any.
In epoch (1), the diPs d,_,; (,) and d,_; (,) are computed and
used by table s to update its partition subset. In epoch (2), the
diPs d,_, (,) and d,_,; (,) are computed, and tables r and t
update their partition subsets.

To show that the partition subsets have now converged, note
that there are four possible diPs that can be computed on this
join graph. We will show that none of these diPs can change a
partition subset.

To see why the diP d,_,; ;) cannot change the partition
subset on s, apply the “one join” case above for the r-s join
graph with the “local predicate” on tables r and s being p, (as
before) and p; A d;_; (1), respectively.

A similar argument applies for the other three diPs: d_,, 5),
ds_1,(3)-and d;_ (5). The “local predicate” on table s is always
Ps Adj (1) where jis either t or r. The “local predicate” on
tables t and r is p; and p;, respectively.

Hub and spoke join: Consider a join graph where a table h
is the hub that any number of other tables, called spokes, join
with. This generalizes both of the above join graphs which can
be thought of as having either one or two spokes. It is easy to
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see that the schedule in §3.4 uses two epochs similar to the
above cases; in the first epoch the spoke tables send diPs to
the hub, and in the second epoch, the hub sends a diP to each
spoke.

The proof of convergence follows from identical reasoning
to the above. If there are n spoke tables, there are a total of 2n
possible diPs, and we can show that none of these diPs can
eliminate one more partition. The “local predicate” to use at
a spoke is always that table’s individual predicate, if any. The
“local predicate” to use at the hub table & to prove a counter
example for the diPs to or from a spoke s is pj, Ar.ixs di—sp (1)

Arbitrary Tree: Recall that the schedule in §3.4 uses an “up-
wards pass” where data-induced predicates flow recursively
from children to parents and a “downwards pass” in the oppo-
site direction. The proof begins after both these passes have
finished.

We will prove recursively by first considering the hub-and-
spoke join graph consisting of the root and all of its children.
Applying the logic from the hub-and-spoke case above, we can
show that none of the diPs on any of the edges between the
root and its children will change the partition subsets of these
tables. To do so, we set the “local predicate” on each spoke
node, i.e., child node of the root, as the conjunction of that
child’s local predicate, if any, and the data-induced predicates
that the child receives from each of its children during the
upwards pass of exchanging diPs. The “local predicate” on
the root is similar to the case of the hub node above; i.e., to
prove a counter example for the diPs to or from a child c, the
“local predicate” at root r is p, At:t#c,techﬂd(r) dir,(up)s NOtE

that, instead of using the diPs from epoch (1) as above, this
equation uses the diPs received by the root from its children
during the “upwards pass”.

Given this holds, we can repeat the same logic on each of
the subtrees having a child as the root. Recursion stops at the
leaf nodes.

Therefore, we can conclude that none of the diPs that can
be exchanged along the tree edges will eliminate any partition.

9.1 Details of Treeify

The Treeify method takes as input an acyclic join graph and
identifies the root node having the smallest tree height; parent —
child pointers are also assigned along the way. A trivial tree can
be constructed by picking any node as the root. However, we
use Treeify to reduce the tree height because, as noted in §3.4,
the smaller the tree height, the fewer the number of parallel
epochs required for diP derivation to converge.

A trivial method to identify the smallest height tree takes
O(n?) time for a join graph with n nodes because for each
node as root, the height can be computed in O(n) time.

We offer a simple algorithm that takes 2n time: pick a ran-
dom node as the root r, do a depth first traversal on the tree

to compute the tree height with r as the root; while doing the
traversal, also record the height of each node. The height of a
leaf node is o and the height of a node is one more than the
maximum height of its children in the tree. In a second traver-
sal over the tree built using the random root r, we iteratively
consider whether picking any of the children of the current
root will reduce tree height. Given the information computed
during the first traversal, we can find the tree height for the
case when some child ¢ of the current root r becomes the new
root; this tree height is equal to the maximum of the height of
node c in the current tree and 1 + m where m is the maximum
height of any other children of the current root r. If r has no
other children, m = o. If a switch reduces the tree-height, the
only node whose height has to change is that of the current
root r whose height becomes m. It is easy to see that this pro-
cess will never reverse a switch (because tree height strictly
decreases with each switch) and that the process considers
each table exactly once.

Even though both Treeify and diP derivation over the tree
require no more than 2n operations on a graph with n nodes,
deriving and applying each diP, which is the operation in-
volved during diP derivation, is much more complex than
the simple comparisons and swaps needed for Treeify; thus,
Treeify comprises a trivial fraction of the overall computation
time.

9.2 Coping with cyclic join graphs

We first show a simple example illustrating the challenges with
cyclic join graphs. Consider a three-way cyclic join r x, s
t M. 7; here r, s, t denote three relations and a, b, ¢ denote the
equijoin columns. For this simple cyclic join, Table 8 illustrates
a case which requires many diPs to be computed. In this case,
only relation r has a local predicate which removes rows whose
value for column a is a,. In epoch #1, each relation exchanges
diPs to all joining relations but only the diP from relation r
to relation s cuts rows whose value of column a is a,; assume
that the corresponding values in column b are {b, }. In epoch
#2, only the diP from relation s to t cuts rows whose value
of column b is b,; suppose that the corresponding values in
column c are {¢, }. In epoch #3, the diP from relation ¢ to r
cuts rows of r whose value of column c is c,; assume that the
corresponding values in column a are {a, }. It is easy to see
that this process continues with exactly one distinct value of
a join column being pruned in each epoch. For this example,
note that even a carefully constructed schedule for computing
and exchanging diPs would not speed up convergence in any
substantial manner. In the worst-case, the number of epochs
(and diP computations) are bounded only by the minimum
number of distinct values for the join columnsets. Note that
this worst-case complexity can be much larger compared to
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Relation r Relation s Relation t
Row | When/Why pruned | Row | When/Why pruned | Row [ When/Why pruned
(ao,-) local pred. (a0, bo) cutby d,_s () (bo> o) cutby di_; (o)
(a1, ¢o) cutby d,,, (5 (a.,b,) cutby d, (4 (by, ¢y) cut by d,_; (5
(as,¢,) cut by dir (6) (a,,b,) cut by d,_s (5 (b,,¢,) cut by do_¢ (s

Table 8: Example illustrating convergence in a cyclic three-way join between relations 7, s, t wherein the equijoin columns for r x s, s x t and ¢ x r are a, b

and c respectively.

the case of acyclic join graphs where the complexity depends
only on the number of relations.

In practice, we find that convergence can be faster because
diPs are computed over partitions which are large in size and
hence fewer in number. Since convergence happens if an epoch
does not prune at least one more partition in some relation,
the total number of epochs is bounded by the total number of
partitions which is significantly smaller than the above bound.

Nevertheless, the above counter-example convinces us to
not aim for an optimal solution for cyclic join graphs. Recall
from Algorithm 9 that we use an approximate approach that
first constructs a tree-like graph over nodes that consist of con-
necting tables in the original join graph. We conjecture that
such conversion to a tree-like graph over nodes does not sac-
rifice optimality and the ExchangeExt method also does not
sacrifice optimality. In fact, optimality is likely lost in line 19
of the ProcessNode method where diPs are passed among
relations within a node for only up to x = 5 times. We leave
proofs of these aspects to future work.

10 PROOFS RELATED TO RANGE-SETS

Given X = {x}, a multi-set of column values, suppose that we
want to construct a range-set of n, ranges RS = {[£,, 4, ], ...,
[€n,> un, |} that covers all values in X' i.e., for any x; € X, there
exists a range j such that £; < x; < u;.

LEmMMA 1. Splitting at the n, —1 largest gaps between contigu-
ous values of X has the smallest width, defined as Y.\ (u; —£;).

Proor. If RSopT is the range-set with the smallest width,

we have .
RSopr = argmin Y (u; —¢;).
RS:RS|=n, i=1

For this optimal range-set, the lower and upper values for the
ranges will be £, = min (X') and u,,, = max (X’) respectively
because if not, the width can be minimized further by setting
the range limits to these values, contradicting that RSpT is
optimal. A similar reasoning could be used to show that every
range boundary matches some value in X and that the ranges
are non-overlapping, i.e., u; < £;, Vi < j. Using these facts,
with simple math, we can show

n, ny—1

min u;—€;)=u, — €+ max Civi —U;i).
RS:\RS|=n,,Z=;(’ i) = n, =&, RS:\RS|=n,,Z=;(I+1 2

Observe that u,,, — ¢, is a constant and that each term in the
sum on the right is the gap between consecutive ranges; hence,
splitting the ranges at the n, — 1 largest gaps is optimal. [

LEMMA 2. Given optimal range-sets RS(X;) for multi-sets
of values X, it is impossible to construct an optimal range-set
which has the same number of ranges for the union of the multi-
sets RS (U; &;) (outside of a few special cases).

Proor. We offer a counter-example for n, = 2.
X, = {o,11,12,14, 22} RS(X,) = {[o,0], [11,22]}
X, ={0,4,5,10,24,25} RS(AX,) = {[0,10],[24,25]}
RS(X, U A,) = {[o,14], [22,25]}
The optimal range-sets shown on the right split the values
at the largest possible gaps. Note that no possible method
to merge the individual range-sets can achieve the optimal
answer for the union because there is insufficient information
to decide if and how the range [11,22] should be split. The
large gap between 14 and 22 in the set &X; U X, makes it the
optimal split for that set, but notice that this information is
not available in the individual ranges sets RS(X;) and RS(X,).
Hence, merging already constructed range-sets is not optimal
in general, but we note a few exceptions. First, trivially, if every
set X; has fewer than 2 * n, distinct values, then each range-set
RS(AX;) fully captures all distinct values, no gap information is
lost, and so merging is optimal. Next, if the multi-sets X; are
disjoint and non-overlapping, then merging their range-sets
will be optimal because the gap cut-off (i.e., the smallest gap
which leads to a range split) for the union range-set is at least
as large as the gap cut-off of the individual range-sets. Finally,
if one of the multi-sets, say X, contains all of the distinct
values in the union multi-set, then RS( X, ) will contain every
other range-set and is the optimal range-set of the union. [J

LEMMA 3. Given two multi-sets that contain at least k distinct
values each, consider the problem of sketching these sets so as to
answer by just looking at the sketches whether their intersection
is empty or not. The smallest possible sketch is at least of size

0(klogk).

Proor. The proof follows from observing that the above
problem translates to the k-disjointness problem and applying
known lower bounds (see [73] with number of rounds set to
1). O
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Figure 23: Analysis of logs from production.

Notice that using data-induced predicates to skip parti-
tions is akin to the set intersection problem above because
we prune partitions on the destination table only if that par-
tition’s stat does not intersect with the diP from the source
table. Hence, ensuring no false positives, i.e., to eliminate the
maximum number of possible partitions, requires sketches
that are roughly logarithmic in the number of distinct values.
Key columns will have as many distinct values as the num-
ber of rows; it is common for join columns to be keys. Thus,
sketches that will lead to maximal data skipping can be very
large. Recall, that we only use a small constant number of
ranges; thereby, we will have false positives and reduced data
skipping gains but benefit from a smaller and maintainable
statistic.

11 ADDITIONAL RESULTS

As additional motivation for diPs, we analyzed the in situ lay-
outs of crawled web snapshots, click logs and server logs to un-
derstand how predicate and join columns are distributed. We
use 1000 partitions for each dataset; each partition is roughly
100MB of data in our production clusters. We compute the
global and per-partition histograms of each column which we
denote as Hist(c) and Hist(c, p) respectively for column ¢
and partition p. Figure 23a shows a CDF (over columns) of the
distance (specifically: KL divergence value) between these two
histograms; the larger the distance, the further the distribution
of column values in a partition is from the overall distribution.
The line in the figure joins the average, and the errorbars are
the min and max values over all partitions. Note that many
columns and many partitions have nearly the highest possible
distance.'* As further evidence, Figure 23b shows the ratio
of the entropy of a column within a partition to its entropy
across the entire dataset. The line is a CDF over columns of the
average entropy ratio across partitions and errorbars denote
the min and the max. An entropy ratio close to 1 indicates that
the column values in partition have the same entropy as they

4Dy, (Hist(c, p)||Hist(c)) = 5, —Probe,p(v) % < In(10%) =
6.91because Prob,,p(v) <103 *Prob.(v), Y, p, v. Thelast inequality holds
because each dataset here has 10° partitionsand 3, Freq, » (v) =Freq.(v).
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Figure 25: After adding a few changes, which we consider to be imprac-

tical, FineBlock can match the results presented in the original paper.
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Figure 26: Step-by-step reduction in the fraction of partitions to be
read while using data-induced predicates for TPC-DS query 35.
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Ellﬂ!ﬂ it |
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Initially 100 100 100 100 100
After local predicates 98.6 25.0 0.9
it >mi_idx 14.6
mi_idx 2 {mc, t} 14.2 22.0
Final 14.2 22.0 25.0 14.6 0.9

Figure 27: For the query 1a in the JOB benchmark, showing how diPs
skip input partitions; here t, mc, ct, mi_idx and it correspond to the
title, movie_companies, company_type, movie_info_idx, and info_type ta-
bles respectively.

do over all of the dataset. However, as the figure shows, several
columns have much smaller entropy on many partitions indi-
cating clustering. We conclude that practical datasets exhibit
the behaviors mentioned above where deriving predicates can
lead to sizable data skipping.

11.1 When will diPs give large gains?

Following up on the description in §s5.2, Table 9 lists which
queries, predicates and data layouts satisfy some detailed con-
ditions required for large gains from data-induced predicates.

11.2  Growth of false positives during
construction and use of diPs

In Figure 24, we show how the fraction of rows that match
a predicate changes during the construction and use of data-
induced predicates. These results are aggregated over all the
queries in TPC-H executing on a skewed dataset (zipf 2) over
seven different data layouts. The leftmost figure, Figure 24(a),
compares the fraction of rows filtered by a predicate with the
fraction of partitions containing these rows. Note that the
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Condition l Queries that do not manifest this condition

D1: query has predicates on smaller relation(s) q18

D2: predicates are selective all preds: (q1, q9, q13, q22); some preds: (q2, g3, 94, g5, 46, 97 g8, q10, q11, q12, 14, q15, 16,
17, 19, 20, 21)

D3: rows picked by predicates are concentrated in a | all layouts: (8, qu1), most layouts: (q2, q5, q7, q16), some layouts: (q3, q4, 96, q10, q12, q14,
few partitions q15, q17 q19, 420, q21)

D4: stat can identify skippable partitions regex: (q2, q9, q13)

D5: join column values belonging to the unskippable | all layouts: (q7), most layouts: (q16, q19, q20), some layouts: (q17, q21)

partititions of a relation are concentrated in a few
partitions of the joining relation

Table 9: Analyzing the conditions required to get large gains from deriving predicates over joins. Queries are from TPC-H. Analysis is performed over
seven different data layouts when using the range-set statistic; see §5.1 for specifics on setup.
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% source partitions
that match predicate

% dest. rows that
match predicate

% source partitions
that match predicate

% source rows that
match predicate

(a) Source: %Row — %Part. (b) Source %Part — Dest %Row (c) Dest: %Row — %Part. (d) Source %Row — Dest %Part

Figure 24: Examining the change in fractions of rows that match a predicate, the fraction of partitions that contain these rows, the fraction of rows in
the destination table that match the diPs constructed over matching partitions and finally the fraction of partitions of the destination table that match the
diP. Results are for all 197-H queries executing on a skewed dataset (zipf 2) over seven different datalayouts; each predicate and diP contribute one point

and the figures show 2-d histograms as heat plots in a logarithmic scale.

figures are 2d histograms on a logarithmic scale. We see sub-
stantial concentration on the y = 1line indicating that many
predicates, even those that are selective, may not filter out par-
titions. Figure 24(b) plots the fraction of partitions picked on
a source table versus the fraction of rows in the destination
table that match the data-induced predicate constructed on
the source table; in a sense, this figure estimates the succinct-
ness of the diP. In this figure, we see even more concentration
along the y = 1line indicating that the constructed diPs are
not succinct and may match a large number of rows in the des-
tination table. Figure 24(c) plots the fraction of rows matching
on the destination table versus the number of partitions on the
destination table that contain these rows. Finally, Figure 24(d)
shows the cumulative effect of all three steps in the figures
on the left. The key takeaway is that, as expected, each step
in constructing and applying data-induced predicates adds to
false positives; yet, diPs successfully eliminate partitions on
the destination relation (note: sizable mass below y = 0.5 line
in Figure 24(d) which will translate to INpuTCuUT= 2.).

11.3 Adaptive partitioning comparison

We mention a few additional details regarding our comparison
with [82] which learns a clustering scheme over rows of a de-
normalized relation of TPC-H so as to enhance data skipping.
We had to reimplement the algorithm in [82] because the code

shared by the authors was missing some key pieces. We note
some key aspects of our implementation, FineBlocks.

o Asdescribed in [82], we first partition rows of the denormal-
ized relation shown in $14 by the month of 0_ORDERDATE
and then cluster together rows that match (or do not match)
the same predicates, excluding date predicates.

o The authors of [82] have also stated that they rewrote query

predicates using hard-coded constraints between the L_SHIPDATE

and 0_ORDERDATE columns. Such constraints are not avail-

able in general across tables; hence, we do not use such

rewrites in FineBlock.
o The FineBlock results use a TPC-H scale factor of 1 because
we had trouble scaling to larger dataset sizes; however, we
scale down the minimum partition size to create the same
number of partitions as in [82] (note: this is 11, 000 parti-
tions).
The algorithm in [82] is sensitive to training data and may
not work well when the test data is very different from train-
ing because the rows are clustered only based on predicates
that are available during training. We train FineBlock on 8
query templates with 30 queries each; namely {3, 5, 6, 8, 10,
12,14,19}. We test FineBlock on 16 query templates, 10
queries per template; namely {1, 3, 4,5, 6,7, 8, 9,10,12,14, 15,
17,19, 20, 21}. The remaining 6 query templates in TPC-H
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are not contained in the denormalized relation shown in $14
and hence are not run.

o The time to train the workload-aware partitioning and to re-
layout the dataset is sizable (for a 1GB dataset, takes about
2400s, single-threaded, on an x86 linux server with 1TB
memory); this process is a compute bottlenecked, and the
time should increase with the number of rows; it should
grow much more quickly if the dataset spills from memory.
Storing the partitioning metadata of FineBlock requires
somewhat less space than the data stats used by diPs; 35008
to maintain a dictionary of the predicates used as features
for partitioning and roughly 10B per partition to store a bit
vector of which features are matched by a partition versus
about 2000B per partition used by diPs. The time to skip
partitions is also roughly similar; about 0.02s per query.

Our reimplementation of the algorithm from [82] matches
the results in that paper after using the following additional
tricks: (a) use domain knowledge to translate predicates on
L_SHIPDATE to equivalent predicates on O_ORDERDATE and
(b) use many more training queries [82] such that almost all of
the test predicates are available during training. These results
are shown in Figure 2s.

12 MORE END-TO-END EXAMPLES

Analogous to Figure 5, Figures 26 and 27 illustrate diPs in ac-
tion for a query in TPC-DS [26] and in JOB [12], respectively.
We choose these queries to illustrate how diPs work with com-
plex statements (union operators, nested sql statements in
TPC-DS q35 [27]) and cyclical joins (in JOB 1a [20]).

13 TUNED DATA LAYOUTS

The tuned data layouts that we use in our evaluation laid out
the tables in the following manner.

131 TPC-H

The table 1ineitem is hash-clustered on 1_shipdate and
each cluster is internally ordered by 1_orderkey. The table
orders is hash-clustered on o_orderdate and each cluster
is internally ordered by o_orderkey. The table partsupp is
sorted by ps_partkey. All other tables are sorted on their
primary key.

13.2 TPC-DS

The tables store_sales, store_returns, catalog_sales,
catalog returns, web_sales and web_returns are hash
clustered on date columns, specifically ss_sold_date_sk,
sr_returned_date_sk, cs_sold_date_sk,
cr_returned_date_sk, ws_sold_date_sk and
wr_returned date_sk respectively. All other tables
are hash clustered on their primary keys.

14 DENORMALIZATION OF TPC-H

The following materialized view (or denormalized table) can
support 16 out of 22 queries in the TPC-H benchmark [28];
specifically, queries {2,11,13,16, 20, 22} cannot be answered
using just this view because those queries require information
that is absent in the view.

CREATE TABLE denorm AS
SELECT lineitem.*, customer.*, orders.*, part.*, partsupp.*, supplier.*, n1.*,
n2.%, ri.*, rax
FROM lineitem JOIN orders ON o_orderkey = 1_orderkey
JOIN partsupp ON ps_partkey = |_partkey AND ps_suppkey = l_suppkey
JOIN part ON p_partkey = ps_partkey
JOIN supplier ON s_suppkey = ps_suppkey
JOIN customer ON c_custkey = o_custkey
JOIN nation AS n1 ON n1.n_nationkey = c_nationkey
JOIN nation AS n2 ON n2.n_nationkey = s_nationkey
JOIN region AS r1 ON ri.r_regionkey = n1.n_regionkey
JOIN region AS r2 ON r2.r_regionkey = n2.n_regionkey

15 HANDLING UPDATES TO DATASETS

The primary use-case for diPs is data warehouses and big-data
clusters where datasets are read-only or are appended to in
large batches. In this cases, statistics can be constructed on
newly arriving batches before making the data available to
queries. We note that this is a widely prevalent use-case; it
occurs in all large data-parallel clusters today.

Extending the case above, we discuss using diPs when the
datasets can be updated. That is, rows can be deleted, new
rows can be added or one or more attributes in a row can
change. The challenge in handling updates is that if the data
statistics are not modified in accordance with the updates
to data, the statistics can give rise to incorrect data-induced
predicates (which may prune partitions that should not be
pruned) and therefore lead to incorrect query answers. We
have already discussed two approaches in §4- using a taint bit
per partition to identify partitions that have changed data and
greedily growing the range-set statistic to cover all new values.
Here we add some comments.

It is easy to see that the cost of maintaining one taint bit
per partition is trivial. Updates to different rangesets, e.g., the
range-sets of different columns and different partitions, are
trivially parallelizable. Finer granularity taint bits, e.g., one
taint bit per column and per partition as opposed to just a
single taint bit for all columns in a partition can offer greater
data skipping value (because diPs can originate at a dataset as
long as the join columns related to that diP are untainted even
if the other columns are tainted). In this way, finer granularity
taints can trade-off a small increase in maintenance cost for a
possibly large improvement in gains from data skipping.



Is there an optimal streaming update procedure for range-
set? That is, in a streaming manner as the dataset evolves
(with updates, insertions and deletions), can the correspond-
ing rangeset be updated optimally? Recall that the best rangeset
has the largest total gap between the ranges. Unfortunately, the
answer is no. Consider a simple scenario: building a range-set
of size 2 with only insertions; assume that the stream has a total
size of n values, and the update process is restricted to store
no more than n/4 values. Since the range-set is of size 2, the
problem devolves to identifying the largest gap between the
values. The following counter-example achieves a competitive
ratio of nearly 3; that is the gap identified by the online proce-
dure is 3x smaller than optimal. (1) Let the first (1/4) + 2 rows
be evenly distributed across the value space from minimum to
maximum value. Since the online process can only store n/4
gap values, the (n/4) + 2’th value will create the (n/4) + 1’th
gap and cannot be stored. So, the online process has to forget
one of these (7/4) +1 gaps. (2) Use the remaining values in the
stream to evenly break up each of the n/4 gaps that the online
process remembers, making whichever gap was forgotten first
to be the largest gap overall and ensuring that no remembered
gap is larger than 3x the forgotten gap value. We can ensure
this because (31/4) — 2 values remain to break up the (n/4)
gaps that are remembered. A more complex construction can
lead to an even larger competitive ratio. Streaming procedures
often cannot store 1/4 values; they typically have a constant
or log n memory budget, and along the lines of the intuition
above, we can show that with a constant budget k, the com-
petitive ratio can be as large as 1 + [”’Tk“] Thus, we eschew
pursuit of an optimal update procedure and rely on a greedy
update process that is always quick and useful in practice.
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