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Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the characteri-
zation, we propose a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible and efficient than a spot instance, because
it grows and shrinks according to the amount of unallocated
resources at its underlying server; it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g., 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framework to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions with extra harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (IaaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-
sons, they need to leave unallocated capacity.
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To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1, 8,
14]. These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Even if it does, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly arriv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue
that there should be a new class of evictable VMs able to
dynamically and flexibly harvest all the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Microsoft Azure. The characterization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propose a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cores.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability for a Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 90% of them



will survive for more than 1 day, with an average of 10 cores.
The provider does not monitor or actively seek to meet each
individual SLO; instead, we retrain our prediction models
frequently and provide our SLO as a statistical estimate [12].
As such, our SLOs can be considered predictions or estimates
over large numbers of Harvest VMs, rather than guarantees.

Renting unallocated resources is cheap, but requires ap-
plications to manage the evictions. In addition, with Harvest
VMs, the amount of resources backing each VM can vary. Har-
vest VMs are most useful when the applications they run can
adapt to the number of available resources. For example, many
applications use thread pools and can naturally adapt their par-
allelism. Others can schedule more load on larger VMs. The
provider can hide these complexities by using Harvest VMs
to create cheap SaaS (Software-as-a-Service), PaaS (Platform-
as-a-Service), and FaaS (Function-as-a-Service) offerings.
In fact, Harvest VMs are ideal for cluster scheduling (e.g.,
Apache YARN [37], Kubernetes [22]) and serverless (e.g.,
AWS Lambda [32], Azure Functions [4]) frameworks. These
frameworks can schedule more tasks/functions on a Harvest
VM that has grown to use more physical cores, and stop
scheduling tasks/functions on one that has lost physical cores.
To demonstrate how to adapt these frameworks, we build Har-
vest Hadoop to schedule computation (e.g., data-processing,
machine learning training) on harvested resources.

Our evaluation shows that we accurately predict the unal-
located resources and provide SLOs. We predict the survival
rate of a VM for 1 hour with an average error under 2% and
lower than 6% for longer terms. We also predict the addi-
tional cores that can be harvested within a fraction of a core
on average. Our SLOs and framework allow us to run Hadoop
workloads on Harvest VMs at 91% lower cost to the customer
than regular VMs, by offsetting the rare evictions with addi-
tional harvested cores. Compared to standard evictable VMs,
the cost savings can reach 47%. Finally, we discuss lessons
and results from deploying Harvest VMs and Harvest Hadoop
in production to run internal workloads in Azure.
Summary. Our contributions are:
• We characterize the unallocated resources of a large cloud.
• We propose Harvest VMs to harvest unallocated resources.
• We build predictors for the availability of unallocated re-
sources and provide a new SLO for these resources.
• We build Harvest Hadoop, a cluster scheduling framework
to leverage Harvest VMs.
• We discuss lessons and results from our production deploy-
ment of Harvest VMs and Harvest Hadoop.

2 Background and related work

Deploying VMs. Each VM deployment targets a geograph-
ical region, which is partitioned into clusters of servers that
have the same hardware. Each region may have a different
number of clusters and hardware mix. A region-level sched-
uler decides which VMs go to which clusters based on several

factors (e.g., hardware required, maintenance tasks, available
capacity) [19]. These factors can cause clusters to have differ-
ent VM loads, even in the same region. Then, a cluster-level
scheduler decides which server in the cluster will run each
VM. When a VM is assigned to a server, a server-level agent
creates the VM and manages its lifecycle.
Evictable VMs. Providers sell their excess capacity at dis-
counted prices as evictable VMs [1, 8, 14]. These VMs are
evicted/killed when the provider needs the capacity (e.g., due
to a spike in the number of on-demand VMs). Providers notify
the VMs before they evict them: GCP and Azure provide a
30-second warning, whereas AWS gives 2 minutes.
Variable-resource VMs. Sharma et al. [33] recently pro-
posed Deflatable VMs, which change virtual resources dy-
namically (via hot-plugging/unplugging), and a multi-level
resource reclamation approach for explicitly adapting appli-
cations, operating systems, and hypervisors to the available
resources. They also combined reclamation with deflation-
aware VM scheduling. We believe that expecting the whole
stack to adapt is unrealistic in practice. Instead, we favor sim-
plicity and maintainability for production deployment: (1) we
minimize the changes to the cloud platform, so deploying
Harvest VMs is no different than deploying any other VM,
and the VM scheduler is unaware that Harvest VMs grow and
shrink; (2) we do not change the number of virtual cores, and
instead transparently vary the number of physical cores.

A more aggressive VM design could harvest the unallo-
cated cores and any allocated cores that are temporarily idle.
This is out of the scope of this paper. Instead, we focus on the
usability of core-harvesting VMs (aggressive or otherwise) in
practice with SLOs and software for them. Our SLOs can be
extended for aggressive harvesting, whereas Harvest Hadoop
can be used directly.

Like a Harvest VM, a burstable VM [7, 13] has a fixed
number of virtual cores and receives a minimum number
of physical cores. However, it is only allowed to burst (i.e.,
receive additional physical cores) up to its maximum size,
after accumulating enough “credits” by staying below a pre-
defined core utilization. A Harvest VM differs in that (1)
it harvests as many cores as are unallocated for as long as
they remain so, i.e. there is no concept of credit; and (2) it is
evictable. These characteristics mean that providing SLOs for
Harvest VMs is also quite different than for burstable VMs.
Resource harvesting. Other approaches to resource har-
vesting have either focused on running batch workloads
on idle machines (e.g. [25, 26]) or co-locating batch work-
loads with latency-sensitive services on bare-metal servers
(e.g. [23, 27, 38, 39, 46, 47]). In contrast, we focus on a virtu-
alized infrastructure where physical resources are reserved
for the VMs that allocate them (as is the norm in the pub-
lic cloud), and predict the availability and dynamics of the
unallocated resources to produce SLOs.
Characterization and SLOs. To indirectly characterize the
unallocated resources at cloud providers, prior work [2, 9, 31,
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Figure 1: Allocation of VMs on a server, including hypotheti-
cal VMs (dashed) that consume unallocated resources.

34] has analyzed publicly available traces of EC2 spot prices.
Using the traces, they tried to model the availability of spot
instances. In contrast, we use actual resource allocation data
from the entire Azure server fleet to characterize the resources
more accurately and comprehensively.

From the perspective of the provider, Carvalho et al. [12]
characterized the reclaimable resources in 6 Google clusters.
They aggregated the cluster-wide resources and predicted
their availability for long-term (6-month) SLOs. They did not
consider VM evictions or how the reclaimable resources vary
at each server. However, the majority of VMs live less than 1
day and get deployed in relatively small groups [16]. Hence,
we quantify the unallocated resources per server at a fine time
granularity. Moreover, our SLOs quantify VM survival rates
and average numbers of cores over horizons as short as 1 hour.

3 Characterizing unallocated resources

In this section, we characterize the potential for resource
harvesting and the dynamics of the unallocated capacity in
Azure. The characterization is affected by the Azure VM
scheduler [19]. However, the scheduler behaves similarly to
those of other providers [38] by tightly packing VMs while
ensuring that it can find big enough holes for large VMs.
Methodology. We analyze the resource allocation in Azure
from February to October 2019. The data we present does
not include confidential metrics, such as number of servers or
percentage of unallocated resources. However, the trends we
illustrate are enough for the purposes of this paper.

We compute the allocated resources in each server based on
the regular VMs running over time, i.e. we exclude resources
that have been allocated to existing evictable VMs. We ac-
count for the main resources (i.e., cores, memory, storage, and
network bandwidth) for both the VMs and the servers. We
then check if we could allocate in each server a hypothetical
evictable VM of a minimum size, for how long, and how many
unallocated resources it could potentially get.

In more than 80% of cases where we could not allocate
the hypothetical VM, the scarcest resource (i.e., the one that
prevents the allocation) is cores. This is not surprising as
Azure matches its hardware and VM sizes to have a single
dominant resource and simplify capacity management. In the
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Figure 2: VM allocations on two servers in our characteri-
zation (left) and when the VM scheduler is aware of VMs
consuming unallocated capacity (right).

vast majority of remaining cases, disk space is the constraint.
Thus, if we can find unallocated cores at a server, the other
resources will most likely be unallocated as well.

Figure 1 shows an example server that runs 3 VMs over
six months with the allocation of cores on the Y-axis. In early
February, there are no VMs allocated to the server so we can
run a 1-core hypothetical VM (dashed box) during that time.
In late February, VM 1 starts and takes the full server so we
cannot run any other VM. Once VM 1 finishes, the server
becomes empty so we can run another hypothetical VM. VM
2 starts in late March but it only takes half of the server, so
we can keep running the hypothetical VM until VM3 starts.
In this period, we could place 3 hypothetical VMs with an
average lifetime of almost one month.

This figure shows the hypothetical VMs with a fixed size
but there are plenty of additional unallocated cores still left in
the server. For example, when the hypothetical VM can run,
at least half of the cores are unallocated.

Our characterization is pessimistic in that the unallocated
resources are actually more stable in practice. For example,
our characterization may find the scenario on the left side
of Figure 2, which shows two servers with real VMs and
hypothetical VMs. However, if the VM scheduler were to
actually allocate VMs to consume the unallocated resources,
it could allocate the real VMs differently to avoid evicting the
hypothetical VMs as on the right side of the figure.
Temporal patterns. A key aspect to quantify is how long
we could run a hypothetical evictable VM to consume unal-
located resources in each server. Figure 3 shows how many
servers could host a 1-core VM with 16GB of memory and
200GB of disk for a given time (e.g., 1 hour, 1 day) in a pop-
ular region. We do not list the actual numbers of servers on
the Y-axis for confidentiality reasons. Considering 1 hour
into the future, we can see a daily pattern where there are
more unallocated resources at night. For 1 day, we can see a
weekly pattern and how weekends have substantially more
unallocated resources. Once we consider the next week, the
temporal pattern is not as clear. Overall, the longer horizon
numbers show a decrease in unallocated resources over time.
These data show that it is important to account for the time of
day and day of the week (at least implicitly) when predicting
the unallocated resources, especially for shorter periods.
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Figure 3: #servers with 1 unallocated core in a region.
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Figure 4: Survival rate with 1 unallocated core in a region.

From these numbers, we can compute the survival rate, i.e.
the percentage of these evictable VMs that would survive
for a given time (e.g., dividing the “1-hour” values by the
corresponding “Current” values computes the percentage of
VMs that would survive for 1 hour). Figure 4 shows this
survival rate over time. For example, it shows that in April,
an average of roughly 60% of the 1-core evictable VMs (at
most one per server) would survive for one week.
Cluster behaviors. As we discuss in Section 2, clusters may
behave differently even within a region. Figure 5 shows how
many servers could host a 1-core evictable VM in one specific
cluster in the same region as Figure 3. In both late May and
early June, the number of allocated VMs increased substan-
tially, each time leaving less unallocated capacity. This shows
that the amount of unallocated resources can change drasti-
cally over time. There are multiple reasons for such an effect,
but in this case it was due to a shift in load across clusters,
driven by the higher level across-clusters scheduler. These
results show that we must consider each cluster individually
when predicting the available unallocated resources.
Aggregating across all regions. So far, we have discussed
servers in 1 region. Now, we discuss aggregate data over all
regions. First, we consider the average durations over which
at least 1 core is unallocated at each server. Over all regions,
most servers can host a 1-core evictable VM for at least 1
hour on average. This number drops by 40% for 1 day and by
another 40% for 1 month. As expected, fewer servers have at
least 1 unallocated core for long periods (e.g., 1 month) than
short ones (e.g., 1 hour). Moreover, even when servers have
the same overall amount of unallocated capacity over time
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Figure 5: #servers with 1 unallocated core in a cluster.
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Figure 6: Survival rate of deployable evictable VMs as a
function of lifetime and minimum size.

(measured in core×hours), they may be able to host widely
different numbers of evictable VMs: servers that tend to have
short periods with unallocated cores can host many (short-
lived) evictable VMs, whereas those that tend to have long
periods with unallocated cores host fewer (long-lived) VMs.

Next, we consider the average survival rate of the deploy-
able 1-core VMs (at most one per server), again aggregating
across all regions. The purple bars in Figure 6 plot the average
survival rate for all deployable 1-core VMs for 1 hour, 1 day,
1 week, and 1 month. These four bars compute the average of
the curves in Figure 4 but for all regions. Almost 100% of the
VMs would survive for 1 hour, but only 80% of them would
survive for of 1 day and 32% would survive for 1 month.
Minimum unallocated cores. These results quantify the sur-
vival rate of 1-core evictable VMs. However, many servers
have more unallocated cores than 1. For example, only 55% of
the servers have 4 unallocated cores (i.e., capable of hosting
a 4-core evictable VM) for at least 1 hour on average.

Figure 6 also plots the average survival rate of other min-
imum sizes (at most one VM per server). Larger deployed
evictable VMs tend to survive longer than smaller ones, even
though they are less likely to find a server where to run. For
example, 88% of the 16-core VMs survive for 1 day or longer,
but only 80% of the 2-core VMs survive for that long. This
effect is due to the cluster-level scheduler trying to pack new
VMs tightly in servers that are already closer to being full.
Additional unallocated cores. The results above consider
evictable VMs that consume a minimum number of unallo-
cated cores. However, as shown in Figure 1, there are many
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Figure 7: Percentage of deployable evictable VMs that could
have received more cores, for each minimum size.

periods when there are additional unallocated resources in
the server. Figure 7 shows the percentage of evictable VMs
of each minimum size that could potentially have been as
large as 1, 2, 4, 8, 16, and 20 cores. For example, 78% of
1-core VMs could have gotten 4 or more cores, and 85% of
the 4-core evictable VMs could have gotten 8 or more cores.
These results illustrate that (1) a large percentage of the (more
numerous) small VMs could have been much larger; and (2)
a large percentage of the (less numerous) large VMs could
have been even larger. However, allocating a larger evictable
VM on a server increases the chance that it will be evicted
when the additional cores are needed for higher priority VMs.

Another important consideration is how stable the set of
additional cores is, i.e. how quickly the set changes due to
core allocations/deallocations. We find that 94% of these state
changes last for more than 1 second, 90% of them last for
more than 5 seconds, 50% of them last for more than 10
minutes, and 10% of them last more than 3 hours. Clearly,
the set of additional cores is stable enough that they could be
effectively harvested and used by applications.
Multiple VMs per server. So far, we have discussed deploy-
ing at most one evictable VM in each server. However, the
results above show that there are often enough unallocated
resources for more VMs and the amount of these resources
varies over time. Under these conditions, the provider can
maximize the amount of unallocated resources it monetizes
via evictable VMs with as many 1-core VMs as will fit in each
server at each point in time. Unfortunately, a larger number of
VMs per server increases management (more evictions) and
resource (more copies of the guest OS) overheads. The key
problem is that standard evictable VMs are not the ideal ab-
straction to maximize the use of unallocated resources while
keeping overheads down.
High-level takeaways. Our characterization shows that:
1. There are many unallocated resources that can be har-
vested. However, they fluctuate significantly over time. There
are plenty of unallocated resources for a short time but many
fewer for longer periods.
2. These resources are not evenly distributed across clusters.
A cluster’s allocation may also change drastically over time.
3. The available unallocated resources vary substantially de-

pending on amount (minimum size) and duration. Smaller
minimum sizes are more widely available but they do not
survive as long as larger minimum sizes.
4. There are many additional unallocated resources in each
server beyond this minimum size that can be harvested. The
additional resources vary over time at a fairly coarse granu-
larity, but trying to harvest them with standard evictable VMs
could cause many evictions and waste resources.

4 Harvest Virtual Machines

Section 3 shows that there are plenty of unallocated resources
that can be harvested, while takeaway #4 suggests that doing
so with standard evictable VMs is not ideal. Thus, we pro-
pose a new class of evictable VM, called Harvest VM, that
dynamically grows and shrinks to harvest as many unallo-
cated resources as available on the server where it runs. With
Harvest VMs, we maximize the resource harvesting at each
server, while keeping evictions and overheads down.
Overview. Users select a minimum size for each Harvest
VM. A Harvest VM starts with as many unallocated physical
resources as are available in its host server, but grows and
shrinks dynamically after that. For example, a Harvest VM
may have 4 physical cores as its minimum size. At server
selection time, this VM is assigned to a server that has at least
4 unallocated cores. Say this server has 20 cores. At creation
time, the Harvest VM would be created with 20 virtual cores
and would receive an initial number of physical cores equal to
the number of unallocated cores in the server (at least 4 cores,
of course). During its lifetime, the Harvest VM will grow (i.e.,
receive more physical resources) when a co-located regular
VM terminates and shrink (i.e., lose physical resources) when
a new regular VM lands on the same server. Since the Harvest
VM changes size only when other VMs arrive/terminate, these
changes occur fairly infrequently (Section 3). As a Harvest
VM has lower priority, it is evicted/killed if the cloud platform
needs its minimum size for a regular VM.

As an example, Figure 8 shows a server with 8 physical
cores that hosts 2 regular VMs with 2 cores each. At t0, a
Harvest VM with a minimum size of 2 cores lands on the
server. As there are unallocated cores, the Harvest VM grows
to 4 cores. At t1, VM 2 finishes and the Harvest VM grows to
6 cores. At t2, VM 3 with 4 cores lands on the server and the
Harvest VM shrinks to 2 cores (its minimum size). At t4, VM
4 with 2 cores lands on the server, causing the Harvest VM to
be evicted as it would have to shrink below its minimum size.
Production implementation in Azure. We create a new fam-
ily of hyperthreaded Harvest VMs that users can select from.
The family defines VM types with a minimum size of 1, 2, or
4 cores (i.e., 2, 4, and 8 hyperthreads, respectively). The small-
est Harvest VM has a minimum of 1 core, 16GB of memory,
200GB of disk with 3k IOPS, and 1Gbps of network band-
width. The resources for the larger sizes scale proportionally
to the number of minimum physical cores.



VM 1 VM 2
Harvest

VM
t0

VM 1
Harvest

VM
t1

VM 1 VM 3
Harvest

VM
t2

VM 1 VM 3 VM 4t3

T
im

e

Figure 8: Harvest VM dynamically changing sizes over time.

Our current implementation only harvests physical cores;
the other resources stay fixed during the Harvest VMs’ life-
times. The Harvest VMs can grow to use all physical cores of
the server, as this fits nicely our current production uses (Sec-
tion 6), which can consume as many cores as are available.
For simplicity, the implementation does not allow more than
one Harvest VM per server. We discuss upcoming changes to
this design in Section 8.

Users can deploy many Harvest VMs to a region at the same
time. The provider deploys the Harvest VMs in the same way
that it deploys any other VM. Ultimately, each Harvest VM is
scheduled onto a server by a cluster-level VM scheduler. On
each server, Azure runs the Hyper-V hypervisor [29] and an
agent responsible for managing VMs locally, including VM
creation, termination, and physical core reassignment across
VMs. The agent uses hypercalls for assigning a Harvest VM
to a group of cores and capping the amount of CPU time
the group receives. To prevent cache interference between
a Harvest VM and the co-located regular VMs, the agent
constrains the Harvest VM to a subset of cache ways of the
last-level cache, using cache allocation technology [15].

The changes in the number of physical cores are not di-
rectly visible by the Harvest VM, as its number of virtual
cores does not change. However, the application or schedul-
ing framework running on a Harvest VM may want to take
advantage of any harvested cores. Thus, we expose the num-
ber of currently assigned physical cores to the Harvest VM
via the KVP mechanism of Hyper-V [30]. Applications or
frameworks can use this information to adapt their behaviors.
For example, a scheduling framework can assign more tasks
to a Harvest VM that has just received more cores.

The scheduler may evict a Harvest VM (1) when it needs
the minimum resources for a regular VM, or (2) proactively
to avoid the eviction latency when it expects that its minimum
resources will be needed soon. In either case, the scheduler
informs the Harvest VM about the upcoming eviction, and
gives it 30 seconds to shutdown cleanly. At deployment time,
users can specify whether they want another Harvest VM to
be created (on a different server) to replace an evicted one.
Comparison to standard evictable VMs. Unlike evictable
(e.g., spot) VMs, Harvest VMs are only evicted when the
provider needs their minimum resources for higher priority
VMs. In addition, Harvest VMs harvest additional unallocated

cores from the servers that host them. In Figure 8, using
evictable VMs to harvest those additional cores would have
caused them all to be killed at t2, whereas the Harvest VM
shrinks and avoids the high eviction overhead. Due to the
additional harvested cores, it takes many more evictable VMs
to harvest as many cores as Harvest VMs, implying higher
management and resource overheads. In Section 7.5, we show
that evictable VMs also imply higher costs to users.
Using Harvest VMs. Harvest VMs are most useful when
workloads can gracefully adapt to evictions and a time-
varying number of physical cores. First, workloads must be
able to continue operating correctly after VM evictions. An
eviction is similar to a server failure, so all practical distributed
applications are already capable of handling them. Embarrass-
ingly parallel applications handle these failures even more
easily. Regardless of application type, users often want new
(evictable) VMs to be created to replace evicted VMs, and
cloud platforms already provide this functionality. However,
as VM re-creation and application re-configuration are expen-
sive, users can make informed decisions about their Harvest
VM deployments using our SLOs.

Second, applications must be able to leverage additional
cores and degrade gracefully when cores are removed. To do
so, applications can check the number of currently assigned
physical cores and adapt accordingly. Core re-assignments
are much cheaper than VM re-creation and re-configuration,
so applications can more easily handle them. For example, the
application may create (destroy) software threads when more
(fewer) cores are available or have a thread pool where work
can wait for cores. Despite their lower overhead, users can
use our SLOs to know how many cores to expect per Harvest
VM, so they can provision enough threads and VMs.

Still, providers may decide that Harvest VMs are not ideal
as an IaaS offering. Instead, they can use them to implement
cheaper SaaS, PaaS, or FaaS offerings. In fact, our current
Azure deployment uses Harvest VMs to implement a core-
harvesting version of Hadoop.
Privacy/confidentiality. On individual servers, Harvest VMs
reveal the VM arrival and departure events. However, they
do not threaten the confidentiality of the cloud platform’s
resource utilization, as long as determined (and well-funded)
users are not allowed to deploy Harvest VMs to most servers.
To avoid this, the provider can simply establish an overall
quota of Harvest VMs in each region. The privacy of the
workloads is also protected, as Harvest VMs do not reveal
any info about (1) co-located regular VMs to the users of
Harvest VMs, or (2) their workloads to the provider or co-
located regular VM users. In addition, using Harvest VMs for
SaaS, PaaS, or FaaS adds an extra software layer that further
reduces the chance of leaking sensitive information.
Pricing and deployment cost. A detailed pricing discussion
is beyond our scope. Instead, we assume that users pay (in
$/(core×hours)) the same for their Harvest VM minimum
size as a standard evictable VM of equal size (evictable VMs



are already heavily discounted compared to regular VMs), and
get a further discount on any additional cores beyond the min-
imum (billing for these cores can be per-use or per-allocation
to the Harvest VM). This pricing scheme is beneficial for both
users, who can rent resources cheaply, and the provider, who
can aggressively monetize its unallocated capacity.

To compute the cost to the user of a deployment of multiple
Harvest VMs, we need to consider evictions. An eviction
forces the re-creation of the VM at another server, which takes
the time to instantiate the VM and restore the application.
This results in a loss in useful compute power (measured in
core×hours). Thus, the average cost per useful core hour (in
$/(core×hours)) of a deployment is:

minsize core hrs× price+additional core hrs×α× price
minsize core hrs+additional core hrs− recovery core hrs

where minsize core hrs is the total core hours for the VMs’
minimum size, additional core hrs is the total number of
cores hours harvested beyond the minimum size, α is the extra
discount the provider offers on the additional cores (α = 0
means those cores are free and α = 1 means they cost the
same as the minimum size cores), and recovery core hrs is the
total amount of core hours spent recovering from evictions.
Harvesting other unallocated resources. Our current im-
plementation only harvests cores. Many workloads can use
additional cores (e.g., ML training and most data analytics)
with stable needs for other resources. Yet, harvesting other
resources would make Harvest VMs more broadly beneficial,
so we are building prototypes for harvesting some of them.

Harvesting network and disk bandwidth are similar to core
harvesting (they are all compressible resources). Current hy-
pervisors manage bandwidth limits and set them up when
starting each VM. To harvest these resources, the server agent
can dynamically change the limits. For applications or frame-
works to be aware of changes, we expose these values to the
Harvest VM using our existing mechanisms.

Harvesting memory is more challenging. Current hypervi-
sors support dynamically changing the memory assigned to a
VM. When adding new memory, this shows as hot-plugged
memory in the VM. When removing memory, the guest OS
uses memory ballooning to make some part of it unavailable.
This may trigger swapping in the Harvest VM and the appli-
cations/frameworks should be aware. If the VM cannot free
up memory, the operation may crash (or ungracefully evict)
the VM. Other works discuss similar approaches [33].

For disk space, VMs usually mount a virtual disk (VHD)
for data. A naive option would be to extend and shrink the
VHD. Extending a VHD can be done while it is mounted, but
shrinking it requires unmounting and compressing. Another
option would be to add and remove full VHDs depending on
the disk space available in the server. Both approaches are
intrusive and require applications/frameworks to be aware.

5 Providing SLOs for Harvest VMs

Our characterization showed that the amount of unallocated
resources to run Harvest VMs varies over time, in terms of
temporal patterns (e.g., daily and weekly) and across-cluster
behavior changes (e.g., shift in load across clusters). More-
over, the VM scheduling dynamics produce numerous smaller
sets of unallocated resources that survive shorter times, and
fewer larger sets that survive longer. These factors make it
difficult for users to provision the right minimum size and
number of Harvest VMs.

To ease this task, we predict the survival rate of the Harvest
VMs and the amount of resources they are likely to receive
on average, and provide these predictions to users in the form
of an SLO. The SLO is a best-effort statistical estimate as
in prior work [12], so the provider should retrain the predic-
tion models frequently (e.g., every day). The provider need
not monitor or actively try to enforce each SLO individually,
which would be impractical. Nevertheless, the SLO enables
applications beyond just batch workloads to use Harvest VMs,
as long as they can tolerate the occasional eviction and the
core reassignments (Section 6).

Our predictions leverage machine learning (ML) models
and features we can collect in production.
User input and SLO definition. The user must first inform
her desired number of Harvest VMs (e.g., 100), minimum
size (e.g., 2 physical cores), and region. Based on these re-
quirements, we provide an SLO for the survival rate and the
number of additional cores for a set of predefined time hori-
zons: 1 hour, 1 day, 1 week, and 1 month. For example, the
survival rate SLO for each horizon can be: 60% of the Har-
vest VMs will likely survive at least 1 hour, 40% will likely
survive at least 1 day, 25% will likely survive at least 1 week,
and 15% will likely survive at least 1 month. We also provide
confidence intervals (e.g., between 55% and 70% will last 1
hour with 95% confidence).

For each horizon, our SLO also estimates the average num-
ber of additional cores. For example, the Harvest VMs will
likely receive an average of 5-7 cores with 95% confidence
for the first hour, 8-11 cores over the first day, etc.

If the SLO is not acceptable, users can change the number
and/or minimum size of the Harvest VMs they request. If no
SLO is acceptable after multiple tries, users may opt for a mix
of regular and Harvest VMs or select a different region. Once
the Harvest VMs are running, users can check for updated
SLOs, which become more accurate over time. Based on this
updated information, they can adapt their deployments.
ML models and features. To provide the SLO, we use ML
models to predict the survival rates and average sizes for each
time horizon. After experimenting with multiple modeling
approaches, we settled on Random Forest regressors [10].

The features we use in our models are as follows.
Cluster characteristics: This includes (1) number of servers,
(2) number of racks, (3) generation of the hardware (including



their sizes), and (4) total resources (e.g., cores and memory)
in the cluster. Clusters with similar characteristics (e.g., same
type of servers) are likely to have similar behaviors. This is
useful for new clusters without much historical data or clusters
that have not seen particular conditions (e.g., high allocation).
Cluster name: The identifier for the cluster helps improve the
prediction accuracy for a specific cluster. This complements
the cluster characteristics and still allows learning from the
historical data from similar clusters.
Total resources allocated: This includes the total number of
cores and memory (e.g., in GBs) currently allocated to regular
VMs in the cluster. Together with the cluster characteristics,
we can compute the allocation percentage.
Number of VMs: This is the total number of VMs currently
running in the cluster. The ratio between resources allocated
and the number of VMs gives insights on how large the VMs
in the cluster are. This is particularly useful to estimate the
sets of unallocated resources in the cluster for Harvest VMs.
Auto Regressive: These are previous time series values of
the outputs we want to forecast. This feature is especially
useful because, as our characterization shows, past values are
a reasonable indicator of the current values. Each output will
use values for different past periods. For example, if we are
predicting the survival rate for Harvest VMs in 1 day, this
would include the evictions we actually saw in the last day.
Moving Average: This is similar to the Auto Regressive fea-
ture, but it smooths the past values using averages. We use
multiple periods for the averages (e.g., 1 hour, 1 day). This
feature is useful to filter out peaks and reduce noise.
ML training and inference. We can train our models using
data from Harvest VMs that ran in production in the past. This
data includes the aspects that we want to predict (e.g., how
long the VM lasted for), the characteristics of the Harvest
VM (e.g., a minimum of 2 cores), and the state of the cluster
at each point in time. However, as Harvest VMs have not run
in production long enough, we use traces from production as
our training data in this paper (Section 7.1).

At model inference time (i.e., an SLO needs to be shown
to a user), we first check which cluster in the desired region
would potentially host the Harvest VMs that are being re-
quested, and use the cluster characteristics and name for the
cluster as input features for the inference. If the Harvest VM
deployment is to be split across multiple clusters, we then
predict for each one independently.
Discarded features. Other features’ impact on prediction
quality was small or even detrimental. Some of them are:
Number of VMs of each type: A VM type defines the number
of cores, memory size, if it has GPUs, etc. There are hundreds
of types and the model cannot make sense of them. Some fea-
tures we use (e.g., total number of VMs and cores allocated)
are proxies and enable our models to infer this data concisely.
Date/time: These features were used in [36]. We do not in-
clude them, as features like the total number of VMs already
carry implicit temporal patterns (e.g., weekdays vs weekends).

Predicting standard evictable VM survivability. Our sur-
vival rate predictions can be directly applied to standard
evictable VMs. In fact, we are working on a simpler version
of our model to provide survival rate predictions for evictable
VMs in production. The uses for these predictions are similar
to the ones for Harvest VMs.

6 Harvest Hadoop

Cluster scheduling frameworks, such as Apache YARN [37]
or Kubernetes [22], are good targets for Harvest VMs. A large
number of applications already run on them, and they can
be adapted to use Harvest VMs transparently to applications.
These frameworks are built to handle server/VM failures, so
they can be easily extended to manage evictions. Applications
built for these frameworks, like Spark [44], also manage the
straggler tasks that might result from an eviction. Moreover,
these frameworks can be modified to schedule more tasks on
a Harvest VM that has grown to use more cores, and stop
scheduling new tasks on a Harvest VM that has lost cores. To
demonstrate how to adapt these frameworks, we build Harvest
Hadoop to schedule computation on harvested resources.
Harvest Hadoop architecture. Harvest Hadoop is an ex-
tension to the Hadoop [3] ecosystem. Hadoop includes the
YARN cluster scheduler [37], which enables running many ap-
plications (e.g., Spark [44], Flink [11]) to leverage harvested
resources. It also includes the Hadoop Distributed File System
(HDFS), which is optimized for large data files.

A key goal for Harvest Hadoop was to minimize the number
of intrusive changes to YARN and HDFS, so that our system
would be simple and practical, and our changes could be more
easily contributed to open-source Hadoop. With this in mind,
we design Harvest Hadoop with the following main features:
• It executes the YARN and HDFS master processes (called
Resource Manager and Name Node, respectively) on regular
VMs, as it is expensive to manage the failure of the masters;
• It executes the YARN and HDFS worker processes (called
Node Manager and Data Node, respectively) on Harvest VMs;
• It uses storage within each Harvest VM simply as a cache
of remote data (from the provider’s highly available storage
service), as evictions do not leave enough time for fully de-
commissioning a storage server; and
• It introduces a Harvest VM Manager (HVM Manager) that
monitors the number of resources currently available to its
Harvest VM and the informs the master processes. The master
processes act accordingly at the next heartbeat.

We have contributed all the needed code changes to open-
source Hadoop 3.3.0 [40,41]. Figure 9 illustrates the architec-
ture, showing a server that has two regular VMs and a Harvest
VM consuming all the resources not used by the regular VMs.
Managing evictions. We leverage the decommissioning fea-
ture in YARN [42]. When the provider notifies the Harvest
VM that it will be evicted, the HVM Manager notifies the
YARN Resource Manager (RM) to kill the containers in that



HDFS
DataNode

YARN
Node

Manager

HVM
Manager

Harvest VM

HDFS
Name
Node

YARN
Resource
Manager

KVP
Hypervisor

Regular
VM

Regular
VM

RPC/REST Call

Heartbeat

Container
Container

Container
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VM. If the worker gets evicted before killing all the contain-
ers, the RM will handle this as a failure and re-schedule the
containers. Otherwise, the applications can decide whether
they want to re-schedule any of their killed containers.

Evictions are more intrusive for data storage. We leverage
the decommissioning mechanisms available in HDFS [20].
The HVM manager catches the eviction notification from the
provider and tells the HDFS Name Node to start decommis-
sioning the corresponding Data Node. As the advance notice
to evict a VM is usually short (e.g., 30 seconds), there is little
time to decommission a full data node. This is the reason why
we only cache remote replicas in Harvest VMs, as we men-
tion above. HDFS replicates the cached files in other Harvest
VMs, and uses a write-back policy for them [21].

At Harvest Hadoop deployment time, the user specifies (as
an auto-scaler option) whether she wants her Harvest VM
deployment to be replenished by the cloud platform to its
original number of Harvest VMs when an eviction occurs.
Managing core reassignments. To adapt the scheduling, we
leverage the resource updates in the existing heartbeats to
the YARN RM. Zhang et al. took a similar approach in the
bare-metal scenario [47]. The HVM manager periodically
checks the number of cores assigned to its Harvest VM, and
it notifies the RM if the number has changed.

If the Harvest VM gets more cores, the RM can now assign
more containers to the VM. If the VM shrinks, the scheduler
can: (1) kill some containers and let the application handle
it as a failure, (2) run the containers in a deprived mode and
wait until the application terminates them, or (3) notify the
application to free up some containers.

Our current implementation uses a combination of the three
options. The RM first selects the containers that should be
killed based on their priorities and whether they are oppor-
tunistic [43]. Then, it notifies the applications in case they can
terminate the containers. After a grace period (30 seconds), if
the cores are still not enough, it will terminate the containers.
This period allows graceful termination and can correct for
the number of cores increasing again.
Harvesting other resources. We also modify Hadoop to be
aware of the VMs’ memory allocation, so it will work out-
of-the-box when Harvest VMs become capable of harvesting
memory. When the Harvest VM gets more memory, Harvest
Hadoop can just deploy more containers to it. However, when

the Harvest VM shrinks, we cannot run in deprived mode, un-
less the VM allows swapping to disk. For this reason, we keep
a buffer of unused unallocated memory. The HVM manager
notifies the Harvest VM when memory from this buffer is
allocated, so that it can free up some of its own memory. The
HVM manager kills the Harvest VM if the buffer is exhausted,
i.e. the Harvest VM cannot release memory fast enough.

Hadoop does not need changes to benefit from harvested
network and disk bandwidth, as applications can automati-
cally use any additional bandwidth that becomes available.

7 Evaluation

7.1 Methodology
Our evaluation focuses on two sets of results. First, we assess
the benefits of Harvest VMs and the accuracy of our SLOs.
Ideally, we would do this assessment based on real production
data. However, our SLOs are not in production yet. Moreover,
the set of conditions under which we can evaluate our SLOs is
limited with the production deployments of Harvest VMs. For
these reasons, we use a validated simulator and production
VM data for 25 clusters for our SLO evaluation.

Second, we explore the real implementation of Harvest
VMs and Harvest Hadoop in the provider’s production in-
frastructure. We use two large clusters: one running internal
production VM workloads, and another running VM work-
loads that stress the cluster.
Simulator. We use Azure’s own cluster simulator, which ex-
ecutes the real VM scheduler [19] code in assigning VMs
to physical servers. Thus, the simulator closely mimics the
constraints and preferences in the real scheduler. We feed the
simulator with production VM arrival traces, and add Har-
vest VMs continuously to fill the cluster (i.e., no new Harvest
VMs can be allocated). We run the simulations in real Har-
vest VMs, i.e. each harvested core allows us to run one more
(single-threaded) simulation in parallel.

We validate the simulator by comparing the number of
Harvest VMs that can be created in a real cluster (based on
logs of VM assignments to servers) and in simulation (replay-
ing the corresponding VM arrival trace). Figure 10 shows
this validation for Harvest VMs of 3 minimum sizes over 1
week, where dashed lines represent the real executions and
solid lines represent simulated executions. The curves match
closely because the simulator mimics the packing per server
accurately. We also validate using longer periods and other
clusters, and find an absolute average error of just 3%.

As inputs for our simulations, we use VM arrival data from
25 randomly selected clusters across 14 regions, including
relatively small satellite regions. The data was collected from
December 1st 2019 to March 1st 2020. We process the VM
arrival data to generate the allocation state of each server every
10 minutes. The clusters exhibit a wide range of behaviors in
terms of how highly allocated they are on average and how
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Figure 10: Simulation validation over 1 week. Solid curves
are actual data; dashed curves are simulated.

stable the total allocated resources are over time. The number
of servers per cluster ranges from several hundred to several
thousand. There is no correlation between cluster size and
allocation percentage or stability. When training our models,
we use data from December 1st 2019 to January 15th 2020.
We use the other 45 days for evaluating predictions.
Real experiments. For our real experiments, we use the Har-
vest Hadoop implementation we describe in Section 6. We
configure the provider’s deployment system to replace any
Harvest VMs that get evicted, so that the overall number of
Harvest VMs stays fixed during our experiments.

We use two large clusters, which we call private and canary.
The private cluster has over 1700 servers and runs VMs that
implement a production key-value store. The VM load is
fairly stable over time. We create Harvest VMs in this cluster
and attach them to a Harvest-Hadoop-based production data
analytics and ML training system. We have deployed Harvest
VMs to other private clusters as well, but selected this one for
our results because it has been the most extensively used.

The canary cluster has around 650 servers and runs a syn-
thetic VM load that stresses the provider’s production infras-
tructure. This cluster is in the top percentile in terms of VM
creations and terminations, and produces many resource allo-
cation changes and evictions. For our experiments with this
cluster, we create full Hadoop clusters. Each cluster consists
of 3 Name Nodes and 2 Resource Managers (which run on
regular VMs) and Harvest VMs that we scale on demand. For
coordination, we also deploy a 5-node ZooKeeper 3.6.0 stamp
in the same regular VMs. We run synthetic jobs, including
MapReduce (e.g., TeraGen and TeraSort) and Spark.

7.2 Benefits of Harvest VMs

We start the evaluation by assessing the benefits of Harvest
VMs over standard evictable VMs in terms of numbers of
VMs and evictions. Our comparison simulates the 25 produc-
tion clusters in two scenarios: one in which we consume all
the clusters’ unallocated resources using evictable VMs, and
another where we consume them using Harvest VMs. We
place as many evictable 1-core VMs as will fit; larger sizes
would not consume many unallocated resources. In the Har-
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Figure 11: Number of VMs required to consume the unallo-
cated resources of 25 production clusters.

vest VMs scenario, 1 core is the minimum size and we only
place one Harvest VM per server. In both scenarios, each VM
has 16GB of memory and 200GB of disk.

Figure 11 shows the number of VMs required to consume
the unallocared resources with evictable and Harvest VMs
for each cluster. Across all clusters, we need between 8% and
10.7× (3.7× on average) more evictable VMs than Harvest
VMs. The number of evictions of evictable VMs is also much
higher by ∼ 3.6× on average. These results quantify our
earlier observation that standard evictable VMs incur higher
management and resource overheads than Harvest VMs.

7.3 Accuracy of SLOs for Harvest VMs

The accuracy of our SLOs hinges on our ability to accurately
predict survival rates and average numbers of harvested cores.
We start our evaluation with a detailed analysis of prediction
accuracy for a few sample clusters, and then offer a global
view of all clusters. The last part of the section evaluates our
ML model and studies its sensitivity to multiple parameters.
Detailed analysis. Let us first consider the accuracy of our
survival rate SLOs. For a cluster with fairly stable load, the
graphs on the left of Figure 12 show the number of Harvest
VMs with a minimum size of 4 cores that can be created (top),
those that would survive 1 day (middle), and their survival rate
after 1 day (bottom) over time. Each graph shows the actual
and predicted values (with 95% confidence intervals), as well
as the corresponding absolute errors. We plot predictions
and errors every 10 minutes, given the actual cluster state at
those times. For example, if the actual value is 100 and the
prediction is between 90 and 120 with 95% confidence, the
absolute error is 0%. Instead, if the actual value is 60, the
error is -33% (i.e., (60-90)/90) and the absolute error is 33%.
The vertical line at January 15th marks the split between the
training and test datasets. The graph on the right shows the
CDF of the errors comparing the actual survival rates to our
predictions with and without 95% confidence intervals, during
the test period. These would be the error distributions of our
1-day survival rate SLO.

The top graph shows that our predictions for the number
of VMs that can be created are very accurate, even though
the training data is almost a flat line and there are substantial
variations after January 15th. Our model recognizes that these
behaviors are unknown and leverages the data from other
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Figure 12: Predictions for Harvest VMs with 4-core minimum
size and their survival rates after 1 day for a stable cluster.
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Figure 13: Predictions for Harvest VMs with 4-core minimum
size and their survival rates after 1 day for the worst cluster.

clusters to provide a prediction that is not as precise. So, when
those variations occur, the confidence intervals widen. The
middle graph also shows very good accuracy when predicting
the number of VMs that would survive after 1 day. Most
importantly, the bottom graph and the CDFs to the right show
that 80% of the absolute errors are very close to 0%, and 95%
of them are lower than 15%, when compared to the predictions
with confidence intervals. Errors are larger when comparing
to exact predictions, but 90% of them are still lower than 20%.
These results show very good accuracy for our SLO.

For comparison, we now study the cluster with the largest
99th-percentile errors in our dataset in Figure 13. Again, we
assume 4-core Harvest VMs and 1 day survival. The top graph
shows very low absolute errors, despite the significant change
in behavior after January 15th. In contrast, the middle and bot-
tom graphs show significant errors at times, despite the wider
confidence intervals. The CDFs show the distribution of the
errors in our SLO prediction. In this case, 85% of the predic-
tions are within 10% and 95% within 20%. Thus, even in the
worst cluster, our SLO would still provide valuable guidelines
(e.g., an actual survival rate of 85% while we predicted 65%).

We now study the accuracy of our predictions of average
number of harvested cores. Figure 14 shows these predictions
for Harvest VMs with 1 (top), 2 (middle), and 4 (bottom)
minimum cores in another cluster with significant unallocated
capacity. The horizontal lines show the minimum and maxi-
mum numbers of cores for each VM. The figure shows that
a Harvest VM with a minimum size of 1 core gets between
6 and 14 cores in the cluster. During the test phase, the pre-
diction accuracy is very good, showing that our average cores
SLO would be accurate for this cluster. In addition, we can see
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Figure 14: Prediction of unallocated cores in one cluster.
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Figure 15: Prediction errors for the 1-day survival rate, as a
function of minimum size and cluster.

that the larger Harvest VMs get slightly more cores overall.
Results for all clusters. The results above illustrate the accu-
racy of our predictions for individual clusters. We now turn to
results for all clusters. Figure 15 plots the errors (in boxplot
format) when predicting 1-day survival rate with 95% confi-
dence, for each minimum size and cluster. Each box ranges
between the first and third error quartiles, with the line rep-
resenting the mean error, whereas the whiskers extend out to
the 2.5th and 97.5th percentiles. The clusters marked C1, C2,
and C3 are those from Figures 12, 13, and 14, respectively.
The vast majority of mean errors are around 0% and the bulk
of the errors are lower than 20% for most clusters.

Figure 16 plots the error distribution of the survival rate
without confidence intervals, for each horizon and minimum
size, aggregated across all clusters. As expected, short-term
predictions (i.e., current, 1-hour) have the lowest errors. The
short-term results show that >90% of the predictions have
no errors and the worst predictions have an error under 15%.
Interestingly, long-term predictions (i.e., 1-month) tend to be
more accurate than medium-term ones (i.e., 1-day, 1-week).
The reason is that small load changes have a larger impact
when predicting medium-term survival, whereas they often
get smoothed out in the long term.

The figure also shows that errors are balanced and there
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Figure 16: Prediction errors for time horizon and min size.

are not many more overpredictions than underpredictions (or
vice-versa). When we average all the absolute errors, both
current and 1-hour survival predictions exhibit errors lower
than 2%. The 1-day and 1-week average absolute errors are
roughly 6%, whereas the 1-month average absolute error is
just under 4%.

Our predictions of the average number of cores available
to Harvest VMs are even more accurate: the average error
is smaller than 2.3% (<0.9% considering the confidence in-
terval). When predicting the median and the 75th percentile
numbers of cores, the errors are below 4.1% (<1.5% consider-
ing the confidence interval). Even though our current Harvest
VM implementation does not harvest memory, targeting our
model to predict the memory available for harvesting also pro-
duces accurate results: the average absolute error is smaller
than 1.5% (<0.5% considering the confidence interval).
Prediction adaptability. During this work, our model has
been exposed to three versions of the VM scheduler that
changed the allocation behaviors over time. We periodically
re-train our model to capture these new behaviors. In addition,
the auto-regressive features are especially good at adjusting
to such changes. We have also evaluated our predictions with
multiple hardware generations (our results are for the two
most popular ones) and the model is able to adjust to them.

In summary, our predictions for both survival rate and aver-
age number of cores are accurate and robust for a wide range
of cluster characteristics and behaviors.
Impact of the ML model. For comparison against our Ran-
dom Forest model [24], we evaluated a Multi-Layer Per-
ceptron (MLP) [35], Gradient Boosting [17], Exponential
Smoothing (ETS) [18], and ARIMA [45]. MLP is a type of
neural network. It achieves the closest results to our model,
but we had to explore multiple combinations in the numbers
of layers and neurons per layer. Figure 17 shows a compari-
son between the prediction errors of the two models’ survival
rates (left) and number of cores (right). The predictions are
slightly worse using MLP and it does not provide confidence
intervals. Training times are not a concern for large cloud
providers. For context, one Random Forest training session
typically takes around 16 hours on one Harvest VM, using
45 days of data from all 25 clusters. A similar MLP training
session takes much longer, but we did not try using GPUs for
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Figure 17: Avg absolute errors for Random Forest and MLP.
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Figure 18: Avg absolute errors using two model types.

it. Prediction times are negligible in both cases.
The other models do not compare as well. Random Forests

outperformed Gradient Boosting in both accuracy and perfor-
mance. ETS and ARIMA are well-behaved for certain clusters
and provide confidence intervals. However, they cannot incor-
porate other features (e.g., cluster characteristics) that improve
predictions in unseen situations. In contrast, Random Forests
can easily use data from other clusters when the cluster starts
to behave differently from its past (e.g., the load increase in
Figure 13). Nevertheless, our approach does incorporate the
auto-regressive and moving average aspects of ARIMA.
Impact of the features. Our model uses 31 features. Both
SHAP analysis [28] and a feature importance algorithm in-
dicate that the auto-regressive features are the most relevant.
However, the other features do improve prediction quality,
especially when the cluster starts to behave differently. The
features that we discarded do not improve our predictions.
Impact of global modeling. We can see the benefit of using
data from other clusters by comparing prediction errors from
25 per-cluster models vs a single model trained with data from
all 25 clusters. Figure 18 shows this comparison for survival
rates. The top graph shows the errors of the independent
models and the bottom one the errors for the single model.
The bottom graph shows lower errors in every case.

7.4 Harvest VMs and Harvest Hadoop
As we mention in Section 7.1, we experiment with Harvest
VMs and Harvest Hadoop in the Azure’s production infras-
tructure, using two clusters called private and canary.
Private cluster. We have been running Harvest VMs and
Harvest Hadoop in this cluster in production for more than
6 months. The organic regular-VM workload is a key-value
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Figure 19: Time to evict Harvest VMs in the two clusters.

store that uses full-server VMs but leaves many other servers
empty. Our Harvest VMs (mininum 2 cores) run on these
servers and execute Hadoop-based ML and data analytics jobs.
As the Harvest VMs run alone, they grow to consume all the
cores on their host servers. The left side of Figure 19 shows
their survival statistics over 3 months. The “Not Evicted” VMs
are those that terminated, instead of being evicted. Roughly
95% of the Harvest VMs that are evicted survive one hour or
more, and roughly 40% survive for one month. These dura-
tions match the production jobs nicely: this cluster ran 105k
tasks in a month, 90% of them ran for less than 10 minutes,
95% less than 1 hour, and only 1% longer than 6 hours. Inter-
estingly, roughly 90% of the not evicted Harvest VMs last for
more than a month. Over time, the organic load has increased
and we now have capacity for around 450 Harvest VMs.
Canary cluster. To stress Harvest Hadoop, we create full de-
ployments in the canary cluster, whose organic workload also
seeks to stress the platform and varies significantly. Each de-
ployment includes 100 workers in Harvest VMs of minimum
size 2, and executes various Hadoop benchmarks. The results
over 3 months appear on the right side of Figure 19. The
constantly varying organic load and our stress-benchmarking
result in only roughly 30% of the Harvest VMs that are evicted
surviving one hour or longer. Even the ones that are not
evicted are very short, and terminate before they are evicted.

To see these behaviors in more detail, we let a 100-VM
setup run for over a week, continuously executing the TeraGen
and Terasort benchmarks with 1000 map tasks. From these
experiments, Figure 20 shows the minimum, maximum, and
average number of cores the Harvest VMs got over the week.
Most of the time, the Harvest VMs got over 18 cores on
average. On March 29th there was a surge in load and the
average dropped to 15 cores. During this time, there was
at least one Harvest VM with only 2 cores. The figure also
shows the number of evictions per hour. During the load surge,
there were 19 evictions but in 30% of the hours there were
no evictions and in 75% there were 2 or fewer. After every
eviction, the auto-scaler replaced the evicted Harvest VM
with a new one trying to keep 100 workers at all times. For
most of the VM re-creations, accesses to the remote storage
service were not needed to re-hydrate the cache, because the
data could come from other cached replicas; the exceptions
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Figure 20: Minimum, maximum, and average number of har-
vested cores and evictions over one week.

were the 19 evictions during the load surge, which actually
lost all cached replicas of certain files.

7.5 Cost comparisons

To compute the cost savings that Harvest VMs can accrue,
compared to standard evictable and regular VMs, we can
use the formula from Section 4. To use it, we need to in-
stantiate the time to recover from evictions in core×hours
(recovery core hrs), the prices per core×hour (price and α),
and the number of minimum (minsize core hrs) and addi-
tional (additional core hrs) Harvest VM core×hours. The
number of cores used by regular and standard evictable VMs
as equivalent to the minimum size of Harvest VMs.

We compute the recovery time for each evicted VM from
the experiments with the canary cluster. Specifically, an evic-
tion forces the re-creation of the VM at another server, which
takes roughly 30 seconds. In addition, Harvest Hadoop needs
to re-create its workers, which takes a minimum of 2 minutes
and 5 minutes at the 90th percentile. The breakdown for the
common case is 1 minute to get all the binaries (e.g., Java,
Hadoop, Docker, libraries), 30 seconds to setup and install
dependencies, around 10 seconds to setup the environment
(including security packages, compliance, and firewall setup),
and around 10 seconds to start the services (DataNode and
NodeManager) and heartbeat. Some stages are prone to long
tails, which usually occur when creating a few hundred Har-
vest VMs at the same time. For this analysis, we assume that
each eviction causes 5.5 minutes of recovery time.

To instantiate the prices, we use the amounts that Azure
charges for the VMs from which we derive the Har-
vest VM resource quantities. Specifically, we instantiate
the prices as $0.126/(core×hour) for a regular VM and
$0.019/(core×hour) for a standard evictable VM [5, 6]. We
use the latter price for the minimum size of the Harvest VMs
as well. By default, we assume that the discount for addi-
tional Harvest VM cores (beyond the minimum size) over the
evictable core price is 50%, i.e. α = 0.5. Below, we discuss
other values as well. As Harvest Hadoop can use as many
cores as Harvest VMs give it, it is immaterial whether the
provider charges for additional cores per-use or per-allocation.
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of 25 production clusters.

Using data from the simulations in Section 7.2 (where we
consume as much of the unallocated resources as possible),
we combine the recovery time above with the average survival
rates for the 25 clusters and compute an average per-VM
recovery overhead of only 0.13%. Again for the 25 clusters,
we find that Harvest VMs receive an average of 7.2 additional
cores beyond the 1-core minimum.

With these parameters instantiated, we compute the cost per
useful core of Harvest VMs in the 25 clusters to range from
34% to 47% cheaper than standard evictable VMs. On aver-
age, Harvest VMs are 42% cheaper at $0.011/(core×hour).
Figure 21 illustrates these costs. The fact that evictable VMs
suffer many more evictions is a minor factor in these savings,
since survival times are much larger than recovery times for
both VM classes. Instead, the key reason for the large savings
is the additional cores that can be harvested at discounted
prices. When those cores are priced the same as the minimum
size (α = 1), there are almost no savings. When they are free
(α = 0), Harvest VMs cost $0.003/(core×hour) on average
across the clusters, i.e. a savings of 84%.

Compared to filling the unallocated capacity of the 25 clus-
ters with 1-core regular VMs, Harvest VMs are 91% cheaper
on average for α = 0.5. Here, the heavily discounted nature
of evictable cores dominates. Lower prices for the additional
cores increase these savings, whereas charging the same price
as for evictable/minimum cores lowers the savings to 85%.

8 Lessons from production deployment

Adapting applications and fast adoption. We initially
thought that the main users of Harvest VMs would be those
who could deploy lots of evictable VMs. However, after
discussing with internal teams, we soon realized that their
workloads could not benefit from additional cores without
modification. This made adoption harder, despite the much
lower price of Harvest VMs. Fortunately, many large users
at the provider rely on the Hadoop stack, so we devised Har-
vest Hadoop. These users then immediately and transparently
adopted Harvest VMs. We are now starting to adapt a FaaS
platform and Kubernetes for Harvest VMs.
Harvesting without evictions. Other potential users were
concerned about experiencing frequent evictions. They were
the motivation for our SLOs. Still, some would prefer not
to have any evictions. For them, we are considering regular-

priority Harvest VMs, which still have a (non-evictable) min-
imum size but can grow. For these VMs, the discount will
apply only to the cores used beyond the minimum size.
Unbalanced Harvest VMs. Our current implementation only
harvests cores, which may lead to VMs that cannot use some
cores because their memory becomes too small. For exam-
ple, some production VMs harvest 20 cores with only a fixed
16GB of memory. This imbalance is fine for some work-
loads but not others. Based on this, we started prototyping
harvesting of unallocated memory. Another option is to de-
fine Harvest VM types with larger (fixed) memories, but that
would make it harder to place them. The other resources have
not posed imbalance problems so far.
Multiple Harvest VMs per server. Our implementation al-
lows one Harvest VM per server because this works well for
our initial (Hadoop) customers. However, to address the im-
balance above and enable workloads that have less parallelism
per VM, we are implementing the ability for users to specify
a maximum size for each Harvest VM, and the fair sharing
of a server’s unallocated cores across multiple Harvest VMs.
Our models easily extrapolate to having multiple of them per
server. We need to add the maximum size of each Harvest
VM and the number of Harvest VMs in the cluster as features.
New VM family. We initially limited Harvest VMs to a few
pre-defined sizes (Section 4). However, some users needed
VMs with faster disks or a different hardware generation. So,
we had to create new types. For this reason, we plan to make
harvesting a feature that can be enabled for most VM types,
instead of being a separate family.
Impact on regular VM creation times. Our initial imple-
mentation of core reassignments had the unexpected side-
effect that regular VM creation could be slowed down signifi-
cantly on servers that were already hosting many VMs. The
problem only became noticeable when we started testing in
the canary cluster. Fixing it involved using a different API to
the hypervisor and made the overhead negligible.

9 Conclusion

In this paper, we first characterized the unallocated resources
of a large cloud provider. We then proposed to dynamically
harvest the unallocated resources using Harvest VMs. To
provide SLOs for these resources, we built an accurate ML-
based predictor for VM survival rates and average number
of cores. To demonstrate the use of Harvest VMs, we built a
cluster scheduling framework called Harvest Hadoop. Finally,
we discussed the lessons and results from our production
deployment of Harvest VMs and Harvest Hadoop in Azure.

Acknowledgements
We thank Rebecca Isaacs, our shepherd, the anonymous re-
viewers, David Irwin, and Stanko Novakovic for their many
helpful comments and suggestions.



References

[1] Amazon Elastic Compute Cloud. Amazon EC2 Spot
Instances, 2019. https://aws.amazon.com/ec2/
spot/.

[2] Pradeep Ambati and David Irwin. Optimizing the Cost
of Executing Mixed Interactive and Batch Workloads
on Transient VMs. In SIGMETRICS, 2019.

[3] Apache. Apache Hadoop, 2020. https://hadoop.
apache.org/.

[4] Microsoft Azure. Azure Functions. https://azure.
microsoft.com/en-us/services/functions/.

[5] Microsoft Azure. Ev3 and Esv3-series.
https://docs.microsoft.com/en-us/azure/
virtual-machines/ev3-esv3-series.

[6] Microsoft Azure. Pricing Calculator. https://azure.
microsoft.com/en-us/pricing/calculator/.

[7] Microsoft Azure. Introducing B-Series, Our
New Burstable VM Size, 2019. https:
//azure.microsoft.com/en-us/blog/
introducing-b-series-our-new-burstable-vm-size/.

[8] Microsoft Azure. Azure Spot Virtual Machines,
2020. https://azure.microsoft.com/en-us/
pricing/spot.

[9] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. Deconstructing Amazon EC2 Spot Instance
Pricing. ACM Transactions on Economics and Compu-
tation (TEAC), 1(3), 2013.

[10] Leo Breiman. Random Forests. Machine learning,
45(1):5–32, 2001.

[11] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and Batch Processing in a Single Engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[12] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro,
and John Wilkes. Long-Term SLOs for Reclaimed
Cloud Computing Resources. In SoCC, 2014.

[13] Amazon Elastic Compute Cloud. Burstable
Performance Instances, 2019. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/
burstable-performance-instances.html.

[14] Google Cloud. Preemptible VM Instances, 2020.
https://cloud.google.com/compute/docs/
instances/preemptible.

[15] Intel Corp. Intel R© CAT. https://software.intel.
com/content/www/us/en/develop/articles/
introduction-to-cache-allocation-technology.
html.

[16] Eli Cortez, Anand Bonde, Alexandre Muzi, Mark Russi-
novich, Marcus Fontoura, and Ricardo Bianchini. Re-
source Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In SOSP, 2017.

[17] Jerome H Friedman. Greedy Function Approximation:
A Gradient Boosting Machine. Annals of Statistics,
pages 1189–1232, 2001.

[18] Everette S Gardner Jr. Exponential Smoothing: The
State of the Art—Part II. International Journal of Fore-
casting, 22(4):637–666, 2006.

[19] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: VM Allocation Service at Scale.
In OSDI, 2020.

[20] Apache Hadoop HDFS. HDFS DataNode Admin
Guide, 2020. https://hadoop.apache.org/docs/
current3/hadoop-project-dist/hadoop-hdfs/
HdfsDataNodeAdminGuide.html.

[21] Apache Hadoop HDFS. HDFS Provided Stor-
age, 2020. https://hadoop.apache.org/docs/
current3/hadoop-project-dist/hadoop-hdfs/
HdfsProvidedStorage.html.

[22] Kubernetes. Production-Grade Container Orchestration,
2020. https://kubernetes.io/.

[23] Jacob Leverich and Christos Kozyrakis. Reconciling
High Server Utilization and Sub-Millisecond Quality-
of-Service. In EuroSys, 2014.

[24] Andy Liaw, Matthew Wiener, et al. Classification and
Regression by Random Forest. R News, 2(3):18–22,
2002.

[25] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-Chun
Feng, Mark Gardner, and Zhe Zhang. MOON: MapRe-
duce On Opportunistic eNvironments. In HPDC, 2010.

[26] Michael J Litzkow, Miron Livny, and Matt W Mutka.
Condor-A Hunter of Idle Workstations. In ICDCS, 1988.

[27] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving Resource Efficiency at Scale. In
ISCA, 2015.

https://aws.Alpha XR/ec2/spot/
https://aws.Alpha XR/ec2/spot/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/pricing/spot
https://azure.microsoft.com/en-us/pricing/spot
https://docs.aws.Alpha XR/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.Alpha XR/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.Alpha XR/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsDataNodeAdminGuide.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsDataNodeAdminGuide.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsDataNodeAdminGuide.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsProvidedStorage.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsProvidedStorage.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsProvidedStorage.html
https://kubernetes.io/


[28] Scott M Lundberg and Su-In Lee. A Unified Approach
to Interpreting Model Predictions. In NIPS, 2017.

[29] Microsoft. Hyper-V Technology Overview,
2016. https://docs.microsoft.com/en-us/
windows-server/virtualization/hyper-v/
hyper-v-technology-overview.

[30] Microsoft. Hyper-V Integration Services,
2019. https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/
reference/integration-services.

[31] X. Ouyang, D. Irwin, and P. Shenoy. SpotLight: An
Information Service for the Cloud. In ICDCS, 2016.

[32] Amazon Web Services. AWS Lambda. https://aws.
amazon.com/lambda/.

[33] Prateek Sharma, Ahmed Ali-Edlin, and Prashant Shenoy.
Resource Deflation: A New Approach For Transient
Resource Reclamation. In EuroSys, 2019.

[34] Supreeth Shastri, Amr Rizk, and David Irwin. Tran-
sient Guarantees: Maximizing the Value of Idle Cloud
Capacity. In SuperComputing, 2016.

[35] Bruce W Suter. The Multilayer Perceptron as an Ap-
proximation to a Bayes Optimal Discriminant Function.
IEEE Transactions on Neural Networks, 1(4):291, 1990.

[36] Sean J Taylor and Benjamin Letham. Forecasting at
Scale. The American Statistician, 72(1):37–45, 2018.

[37] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet Another Resource Negotia-
tor. In SoCC, 2013.

[38] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale Cluster Management at Google with Borg. In
EuroSys, 2015.

[39] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia
Tang. Bubble-flux: Precise Online QoS Management
for Increased Utilization in Warehouse Scale Computers.
In ISCA, 2013.

[40] Apache Hadoop YARN. Dynamic Resource Configura-
tion. https://issues.apache.org/jira/browse/
YARN-999.

[41] Apache Hadoop YARN. In case of long running
tasks, reduce node resource should balloon out resource
quickly by calling preemption API and suspending

running task. https://issues.apache.org/jira/
browse/YARN-999.

[42] Apache Hadoop YARN. Graceful Decommission of
YARN Nodes, 2020. https://hadoop.apache.org/
docs/current/hadoop-yarn/hadoop-yarn-site/
GracefulDecommission.html.

[43] Apache Hadoop YARN. Opportunistic Contain-
ers, 2020. https://hadoop.apache.org/docs/
current/hadoop-yarn/hadoop-yarn-site/
OpportunisticContainers.html.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
Computing with Working Sets. In HotCloud, 2010.

[45] G Peter Zhang. Time Series Forecasting Using a Hybrid
ARIMA and Neural Network Model. Neurocomputing,
50:159–175, 2003.

[46] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. CPI2: CPU Per-
formance Isolation for Shared Compute Clusters. In
EuroSys, 2013.

[47] Yunqi Zhang, George Prekas, Giovanni Matteo Fu-
marola, Marcus Fontoura, Í Goiri, and Ricardo Bian-
chini. History-Based Harvesting of Spare Cycles and
Storage in Large-Scale Datacenters. In OSDI, 2016.

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://aws.Alpha XR/lambda/
https://aws.Alpha XR/lambda/
https://issues.apache.org/jira/browse/YARN-999
https://issues.apache.org/jira/browse/YARN-999
https://issues.apache.org/jira/browse/YARN-999
https://issues.apache.org/jira/browse/YARN-999
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html

	Introduction
	Background and related work
	Characterizing unallocated resources
	Harvest Virtual Machines
	Providing SLOs for Harvest VMs
	Harvest Hadoop
	Evaluation
	Methodology
	Benefits of Harvest VMs
	Accuracy of SLOs for Harvest VMs
	Harvest VMs and Harvest Hadoop
	Cost comparisons

	Lessons from production deployment
	Conclusion

