
iBox: Internet in a Box
Sachin Ashok

Microsoft Research India
Sai Surya Duvvuri

Microsoft Research India
Nagarajan Natarajan
Microsoft Research India

Venkata N. Padmanabhan
Microsoft Research India

Sundararajan Sellamanickam
Microsoft Research India

Johannes Gehrke
Microsoft Research Redmond

ABSTRACT
We present a vision of data-informed network simulation to address
significant shortcomings in the state of the art. We substantiate
our position with proof points based on iBox, which leverages
networking domain knowledge and machine learning (ML) models,
coupled with plentiful data, to provide a pathway to perpetual
renewal of network simulators.

CCS CONCEPTS
•Networks→Network simulations;Networkmeasurement;
Network performance modeling; Network experimentation; Network
performance analysis.

KEYWORDS
network simulation, cross-traffic estimation, data-driven simulation
ACM Reference Format:
Sachin Ashok, Sai Surya Duvvuri, Nagarajan Natarajan, Venkata N. Pad-
manabhan, Sundararajan Sellamanickam, and Johannes Gehrke. 2020. iBox:
Internet in a Box. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets ’20), November 4–6, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3422604.3425935

1 INTRODUCTION
There have traditionally been two broad approaches to network
simulation 1: (1)mimicking the operation of individual network com-
ponents, e.g., links, queues, protocols (e.g. TCP), to then recreate
overall network behaviour (e.g. ns [4]), and (2) replaying the net-
work behavior from collected offline data as is (e.g. [33, 34]). The for-
mer typically lacks realism in terms of configuration (e.g., network
topology and cross-traffic patterns) and the latter, though informed
by real measurements, does not capture the impact on the network
of the application or protocol under test (e.g., it might congest the
network, invalidating the delay measurements). The end result is
that network simulation can yield misleading, often optimistic, con-
clusions [16, 43, 44]. Further, the need for fast, inexpensive, and
realistic network simulation is only growing, e.g., for leveraging
machine learning (ML) in networking (e.g., [25, 32, 40, 44]).

1Unless stated otherwise, “simulation” encompasses emulation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00
https://doi.org/10.1145/3422604.3425935

Here, we make the case for simulation based on learning the
network, informed by data. Our proposal, dubbed iBox, or “Internet
in a Box”, is to turn traces of end-to-end network behaviour into
simulation models that faithfully recreate network behaviour. iBox
is not a single or specific design; rather, it is an articulation of our
vision for how the networking research community could build
on both conventional work and advances in ML, and transform
network simulation, setting it on a path of perpetual renewal, fueled
by data.

We focus on recreating the end-to-end behaviour of a network
path rather than recreating the innards of the network. Even so,
we argue that it is critical to learn the network rather than just
characterize or mimic, even if with the benefit of data, the end-to-
end behavior of the network; the difference is akin to modeling
a disease versus merely characterizing its symptoms. The former
would allow us to accurately predict how the network would treat
a new application or protocol that behaves differently from the
ones seen before. Our quest to learn the network goes beyond prior
work [45] (see §7).

We start by considering two extremes for iBox. One centers on
a network model, such as a traditional ns-like simulator, but with
the configuration of the network and importantly also a model of
the cross-traffic learnt based on data. The advantage is the inter-
pretability of the model learnt in terms of familiar constructs (e.g.,
the bottleneck bandwidth) and the efficiency of execution for simu-
lation. However, tractability of learning the configuration demands
that the network model be kept simple (e.g., with a single bottleneck
link), which means that more complex network behaviours (e.g.,
packet reordering) are not captured (§5.1).

The other extreme uses ML to learn a state-space model, which
encodes the state of the network, using a deep LSTMneural network
operating on input time series (e.g., sending rate), and then recreates
end-to-end network behaviour such as packet delay or loss. The
advantage here is that learning the ML model in its continuous
parameter space is more tractable than the combinatorial search
over the discrete-event network model above. The main challenge,
however, is that unlike with the seq2seq models for NLP [15, 17, 35],
in our setting, the sender adapts to the network, which introduces
difficulties such as a control loop bias in the learnt model (§4.2).

After establishing the above extremes, we explore designs that
meld networking domain knowledge with ML. For instance, we use
ML to “discover” new behaviours and “correct” the network model’s
output accordingly (e.g., introduce appropriate reordering) or use
domain knowledge to craft features (e.g., cross-traffic estimate) to
feed to an ML model. We argue that such melding enables learning
the network better, thereby catering to the diverse end-to-end met-
rics of interest to applications. We report preliminary results using
Internet traces, mostly from a TCP testbed [45] and some from a
real-time conferencing (RTC) service.

https://doi.org/10.1145/3422604.3425935
https://doi.org/10.1145/3422604.3425935

Figure 1: Topology of iBoxNetmodel.

The iBox vision is rich in research challenges, some of which we
articulate here but only scratch the surface on.

2 PROBLEM FORMULATION
In iBox, the end-to-end behaviour of a network path is expressed
in terms of packet delay. Each packet in an input (sender) stream
is delayed by the appropriate amount and then delivered at the
output (receiver). While being conceptually simple, this formulation
can nevertheless accommodate a range of behaviours, including
queue buildup (increasing delay), packet loss (infinite delay), and
reordering (sufficient drop in delay between successive packets).
With this framework, we consider two tests for evaluating iBox.

The instance test focuses on the counterfactual, i.e., what the
end-to-end behaviour of the network would be if, in a particular
instance (i.e., on a particular path at a particular time), sender type
A (e.g., a particular flavour of TCP) were replaced with sender type
B (e.g., another flavour of TCP), while keeping the rest of the net-
work, including its configuration and the competing cross-traffic
workload, unchanged. In other words, the network model is learnt
using end-to-end traces of A and then used to predict behaviour
if B were run instead. The dynamic nature of networks and the
competing workloads means that it is impossible to perform an
instance test in a real network, so we have to rely on controlled
settings. However, once it has been shown to fare well in the in-
stance test, iBox can be employed in real settings too, providing a
new and powerful ability for counterfactual analysis.

The ensemble test, on the other hand, focuses on learning a model
based on a collection of flows of type A, each from a possibly dif-
ferent time and over a different path, and then uses the model to
predict the performance distribution of B. So, the ensemble test al-
lows us to recreate flighting-based A/B tests but within the confines
of the simulator itself.

3 NETWORK MODEL-BASED APPROACH
We begin with the network model based approach (iBoxNet), seek-
ing to learn a parameterized, albeit simplified, network model to
mimic a target network path (Fig. 1). The goal is to learn not only
the mostly static parameters of the network path, e.g., the bot-
tleneck bandwidth (b), propagation delay (d), and buffer size (B),
but importantly also the dynamic, competing cross-traffic (C) time
series.

We estimate the parameters of the iBoxNet model using input-
output packet traces. The estimation of the various static parame-
ters is relatively straightforward. Specifically, we calculate (i) the
bottleneck bandwidth as the peak receiving rate, over 1s sliding

Figure 2: iBoxNet on Pantheon (India Cellular).

windows, seen in the training data (even if the sender does not
fill the bottleneck link on a sustained basis, short bursts would
still enable accurate estimation); (ii) the propagation delay as the
minimum delay seen in the traces (the assumption being that in
a long-enough trace, at least some packets will likely encounter
an empty bottleneck queue); and (iii) the buffer size as the esti-
mated bandwidth times the difference between the maximum and
minimum delays (the assumption being that at least some packets
would encounter an almost full buffer). The implicit assumption of
a byte-based buffer is a simplification but nevertheless reasonable,
given multi-size buffer pools [9].

In addition, we estimate the cross traffic that was experienced
by a flow by analyzing its input-output trace and using the static
parameters estimated above. In the interest of space, we just sketch
out the approach — we model the three “forces” acting on the
bottleneck queue: (1) packets enqueued from sender 𝑆 (at a known
rate), (2) packets enqueued from cross-traffic flows (at unknown
rate, which we seek to estimate), and (3) packets dequeued at the
bottleneck link (estimated). Care is needed since the dequeuing
in (3) only happens while the queue is non-empty. We make a
conservative estimate (i.e., lower bound) of cross-traffic, focusing
just on periodswhenwe are sure that the queuewas non-empty. The
cross-traffic so estimated is non-adaptive, i.e., it does not react to
competition from the sender under test; see §6 for a brief discussion
on adaptive models.

3.1 Evaluation
We evaluate iBoxNet using the Pantheon testbed [45] data. This
testbed includes packet traces from 15 network paths between the
AWS cloud and clients in 8 countries. Data corresponding to several
congestion control protocols (such as TCP Cubic, Vegas, BBR, etc.)
has been gathered over 4 years. The full Pantheon dataset includes
tens of thousands of 30-second traces, with a typical cellular trace
containing 5-10k packets and a typical Ethernet trace containing
100-200k packets. We focus here on a cellular network that is likely
to stress-test the simple network model assumed in iBoxNet (Fig. 1),
though we have evaluated iBoxNet on other paths too.

Our evaluation is in terms of A/B testing. We configure iBoxNet
(Fig. 1) with the parameters, both static and dynamic, estimated
using a “control” protocol (A) and then use the simulator to evaluate

Figure 3: Comparison with ground truth (GT) of an iBoxNet
model (a) without cross-traffic (CT) input, and (b) with sta-
tistical packet loss to recreate effect of CT.

Figure 4: Instance tests with iBoxNet: (a) an example
iBoxNet trace aligning well with a real-world (Pantheon)
trace, (b) clustering (t-SNE plot) showing the traces corre-
sponding to different instances clustering well together.

a “treatment” protocol (B). In the instance test, the parameters are
estimated based on a particular trace of A. In the ensemble test,
the parameters should ideally be drawn from the joint distribution
learnt over the training data set comprising a potentially large num-
ber of traces, thereby ensuring that the appropriate combinations
of bottleneck bandwidth, buffer size, cross-traffic, etc. are picked.
For simplicity, however, we just use the parameters combinations
derived from individual training traces for testing; so, 𝑁 training
traces from various network paths would enable ensemble testing
with 𝑁 parameter combinations.

We pick TCP Cubic as the control, or A, (since it is the most
prevalent TCP flavour in the Internet) and TCP Vegas as the treat-
ment, or B, (since its delay sensitivity makes it quite different from
Cubic and hence challenging for iBoxNet).

3.1.1 Ensemble test with iBoxNet. Fig. 2 shows the distribution of
the (a) 95th percentile delay and (b) packet loss rate, both versus
rate (as in [45]). We see that despite the complexity of cellular net-
works (e.g., proportional fair scheduling [27]), the simple iBoxNet
model trained using Cubic data is quite accurate. It yields a good
match with the ground truth (GT), not only for Cubic but also for
Vegas, which was never seen during model training (match verified
through a two-sample KS test [2]).

We also see that either excluding cross-traffic as a parameter
(Fig. 3(a)) or using a simple statistical packet loss model, as in [45],
to recreate the effect of cross-traffic (Fig. 3(b)), yields a worse match

with the ground truth than iBoxNet Fig. 2(a). These results under-
score the importance of incorporating cross-traffic in the model
and doing so with care.

3.1.2 Instance test with iBoxNet. As indicated in §2, we use a con-
trolled emulator setup, with a known and fixed network configura-
tion, a single main TCP Cubic flow, and 3 different cross-traffic (CT)
patterns. The level and duration of the cross-traffic is kept the same
(one Cubic cross-traffic flow of 10s duration) but with a different
timing in the 3 “instances” (0-10s, 20-30s, and 40-50s during the
60s duration of the main Cubic flow). We learn an iBoxNet model
for each instance, based on a single run with the corresponding
cross-traffic pattern. (The cross-traffic pattern and other network
configuration is treated as unknown and is estimated, just as it
would be on an actual network.)

We then run a different protocol (Vegas) 10 times on the emulator
for each cross-traffic configuration.We also run it 10 times using the
iBoxNetmodel learnt for each of the 3 instances.𝑘-means clustering
(with 𝑘 = 3) of these runs (using, as features, the cross-correlation
between the iBoxNet rate and delay time series and their respective
ground truth time series) is perfect, i.e., with no mistakes. Fig. 4 (b)
is a t-SNE [31] plot showing the clusters. The circles (ground truth
runs) corresponding to each cross-traffic pattern are well-clustered
but do not exactly coincide because slight timing variations in the
emulator execution can lead to somewhat different evolutions of the
Vegas flow in each run. The important point, however, is that the
crosses (obtained by running Vegas on the Cubic-derived iBoxNet
instance models) are also well-clustered with the ground truth.
Furthermore, Fig. 4 (a) illustrates that the rate time series for Cubic
from an iBoxNet instance test matches the real-world ground truth
(only known for the control — Cubic) well.

These results show the promise of iBoxNet in effectively learn-
ing models corresponding to specific instances and its ability to
reproduce time series behaviour (and not merely distributions) on
rate and delay. If this promise carries over to actual networks, it
would enable powerful counterfactual analysis using iBoxNet (§2).

3.2 Summary
The simplicity of iBoxNet and the use of network domain knowl-
edge to directly estimate the parameters makes both learning the
model and running it very efficient. The simplicity, and in partic-
ular, the small number of parameters, also mitigates the risk of
over-fitting. 2

The downside of the simple network model assumed in iBoxNet,
with a single bottleneck link and FIFO queue, is that it is unable to ac-
commodate network behaviours such as packet reordering, variable
bandwidth (e.g., in wireless networks or with a token bucket regu-
lator [38]), etc., which motivates our ML-based approach, iBoxML
(§4). Nevertheless, as seen above, iBoxNet produces promising re-
sults even in the context of not-so-simple cellular networks.

4 ML-BASED APPROACH
We now turn to a machine learning (ML) based approach to network
path simulation, which does not rely on any knowledge or assump-
tions regarding the inner workings of the network but rather seeks

2We plan to release iBoxNet profiles for the community at https://aka.ms/ibox/.

Figure 5: CDF of reordering rate, over 1-sec windows, with
the Pantheon test set (Vegas) (see §4.1 and §5.1).

to learn and reproduce the input-output behaviour of the network
from data. A paradigm shift is already underway in some domains,
e.g. natural language processing, where ML-based systems are be-
ginning to replace traditional modeling approaches [15, 17, 35]. In
this vein, we can model the network simulation problem (recall
from §2) as that of learning P(output|input) where input and output
are continuous-valued time series with temporal structure. While
this appears like a standard time-series modeling problem, there
are certain unique aspects in the networking domain that render
naïve application of existing techniques ineffective (§4.2).

An ML-based approach offers some significant potential advan-
tages over a network model-based approach. First, it avoids the
limitations and simplifications of an assumed model of the network,
such as single-bottleneck in iBoxNet or random packet loss [45]
; instead, the end-to-end learning is data-driven and agnostic to
innards of the network. Second, a pure-ML based system derives its
power and its ability to generalize (e.g., [35]) to new behaviors from
access to rich and diverse training data, high-capacity models, com-
putational infrastructure, and the availability of general-purpose,
efficient and scalable optimization techniques, each on a path of
continual growth and progress, which ML-based network simula-
tion can leverage “for free”. This allows the ML model training to
scale well (in terms of training time per parameter), even though the
learning problem can be very high-dimensional. In contrast, extend-
ing network-based modeling to diverse scenarios (e.g., multi-path
routing to recreate packet reordering) and network topologies can
quickly become very challenging and computationally prohibitive
because of the implicit combinatorial optimization — the search
space is over several discrete parameters (e.g. cross-traffic type,
buffer size). Using gradient-free optimization to learn the optimal
network configuration (in the spirit of [45]) involves deploying
updated parameters and running multiple simulations during each
iteration of optimization, so it remains computationally expensive
and challenging.

However, the ML-based approach calls for designing the “right”
loss (i.e., objective) functions and very fast inference (§4.2), and
lacks interpretability of the resulting models.

4.1 Sketch of Deep LSTM Model
We consider a state-space model for the delay prediction prob-
lem, where we first estimate a sequence of “network states” (albeit
domain-agnostic) conditioned on past states, past and present in-
puts (i.e., packet sending rate), and then predict output (delay/loss)

Figure 6: Proposed deep state-space model (iBoxML) for pre-
dicting delay 𝑑𝑡 given packet stream features x𝑡 .

from a certain delay distribution conditioned on the estimated cur-
rent state. The goal is to mimic a typical network that, for instance,
tends to suffer higher delay/loss when it is in a congested state.
A growing area of research in the time-series domain leverages
LSTMs [20, 26, 36] to carefully encode autoregressive forecasting
models. More sophisticated but often expensive models, e.g. trans-
formers [17], meant for symbolic computation tasks in the text
domain (and also beginning to be applied in the time-series do-
main [42]) could be explored for delay/loss prediction in the future.

At time 𝑡 , let 𝑑𝑡 denote the delay suffered at 𝑅 by a packet sent
from 𝑆 (𝑑𝑡 is unobserved if the packet is lost). We model the condi-
tional distribution P

(
𝑑𝑡 |{x𝑖 }𝑡𝑖=0, {𝑑𝑖 }

𝑡−1
𝑖=0

)
using a multi-layer LSTM

network architecture shown in Fig. 6. The input x𝑡 to the model
consists of simple features readily available from the sender packet
stream at time 𝑡 including instantaneous sending rate (the number
of packet bytes sent during the second preceding the current packet
timestamp 𝑡), inter-packet spacing, packet size, and previous delay
𝑑𝑡−1, and the output is a real-valued delay (or packet loss indicator)
𝑑𝑡 . The LSTM network encodes the input x𝑡 and 𝑑𝑡−1 into an em-
bedding ℎ𝑡 (representing the “network state” noted above), which
in turn parameterizes P.

We model P as a Gaussian N(𝑤𝑇
𝜇 ℎ𝑡 ,𝑤

𝑇
𝜎ℎ𝑡); the weights𝑤𝜇 ,𝑤𝜎

are learnt using a fully-connected neural network with a suitable
loss function between the predicted delay distribution P̂ and ground
truth P. During inference, we feed the predicted delays as we unroll
the LSTM network over time (blue dashed lines in Fig. 6).

We trained this model on 100 and tested on 60 Pantheon (India
Cellular) Vegas flows (“Pantheon dataset” hereafter). Due to speed
constraints with emulation §4.2, we tested by replaying the sending
rate time series from the test set.

The reordering rates (computed over 1s windows) on the test data
is shown in Fig. 5 (iBoxML curve). We find a reasonable match with
the ground truth (much better than iBoxNet, which produces no
reordering), though the model was trained only to match delays and
no explicit knowledge of reordering was provided during training.
This underscores the power of an ML approach, informed by data.

4.2 Key challenges
We discuss a couple of key challenges and mitigations.

Control loop bias. Conditioning the delays on the input packet
stream alone is fraught with danger, as the data in the networking
domain (e.g., from readily-available traces) often comes from proto-
cols, whose sending is governed by a control loop (e.g., congestion
control). This results in biases that traditional time-series forecast-
ing formulations do not cope with. For instance, TCP senders care-
fully regulate their sending rate based on ongoing measurements of

Figure 7: Control loop bias: iBoxML can be blind-sided by
partial observations (top, §4.2); using cross-traffic estimates
explicitly helps mitigate the bias (bottom).

delay and packet loss. So, a sustained low delay, say due to a high
bandwidth, uncongested network, would likely lead to a sustained
high sending rate. However, this might cause false correlations to
creep in, leading us to conclude that a high sending rate results in a
low network delay, which is clearly incorrect in general.

To illustrate the problem, we train iBoxML with traces of the
delay-sensitive control loop of an RTC application on a simple ns-
like topology. We then use this iBoxML model to predict delays
for a high-rate CBR sender, in the presence of varying amounts
of cross-traffic. The ground truth, as expected, exhibits high delay
frequently, but iBoxML rarely outputs high delay (Fig. 7, top) due
to the control loop bias. Augmenting iBoxML with cross-traffic
estimates (from §3) as additional input, helps mitigate the bias
(Fig. 7, bottom).

Simulation Speed. Deep learning-based simulation is slow. A
4-layer LSTM in iBoxML, with nearly 2M parameters, requires 2.2
ms per packet inference on a V100 GPU, implying an average data
rate of just 5.5 Mbps, with 1500-byte packets; even short bursts
of higher rates would be problematic. So, we are unable to use
iBoxML for emulation at present. For high-speed links, the infer-
ence budget would be in 𝜇s, much more demanding than in other
domains [15]. iBoxML could be sped up significantly using hybrid
models (e.g., combining an accurate but expensive model with a
less expensive, even if less accurate, model) and a hierarchical ap-
proach (e.g., making a decision for a group of packets instead of
each individually).

5 MELDING NETWORK & ML MODELS
Melding network- and ML-based modeling could yield the bene-

fits of each. While the possibilities are many, we discuss two exam-
ples, with promising early results.
5.1 iBoxNet + behaviour discovery & learning
While keeping the iBoxNet core simple, we can use ML to augment
its ability to simulate complex behaviours (e.g., reordering [11],
multi-rate links [24], etc.). The first step is discovering behaviours,
both in real traces and in the iBoxNet simulator. A “diff” would
surface behaviours present in the former but absent in the latter. A
domain expert can then decide which of these is “interesting” and
important to recreate in the simulator. This process can be iterated.

We employ a popular tool, SAX [29], which takes a given set
of transformed traces (e.g., delay differences), and discretizes the
transformed traces into symbolic representations; then, a motif

Figure 8: Behavior discovery on Pantheon traces (§5.1): (a)
shows the patterns discovered; pattern ‘a’ denoting negative
inter-packet arrival times, i.e. reordering event, ismissing in
iBoxNet; (b) shows iBoxNet + ML reasonably preserves the
frequency of patterns involving ‘a’.

finding algorithm [30] is applied to find frequently occurring seg-
ments (i.e., sequences of symbols). As an example, Figure 8 shows
the behaviours discovered in the inter-packet arrival times (Δ𝑡) of
the Pantheon test traces, compared to simulated traces of iBoxNet.
Here, Δ𝑡 is discretized into symbols ‘a’ through ‘f’, with ‘a’ denoting
negative values (i.e., reordering), ‘b’ denoting small positive values
all the way through high positive values ‘f’. In Figure 8 (a), we see
that the only length-1 pattern in the “diff” between the patterns
in ground truth and iBoxNet traces is ‘a’, arising because packet
reordering is (totally) absent in iBoxNet. Consequently, we also
observe that higher-order patterns (length-2 sub-sequences) involv-
ing ‘a’ are also totally absent in the iBoxNet traces; but all other
length-2 patterns are preserved (seen in the intersection region).

iBoxNet can be augmented with suitable ML models to incor-
porate such discovered missing behaviours. Indeed, we can easily
induce any given packet reordering rate by simply choosing the ap-
propriate number of packets at random and modifying their delays.
However, such a naïve method cannot render realistic higher-order
patterns. So, we train an LSTM model (similar to that in Fig. 6)
to predict whether a packet should be reordered, using Pantheon
training traces. We use this prediction to suitably modify the delay
output by iBoxNet.

Figure 8 (b) shows that ML-augmented iBoxNet model traces
have nearly 2% length-1 patterns of type ‘a’, pertaining to reorder-
ing, matching the ground truth; the augmentedmodel also preserves
the frequency of length-2 patterns involving reordering reasonably
well. Furthermore, Fig. 5 shows that the reordering rates of the
augmented model (“iBoxNet + LSTM” curve) on the Pantheon test
traces computed over 1s windows matches the ground truth well.
Observing that predicting reordering events is simpler than predict-
ing actual delays and losses, we train a lightweight and much faster
linear logistic regression model that also achieves a good match
(“iBoxNet + Linear” curve); this model takes instantaneous sending
rate (as defined in §4.1), inter-packet spacing and cross-traffic esti-
mate (from §3) as input features and outputs the likelihood of the
packet being reordered.

Cross traffic
Error in distribution of 95th percentile delay

p25 p50 p75 mean

No 20 (32%) 34 (36%) 63 (45%) 51 (44%)
Yes 3 (5%) 19 (19%) 35 (25%) 30 (26%)

Table 1: Feeding in cross-traffic improves iBoxML accuracy
in real-time conferencing data: e.g., p50 column is the dif-
ference (in ms) between median of 95th percentiles of infer-
ences and GT delays (on test set).

5.2 iBoxML + cross-traffic input
The importance of cross-traffic has been addressed in the context
of iBoxNet (§3) and in mitigating control loop bias (§4.2). But, does
explicitly providing cross-traffic as input help improve the overall
quality of iBoxML predictions? Using about 540 traces from a real-
time conferencing service, we evaluate iBoxML (Fig. 6), with and
without cross-traffic estimates (obtained using domain knowledge,
as in §3) as additional input. From Table 1, we note that providing
cross-traffic as input reduces the deviation between the distribution
of 95th percentile per-call delay values in the ground-truth and in
the iBoxML predictions.
5.3 Summary

The above proof points suggest a “recipe” for perpetual renewal
of network simulators, involving (i) a continual inflow of new data,
(ii) leveraging the latest advances in ML (often from other prob-
lem domains) and also advancing the state of the art in ML itself
(e.g., time series forecasting in the presence of a control loop),
and (iii) leveraging networking domain knowledge to identify be-
haviors that the simulator should capture, in turn guiding the ML
formulation andmodeling. Such domain knowledge could also yield
constructs (e.g., features) to help boost accuracy and/or speed.

6 DISCUSSION
We touch on a few open research challenges.

Test for Realism. There is no one definition of realism. We
could define it in terms of the inability of a powerful discriminator
(e.g., of the kind used to train Generative Adversarial Networks
(GANs) [19]) to tell between the input-output behaviour of the
simulator and that of the real network. Building such a discriminator
for time series forecasting remains an open research challenge.
Alternatively, we could define realism in terms of the application
performance; e.g., whether the performance of an application that
has been tuned using the simulator holds up in the actual network.

Establishing the Limits ofModel Validity. Training data lim-
its the ability of iBoxML to learn about the network. For instance, if
the sending rate in the training data never exceeded a certain level
R, even over short periods, it would not be possible for iBoxML to
accurately predict the output when the rate does exceed R. There-
fore, given the training data, say obtained as a by-product of an
existing application (e.g., YouTube streams), establishing the limits
of validity of the learnt model is important. Doing so would also
help selectively gather new data that would expand the region of
validity of the model, thereby optimizing effort.

iBoxNet is also limited by the assumptions it makes about the
traces, although it is worth noting that violation of these assump-
tions will likely only result in a graceful degradation, rather than
full invalidation, of the simulator. First, it assumes that the sender

tries to saturate the bottleneck, in order to be able to estimate the
peak bandwidth. Secondly, it assumes that at some point a packet
traverses an empty queue (and similarly an almost full queue) which
enables good estimation of propagation delay (and similarly buffer
size). Currently, we aggregate data frommultiple flows from around
the same time between two nodes, which increases the likelihood
of these assumptions being satisfied. But we need to verify these
assumptions on traces from large-scale applications running on
hundreds of thousands of nodes.

Learning adaptive cross traffic. Merely replaying the esti-
mated cross-traffic is not ideal, since it would not account for the
cross-traffic adapting to the sender. Learning an adaptive cross-
traffic model, say by expressing it in terms of a certain number
of flows of TCP Cubic (the dominant transport protocol in the
Internet), is an interesting research challenge.

7 RELATEDWORK
Packet-level network simulators, both research [4, 5] and commer-
cial [1, 3], and also emulators [13, 14, 22, 39]), take great care to
replicate the functionality of network elements and protocols, but
often lack realism in configuration (e.g., link speeds, cross-traffic).

Trace-driven replay, both in the Internet at large (e.g., [33]) and
in specialized settings (e.g., wireless networks [34]), either replays
the raw delay or loss traces during simulation or builds statistical
models to drive the replay. However, a significant limitation is that
the impact of the protocol under test itself on the network would
not be reflected.

Lack of realism can result in misleading and even overly opti-
mistic conclusions. For example, Sprout [41], a bandwidth estimator
for cellular networks, was evaluated using Cellsim, a trace replay
tool, and was shown to outperform competing approaches. How-
ever, Sprout under performs significantly on real networks [43, 44].
Similar conclusions [16] have been made for Pensieve [32], which
was originally evaluated through replay of public traces [8, 37].

Distributed network testbeds [6, 7, 28, 45] promise realism, but
are challenging to scale up and extend to diverse networks (e.g.,
mobile) and hence tend to not be representative. It is likely more
onerous to recruit or install a diverse set of testbed nodes than it is
to gather traces from such nodes (e.g., to train iBox), say by riding
on popular applications.

Against these challenges, the need for fast, inexpensive, and
realistic evaluation (using ML or statistical models [10, 12]) of net-
work protocols is only growing; more so with the emerging interest
in using ML, including reinforcement learning, to learn or tune
protocols [18, 21, 25, 32, 40].

Work on calibrated emulators [45] has sought to address this
need. While it is related to iBoxNet, it does not model cross-traffic
and so is unsuitable for testing protocols different from the ones
for which training data is gathered. Also, as discussed, behaviours
such as packet reordering require going beyond a simple network
model.

Finally, [23] uses deep learning and hardware acceleration to
speed up packet-level simulation, but assuming full knowledge of
network configuration and traffic, unlike iBox.

8 CONCLUSION
We have presented iBox, a data-informed network simulator, which
turns input-output network traces into network models. We have
shown that both the network andML-based approaches tomodeling
hold promise, and advocate melding the two approaches to enable
effective network simulation.

ACKNOWLEDGEMENTS
We thank our shepherd, Justine Sherry, and the anonymous review-
ers for their valuable feedback. We also thank Martin Ellis, Vasiliy
Novikov, and Sriram Srinivasan for their help and inputs on this
project.

REFERENCES
[1] OPNET Technologies. https://www.riverbed.com/in/products/steelcentral/opnet.

html.
[2] Kolmogorov-Smirnov test for goodness of fit. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.kstest.html.
[3] QualNet - Network Simulation. https://www.scalable-networks.com/qualnet-

network-simulation.
[4] The Network Simulator - ns-2. https://www.isi.edu/nsnam/ns/.
[5] ns-3 Network Simulator. https://www.nsnam.org/.
[6] PlanetLab. https://www.planet-lab.org/.
[7] Measurement Lab (M-Lab). https://www.measurementlab.net/.
[8] FCC: Raw Data - Measuring Broadband America 2016. https:

//www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-
data-measuring-broadband-america-2016.

[9] Understanding Buffer Misses and Failures. https://www.cisco.com/c/en/us/
support/docs/interfaces-modules/channel-interface-processors/14620-41.html.

[10] C. Avin, M. Ghobadi, C. Griner, and S. Schmid. On the complexity of traffic
traces and implications. In Abstracts of the 2020 SIGMETRICS/Performance Joint
International Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’20, page 47–48, New York, NY, USA, 2020. Association for Computing
Machinery.

[11] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not patho-
logical network behavior. IEEE/ACM Transactions on Networking, 7(6):789–798,
1999.

[12] Y. Cao, J. Nejati, A. Balasubramanian, and A. Gandhi. Econ: Modeling the network
to improve application performance. In Proceedings of the Internet Measurement
Conference, IMC ’19, page 365–378, New York, NY, USA, 2019. Association for
Computing Machinery.

[13] M. Carbone and L. Rizzo. Dummynet Revisited. SIGCOMM Computer Communi-
cation Review, 40(2):12–20, 2010.

[14] M. Carson and D. Santay. NIST Net: A Linux-based Network Emulation Tool.
SIGCOMM Computer Commununication Review, 33(3):111–126, 2003.

[15] M. X. Chen, B. N. Lee, G. Bansal, Y. Cao, S. Zhang, J. Lu, J. Tsay, Y. Wang, A. M. Dai,
Z. Chen, et al. Gmail smart compose: Real-time assisted writing. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 2287–2295, 2019.

[16] P. Crews and H. Ayers. CS244 ’18: Recreating and Extending Pen-
sieve. https://reproducingnetworkresearch.wordpress.com/2018/07/16/cs-244-
18-recreating-and-extending-pensieve/, 2018.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, 2019.

[18] T. Gilad, N. H. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira. Robustifying
network protocols with adversarial examples. In Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, HotNets ’19, page 85–92, New York, NY,
USA, 2019. Association for Computing Machinery.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Networks. In NeurIPS, 2014.

[20] A. Graves. Long short-term memory. In Supervised sequence labelling with
recurrent neural networks, pages 37–45. Springer, 2012.

[21] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A deep reinforce-
ment learning perspective on internet congestion control. In K. Chaudhuri and
R. Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
3050–3059, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[22] A. Jurgelionis, J.-P. Laulajainen, M. Hirvonen, and A. I. Wang. An Empirical Study
of NetEm Network Emulation Functionalities. In ICCCN 2011: Proceedings of 20th
International Conference on Computer Communications and Networks, pages 1–6.
IEEE, 2011.

[23] C. W. Kazer, J. Sedoc, K. K. Ng, V. Liu, and L. H. Ungar. Fast Network Simulation
Through Approximation or: How Blind Men Can Describe Elephants. In Proceed-
ings of the 17th ACM Workshop on Hot Topics in Networks - HotNets ’18, pages
141–147, Redmond, WA, USA, 2018.

[24] M. O. Khan, L. Qiu, A. Bhartia, and K. C. Lin. Smart retransmission and rate
adaptation in wifi. In 2015 IEEE 23rd International Conference on Network Protocols
(ICNP), pages 54–65, 2015.

[25] Y. Kong, H. Zang, and X. Ma. Improving TCP Congestion Control with Machine
Intelligence. In NetAI, 2018.

[26] R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2017.

[27] H. J. Kushner and P. A. Whiting. Convergence of proportional-fair sharing algo-
rithms under general conditions. IEEE Transactions on Wireless Communications,
3(4):1250–1259, 2004.

[28] K. Lakshminarayanan and V. N. Padmanabhan. Some Findings on the Network
Performance of Broadband Hosts. In ACM IMC, 2003.

[29] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time
series, with implications for streaming algorithms. In Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
DMKD ’03, page 2–11, New York, NY, USA, 2003. Association for Computing
Machinery.

[30] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series. In Proc. of
the 2nd Workshop on Temporal Data Mining, pages 53–68, 2002.

[31] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[32] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 197–210, 2017.

[33] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Bal-
akrishnan. Mahimahi: Accurate Record-and-Replay for HTTP. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages 417–429, Santa Clara, CA,
2015.

[34] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz. Trace-based
Mobile Network Emulation. In ACM SIGCOMM, 1997.

[35] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[36] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski. Deep State Space Models for Time Series Forecasting. In
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
Montréal, Canada., pages 7796–7805, 2018.

[37] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute Path Bandwidth
Traces from 3GNetworks: Analysis and Applications. InACMMultimedia Systems
(MMSys), 2013.

[38] S. Sundaresan,W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescapè.
Broadband internet performance: A view from the gateway. In Proceedings of the
ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 134–145, New York, NY,
USA, 2011. Association for Computing Machinery.

[39] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and D. Becker.
Scalability and accuracy in a large-scale network emulator. SIGOPS Oper. Syst.
Rev., 36(SI):271–284, Dec. 2003.

[40] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-Generated Con-
gestion Control. In ACM SIGCOMM, 2013.

[41] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Forecasts Achieve
High Throughput and Low Delay over Cellular Networks. In NSDI, 2013.

[42] N. Wu, B. Green, X. Ben, and S. O’Banion. Deep transformer models for time
series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317,
2020.

[43] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and K. Winstein.
Towards continual learning for networking algorithms. https://platformlab.
stanford.edu/Presentations/2019/retreat-2019/KeithWinstein.pdf, 2019.

[44] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and K. Winstein.
Learning in situ: a randomized experiment in video streaming. In R. Bhagwan
and G. Porter, editors, 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages
495–511. USENIX Association, 2020.

[45] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K. Winstein.
Pantheon: the training ground for internet congestion-control research. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, 2018.

https://www.riverbed.com/in/products/steelcentral/opnet.html
https://www.riverbed.com/in/products/steelcentral/opnet.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://www.scalable-networks.com/qualnet-network-simulation
https://www.scalable-networks.com/qualnet-network-simulation
https://www.isi.edu/nsnam/ns/
https://www.nsnam.org/
https://www.planet-lab.org/
https://www.measurementlab.net/
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.cisco.com/c/en/us/support/docs/interfaces-modules/channel-interface-processors/14620-41.html
https://www.cisco.com/c/en/us/support/docs/interfaces-modules/channel-interface-processors/14620-41.html
https://reproducingnetworkresearch.wordpress.com/2018/07/16/cs-244-18-recreating-and-extending-pensieve/
https://reproducingnetworkresearch.wordpress.com/2018/07/16/cs-244-18-recreating-and-extending-pensieve/
https://platformlab.stanford.edu/Presentations/2019/retreat-2019/Keith Winstein.pdf
https://platformlab.stanford.edu/Presentations/2019/retreat-2019/Keith Winstein.pdf

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Network Model-based Approach
	3.1 Evaluation
	3.2 Summary

	4 ML-based Approach
	4.1 Sketch of Deep LSTM Model
	4.2 Key challenges

	5 Melding network & ML models
	5.1 iBoxNet + behaviour discovery & learning
	5.2 iBoxML + cross-traffic input
	5.3 Summary

	6 Discussion
	7 Related Work
	8 Conclusion
	References

