
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

1

Structure Interpretation of Text Formats

SUMIT GULWANI,Microsoft, USA
VU LE,Microsoft, USA
ARJUN RADHAKRISHNA,Microsoft, USA
IVAN RADIČEK,Microsoft, Austria
MOHAMMAD RAZA,Microsoft, USA

Data repositories often consist of text files in a wide variety of standard formats, ad-hoc formats, as well as
mixtures of formats where data in one format is embedded into a different format. It is therefore a significant
challenge to parse these files into a structured tabular form, which is important to enable any downstream
data processing.

We present Unravel, an extensible framework for structure interpretation of ad-hoc formats. Unravel
can automatically, with no user input, extract tabular data from a diverse range of standard, ad-hoc and
mixed format files. The framework is also easily extensible to add support for previously unseen formats,
and also supports interactivity from the user in terms of examples to guide the system when specialized data
extraction is desired. Our key insight is to allow arbitrary combination of extraction and parsing techniques
through a concept called partial structures. Partial structures act as a common language through which the file
structure can be shared and refined by different techniques. This makes Unravelmore powerful than applying
the individual techniques in parallel or sequentially. Further, with this rule-based extensible approach, we
introduce the novel notion of re-interpretation where the variety of techniques supported by our system can
be exploited to improve accuracy while optimizing for particular quality measures or restricted environments.
On our benchmark of 617 text files gathered from a variety of sources, Unravel is able to extract the intended
table in many more cases compared to state-of-the-art techniques.
CCS Concepts: • Software and its engineering→ Automatic programming; • Computing methodolo-
gies → Artificial intelligence;

Additional Key Words and Phrases: program synthesis, data extraction, format diversity
ACM Reference Format:
Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza. 2020. Structure Interpretation
of Text Formats. Proc. ACM Program. Lang. 1, OOPSLA, Article 1 (January 2020), 29 pages.

1 INTRODUCTION

The big data revolution has brought about abundance of data in a large variety of ad-hoc formats,
which poses the significant challenge of getting this data into a clean and structured form that is
amenable for analysis. Unfortunately, existing analytics tools such as spreadsheets, BI tools or data
analysis libraries provide very limited automated support for such tasks. Users often need to author
specialized one-off scripts for parsing each new format encountered, which requires programming
expertise, as well as significant manual effort and time investment. In particular, we note that
in this work we are not addressing the problem of free-form data extraction from unstructured
or semi-structured texts (which is more the domain of information extraction), but are instead
focussing on the vast diversity of arbitrary formats seen in structured text files in which data is
commonly stored. This diversity can be observed in the numerous standard document formats
(e.g. CSV, JSON, XML, ... and many subtle variants and configurations thereof), arbitrary custom
Authors’ addresses: Sumit Gulwani, Microsoft, USA, sumitg@microsoft.com; Vu Le, Microsoft, USA, levu@microsoft.com;
Arjun Radhakrishna, Microsoft, USA, arradha@microsoft.com; Ivan Radiček, Microsoft, Austria, ivradice@microsoft.com;
Mohammad Raza, Microsoft, USA, moraza@microsoft.com.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

1:2 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

formats (e.g. log files from different systems), as well as mixtures of multiple formats being used
in the same document (e.g. a log file or CSV file that may contain some fields in JSON format).
Handling such diversity is a common stumbling block for many users, as it requires a specialized
parsing strategy for every new variation in format that may be encountered.

In recent years, there has been much interest in the development of program synthesis techniques
for data extraction, where the goal is to have a system that can intelligently infer the structure in a
text file and synthesize a specialised parsing program for every new format encountered [Fisher
et al. 2008; Gao et al. 2018; Kandel et al. 2011b; Le and Gulwani 2014; Raman and Hellerstein 2001;
Raza and Gulwani 2017a; Zhu et al. 2019a]. While some of these techniques are more generally
applicable than others, none of them directly address the problem of handling the diversity of
formats encountered in practice. Existing approaches are limited mainly because of the use of
specialized algorithms or domain-specific languages (DSLs) that are limited to a certain class of
problems, and the gap lies in all of the variations and mixtures of formats that cannot be handled.
For instance, given a log file in a mixed format where some fields are in JSON format, an existing
synthesizer would attempt to synthesize a program in its own DSL that may fail to robustly
capture all the nuances of the JSON format specification without prior knowledge of JSON, while
a specialised JSON parser by itself will fail to parse the file at all as it does not fully conform
to the specification. In this work, our fundamental philosophy to fill this gap is to embrace the
diversity of parsing and synthesis techniques rather than choose any one particular synthesis
algorithm or domain-specific language. This is based on the view that the diversity observed in
data in practice should be reflected in an intelligent parsing system that attempts to handle such
arbitrary data formats. In this spirit, we present a novel framework that permits the combination
of arbitrary parsing strategies (which could be specialized parsers, or more general existing or
novel synthesizers), and uses a divide-and-conquer approach whereby different sub-problems
can be addressed using different parsing strategies in a hierarchical manner. In this respect, our
general approach can be seen as a meta-level synthesis framework that permits the combination of
different synthesizers to compositionally address different sub-problems, while we also present a
concrete system based on this approach that incorporates various specialized synthesis and parsing
strategies.

We formulate our approach as a structure inference system that is parameterized by cooperating

domain-specific inference systems. Each such sub-system is modelled as an interpretation rule that
can handle a different formatting aspect. Some rules are general and broadly applicable (e.g. splitting
a string by a given delimiter), while others can be specific (e.g. parsing a JSON string). To allow
these different types of rules to inter-operate and exchange information, we define partial structures
that act as an interchange mechanism through which the rules exchange and combine formatting
and extraction information.
Formally, the structure interpretation framework we develop is an abstract algebra that allows

combinations of interpretation rules to extract relational data from files with diverse formats.
Semantically, the interpretation rules operate over partial structures that represent an annotation
of the given document along with some structural elements. The rule applications refine such a
partial structure repeatedly with more annotations until the annotations together identify a single
relational table. In addition, we define a partial order on the set of partial structures that intuitively
corresponds to the granularity of the structure, and formulate the join and meet operations, which
represent different ways of combining the information in partial structures.

However, just defining the interpretation rules and showing how to combine them is not sufficient:
A concrete system must also address important algorithmic issues. Firstly, applying the rules in
arbitrary combinations will quickly produce an intractable number of partial structures with
impractical performance costs, so how do we control this complexity? Secondly, of all the partial

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Structure Interpretation of Text Formats 1:3

structures that can be produced using different rule applications, which one do we pick? We
describe concrete algorithms to address these issues, based on a branch-and-bound and local
search techniques to only explore useful combinations of rule applications as well as ranking
functions over partial structures. We present a concrete instantiation of a system based on this
framework and describe its detailed implementation. This system incorporates a wide range of
concrete interpretation rules, many of which are extraction systems described in prior work that
have been easily incorporated as interpretation rules in our framework.

The input to the framework is a text file that needs to be parsed, and the output is the extracted
table (actually top-k ranked tables). Optionally, the user can provide interactive examples or extend
the system with additional interpretation rules (by providing semantics and confidence scores; we
discuss this in detail in §4 and §5). The framework first applies the interpretation rules on the
partial structures (as discussed above), then extracts the actual candidate tables (that are consistent
with examples, if any), and finally ranks and returns the resulting tables.

Our key technical contributions are the definition of the interpretation rule framework and
partial structures, the identification of certain generic rules, and a system to efficiently compose
rules and pick from various choices for exploration. We show in our evaluation how our system
performs better than previous related approaches such as Datamaran [Gao et al. 2018] and PADS
[Fisher et al. 2008]. Moreover, our rule-based framework provides a number of important features
for usability in practice:

Extensibility. Existing data extraction techniques can be plugged into our framework as rules, and
partial structures allow them to work seamlessly with each other, while also sharing information.
Due to information sharing, the resulting system can handle mixed formats that the individual
techniques cannot handle by themselves or in sequential combination. Extensibility allows us to
leverage all the prior work on general automated extraction tools, as well as domain-specific tools
for specialized formats.
Interactivity. While our system is able to extract data without user-provided examples, it also

allows user-control to guide the structure interpretation by providing examples in a programming-
by-example fashion [Cypher et al. 1993]. This allows us to operate in a mixed-mode fashion:
to leverage the goodness of by-example systems to handle custom formats or particular user
preferences, but without forcing the user to pay for the cost of always providing a large number of
examples.

Re-interpretation. We introduce the notion of re-interpretation as the ability to utilise the different
strengths of different component rules to optimize inference toward a particular qualitymeasure (say
efficiency). The system can first utilize all of the available rules (including less efficient ones) to infer
the correct structure with high accuracy. This inferred structure can then be re-interpreted using
only a subset of the rules mandated by the user. For instance, reading webpages by instantiating
the complete document object model (DOM) is computationally expensive but can yield correct
structure inference, which can then help to train a purely-text based parsing strategy that can
be deployed more efficiently at scale. Re-interpretation can also help to improve the degree of
interactivity in specialized systems that are restricted to niche languages: in our evaluation, we
show how our rich set of automatic text-based parsing approaches helped to automatically infer
specialized programs in the Microsoft Power BI M formula language [Microsoft 2020] in 44% of
cases - which would otherwise have to be learned from examples.

In summary, we make the following concrete contributions in this work:

(1) We identify the practical problem of handling mixtures of formats. We describe examples of
such scenarios (§3) and show that in 50% of cases in our benchmarks required multiple rule
applications to handle mixed formats (§6).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

1:4 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

(2) We formulate the framework of structure interpretation to address the diversity of formats,
based on multiple cooperating data-extraction logics represented by different interpretation
rules operating over partial structures (§ 4). We present a concrete instantiation of the
framework with a system that also addresses algorithmic issues to efficiently infer rule
applications in the framework (§5). This framework by design allows for easy extensibility
as new rules can be added with minimal effort to cover new specialized formats, as we show
with some case studies.

(3) We show that the framework supports both automatic inference, as well as interactivity from
the user in terms of providing examples (to handle specialized extraction tasks): in 90% of
cases it is able to extract the intended table unguided by user-provided examples (although
the system returns multiple tables from which the user needs to select the desired result;
we discuss this further in §6), while using user-provided examples can address 62% of the
remaining cases in our benchmark.

(4) We identify and evaluate the novel notion of re-interpretation that utilizes the variety of rules
in the framework to make accurate inferences that can then be optimized towards particular
quality measures or restricted environments. We show applications of this technique to
improve a specialized by-example system, where 44% of cases can be learnt automatically
without examples using re-interpretation.

We begin in the next section by discussing how Unravel works on a concrete example, and then
continue describing motivating examples to illustrate the diversity of formats observed in practice
and how such scenarios can be handled by our approach. In §4 we present the formal description
of the structure interpretation framework of rules over partial structures. In §5, we then describe
the concrete algorithms that we have implemented to perform efficient and accurate extractions
within the framework. Finally, in §6, we present our experimental evaluation which demonstrates
the effectiveness of our approach in handling a diverse set of benchmarks that no single previous
approach could handle.

2 MOTIVATING EXAMPLE

2013-10-25T03:35:51Z

{"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, \"message\":[\"No Records Found.\"]}"}

2013-10-25T03:42:48Z

{"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, \"message\":[\"No Records Found.\"]}"}

2013-10-25T04:09:54Z

{"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, \"message\":[\"No Records Found.\"]}"}

2013-10-25T03:35:51Z 98740 PO - GET api/po/hk/98740/1 false 999 False No Records Found.
2013-10-25T03:42:48Z 98740 PO - GET api/po/hk/98740/1 false 999 False No Records Found.
2013-10-25T04:09:54Z 98740 PO - GET api/po/hk/98740/1 false 999 False No Records Found.

Fig. 1. Log file with multi-line records, where some fields contain nested substructures in JSON format

In this section we discuss in detail how Unravel extracts a table from a concrete input file.
Figure 1 shows an input file (top) and an extracted table (below) from this file. This file consists of
records that span multiple lines and contains a mixture of hierarchical formats: the first field is
a date-time value that occurs on the first line, while the other fields are formatted inside a JSON
substructure on the following line, while one of the JSON fields ("response") is itself another JSON
fragment.
We remind the reader on the high-level workflow of the algorithm: the algorithm applies rules

on partial structures in the pool of interpretations (which initially consists only of the input file)
until convergence, then extracts the candidate tables from the pool of interpretations, and finally

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Structure Interpretation of Text Formats 1:5

2013-10-25T03:35:51Z

{"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, \"message\":[\"No Records Found.\"]}"}

2013-10-25T03:42:48Z

{"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, \"message\":[\"No Records Found.\"]}"}

2013-10-25T04:09:54Z

{"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, \"message\":[\"No Records Found.\"]}"}

(a) Result of the step 1.

2013-10-25T03:35:51Z {"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, . . .
2013-10-25T03:42:48Z {"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, . . .
2013-10-25T04:09:54Z {"id":"98740", "method":"PO - GET", "url":"api\/po\/hk\/98740\/1", "req":"false", "response":"{\"rc\":999, \"success\":false, . . .

(b) Result of the step 2.

98740 PO - GET api/po/hk/98740/1 false {"rc":999, "success":false, "message":["No Records Found."]}

98740 PO - GET api/po/hk/98740/1 false {"rc":999, "success":false, "message":["No Records Found."]}

98740 PO - GET api/po/hk/98740/1 false {"rc":999, "success":false, "message":["No Records Found."]}

(c) Result of the step 3.

999 false No Records Found.

999 false No Records Found.

999 false No Records Found.

(d) Result of the step 4.

Fig. 2. The steps of Unravel extracting data from a file in Figure 1.

ranks the candidate tables. We use the following rules in this example (more detailed descriptions
and further rules are given in §4.2):
• RegexSplit[r] that splits a string using a regular-expression r ,
• DelimSplit[d] that splits a string using a constant (string) delimiter d , and
• Json that flattens the tree-structure represented by a JSON string.

Below we discuss the sequence of rules (and corresponding partial structures) applied to the
file in Figure 1 required to obtain the resulting table; note that Unravel also explored other rule
applications and as a result learns many different table extractions (more detailed discussion on the
parameter inference is given in §4.2).

Step 1. In the beginning the only partial structure in the pool of interpretations is the whole file,
shown in Figure 1 (top). Unravel first applies to the whole file the RegexSplit[(^|\n)(?:\d)]
rule,1 which splits the file into records on the lines that start with a number using a regular-
expression; the resulting partial structure is shown in Figure 2a.

At this point the algorithm also explores other rule applications, as well as other instantiations
for r in the RegexSplit[r] rule, and adds all of them to the pool of interpretations; more precisely,
at this point there is no ranking between different rule applications. Moreover, the algorithm
recursively continues to explore the resulting partial structures, which is not discussed here. For
example, by applying the rule DelimSplit[\n], the algorithm splits the file into records, such that
each line is a separate record.

Step 2. Next, Unravel applies the DelimSplit[\n] rule to the records obtained in the previous
step to split each record into two lines; the resulting structure is shown in Figure 2b.

Same as above, at this point the algorithm also explores other rule applications, as well as other
instantiations for d in DelimSplit[d], adds all of them to the pool of interpretations, and continues
to recursively explore the resulting partial structures. For example, the algorithm considers d = {
and d = :.

1That is, the RegexSplit[r] rule instantiated with r = (^|\n)(?:\d).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

1:6 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

Step 3. Next, Unravel applies the Json rule to the last column of the partial structure from the
previous step (Figure 2b), that is, it extracts table from the JSON-encoded string; the resulting
partial structure is given in Figure 2c (note that the last column of the resulting partial structure, in
Figure 2c, is another JSON-encoded string).

At this point the algorithm does not explore other rule applications, because it has high confidence
that extracting a JSON structure from a JSON-encoded string is a right interpretation of the partial
structure (we discuss this in more detail in §5.2).

Step 4. Next, Unravel again applies the Json rule to the last column of the partial structure from
the last step (Figure 2c); the resulting partial structure is given in Figure 2d.

At this point, same as in the previous step, the algorithm does not explore other rule applications.

Step 5. Finally, Unravel combines the partial structures discussed in the previous steps and
extracts the table in Figure 1 (bottom).

At this step the algorithm stops application of new rules, because no new rule application could be
learned for the existing partial structures in the pool of interpretations. For example, the algorithm
does not learn new rule applications for the first column in Figure 2d as this column consist of a
numeric data-type.
The algorithm then extracts tables from partial structures (discussed in §4.2) and ranks them

based on data regularity (discussed in § 5.2). For example, the tables resulting from applying
RegexSplit[(^|\n)(?:\d)] in Step 1 are going to be better ranked than the ones resulting from
applying DelimSplit[\n], as the algorithm is going to extract more regular data from the former
than the latter.

3 A DIVERSITY OF FORMATS AND APPROACHES

123456 James Vasanth (00) 123-456 (00) 789-101 JamesBvasanth@mail.com Tech lead "NO 01, 23rd street, Pune"
5454582 Mary Maxwell (022) 3050-958 (021) 5661-070 maryAMaxwell@mail.com Professors "166 Abc Place Soway Master Taramani 510"

123456 James Vasanth (00) 123-456 (00) 789-101 JamesBvasanth@mail.com Tech lead "NO 01, 23rd street, Pune"

5454582 Mary Maxwell (022) 3050-958 (021) 5661-070 maryAMaxwell@mail.com Professors
"166 Abc Place Soway
Master Taramani 510"

12apple300
23grapes black500
100strawberry12300

12 apple 300
23 graps black 500
100 strawberry 12300

Fig. 3. Data formatted with contexual delimiters (above) and data formatted without any delimiters (below)

msgid ""
msgstr ""
"Project-Id-Version: Lingohub 1.0.1\n"
"Report-Msgid-Bugs-To: support@lingohub.com \n"

msgid "Let’s make the web multilingual."
msgstr "Machen wir das Internet mehrsprachig."

msgid "We connect developers and translators around the globe "
"on Lingohub for a fantastic localization experience."
msgstr "Wir verbinden Entwickler mit Übersetzern weltweit "
"auf Lingohub für ein fantastisches Lokalisierungs-Erlebnis."

msgid "%d page read."
msgid_plural "%d pages read."
msgstr[0] "Eine Seite gelesen wurde."
msgstr[1] "%d Seiten gelesen wurden."

Fig. 4. Translation file - requires record boundaries and key-value reasoning that spans over multiple lines.

In this section we illustrate in more detail the diversity of formats found in real-world scenarios,
the range of existing techniques with different strengths and limitations, and how our approach

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Structure Interpretation of Text Formats 1:7

msgid msgid_plural msgstr msgstr[0] msgstr[1]
Project-Id-Version: Lingohub 1.0.1\n
Report-Msgid-Bugs-To:
support@lingohub.com \n

Let’s make the web multilingual. Machen wir das Internet mehrsprachig.
We connect developers and
translators around the globe
on Lingohub for a fantastic
localization experience.

Wir verbinden Entwickler mit
Übersetzern weltweit
auf Lingohub für ein fantastisches
Lokalisierungs-Erlebnis.

%d page read. %d pages read.
Eine Seite
gelesen wurde.

%d Seiten gelesen
wurden.

Fig. 5. Translation example - the extracted table.

can address such scenarios. The goal of any intelligent parsing system is to be able to infer the
structure that is inherent in a block of raw text-based data. Different approaches model or interpret
the structure of data in specific ways and adopt specialized inference strategies based on these
interpretations. For instance, some techniques take a top-down approach, where inference proceeds
by first finding plausible record boundaries and then determining different fieldswithin these records
by matching common patterns between inferred records [Fisher et al. 2008; Le and Gulwani 2014].
Such approaches can require significant interaction by the user usually in the form of examples
or specification of boundaries, and are also restricted by expressiveness of the domain-specific
extraction languages that they work with. Other techniques have taken a bottom-up approach,
where prominent fields or delimiters are inferred independently, and then alignment patterns
between fields are inferred in order to determine record boundaries [Raza and Gulwani 2017a].
Such methods rely on there being strong alignment between fields, and do not work well when
there is much variation in the records, e.g. Raza and Gulwani [2017a] cannot handle multi-line
records or cases where there is significant missing data in records.
Template-based approaches assume the input data contains a fixed pattern of records (such as

a regular expression template that contains blanks for field values), and attempt to directly infer
entire templates that would capture records and fields at the same time [Gao et al. 2018]. These
approaches do not work when there are no well-defined templates in the raw data, such as in
Figure 3, where inference depends on patterns within the fields rather than the surrounding text.
Some approaches favour less automated intelligence and rely more on interactivity from the user,
such as specifying transformation steps in a visual UI [Kandel et al. 2011b; Raman and Hellerstein
2001]. In addition to these generic parsing approaches that have been presented in the literature,
one can also view systems designed for each of the standard file formats and their individual dialects
as specialized interpretations of data. Such systems also commonly require significant effort to be
used correctly: e.g. the Python Pandas library’s read_csv function has around 50 parameters that
the user can specify to cater for different scenarios. Thus in general, we observe a wide range of
techniques that differ over a range of different dimensions of quality, such as generality, level of
interactivity, readability of inferred extraction logics, and efficiency of extraction.

Standard formats. There is a large number of standard document formats, including very popular
ones such as CSV (comma-separated or delimited files), fixed-width files, XML, JSON, HTML, and
numerous other less common ones. Though these may often be called “standard”, there is often
much subtlety and variation in correctly parsing files in such formats depending on different
implementations. CSV is a very common format, but is often found in different dialects that require
different parsing strategies. For instance, different delimiting characters may be used such as
comma, space, semicolon or other arbitrary characters. Different quotation rules may be adopted to
distinguish quote characters that occur inside text fields, such as escaping quotes using a backslash or
with two consecutive quotes. There may be other subtle variations, such as how newline characters
are handled inside text fields, or how blank lines are interpreted. Unlike delimited files, fixed-width

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

1:8 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

files represent data fields at fixed character positions in a line. Though usually distinguished by
padding whitespace characters, in many cases such fields may occur contiguously and therefore
have ambiguous boundaries that need to be intelligently inferred. For richer file formats, the actual
data of interest may occur within arbitrary patterns and in the presence of significant noise. For
instance, webpages in HTML very often contain tabular information that does not exist in explicit
HTML table or list tags, but formatted within arbitrary tag and class structures on the webpage,
e.g. listings presented as tiles or banners in a page such as the list of movies shown in Figure 6. In
general, noise in the data and subtle variations of format are common challenges encountered with
many standard formats in practice.

In our framework, one may represent the range of different parsing strategies of standard formats
as different interpretation rules. For example, different CSV parsing strategies, intelligent fixed-
width inference strategies and automated web table extraction approaches can all be encoded
as different interpretation rules. While this handling of standard formats is technically a simple
application of existing techniques optimized for specific formats, it represents the base case of our
system where we can permit a wide range of specialised rules to handle specialised cases well.

Custom formats. Often times, text-based data may come in purely custom or ad-hoc formats
depending on the source. Figure 3 shows an example of data from a question in an Excel help
forum2, which shows the need for contextual delimiters: characters that may be used as delimiters in
some regions of the data but can also be part of the data fields in others. In this case, the user needs
to split the different fields using whitespace character as the delimiter, but whitespace also appears
multiple times in some of the fields that contain multiple words, and hence not all occurrences of
spaces can be treated as delimiters. In some other cases, there may not be any delimiting characters
that separate different fields in the data. Figure 3 also shows such an example from another help
forum question3, where the data consists of numeric and non-numeric fields with no delimiting
characters between them. While contextual and zero-length delimiters can be handled by a system
such as Raza and Gulwani [2017a], that system must be given record boundaries and cannot infer
these automatically. But in our approach, we have a range of rules to determine record boundaries,
including skipping header lines and avoiding noisy lines in the data. Hence, in these cases, our
system can infer a composition of two rules: first to split the initial file into records and then apply
the text splitting rule based on Raza and Gulwani [2017a] to split the records into fields.
As another example, consider the fragment of the translation file shown in Figure 4 and the

desired result in Figure 5. In this case the desired extraction requires a reasoning based on key-value
pairs. Our system uses a combination of rules to automatically extract this table: (1) Split file
into records, using the empty line as a record separator. (2) Each of the 5 columns is obtained by
extracting a key-value pair, where values can span multiple consecutive lines (the keys are: msgid,
msgid_plural, msgstr, msgstr[0], msgstr[1]).

Mixture of formats. Interestingly, in many cases we find that data is formatted using a mix of
different syntactic constructs in the same file. For instance, log files generated by various systems
often generate text that may include some fragments of data in existing formats. Figure 1 shows
such a log file, which we have already discussed in §2. As discussed in §2, our system interprets
the structure of this file through an inference of four distinct interpretation rules. On the other
hand, standard JSON parsers cannot be applied to such files without pre-processing and extracting
the relevant text fragments. Existing techniques, such as Fisher et al. [2008]; Gao et al. [2018]; Le
and Gulwani [2014]; Raza and Gulwani [2017a], do not incorporate JSON understanding explicitly

2http://www.mrexcel.com/forum/excel-questions/991875-formula-split-words-cell.html
3http://www.mrexcel.com/forum/excel-questions/986709-split-text.html

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

http://www.mrexcel.com/forum/excel-questions/991875-formula-split-words-cell.html
http://www.mrexcel.com/forum/excel-questions/986709-split-text.html

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Structure Interpretation of Text Formats 1:9

in their design, so even if they could handle simple cases where a delimiter-based splitting may
suffice, these techniques will be brittle and may easily fail with small variations in the JSON such
as missing or differently ordered fields.
Similarly, in practice we find cases of CSV files where some fields are formatted as JSON or

XML formats. While standard CSV parsers may apply on such files, they will not extract the fields
embedded inside such substructures, for which a combination of parsers would be required. Our
system can handle such cases by a combination of a standard CSV parser together with a standard
JSON parser.

Another common scenario is when data fields require additional text extraction operations after
the initial extraction. For instance, webpages in HTML format often contain plain text formatted in
particular patterns, so that simply extracting the text content of nodes is not sufficient and one
needs to perform further splitting or substring extraction. Figure 6 shows such a scenario of table
extraction from a webpage containing information about movies, which is described in a YouTube
video showing how to perform such extraction in the Power BI analytics tool 4. In this case the
user first performs extraction of data from the webpage using an HTML-based wrapper induction
tool to extract text content of DOM nodes, and must then write a text substring extraction program
to obtain the numeric values from the movie runtimes column (e.g. "135" from "135 min"). Such
additional text processing is a common requirement in data ingestion scenarios. In this case, our
system can apply a composition of web extraction and text extraction rules to obtain the final table.
Firstly, it applies the automatic web table inference rule that uses the technique of Raza and Gulwani
[2017a] to instantiate a webpage DOM and automatically infers DOM node selectors to obtain the
initial table. This table contains the full text content of nodes, and our system subsequently applies
text-splitting rules such as a delimiter-based splitting or the context-based splitting of Raza and
Gulwani [2017a] to obtain the desired numeric values.
This scenario also illustrates the benefits of allowing examples-based interaction as this kind

of text manipulation is more of a user preference: different users may want to extract different
information from the columns (e.g. extract "534.86" from "$534.86M", remove the parentheses
around the movie years, or split movie genres "Action, Drama, War" into separate columns,
etc). To indicate such preferences, users can provide examples of the desired output columns in a
programming-by-example fashion and our system can infer the appropriate rule applications to
adapt the level of extraction to satisfy the given examples.
This example also illustrates our notion of re-interpretation: the ability to utilise the different

strengths of component systems to infer an extraction approach optimized toward a particular
quality measure such as efficiency or readability. This scenario was inspired by a product team that
was aiming to build a knowledge base from web data, which required applying such automatic
extraction at large scale on thousands of webpages. The scale of the problem meant that they could
not use a technique that instantiates the whole webpage DOM on every execution as this will be
too costly. In such cases, our approach can use a DOM-based extraction rule to infer the correct
extraction with high accuracy, but then re-interpret that extraction in a second phase to infer a
purely text-based extraction program if one is expressible in the text parsing rules, and this more
efficient program may then be applied for deployment at scale.

As another example scenario, often times sophisticated regular-expression based approaches infer
extractions with higher accuracy as they may better describe the data, but the inferred structures
can often be re-interpreted using simpler text manipulation operators such as simple substring
operations based on position indexes. This is especially important when the user is working in
restricted language environments where expressive operators such as regexes may not be supported.

4https://www.youtube.com/watch?v=HvPh2go8xJs

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://www.youtube.com/watch?v=HvPh2go8xJs

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

1:10 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

The Mountain II In a desolate war zone ... 135
The Dark Knight When the menace known ... $534.86M 84 152

Inception A thief who steals ... $292.58M 74 148

Fig. 6. IMDB webpage with tabular data not represented in HTML tables

In our evaluation, we explored one such scenario of the restricted M language for data manipulation
in the Microsoft Power BI product. Though a by-example system exists for inferring M programs,
we show how using re-interpretation we can fully automatically infer programs in the M language
in 44% of cases without any examples.

4 A STRUCTURE INTERPRETATION FRAMEWORK

We describe our structure interpretation framework.

Text documents and extractions. We use the notation T to denote a text document and the term
extracted value for a single atomic value that has been extracted from T. Formally, an extracted value

V is a substring T[i, j] of T between the indices i (inclusive) and j (exclusive). We say: (a) T[i, j] ≤
T[k, ℓ] if k ≤ i ≤ j ≤ ℓ, i.e., if T[i, j] is contained in T[k, ℓ], and (b) T[i, j] ◦ T[k, ℓ] = T[i, ℓ], i.e., the
smallest extracted value containing both T[i, j] and T[k, ℓ].

The problem statement. Given an arbitrary text document T the ad-hoc structure interpretation
problem is to extract a relational table R. We use the notation R(m,n) for the nth attribute (column)
of themth tuple (row) of R. We require the following well-formedness constraints to hold on R:
(a) Each cell is an extracted value: ∃i, j .R(m,n) = T[i, j].
(b) The extracted values in R do not overlap, unless they are equal: any two T[i, j] and T[i ′, j ′]

occurring in R, we have (i = i ′ ∧ j = j ′) ∨ j ≤ i ′ ∨ j ′ ≤ i .
(c) Extracted values are not shared across attributes: R(m,n) = R(m′,n′) = T[i, j] =⇒ n = n′.
The above requirements allow for a large number of possible tables to be extracted from the

input. Hence, we additionally require that solution produces the best table as per an optimality

criterion. Our optimality criterion is based on the weighted sum of two metrics:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Structure Interpretation of Text Formats 1:11

• Coverage. What fraction of the characters from the text file appear in the table? Formally, it
is defined as |{k |∃m,n, i, j : R(m,n) = T[i, j] ∧ i ≤ k < j}|/|T|.
• Description length. This measure is the one used in the seminal PADS framework [Fisher et al.
2008]. In our context, it is defined as the number of bits required to transmit the table given
the type signature of each column. Informally, if a column has a known type (say integers
or dates), it can be transmitted with fewer bits; similarly, if a column contains categorical
values or strings with a fixed pattern, fewer bits are required (see Fisher et al. [2008] for a full
definition). Note that computing the exact value of this metric is essentially undecidable: in
the general case, it is equivalent to computing Kolmogorov complexity. However, in §5, we
use a proxy for this metric and explain how the proxy correlates to the description length.

The exact weights can be picked by the user based on the domain. The optimality criteria are
a proxy for user intent, i.e., we assume that the user prefers to extract more data from a file as
compared to less, and prefers “regular” data over irregular data.

Example 4.1. The condition (c) in the problem definition allows for the same T[i, j] to be shared
across different rows in the same column. From our investigation of ad-hoc text documents, this is
rather common. In the document below (left) and its corresponding table (right), the state codes
(PA and CA) are shared across different rows.
PA
Allegheny,15120,Pittsburgh
Delaware,19063,Media
CA
Los Angeles,90210,Hollywood
Los Angeles,90211,Malibu

→

PA Allegheny 15120 Pittsburgh
PA Delaware 19063 Media
CA Los Angeles 90210 Hollywood
CA Los Angeles 90211 Malibu

4.1 Partial Structures as Interpretations

The main object of interest in our extraction procedures is a partial structure. Informally, a partial
structure is an annotation of T with a number of labels known as syntactic elements.

Syntactic Elements. A syntactic element, denoted se, is an ordered collectionV0,V1, . . . ,Vn of
extracted values such that: (a)Vi andVj do not overlap for i , j, and (b) eachVi occurs before
Vj for i < j. Intuitively, a syntactic element is the result of one parsing step, i.e., a collection of
extracted values that are obtained in the same manner.
In relation to extracted tables, a single syntactic element commonly represents (a) records

(e.g., Record in Figure 7b), (b) a single column (e.g., col1 in Figure 7b), or (c) merging of several
columns (e.g., col3 in Figure 7b; here, the columns of the final extracted table that are merged are
col3 ∧ colA, . . . , col3 ∧ colD in Figure 7d). We explain in Section 4.2 how to go from a collection of
such varied syntactic elements to a single table.

Let se1 = V0,V1, . . . ,Vm and se2 = V
′
0 ,V

′
1 , . . . ,V

′
n be two syntactic elements. We define:

• se1 is contained in se2 (written as se1 ≤ se2) if every value Vi ∈ se1 is contained in some
valueV ′j ∈ se2.
• Composition of se1 and se2 (written as se1◦se2) as the syntactic elementV0◦V

′
0 , . . . ,Vm ◦Vn

ifm = n.
• The meet se1 ∧ se2 is defined whenm = n and eachVi ,V

′
i pair overlap: the meet isV0 ∧

V ′0 , . . . ,Vn ∧V
′
n where T[i, j] ∧ T[k, ℓ] = T[max(i,k),min(j, ℓ)].

Example 4.2. In Figure 7b-7d, the collection of sub-strings labelled Record, coli (for 1 ≤ i ≤ 5),
and colx (for x ∈ A, . . . , E) are valid syntactic elements. We have that col1 ◦ . . . col5 = colA ◦
. . . colE = Record, and that Record ∧ coli = coli. Figure 7d illustrates additional ∧ operations.

Partial Structures. A partial structure S is a set of syntactic elements {se0, . . . , sen} where for all
sei and sej : either sei and sej are non-overlapping, or sei ≤ sej ∨sej ≤ sei holds. We use the symbol

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

40.2978759,-75.5812935,REINDEER CT & DEAD END; NEW HANOVER; Station 332; 2015-12-10 @ 17:10:52;,19525,EMS: BACK PAINS/INJURY
40.2580614,-75.2646799,BRIAR PATH & WHITEMARSH; HATFIELD TOWNSHIP; Station 345; 2015-12-10 @ 17:29:21;,19446,EMS: DIABETIC EMERGENCY
40.1161530,-75.3435130,AIRY ST & SWEDE ST; NORRISTOWN; Station 308A; 2015-12-10 @ 16:47:36;,19401,EMS: CARDIAC EMERGENCY

(a) Original document for 911 calls dataset

40.2978759 , -75.5812935 , REINDEER CT & DEAD END; NEW HANOVER; Station 332; 2015-12-10 @ 17:10:52; , 19525 , EMS: BACK PAINS/INJURY
40.2580614 , -75.2646799 , BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP; Station 345; 2015-12-10 @ 17:29:21; , 19446 , EMS: DIABETIC EMERGENCY
40.1161530 , -75.3435130 , AIRY ST & SWEDE ST; NORRISTOWN; Station 308A; 2015-12-10 @ 16:47:36; , 19401 , EMS: CARDIAC EMERGENCY

Legend: Record col1 col2 col3 col4 col5

(b) 911 dataset document with partial structure S1 (obtained by treating it as a , delimited file)

40.2978759,-75.5812935,REINDEER CT & DEAD END ; NEW HANOVER ; Station 332 ; 2015-12-10 @ 17:10:52 ; ,19525,EMS: BACK PAINS/INJURY
40.2580614,-75.2646799,BRIAR PATH & WHITEMARSH LN ; HATFIELD TOWNSHIP ; Station 345 ; 2015-12-10 @ 17:29:21 ; ,19446, EMS: DIABETIC EMERGENCY
40.1161530,-75.3435130,AIRY ST & SWEDE ST ; NORRISTOWN ; Station 308A ; 2015-12-10 @ 16:47:36 ; ,19401,EMS: CARDIAC EMERGENCY

Legend: Record colA colB colC colD colE

(c) 911 dataset document with partial structure S1 (obtained by treating it as a ; delimited file)

40.2978759 , -75.5812935 , REINDEER CT & DEAD END ; NEW HANOVER ; Station 332 ; 2015-12-10 @ 17:10:52 ;, 19525 , EMS: BACK PAINS/INJURY
40.2580614 , -75.2646799 , BRIAR PATH & WHITEMARSH LN ; HATFIELD TOWNSHIP ; Station 345 ; 2015-12-10 @ 17:29:21 ;, 19446 , EMS: DIABETIC EMERGENCY
40.1161530 , -75.3435130 , AIRY ST & SWEDE ST ; NORRISTOWN ; Station 308A ; 2015-12-10 @ 16:47:36 ;, 19401 , EMS: CARDIAC EMERGENCY

Legend: Record colA ∧ col1 colA ∧ col2 colA ∧ col3 colB ∧ col3 colC ∧ col3 colD ∧ col3 colE ∧ col4 colE ∧ col5

(d) 911 dataset document with partial structure S1 ∧ S2
40.2978759, -75.5812935, REINDEER CT & DEAD END; NEW HANOVER; Station 332; 2015-12-10 @ 17:10:52;, 19525, EMS: BACK PAINS/INJURY
40.2580614, -75.2646799, BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP; Station 345; 2015-12-10 @ 17:29:21;, 19446, EMS: DIABETIC EMERGENCY
40.1161530, -75.3435130, AIRY ST & SWEDE ST; NORRISTOWN; Station 308A; 2015-12-10 @ 16:47:36;, 19401, EMS: CARDIAC EMERGENCY

Legend: Record
(e) 911 dataset document with partial structure S1 ∨ S2

Fig. 7. 911 dataset document with multiple partial structures

S to denote the set of all partial structures. Intuitively, each partial structure is an “interpretation”
of the text document.

We say that S1 refines S2 (written as S1 ≤ S2) if for every syntactic element se ∈ S2 there exists
a sequence of elements se1, se2, . . . , sek in S1 such that se1 ◦ se2 ◦ . . . sek = se. Intuitively, ≤ defines
a partial order on S that corresponds to the granularity of the interpretation: every element of the
S2 interpretation can be obtained by combining S1 elements.

In the poset ⟨S, ≤⟩, we can define meet and join operations in the standard way. Formally, given
S1 and S2, the meet S1 ∧ S2 satisfies the following: (a) (S1 ∧ S2) ≤ S1 and (S2 ∧ S2) ≤ S1, and
(b) for all S such that S ≤ S1 and S ≤ S2, we have that S ≤ (S1 ∧S2) Similarly, we can define the
dual operation join S1 ∨ S2. The poset of partial structures is closely related to the interval domain
used in program analysis [Cousot and Cousot 1977]. Intuitively, each extracted value is an interval
and syntactic elements and partial structures are collections of intervals. However, note that ⟨S, ≤⟩
is not a lattice, i.e., unique meets and joins may not exist for each S1 and S2.

It is easy to produce effective definitions (i.e., a finite procedure) of the operations over S using
component-wise operations ≤, ∧ and ◦ over syntactic elements. However, we elide these procedures
for the sake of space.

Example 4.3. Figure 7 illustrates the concept of meet and join of partial structures. As can be
seen, S1 ∧ S2 imposes the interpretation of both S1 and S2 on to the document, while S1 ∨ S2
imposes the maximal structure common to both the partial structures.

4.2 Structure Interpretation and Extraction

We are now ready to explain the core mechanics of Unravel.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Structure Interpretation of Text Formats 1:13

Examples. While the Unravel system can predictively extract tables from text files, it can also
be guided by user provided examples. Formally, a set of examples E consists of constraints of the
form (m,n) 7→ V; each (m,n) 7→ V constrains the nth column of themth row to have the extracted
valueV . This definition covers most forms of examples that are used in automated data extraction
and transformation literature (for example, see [Le and Gulwani 2014; Martins et al. 2019; Wang
et al. 2019]).

We say that: (a) partial structure S is consistent with the examples E if it does not “split” the file
in the middle of an example. Formally, for all (m,n) 7→ V ∈ E (whereV = T[i, j]), no extracted
value T[k, ℓ] in any syntactic element of S has i < k < j or i < ℓ < j. (b) relational table R satisfies

E if for all (m,n) 7→ V ∈ E, we have R(m,n) = V .

Interpretation rules. In practice, a developer of the Unravel system would specify interpretation

rules that operate on syntactic elements to interpret documents. Formally, an interpretation rule

R is a (partial) function from SE
p ̸→ SE

q , that takes as input a p-tuple of syntactic elements
and optionally produces a q-tuple of syntactic elements, for some p,q ∈ N Given a rule R and
a partial structure S, we say that applying R on S produces S′ ≤ S (written as S →R S′) if:
∃se1, . . . , sep ∈ S.R(se1, . . . , sep) = (se

′
1, . . . , se

′
q) and S′ = S ∪ {se′1, . . . , se′q}.

We first discuss on how interpretation rules can be built from simpler functions of some specific
type signatures. The type signatures we consider correspond to “string splitting” (or “file to records”),
“records to table”, and “file to table” operations. The reason we consider these specific types of
functions is that most existing extraction systems operate in one of these modes, thereby letting us
convert other existing extraction systems to rules.
• String splitting: Given a function f : str→ str

n that splits a string into n different fragments,
we can construct two rules that both take a single syntactic element se as input. The first rule
(called flat-map version) applies f on each value in se and combines all the output fragments
into one output element. The second rule (called map version) applies f on each value on
se and returns n elements se0, . . . , sen where each sei contains the ith component of the f
output on the values of se.
• Records to Table: Given a function f : str∗ → str

∗n that maps a list of strings (records) into n
different lists of strings (columns), we can generate the rule that simply applies f on a single
syntactic element and produces n different elements.
• File to Table: Given a function f : str → (strm)n that maps a string to a table of m rows
and n columns, we can flat-map f on a syntactic element to produce n different syntactic
elements. Each output syntactic element corresponds to the combined values in one column
of all produced tables.

Converting all these three types of functions into a single formalism (interpretation rules) lets us
apply any of them at any depth, i.e., the file to records rule need not be applied on the full file, but
may be applied at a later stage.
We list a subset of rules that are used in the implementation of the Unravel system; for each

rule we also describe how are the parameters inferred.
• DelimSplit[d]: These pair of rules (flat-map and map versions) split the input string into
substrings separated by a constant string d .
To infer the parameter value d instantiations we (a) pick from a list of common delimiters
(e.g., ,, ;, |), and (b) identify common substrings that appear in the strings of se ; then we
filter-out ones that are not producing the same number of splits across different strings. 5

5The algorithm actually allows some noise, that is, that on some small number of rows there are different number of splits.
We discuss handling of noise in more detail below.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

1:14 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

For example, in Figure 7b and Figure 7c, the elements colA, . . . , colE and col1, . . . , col5 result
from applying DelimSplit[,] and DelimSplit[;] respectively, on Record. Similarly, Figure 2b
is obtained from Figure 2a by applying DelimSplit[\n]. In this example the algorithm also
infers d = { and d = :. All of the instantiations mentioned here are picked because they
are common delimiters or occur regularly in strings, and produce the same number of splits
across different strings.
• RegexSplit[r1, . . . , rn]: This pair of rules (flat-map and map versions) split the input string
at the matches of ri in sequence.
To infer the instantiations for parameters r1, . . . , rn the algorithm uses bottom-up predictive
synthesis a la [Raza and Gulwani 2017a]. Informally, the algorithm generates a large number
of regular expressions that match some part of the input string and then selects sequences
that produce consistent splits.
For example, as discussed in §2, Figure 2a is obtained from Figure 1 (top) by applying the
rule RegexSplit[(^|\n)(?:\d)].
• FixedWidth[ℓ1, . . . , ℓn]: This rule is a record to table style rule, that splits records of equal
length into n consecutive columns that have lengths ℓ1, . . . , ℓn .
To infer the instantiations for parameters ℓ1, . . . , ℓn the algorithm analyses the input strings
and finds “natural boundaries” between tokens; a position is considered a natural boundary
if across all input strings: (a) it is a whitespace followed by a non-whitespace; (b) separates
two data-types.
• Tree flattening rules: The rules Json,Xml, andWebwork in string to table mode. Each of them
parses a string into a tree structure (JSON object, XML tree, and DOM tree, respectively), and
then uses appropriate selectors (jq, xpath, and css selector respectively) to produce multiple
columns.
The process of choosing the right selectors to extract interesting data from these trees is an
active and on-going area in research (see [Arasu and Garcia-Molina 2003; Crescenzi et al.
2001; Gulhane et al. 2011; Kushmerick 1997; Nielandt et al. 2016; Raza and Gulwani 2017b]),
as well as in software library development (see [Cognos Analytics 2019; Data Miner 2019;
Json Normalize 2019]).
These rules can do both one-shot parsing of the appropriate format and parse JSON/XML/HTML
strings that are embedded in other formats once they are extracted as a single syntactic
element (see, for example, Figure 1 and in general discussion in §2).
• KeyValue[dp,dk]: This rule is based on a records to table function: the function treats each
record as a list of key-value pairs, and each column in the table corresponds to the value
of a single key. The rule is parametrized by a pair delimiter dp and key delimiter dk where
different key-value pairs in eachVi are separated by dp , and the key and value in each pair
is separated by dk .
To infer the instantiations for parameters dp and dk the algorithm iterates the predefined
list of possible parameter values and chooses the ones that produce consistent outputs. The
algorithm allows that keys are in different order across different records and also allows that
some keys are missing in some rows. See discussion around noise and missing fields in §6.
For example, in the file in Figure 5, the pair delimiter is a newline, and the key delimiter is a
space (and there are also missing fields).
• Skip[k] and SkipLast[k]: These rules do not correspond to any of the three forms listed
above. Instead, they take a syntactic element se = V0, . . . ,Vn and produces the syntactic
element without the first (resp. last) k extracted valuesVi . These rules are usually used in
Unravel to skip headers and footers in files or columns.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Structure Interpretation of Text Formats 1:15

To infer the parameter k we analyse various features ofV0, . . . ,Vn (e.g., the matched regular
expression) and check whether some prefix (resp. suffix) has a distingushing set of features
that the rest of the syntactic elements does not have.
For example, if V5, . . . ,Vn are all strings that represent dates in a particular format, but
V0, . . . ,V4 are not, we can infer k = 5 for the Skip rule.
• PatternFilter[ϕ1, . . . ,ϕn]: This rule partitions a syntactic element se into a number of
disjoint syntactic elements sei such that the union of all sei is se. Each sei is defined by
predicate parameter ϕi : sei consists of those strings of se that satisfy ϕi .
The predicates ϕ1, . . . ,ϕn are inferred using simple techniques such as finding common
prefixes/suffixes to produce StartsWith/EndsWith predicates, as well as more complex tech-
niques for regular expression learning [Padhi et al. 2018] to produce RegexMatch predicates.
• Black-box rules: We have also included a number of rules that correspond to other pub-
lished data-extraction techniques (for example, FlashExtract [Le and Gulwani 2014] and
ColumnSplit [Raza and Gulwani 2017a]).
The black-box rules illustrate the “glueing” power of the partial structure and syntactic
element framework: these techniques work with each other and with other native rules
seamlessly. Further, the integration is not shallow, i.e., structure information gained from
one technique can be used by the others and vice-versa.

We point out that each rule leverages its own parameter inference technique. However, for
predictive synthesis, the main bias for generating extractions without examples is the regularity
detected in the structure of the outputs generated by the different options. Any such predictive
synthesis and intelligent parameter inference technique will fail in certain cases; that is, there are
going to be cases when the technique will be unable to infer any parameter or it will infer a wrong
set of parameters. We discuss some such cases in our evaluation in §6.

Extraction Rules. The final step of the Unravel procedure extracts tables from partial structures.
This is done by using a number of simple rewrite rules (known as extraction rules) that combine
syntactic elements from partial structures into tables. Formally, an extraction rule E : S × 2Tables →
2Tables takes as input a partial structure and a possibly empty set of already extracted tables and
combines them in order to produce a set of new tables. We informally describe the extraction rules
used in Unravel.
• Base case. Every syntactic element in the partial structure is a table with a single column.
• Simple combinations. Given two tables with no overlapping extracted values and with the same
number of rows, we can produce a table with the same number of rows that includes the columns
from both tables. Similarly, given two tables with the same number of columns and no overlapping
extracted values, we can concatenate them to produce a table with the same number of columns,
but with rows from both the tables.
• Syntactic joins. We can join two tables with no overlapping extracted values syntactically based
on "closest preceding row" and "closest following row" relations between two tables. Given tables
T1 and T2, the join table T1 ▷◁cpr T2 associates each row in T1 with the row in T2 that precedes it
and is syntactically closest to it. The join T1 ▷◁cf r T2 can be similarly defined.

4.3 Example and Discussion

We provide a fully worked out example of Unravel and then discuss some modifications to and
features of the framework.

Example 4.4. Here, we illustrate all the steps in the full extraction process from the file discussed
in Example 4.1.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

• The starting point is always a partial structure containing a single syntactic element which
contains only one string, i.e., the full file (say seF).
• We apply the rule DelimSplit[\n] to produce a syntactic element seL that contains the lines of
the file. The produced partial structure is {seF , seL}.
• We apply the rule PatternFilter[[A − Z]∗] on seL to produce two syntactic elements—one
containing only the lines with state codes (PA and CA), and the other with the lines containing
city details. Call these seState and seDetails.
• Now, we use the delimiter rule DelimSplit[,] on the element seDetails to produce the syntactic
elements seCounty (Allegheny, Delaware, Los Angeles), seZip, and seCity.
• At this point, the partial structure contains all information needed to interpret the file and
produce the desired table.
• We apply the table generation rules:
(1) Using the simple combination rule we can produce a single details table containing the
columns seCounty, seZip, and seCity. The syntactic element seState gives us a single column state
table.

(2) Using the "closest preceding row" rule to join the details table with the state table produces
the required table as shown in Example 4.1.

Decoding. The definition of extracted values in terms of sub-strings glosses over the issue of
decoding functions. For example, the substring "Sugar, Spice, and \"Everything Nice\"" in
a CSV is to be interpreted as Sugar, Spice, and "Everything Nice". Here, the extracted value
is given by a substring that processed through a decoding function that “unquotes and unescapes”.
Other formats that need decoding include Base64, HTML/XML character codes, etc.

Decoding and recursive decoding are common in text files. The framework can natively handle
these by defining extracted values as alternating substring and decoding operations [i0, j0] ◦ d0 ◦
. . . ◦ [in, jn] ◦ dn ; This value is equal to sn+1 where s0 = T and sk+1 = dk (sk [ik , jk]). While we
excluded decoding for the sake of notational and conceptual simplicity, the same formalism can be
reproduced with this new definition of extracted values.

Noise and malformed documents. An additional complication which we have not mentioned up to
now is that real-world text documents are often malformed containing noise in the form of missing
values, spurious lines, etc. For example, for DelimSplit, we have found many practical cases where
the number of delimiters is not the same in each substring of a syntactic element (e.g., when some
records in a CSV file have different number of columns than others). In Unravel, we can modify
most rules to handle noise up-to a threshold by dropping/modifying syntactic element values
whenever they do not match an expected format. For instance, our implementation of DelimSplit
can either drop strings which have a different number of delimiters, or fill in missing fragments
with empty strings.

Example 4.5 (Noise). Consider a variant of the file presented in Figure 7 which has the following
two lines prepended to the original file.
A list of 911 calls in the Philedelphia region.

Test data obtained from Kaggle; Usable under ODbl, Downloaded on 2017-05-31, Original size: 1500KB, m rows; n cols; 0 empty cells, handled correctly.

These header lines are noise, i.e., not a part of the tabular data in the file. This noise is handled in
the following two ways.

In-Rule Noise Handling. In the first line, neither DelimSplit[;] nor DelimSplit[,] can extract
data that is consistent with the other lines, as the line does not have commas or semi-colons. The
in-rule noise handling of the DelimSplit kicks in: if a small fraction of rows do not produce the
same number of columns as the rest, we ignore those rows. With this change, we produce syntactic

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Structure Interpretation of Text Formats 1:17

elements without the first row. Note that this in-rule noise handling has to be optionally written by
each rule author.

In-structure Noise Handling. Now, in the second line we have that (using notation from Figure 7):
• col1, col2, col3, col4, and col5 are equal to Test data obtained from Kaggle; Usable
under ODbl, Downloaded on 2017-05-31, Original size: 1500KB, m rows; n cols; 0
empty cells, and handled correctly.
• colA, colB , colC , colD , and colE are equal to Test data obtained from Kaggle, Usable
under ODbl, Downloaded on 2017-05-31, Original size: 1500KB, m rows, n cols,
0 empty cells, and handled correctly.

However, syntactic element colA ∧ col2 is not well-defined under strict semantics, as it is not
defined on the second line. Now, in-structure noise handling of the Unravel handles this case
as follows: if a small fraction of values in SE1 ∧ SE2 are not defined, we define the noisy version
of SE1 ∧Noise SE2 to ignore these elements. On applying this rule, all elements of the second line
are ignored, and we are left with only the data from line 3 onwards, which is the desired result.
In-structure noise handling is common to all rules, and is built in to the formalism.

Minimizing number of examples. Unravel potentially requires fewer examples than alternative
example driven extraction frameworks (say FlashExtract [Le and Gulwani 2014]) in many cases.
This is due to the ability to combine interpretation rules with examples, i.e., Unravel is searching
over higher-level constructs (interpretation rules) than most by-example systems. For example,
consider a text file that contains lines of the form JuneˆDryˆHot and NovemberˆRainyˆCool. Here,
Unravel can work with one example (say (1, 1) 7→ June) while FlashExtract requires three (say
(1, 1) 7→ June, (1, 2) 7→ Dry, and (1, 3) 7→ Hot). The reason behind this can be explained as follows:
• Given (1, 1) 7→ June, FlashExtract aims to find a program that can extract values like June
from each line. It may come up with the program Extract from beginning of line upto ˆ. This is
not sufficient to extract the other columns.
• In the same scenario, Unravel aims to find an interpretation rule which produces June from
the first line. It produces the rule DelimSplit[ˆ], which is sufficient to extract the other
columns too.

5 THE UNRAVEL PROCEDURE

We presented the mechanics of the Unravel framework in §4. However, just defining the rules is
not sufficient:
• Applying the presented rules in arbitrary combinations will quickly produce an unwieldy
number of partial structures. How do we procedurally apply rules to produce reasonable
partial structures?
• Given all the partial structures that can be produced using the rules, which one do we pick,
and how do we extract the appropriate table from it?

We address these issues by first providing a non-deterministic generic procedure, and then resolving
the non-determinism using locally optimal search and pruning.

5.1 A Generic Procedure

Algorithm 1 presents a generic non-deterministic procedure for extracting tables from a text
document. Intuitively, the procedure starts from the least-refined partial structure (2) and repeatedly
(lines 5-13) (a) applies interpretation rules, and (b) combines structures withmeet and join operations
to produce additional partial structures—here, each partial structure produced must be consistent
with the examples. Then, the procedure picks one partial structure to perform the extractions
(line 15) and repeatedly applies extraction rules on this structure to produce tables (lines 16-19).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

1:18 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

One of the tables produced is then selected and returned (lines 21-22)—again this selection is to be
consistent with any examples provided. The procedure depicted is highly non-deterministic and
the quality of the results are highly dependent on the non-deterministic Select∗ choice functions.

Theorem 5.1. For all sets of inputs, the table returned by Algorithm 1 satisfies the three well-

formedness requirements of the ad-hoc structure interpretation problem.

Algorithm 1 Structure Interpretation of Text Files
Require: Text document T
Require: Set of interpretation rules R
Require: Set of extraction rules E
Require: Set of examples Examples

Ensure: Relational table Table∗
1: se← ⟨T[0, |T |]⟩ ▷ Syn. element with full document

2: S0 ← {se} ▷ Least-refined partial structure

3:
4: Structs← {S0 }
5: while * do ▷ Produce more structures

6: if * then
7: S ← SelectStruct(Structs)

8: (S →R S
′) ← SelectRuleApplication(R, S, Examples)

9: Structs← Structs ∪ {S′ }

10: else
11: S1 ← SelectStruct(Structs)

12: S2 ← SelectStruct(Structs)

13: Structs← Structs ∪ {S1 ∨ S2, S1 ∧ S2 }
14:
15: S∗ ← SelectInterpretation(Structs)

16: Tables← ∅
17: while * do ▷ Extract tables

18: E ← SelectExtractionRule(E, Tables, S∗)
19: Tables← Tables ∪ E(S∗, Tables)

20:
21: Table∗ ← SelectTable(Tables, Examples)

22: return Table
∗

Optimizations. We mention three general optimizations over the algorithm that we use in our
implementation:
• First, instead of separate interpretation and extraction steps in Algorithm 1, we store a set of
tables that can be extracted from each partial structure S along with it. For each rule application
S →R S

′, the tables of S′ can be computed from tables of S and the new syntactic elements
produced by R.
• Second, since we are interested in tables (as opposed to deeply nested tree structures), we ignore
partial structures that contain deeply nested syntactic elements, i.e., if a partial structure S
contains a chain of elements se0 ⪇ se1 . . . ⪇ sen for a sufficiently large n.
• Third, in certain cases, we combine rules that frequently applied one after the other into a
single one. For example, we often apply DelimSplit[d1] and DelimSplit[d2] one after the other,
with d1 being record separator, and d2 being the column separator. We introduce a new rule
DelimFile[d1,d2] that first splits by d1 and then d2 to directly obtain a table.

5.2 Instantiating Algorithm 1

We present a fully instantiated table extraction technique that uses a search and prune strategy to
narrow down the non-determinism in Algorithm 1. The pruning and search are guided by ranking
scores that are based on interpretation confidence and interpretation regularity (§4).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Structure Interpretation of Text Formats 1:19

Interpretation confidence. Each rule has an associated interpretation confidence: this a measure
of how likely it is that the rule can interpret elements that are not intended to be interpreted in that
manner. Intuitively, rules that interpret more complex structures have higher scores: for example,
Json and Xml are ranked higher than DelimSplit. Note that this score is fixed for each rule, and
does not depend on the exact data or rule instantiation.
In the implementation, each rule author has to provide this confidence score for the rule. For

the built in rules, we use a simple 0 − 1 approach with most rules getting a score of 0, and rules
that handle specialized data formats (in our case, XML, HTML, JSON, XML) getting a score of
1. We believe such a coarse metric is sufficient for most cases that arise in practice. Intuitively,
an interpretation confidence of 1 for the Xml rule represents that it is very unlikely that a string
not intended to be XML data could potentially be interpretable as XML. On the other hand, the
DelimSplit has a score of 0 as it is more likely that a file not intended to be a delimited file could
accidentally be interpreted as a delimited file (say, for example, by having exactly 1 comma in each
line).

Example 5.2 (Interpretation Confidence). Consider a syntactic element se with substrings that re-
semble { "captain": "Picard", "officer": "Riker", "ship": { "name": "USS Enterprise",
"number": "NCC-1701-E" } }. Now, se can be interpreted by either Json or DelimSplit[,] rules:
that is, we either treat the strings as JSON objects or as comma-separated values. Intuitively, the
rule Json has a higher score and takes precedence: if a syntactic element is interpretable as valid
JSON, it is likely to be the intended interpretation. If a string is parsable as JSON, it is almost always
the intended interpretation.

Interpretation Regularity. This metric acts as a proxy for the description length metric mentioned
in §4. The guiding principle here is a syntactic element in which all values are similar can be described

in fewer bits. For example, a rule application that produces a syntactic element containing only
numbers can be described in fewer bits (e.g., using a binary encoding of numbers) an arbitrary
strings. Similarly, strings that can be represented using most data types have a shorted description
length. The interpretation regularity score for a partial structure is the sum of individual scores
for each syntactic element elements in it. Our interpretation regularity score is based on several
factors:
• Data-type detection: If all the strings in a syntactic element can be interpreted as a known
data-type (in the implementation, dates, numbers, boolean, categorical, guid, IP addresses,
phone numbers, and zip codes), it is given a higher score.
• String regularity: If all the strings in a syntactic element are matched using a string regular
expression, it is given a higher score. Here, the score is dependant of the specificity of the
regular expression.

While other regularity factors exist, we found that the above two were sufficient for all benchmark
cases.

Example 5.3 (Interpretation Regularity). Consider a syntactic element consisting of strings
that resemble 2019-01-31, Antoine, 45, ant@ex.ca.edu and 2019-10-23, Antony, 52,
tony.sop@comp.com. Now, this element can be interpreted using either of the rules DelimSplit[−]
or DelimSplit[,]. The first one produces elements of the form 2019, 01, and 31, Antoine,
45, ant@ex.ca, while the second produces elements of the form 2019-01-31, Antony, 45 and
tony.sop@comp.com.
We score the second extraction higher as the extraction has known types, i.e., dates and email

addresses.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

Given the above ranking scores (for interpretation confidence and interpretation regularity
score), we instantiate the non-determinism Algorithm 1. For SelectRuleApplication on a given S,
we pick the rule application with the highest combined (a) Interpretation confidence score for
R, (b) Interpretation regularity score for S′, and (c) Coverage (as defined in §4. For SelectStruct,
SelectInterpretation, and SelectTable, we pick the structure or table with the highest optimality
score. This gives us a “best-first” style exploration of search space, with each interpretation path

leading to one table in Tables out of which we select the most optimal one.
This instantiation of Algorithm 1 does not guarantee that we return the globally optimal table:

we make locally optimal choices and use pruning by interpretation confidence. However, in practice,
we usually reach either the globally optimal table, or close to it. To compensate for this potential
non-optimality and to study the effects, in the implementation, we produce top k ranked tables
instead of the top 1 by modifying SelectInterpretation and SelectTable to produce k tables. Further,
since the optimality criteria is only a proxy for user intent, sometimes the globally optimal table is
not the user intended (or ground truth) one.

5.3 Faster Extractions: Re-interpreting Structures

Algorithm 1 does not guarantee that the table is extracted using themost efficiently operationalizable
sequence of rules. While this does not matter for one-shot tasks, it is an important factor when
extracting data from a large number of similarly formatted files. Our approach to this issue is
re-interpretation: For each rule application S →R S′ in the interpretation path, we attempt to
find an alternative R ′ such that: (a) S →R′ S′, and (b) R ′ is more efficient to operationalize than
R. Re-interpretation takes advantage of the fact that the partial structure framework acts as a
shared language between different interpretation rules. Furthermore, since the required syntactic
elements are known for re-interpretation, the interpretation using R ′ can be example driven with
the examples coming from S′ (as shown in the following example).

Example 5.4. Consider the file shown in Figure 1: the first step in interpreting this file is to
identify the records. By default, Unravel uses the regex split rule to say records start on lines

that match the regular expression \d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}Z (i.e., timestamps in

the ISO-8601 format). Using this interpretation of records is not ideal for performance: regular
expression matching is an expensive operation. However, a significantly more efficient rule would
be records are exactly 3 lines each.

Generating this second interpretation by default is a fairly expensive due to the lack of guidance:
the algorithm would guess different alternatives for the parameter 3, and explore all the resulting
structures to eventually find the best table. However, on re-interpretation, the records already
produced by the first rule application act as guiding examples. Given the concrete records as
examples, inferring the parameter 3 is trivial.

5.4 Interacting with Unravel

Algorithm 1 does not explicitly call out the points where a user may intervene or provide more
information, i.e., it only depicts the fully predictive version of Unravel. In practice, the user may
interact with Unravel at 3 different points to provide additional guidance (see Example 5.5).
• Examples. At each iteration of the while loop (lines 5-13), the user may provide additional
examples to Unravel. These examples are (a) used to eliminate all partial structures S that
are inconsistent with the new examples, and (b) used to aid parameter inference during rule
application in line 8.
• Rule selection. On lines 7 and 8, a user may intervene to pick both the structure S, as well
as the rule R to apply. This feature is useful in resolving local ambiguity: for example,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Structure Interpretation of Text Formats 1:21

disambiguating a file to be fixed width as opposed comma separated. In many cases, this
disambiguation could also be done through examples rather than naming the rule that is to
be applied. However, each option is more convenient in different cases, and studying the
usability aspects is left as future work.
• Table selection. On line 21, a user may pick the particular table Table∗ that is to be returned
from the set of candidate tables Tables.

Example 5.5. Section 3 illustrates the typical case where providing examples is useful. In Figure 6,
a user may provide the example 2016 for the column representing the year of release. This example
hints to the algorithm that the syntactic element (2016), (2008), (2010) should be interpreted
further using additional rules to extract the required column. Note that these examples may be
provided either at the beginning of the extraction process, or at any point during the execution of
the while loop (lines 5-13).

1,423 6,714 54,599,320
2,589 8,129 122,439,034
3,590 49,249 345,902,901

Consider the text file above, that can be interpreted both as a comma-separated file with 5
columns, as well as a fixed width file with 3 columns. Here, Unravel first applies DelimSplit[\n]
to split the file into individual lines. At this point, a user may inform the tool (at line 8) that the
FixedWidth rule is to be applied next. Using this hint, Unravel is able to correctly identify the
parameters for the FixedWidth rule and produce the correct interpretation, i.e., a fixed width file
with 3 columns. Note that the user may also have provided the example 1,423 which would also
allow the procedure to distinguish between the two options.

6 EVALUATION

We describe our evaluation of the Unravel framework.

Benchmark data. We collected text files for the evaluation from:
(1) 114 files6 from benchmarks used for the evaluation of Datamaran in Gao et al. [2018], out

of which 15 come from the PADS project [Fisher et al. 2008]; and
(2) 503 files from own benchmarks consisting of: (a) files from engineering teams that develop

BI and data processing software, and (b) various online sources (e.g., help forums, web pages,
YouTube tutorial videos).

Aims. We evaluate the following questions: (1) How does Unravel handle the benchmark
w.r.t. the correctness of the extracted tables, the performance of the extraction, and what are
the properties of the extracted tables? (2) How does Unravel compare with the state-of-the-art
approach Datamaran? (3) What is the effect of the interactivity in Unravel? (4) How difficult it is
to extend Unravel with a new rule and what are the effects of the extension? (5) What are the
practical effects of re-interpretation?

Correctness and performance. To determine whether Unravel correctly extracts the data from
some file, we first need a ground-truth for each input file. For some files in the benchmarks the
ground-truth was already defined (e.g., for data on help forums and from the product teams). For
files where such ground-truth was missing we have manually determined a reasonable tabular
structure as a ground-truth.7

6We ignore 11 files from Gao et al. [2018] as they do not contain any tabular structure (as also noted by the authors).
7This is not always easy, as a file might have different interpretations based on application; in these cases we picked the
table that made most sense.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1:22 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

101 103 105 107

10−1

100

101

102

File size (bytes)

Ru
nn

in
g
tim

e
(s)

Own
Datamaran

(a) Running time.

1 2 3 4 5 > 5
0

20

40

60

Rank

%
of

fil
es

(b) Ranking distribution.

Fig. 8. Evaluation Details.

We consider a file correctly handled when one of the generated tables (Tables in line 21 of
Algorithm 1) exactly matches the desired (ground-truth) output, i.e., we do not allow over- or under-
splitting. However, the desired table need not be top-ranked for a file to be considered correctly
handled (we discuss ranking below).

Using this criteria, Unravel correctly handles 593 (96%) of the files in the benchmark. The cases
that the tool does not handle correctly were mainly due to two reasons: (a) the files contained rare
esoteric formats that could not be handled by any generic rule (e.g., FASTQ format for biological
sequences), or (b) the automated inference of parameters for a standard rule failed. The right
solution for (a) is to take advantage of the extensibility and to plugin a domain-specific parser as a
black-box rule (we did not do this in the experiments to avoid tweaking the tool after-the-fact).
For (b), the solution is to improve parameter inference for existing rules with more intelligence.
Examples for cases in (b) are: (1) when the header part of the file is much larger then the data
part, the inference for Skip[k] will not infer the large enough k , (2) when there are too many noisy
rows in the (CSV-like) delimited files the inference for DelimSplit[d] will not infer the correct
delimiter d , (3) when the regular expression required for data extraction is too complicated (i.e., too
expressive for the inference algorithm) the inference for RegexSplit[r1, . . . , rn] will fail to infer
the correct sequence of regular-expressions r1, . . . , rn .
Figure 8a shows the running time of Unravel on the files in the benchmark against the size

of the files (and categorized by the benchmark source). For 84% of the files the running time is

under 5s , while the average running time is 3.4s; this is within the usability requirements for BI and

data-analysis tools.

Figure 8b shows the distribution of the ranking of the intended (desired) table. Around 91% of

files have the intended table with rank ≤ 5. In most cases when the top-ranked table is not the
desired one, the cause is over-splitting (our ranking scores tend to prefer more columns). In our
experience with mass-market tools that use predictive analysis for data extraction, it is common
and acceptable for users to browse the top-k results; this is because any AI-infused software is
going to be imperfect in some cases, and browsing through the top-k results to potentially find an
intended result is better than having to do the task manually. Further, while our ranking method
works well enough for the given benchmark, we believe that this is an orthogonal problem to the
one explored in this paper and that there is a lot of opportunity to research more sophisticated
ranking methods.

Properties of extracted tables. In Figure 9a we show the the number of applied rules per desired
(ground-truth) table. For 50.5% of the files the desired table is constructed by applying more than

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Structure Interpretation of Text Formats 1:23

1 2 3 4 5 > 5
0

20

40

Number of applied rules per table

%
of

fil
es

(a) Distribution of the applied rules.

0 10 20

0

20

40

≥ 25

Number of tables

%
of

fil
es

(b) Tables per file.

Fig. 9. Properties of the generated tables.

one rule; this shows the need for a tool that can infer multiple cooperating data-extraction logics for a

single file. However, these are the numbers for only a single interpretation, i.e., a user might extract
additional data using examples, in which cases Unravel will apply further rules (as we discuss
below).

In Figure 9b we show the number of learned (generated) tables per file on our benchmark, that
is, the number of tables that the tools finds after the confidence-based pruning, but before ranking.

In 35.2% of the cases the desired table contains noise or has missing fields. By manually inspecting
20 of those cases we distinguish the following distinct categories: (a) missing keys in key-value
pairs (see the example in Figure 4 and Figure 5; 3 cases), (b) missing fields in HTML tables (see the
example in Figure 6; 3 cases), (c) missing fields or wrong number of columns in delimited (CSV-like)
files (similar to the example in Example 4.5; 8 cases), and (d) records that do not completely conform
to the dominant record pattern (for example extracted by the RegexSplit rule; 6 cases).

Finally, in 63% of the cases the desired table contains multi-line or noise records, and in 4% of the
cases the desired table contains multiple record types. These cases are out of reach for the tools
that do not learn record boundaries or handle multiple record types (e.g., ColumnSplit[Raza and
Gulwani 2017a]).

Comparison with Datamaran. Next, we compare Unravel to Datamaran; we perform this
comparison because Datamaran is the most similar tool to Unravel, and their benchmark is
available and contains various interesting text files.8
We point out that we do not perform direct comparison of the tools because the only available

Datamaran version has some bugs (as confirmed with the authors via email communication), and
we were unable to reproduce the results reported in Gao et al. [2018] or obtain meaningful results
on our benchmark (see the discussion below). Therefore, here we discuss the results for Unravel
that we have obtained on the Datamaran benchmark w.r.t. the results reported in Gao et al. [2018],
and we briefly summarize our experience with running Datamaran on our benchmark.
On the Datamaran benchmark Unravel produces correct output for 103 (90%) files from Gao

et al. [2018]. Gao et al. [2018] report that Datamaran correctly handles 96% of the files from the
same benchmark. This shows that Unravel produces comparable results on the benchmark that
mostly contains log-like files, for which Datamaran is fine-tuned.
It was not possible to directly and automatically compare the outputs of Datamaran and

Unravel on our own benchmark, because Datamaran in almost all cases generated the output
8AlthoughDatamaran is intended tomainly handle log files their benchmark includes a number of non-log files; additionally,
it also includes files from the PADS [Fisher et al. 2008] project.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1:24 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

WARNING [01/01/14 : 22:32:19] [class: baseClass] Overflow
ERROR [04/07/14 : 20:04:13] [unknown] Uncaught exception
INFO [01/01/14 : 22:32:19] [fnc: login] Successful login

(a) Sample log file.

WARNING 01/01/14 22:32:19 class: baseClass Overflow
ERROR 04/07/14 20:04:13 unknown Uncaught exception
INFO 01/01/14 2:32:19 fnc: login Successful login

(b) Unravel output.

Description C R T S F

Web pages 0 10 0 0 0
CSV files 3 1 0 4 2
Fixed-width files 4 0 0 1 5
Key-value files 2 7 0 0 1
Log-like files 7 0 1 2 0
Other 4 0 0 0 6

(c) Manual inspection results (C - correct,

R - wrong rows, T - invalid record types, S

- skipped/filtered records, F - wrong fields).

WARNING 01 01 14 : 22:32:19] class: baseClass Overflow
ERROR 04 07 14 : 20:04:13] unknown] Uncaught exception
INFO 01 01 14 : 2:32:19] fnc:] login Successful login

(d) Datamaran output.

2013 10 · { · url api po hk 98740 1 · response { · message No Records Found } }

2013 10 · { · url api po hk 98740 1 · response { · message No Records Found } }

2013 10 · { · url api po hk 98740 1 · response { · message No Records Found } }

(e) Datamaran’s (partial) output for the file in Figure 1.

Fig. 10. Details of the comparison with Datamaran.

that was different from Unravel’s output. We illustrate this on two examples. Figure 10a shows a
sample log file, and Figure 10b and Figure 10d show tables extracted by Unravel and Datamaran,
respectively. AlthoughDatamaran extracts all the data, it performs several over-splits, among them
on the last three columns which then end up misaligned (which is clearly wrong). Next, Figure 10e
shows partial 9 table extracted by Datamaran for the file shown in Figure 1. The outputs again do
not match, but we consider both our ground-truth and the Datamaran’s output reasonably correct
interpretations of the input; we point out that although Datamaran performs several over-splits
(on time and URL fields), extracts some delimiters (e.g., {) and JSON keys (e.g., url), we consider
this extraction correct because it extracts all fields and they are correctly aligned. 10
Hence, to provide fair comparison we manually inspected the output of Datamaran on 60

files in our own benchmark, across different categories (see summary in Figure 10c). Based on the
discussion above, we considered Datamaran’s output correct when it contains a reasonable tabular
interpretation of the input file (note that this is necessarily subjective): all rows are extracted and
all fields are correctly aligned (we still allow minor over- and under- splits, as discussed on the
example above).
As expected, Datamaran handles very regular data (e.g. log files) quite well, however, it does

not understand semantic data (e.g. HTML structure, CSV quoting semantics, key-value pairs). The
results summary is given in Figure 10c; we categorize the results as follows: (1) correct (C in the
summary table), (2) the records are not correctly identified (mostly due to inability to understand
semantic data; R in the table), (3) similar records are identified as different record types (T in the
table), (4) records that do not conform to the most common pattern are skipped (i.e, they are treated
as noise; S in the table), and (5) the fields are not correctly extracted from the records (similar
as Figure 10d above; F in the table). We believe that for a non-buggy version of Datamaran the

9We omit some field, denoted by ·, for presentation sake.
10Although Datamaran would not be able to extract correct data from this file if some JSON keys were missing, or their
order changed.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Structure Interpretation of Text Formats 1:25

results would be similar on non-log files due to conceptual differences, while we expect that the
results should be better for log files.

Interactivity. Unravel handles 554 (90%) of all the files in the benchmark completely predictively,
that is, in those cases no user guidance is needed. Of the remaining 63 files, Unravel can handle 39
(62%) in by-example mode. In those cases the result is obtained using the following:
• a prefix (of up to 3 rows) of a desired table,
• a (single) example of how to further split an already extracted column, and
• a sample of different records (one sample for each record type), for record partitioning.

To further investigate the mixture of the interactive and predictive mode, we have provided
column-extraction examples on 11web-extraction files from the benchmark. In these cases Unravel
extracts tabular data from the web-page predictively, and the user has to only specify further column
extraction examples (based on her needs).
For example, in Figure 6, the user needs to provide the example $534.86M → 534.86, and

Unravel learns how to extract the whole column from that. Overall, we have extracted additional
data from 1-4 columns per table, and in all but one case it was sufficient to provide only a single
example for each extracted column (in one case we needed two examples).
We point out that unlike purely by-example approaches (e.g., FlashExtract [Le and Gulwani

2014]), Unravel can in many cases also work without any examples. Further, we are not aware of
other approaches that can handle the mixture of predictive and by-example modes to extract data.

Extensibility. We next describe the steps required to add a new rule to Unravel, on a concrete
example of the rule to predictively extract table data from web pages. We also describe how adding
this rule affected results in our benchmark.
Our web-extraction rule Web is based on a predictive system described in Raza and Gulwani

[2017b]. Hence, Web is parametrized by the program P , whose input is a HTML DOM tree and
output is a table. To add this new rule to Unravel we have to provide: (a) semantics of the rule,
that is, we need a procedure to learn the parameter P based on the input string, and a procedure
that, given the parameter P , runs the input string and produces the output table; (b) a procedure
that generates the confidence based on the input string and the learned parameter P (as discussed
earlier, the confidence is simply a zero-one parameter).

Raza and Gulwani [2017b] define operational semantics for P and a procedure to learn it predic-
tively, hence we can use this system as a black-box to provide semantics for the Web rule, we only
need to parse the input string into the HTML DOM tree (there are numerous libraries for this).
Assigning confidence is also quite easy: we assign high confidence to any learned parameter P , since
this means that the input can be parsed as a valid HTML and we can extract a table from it, and
hence we can be quite confident that this is a correct interpretation. In our Unravel implementation
this was implemented in around 50 lines of code.

Finally, we discuss the effect of adding theWeb rule to the framework on the evaluation. Without
the Web rule, the framework cannot handle 14 files that contain HTML content (it does not have
effect on the files without HTML content). The average running time remains the same on non-
HTML files, but increases 2.7x on HTML files, when the Web rule is not present. This happens
because theWeb rule has high-confidence on HTML files, and hence Unravel converges faster
and finds the desired interpretation.

Re-interpretation. We evaluate re-interpretation capability of Unravel by implementing a new
rule in our system, based on a table extraction system inside Microsoft Power BI. The Power BI
system has the ability to generate M code [Microsoft 2020] to perform table extraction from a
text file, based on the user-provided output examples. Hence, we perform an experiment to check

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

whether we can use the predictively learned output from Unravel to learn a new interpretation,
using the new by-example rule, from which we can then derive executable M code to perform table
extraction.
Out of 554 files in our benchmark that Unravel handles predictively we were able to learn a

new interpretation (by example) in 244 (44%) cases; that is, in this concrete case this shows that in
44% cases Unravel can help to generate M code for users completely predictively, where earlier
they would need to provide examples. Further, this shows an interesting synergy between two
systems - one that predictively uses various composable rules to learn the tabular structure, but for
which it might be difficult to generate executable-code, and another monolithic by-example system
that generates executable code, but for which it might be difficult to develop predictive learning.

7 RELATEDWORK

Automatic Extraction. The two closest work to Unravel are PADS [Daly et al. 2006; Fisher
and Gruber 2005; Fisher and Walker 2011; Fisher et al. 2008] and Datamaran [Gao et al. 2018].
The PADS project simplifies ad hoc parsing among several dimensions: introducing a DSL for
describing formats [Fisher and Gruber 2005], inferring such formats automatically [Fisher et al.
2008], and defining a markup language which users use to annotate for more effective text structure
inference [Xi and Walker 2010]. Datamaran also parses log files automatically but unlike PADS,
it does not require the record boundary to be given. The key difference in Unravel is that it
is an extensible framework that allows easy plug-and-play of rules to parse mixed file formats.
Additionally, our tool also allows users to provide examples to express their intent more precisely
or to create custom output.

Known-format Extraction. Vaarandi and Pihelgas [2015] introduced LogCluster, an algorithm
to cluster data and mine line pattern in log files. Du and Li [2016] presented an algorithm based
on longest common subsequence approach to perform online parsing of streaming data. LogMine
is a distributed system that efficiently generate patterns for logs [Hamooni et al. 2016]. Zhu et al.
[2019b] perform a study on popular parsing methods, implementing them and comparing their
performance. Commercial solutions such as Splunk [Splunk 2019], ELK [ELK 2019], LogEntries [Lo-
gentries 2019] is able to parse popular log formats to enable further advanced analytics. The above
approaches assume that the log file is structured and do not work on mixed formats.
Webpages contain valuable information that are usually locked in the HTML format. Wrapper

induction learns procedures to extract data from webpages [Kushmerick 1997]. It can be supervised,
wherewrappers based on query languages such as CSS or XPath are learned from examples [Gulhane
et al. 2011; Nielandt et al. 2016; Raza and Gulwani 2017b]. Unsupervised wrapper induction leverages
the idea that some elements in the HTML DOM are repeated hence can potentially be parts of
tabular data [Arasu and Garcia-Molina 2003; Crescenzi et al. 2001]. Unlike HTML, the text structure
is our case is implicit and more diverse.
JSON is also popular data format; for example, the libraries pandas.read_json [Read Json

2019] and pandas.io.json.json_normalize [Json Normalize 2019] are common tools to convert
JSON into tables. On the other hand, Unravel is more general and the above tools can be used as
black-box rules in Unravel.

Program Synthesis. Abstract interpretation-based synthesis systems leverages the abstraction
over the programs to refine the specification and reduce the search space [Peleg et al. 2018; Vechev
et al. 2010]. In contrast, the abstraction in Unravel is over the data (i.e., file structure). Our rules
are more akin to code/programs, which iteratively build an abstraction over the underlying data.
Various prior work applied programming by examples to extract data [Le and Gulwani 2014;

Miller 2002; Raza and Gulwani 2017b]. FlashExtract [Le and Gulwani 2014] allows users to parse

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Structure Interpretation of Text Formats 1:27

semi-structured files by giving examples. LAPIS [Miller 2002] lets users highlight text regions using
constraints such as string literals, lightweight built-in functions, and relations. Unlike these tools,
Unravel may work without any examples or constraints. However, Unravel may use these tools
as black boxes in which users can enter the interactive mode to further refine the structure using
examples. Wrangle [Guo et al. 2011; Kandel et al. 2011a] is an interactive tool that proactively
suggests users possible transformations, but it is limited in extraction capability and cannot handle
mixed formats.
Program by demonstration (PBD) is another great way to extract data. Helena [Chasins and

Bodik 2017] and Roussillon [Chasins et al. 2018] allow users to synthesize extraction programs
by demonstrating their extraction tasks. While we can handle many cases without any examples,
for the cases where we do require examples, incorporating such PBD systems that provide such a
demonstration trace may give our system more information about which component rules to prefer
and further guide our algorithm to quickly converge to the correct solution with fewer examples.
This will be beneficial for settings where the user can provide a trace of demonstration rather than
just input-output examples.

8 CONCLUSION AND FUTURE DIRECTIONS

We identify and motivate the problem of data extraction from text files that contain mixture of

formats (both standard and ad-hoc). To tackle this problem, we introduce Unravel, a framework
for mixed-format data extraction that can operate in predictive (without any user examples) as
well as interactive modes. The framework is based on the partial structure formalism that allows
non-trivial combination of multiple cooperating data-extraction logics, making Unravel highly
extensible. We evaluate Unravel on a diverse set of benchmarks and show that it can handle cases
that no single previous approach could handle.

Unravel’s ability to extract data from complex, hierarchical, semi-structured text files opens up
multiple avenues for future work. We intend to explore the use of Unravel’s predictive extraction
to program synthesis based data wrangling techniques by allowing them to automatically handle
diverse semi-structured text files as inputs. Additionally, the success of the partial structure frame-
work suggests the use of similar structural domains in other programming-by-example domains
such as string and tree transformations: for example, can we use rules to identify structure common
to multiple example inputs and produce programs in terms of this common syntactic structure?
Another interesting possibility is to explore the use of machine learning models to guide the
rule selection and table ranking. This has the potential to reduce the amount of user interaction
necessary for an extraction. Another interesting direction is to explore how can Unravel help
with debugging of data extraction (e.g., as explored earlier by Mayer et al. [2015]). For example,
since Unravel, besides the resulting tables, also generates a list of rules to extract the data (i.e., a
program), this information could be potentially used to help the user spot what has been missed by
visually decorating the input file. Additionally, the differences in visual decorations that stem from
executing multiple programs could be used to proactively highlight ambiguities to the user.

On the theoretical side, we also like to study additional algebraic structure of partial structures,
and work on extending them with structured syntactic elements to allow extraction of tree data.
The partial structures framework is one formalism to allow multiple program synthesis tools to
interact and share information in the data extraction domain. A question now arises whether similar
frameworks are possible for other program synthesis domains. In regard to the implementation,
we are in the process of releasing Unravel for general commercial use. We will evaluate the
technique’s capability in real world scenarios in terms of the range of files automatically handled,
as well as explore the additional user interaction modalities.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1:28 Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza

REFERENCES

Arvind Arasu and Hector Garcia-Molina. 2003. Extracting Structured Data from Web Pages. In Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data (SIGMOD ’03). ACM, New York, NY, USA, 337–348.
https://doi.org/10.1145/872757.872799

Sarah Chasins and Rastislav Bodik. 2017. Skip Blocks: Reusing Execution History to Accelerate Web Scripts. Proc. ACM
Program. Lang. 1, OOPSLA, Article 51 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133875

Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping Distributed Hierarchical Web Data. In
Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST ’18). Association for
Computing Machinery, New York, NY, USA, 963–975. https://doi.org/10.1145/3242587.3242661

Cognos Analytics 2019. Cognos Analytics: How XML files are flattened. https://www.ibm.com/support/knowledgecenter/
en/SSEP7J_10.2.2/com.ibm.swg.ba.cognos.dg_rtm_wb.10.2.2.doc/c_howxmlfilesareflattenednd09ab.html. Accessed:
2019-11-20.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of

Programming Languages, Los Angeles, California, USA, January 1977, Robert M. Graham, Michael A. Harrison, and Ravi
Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.512973

Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. 2001. RoadRunner: Towards Automatic Data Extraction from
Large Web Sites. In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB ’01). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 109–118. http://dl.acm.org/citation.cfm?id=645927.672370

Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby, Brad A. Myers, and Alan Turransky
(Eds.). 1993. Watch what I do: programming by demonstration. MIT Press, Cambridge, MA, USA. http://portal.acm.org/
citation.cfm?id=168080

Mark Daly, Yitzhak Mandelbaum, David Walker, Mary Fernández, Kathleen Fisher, Robert Gruber, and Xuan Zheng. 2006.
PADS: An End-to-end System for ProcessingAdHocData. In Proceedings of the 2006 ACMSIGMOD International Conference

on Management of Data (SIGMOD ’06). ACM, New York, NY, USA, 727–729. https://doi.org/10.1145/1142473.1142568
Data Miner 2019. Data Miner: Extract data from any website with 1 click. https://data-miner.io/. Accessed: 2019-11-20.
M. Du and F. Li. 2016. Spell: Streaming Parsing of System Event Logs. In 2016 IEEE 16th International Conference on Data

Mining (ICDM). 859–864. https://doi.org/10.1109/ICDM.2016.0103
ELK 2019. ELK. https://www.elastic.co/what-is/elk-stack. Accessed: 2019-11-20.
Kathleen Fisher and Robert Gruber. 2005. PADS: A Domain-specific Language for Processing Ad Hoc Data. In Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’05). ACM, New York,
NY, USA, 295–304. https://doi.org/10.1145/1065010.1065046

Kathleen Fisher and David Walker. 2011. The PADS Project: An Overview. In Proceedings of the 14th International Conference

on Database Theory (ICDT ’11). ACM, New York, NY, USA, 11–17. https://doi.org/10.1145/1938551.1938556
Kathleen Fisher, David Walker, Kenny Qili Zhu, and Peter White. 2008. From dirt to shovels: fully automatic tool generation

from ad hoc data.. In POPL, George C. Necula and Philip Wadler (Eds.). ACM, 421–434. http://dblp.uni-trier.de/db/conf/
popl/popl2008.html#FisherWZW08

Yihan Gao, Silu Huang, and Aditya G. Parameswaran. 2018. Navigating the Data Lake with DATAMARAN: Automatically
Extracting Structure from Log Datasets.. In SIGMOD Conference, Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein (Eds.). ACM, 943–958. http://dblp.uni-trier.de/db/conf/sigmod/sigmod2018.html#GaoHP18

Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ramamirtham, Rajeev Rastogi, Sandeep Satpal, Srinivasan H.
Sengamedu, Ashwin Tengli, and Charu Tiwari. 2011. Web-scale Information Extraction with Vertex. In Proceedings of the

2011 IEEE 27th International Conference on Data Engineering (ICDE ’11). IEEE Computer Society, Washington, DC, USA,
1209–1220. https://doi.org/10.1109/ICDE.2011.5767842

Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and Jeffrey Heer. 2011. Proactive Wrangling: Mixed-initiative End-user
Programming of Data Transformation Scripts. In Proceedings of the 24th Annual ACM Symposium on User Interface

Software and Technology (UIST ’11). ACM, New York, NY, USA, 65–74. https://doi.org/10.1145/2047196.2047205
Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and Abdullah Mueen. 2016. LogMine: Fast Pattern

Recognition for Log Analytics. In Proceedings of the 25th ACM International on Conference on Information and Knowledge

Management (CIKM ’16). ACM, New York, NY, USA, 1573–1582. https://doi.org/10.1145/2983323.2983358
Json Normalize 2019. pandas.io.json.json_normalize. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.

json.json_normalize.html/. Accessed: 2019-11-20.
Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011a. Wrangler: Interactive Visual Specification of

Data Transformation Scripts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11).
ACM, New York, NY, USA, 3363–3372. https://doi.org/10.1145/1978942.1979444

Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2011b. Wrangler: interactive visual specification of
data transformation scripts.. In CHI, Desney S. Tan, Saleema Amershi, Bo Begole, Wendy A. Kellogg, and Manas Tungare

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

https://doi.org/10.1145/872757.872799
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3242587.3242661
https://www.ibm.com/support/knowledgecenter/en/SSEP7J_10.2.2/com.ibm.swg.ba.cognos.dg_rtm_wb.10.2.2.doc/c_howxmlfilesareflattenednd09ab.html
https://www.ibm.com/support/knowledgecenter/en/SSEP7J_10.2.2/com.ibm.swg.ba.cognos.dg_rtm_wb.10.2.2.doc/c_howxmlfilesareflattenednd09ab.html
https://doi.org/10.1145/512950.512973
http://dl.acm.org/citation.cfm?id=645927.672370
http://portal.acm.org/citation.cfm?id=168080
http://portal.acm.org/citation.cfm?id=168080
https://doi.org/10.1145/1142473.1142568
https://data-miner.io/
https://doi.org/10.1109/ICDM.2016.0103
https://www.elastic.co/what-is/elk-stack
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/1938551.1938556
http://dblp.uni-trier.de/db/conf/popl/popl2008.html#FisherWZW08
http://dblp.uni-trier.de/db/conf/popl/popl2008.html#FisherWZW08
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2018.html#GaoHP18
https://doi.org/10.1109/ICDE.2011.5767842
https://doi.org/10.1145/2047196.2047205
https://doi.org/10.1145/2983323.2983358
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.io.json.json_normalize.html/
https://doi.org/10.1145/1978942.1979444

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Structure Interpretation of Text Formats 1:29

(Eds.). ACM, 3363–3372. http://dblp.uni-trier.de/db/conf/chi/chi2011.html#KandelPHH11
Nicholas Kushmerick. 1997. Wrapper Induction for Information Extraction. Ph.D. Dissertation. Seattle, WA, USA. AAI9819266.
Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data extraction by examples.. In PLDI, Michael F. P. O’Boyle

and Keshav Pingali (Eds.). ACM, 55. http://dblp.uni-trier.de/db/conf/pldi/pldi2014.html#LeG14
Logentries 2019. Logentries. https://logentries.com/. Accessed: 2019-11-20.
Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity: An Extensible Synthesis Framework for Data

Science. PVLDB 12, 12 (2019), 1914–1917. https://doi.org/10.14778/3352063.3352098
Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Alex Polozov, Rishabh Singh, Ben Zorn, and Sumit

Gulwani. 2015. User Interaction Models for Disambiguation in Programming by Example. In 28th ACM User Interface

Software and Technology Symposium (UIST 2015) (28th acm user interface software and technology symposium (uist
2015) ed.). ACM – Association for Computing Machinery. https://www.microsoft.com/en-us/research/publication/
user-interaction-models-for-disambiguation-in-programming-by-example/

Microsoft. 2020. Power Query M formula language. (2020). https://docs.microsoft.com/en-us/powerquery-m/
Robert C. Miller. 2002. Lightweight Structure in Text. Ph.D. Dissertation.
Joachim Nielandt, Antoon Bronselaer, and Guy de Tré. 2016. Predicate Enrichment of Aligned XPaths for Wrapper Induction.

Expert Syst. Appl. 51, C (June 2016), 259–275. https://doi.org/10.1016/j.eswa.2015.12.040
Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and Todd Millstein. 2018. FlashProfile:

A Framework for Synthesizing Data Profiles. Proc. ACM Program. Lang. 2, OOPSLA, Article 150 (Oct. 2018), 28 pages.
https://doi.org/10.1145/3276520

Hila Peleg, Shachar Itzhaky, and Sharon Shoham. 2018. Abstraction-Based Interaction Model for Synthesis. In Verification,

Model Checking, and Abstract Interpretation, Isil Dillig and Jens Palsberg (Eds.). Springer International Publishing, Cham,
382–405.

Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s Wheel : An Interactive Data Cleaning System. VLDB (2001).
http://www.vldb.org/conf/2001/P381.pdf

Mohammad Raza and Sumit Gulwani. 2017a. Automated Data Extraction Using Predictive Program Synthesis.. In AAAI,
Satinder P. Singh and Shaul Markovitch (Eds.). AAAI Press, 882–890. http://dblp.uni-trier.de/db/conf/aaai/aaai2017.
html#RazaG17

Mohammad Raza and Sumit Gulwani. 2017b. Automated Data Extraction Using Predictive Program Synthesis. In Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press, 882–890. http://dl.acm.org/citation.
cfm?id=3298239.3298368

Read Json 2019. pandas.read_json. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html.
Accessed: 2019-11-20.

Splunk 2019. Splunk. https://www.splunk.com/. Accessed: 2019-11-20.
Risto Vaarandi and Mauno Pihelgas. 2015. LogCluster - A Data Clustering and Pattern Mining Algorithm for Event Logs.

In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM) (CNSM ’15). IEEE
Computer Society, Washington, DC, USA, 1–7. https://doi.org/10.1109/CNSM.2015.7367331

Martin Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-Guided Synthesis of Synchronization. In Proceedings of the

37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). Association for
Computing Machinery, New York, NY, USA, 327–338. https://doi.org/10.1145/1706299.1706338

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing database programs for schema refactoring.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,

Phoenix, AZ, USA, June 22-26, 2019. 286–300. https://doi.org/10.1145/3314221.3314588
Qian Xi and David Walker. 2010. A Context-free Markup Language for Semi-structured Text. SIGPLAN Not. 45, 6 (June

2010), 221–232. https://doi.org/10.1145/1809028.1806622
Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R. Lyu. 2019a. Tools and benchmarks for

automated log parsing.. In ICSE (SEIP), Helen Sharp and Mike Whalen (Eds.). IEEE / ACM, 121–130. http://dblp.uni-trier.
de/db/conf/icse/seip2019.html#ZhuHLHXZL19

Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R. Lyu. 2019b. Tools and Benchmarks for
Automated Log Parsing. In Proceedings of the 41st International Conference on Software Engineering: Software Engineering

in Practice (ICSE-SEIP ’19). IEEE Press, Piscataway, NJ, USA, 121–130. https://doi.org/10.1109/ICSE-SEIP.2019.00021

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

http://dblp.uni-trier.de/db/conf/chi/chi2011.html#KandelPHH11
http://dblp.uni-trier.de/db/conf/pldi/pldi2014.html#LeG14
https://logentries.com/
https://doi.org/10.14778/3352063.3352098
http://approjects.co.za/?big=en-us/research/publication/user-interaction-models-for-disambiguation-in-programming-by-example/
http://approjects.co.za/?big=en-us/research/publication/user-interaction-models-for-disambiguation-in-programming-by-example/
https://docs.microsoft.com/en-us/powerquery-m/
https://doi.org/10.1016/j.eswa.2015.12.040
https://doi.org/10.1145/3276520
http://www.vldb.org/conf/2001/P381.pdf
http://dblp.uni-trier.de/db/conf/aaai/aaai2017.html#RazaG17
http://dblp.uni-trier.de/db/conf/aaai/aaai2017.html#RazaG17
http://dl.acm.org/citation.cfm?id=3298239.3298368
http://dl.acm.org/citation.cfm?id=3298239.3298368
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html
https://www.splunk.com/
https://doi.org/10.1109/CNSM.2015.7367331
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/1809028.1806622
http://dblp.uni-trier.de/db/conf/icse/seip2019.html#ZhuHLHXZL19
http://dblp.uni-trier.de/db/conf/icse/seip2019.html#ZhuHLHXZL19
https://doi.org/10.1109/ICSE-SEIP.2019.00021

	Abstract
	1 Introduction
	2 Motivating Example
	3 A diversity of formats and approaches
	4 A Structure Interpretation Framework
	4.1 Partial Structures as Interpretations
	4.2 Structure Interpretation and Extraction
	4.3 Example and Discussion

	5 The Unravel procedure
	5.1 A Generic Procedure
	5.2 Instantiating Algorithm 1
	5.3 Faster Extractions: Re-interpreting Structures
	5.4 Interacting with Unravel

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Directions
	References

