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Abstract
Spoken language understanding (SLU) re-
quires a model to analyze input acoustic sig-
nal to understand its linguistic content and
make predictions. To boost the models’ per-
formance, various pre-training methods have
been proposed to learn rich representations
from large-scale unannotated speech and text.
However, the inherent disparities between the
two modalities necessitate a mutual analy-
sis. In this paper, we propose a novel semi-
supervised learning framework, SPLAT, to
jointly pre-train the speech and language mod-
ules. Besides conducting a self-supervised
masked language modeling task on the two in-
dividual modules using unpaired speech and
text, SPLAT aligns representations from the
two modules in a shared latent space using
a small amount of paired speech and text.
Thus, during fine-tuning, the speech module
alone can produce representations carrying
both acoustic information and contextual se-
mantic knowledge of an input acoustic signal.
Experimental results verify the effectiveness
of our approach on various SLU tasks. For
example, SPLAT improves the previous state-
of-the-art performance on the Spoken SQuAD
dataset by more than 10%.

1 Introduction

Spoken language understanding (SLU) tackles the
problem of comprehending audio signals and mak-
ing predictions related to the content. SLU has been
widely employed in various areas such as intent
understanding (Tur and De Mori, 2011; Bhargava
et al., 2013; Ravuri and Stolcke, 2015; Lugosch
et al., 2019), question answering (Lee et al., 2018;
Chuang et al., 2020), and sentiment analysis (Zadeh
et al., 2018). Early approaches leverage a two-step
pipeline: use automatic speech recognition (ASR)
to transcribe input audio into text, and then em-
ploy language understanding models to produce
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results. However, such cascaded system has sev-
eral drawbacks. First, the transcription produced
by the ASR module often contains errors, which
adversely affects the language understanding mod-
ule’s prediction accuracy. Second, even if the tran-
scription is perfect, the rich prosodic information
of speech (e.g., tempo, pitch, and intonation) is in-
evitably lost after ASR. In comparison, humans of-
ten leverage these information to better understand
and disambiguate the content. Therefore, there has
been a rising trend of end-to-end approaches to
retain information from audio signals to carry out
the understanding task (Serdyuk et al., 2018; Chen
et al., 2018; Haghani et al., 2018).

While end-to-end SLU methods are effective,
they often suffer from a shortage of labeled training
data, especially when the target task is in a novel
domain. One solution is to leverage self-supervised
training as is done in pre-trained language mod-
els. Examples like BERT (Devlin et al., 2019),
GPT (Radford et al., 2018), and RoBERTa (Liu
et al., 2019) are first pre-trained on large-scale
unannotated text in a self-supervised fashion to
learn rich textual representations before being fine-
tuned on downstream tasks with a modest amount
of labeled data. Borrowing this idea, several pre-
training methods have been proposed for speech,
e.g., wav2vec (Schneider et al., 2019; Baevski et al.,
2020a), contrastive predictive coding (Oord et al.,
2018; Rivière et al., 2020), autoregressive predic-
tive coding (Chung et al., 2019a, 2020; Chung and
Glass, 2020b), and DeCoAR (Ling et al., 2020;
Ling and Liu, 2020), to capture contextual repre-
sentations from unlabeled speech data. Neverthe-
less, these methods leverage only acoustic data and
mainly focus on modeling the acoustic informa-
tion during pre-training. As a result, the produced
representations may not be optimal for language
understanding tasks.

To solve these problems, we propose a novel
SPeech-LAnguage joint pre-Training framework,



Figure 1: Overview of SPLAT. First, the speech and language modules are separately pre-trained using speech and
text data via masked language modeling (MLM). In practice, we directly employ the BERTBASE model released
by Devlin et al. (2019) to be the language module. Then, by leveraging a small amount of paired speech and
text data, either a sequence-level alignment loss Lseq or a token-level alignment loss Ltok is applied to align the
representations from both modules in a shared latent space (only Lseq is shown here). During alignment, the
language module is kept frozen and only the speech module is updated. Before aligning the two modules, there is
an optional step to update the BERTBASE-initialized language module via MLM using the text portion from the
paired data. This optional step aims to adapt the language module to the speech domain to facilitate later alignment.
After pre-training, the language module is discarded and only the speech module is used in downstream tasks.

SPLAT. SPLAT contains a speech module and a lan-
guage module for multi-modal understanding. The
speech module is a Transformer encoder trained
from scratch and the language module is initialized
from BERT. Both modules leverage large-scale
unannotated data for pre-training via masked lan-
guage modeling. In the speech module, each frame
is seen as a token and is replaced with zero vector
with a certain probability. For each masked frame,
we minimize the L1-distance between the predicted
frame and the original frame.

Then, to make the speech module aware of the
contextual information extracted from the language
module, we design an alignment loss to align the
representations from both modules in a shared la-
tent semantic space. In detail, we propose two
alignment methods, a sequence-level one and a
token-level one, that leverage a small amount of
paired speech and text to minimize the disparity be-
tween the acoustic representations from the speech
module and the textual representations from the
language module. In this way, the speech represen-
tations will carry not only the acoustic information
but also the contextual knowledge from the text. Af-
ter this alignment, when text input is absent during

fine-tuning, the speech module alone can produce
representations that bridge the speech input and the
language understanding output.

We conduct extensive evaluations on several
downstream SLU tasks, including Fluent Speech
Commands for intent detection, Switchboard for
dialog act classification, CMU-MOSEI for spoken
sentiment analysis, and Spoken SQuAD for spoken
question answering. SPLAT achieves superior re-
sults in all datasets. For example, SPLAT improves
the previous state-of-the-art performance on the
Spoken SQuAD dataset by more than 10%. Fur-
thermore, we show that SPLAT can perform well
even given just a tiny portion of the labeled training
data in downstream tasks.

2 Related Work

Spoken language understanding In recent
years, due to its flexibility and effectiveness, end-
to-end spoken language understanding (SLU) has
been proposed and applied to various tasks (Qian
et al., 2017; Serdyuk et al., 2018; Lugosch et al.,
2019). For instance, Qian et al. (2017) use an auto-
encoder to initialize the SLU model. Lugosch et al.
(2019) pre-train the model to recognize words and



phonemes, and then fine-tune it on downstream
tasks. Chen et al. (2018) pre-train the model to cat-
egorize graphemes, and the logits are fed into the
classifier. In most of these approaches, the model
pre-training requires annotated speech, e.g., word
or phonemes corresponding to audio signals. As
a result, the massive unlabeled speech data cannot
be utilized by these models.

Self-supervised pre-training for language Pre-
trained models have achieved great success in
both language and speech domains. In lan-
guage, BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), UniLM (Dong et al., 2019), and
BART (Lewis et al., 2020) have been successfully
applied to natural language inference (Zhang et al.,
2020b), question answering (Zhu et al., 2018),
and summarization (Zhu et al., 2019). These pre-
trained models leverage self-supervised tasks such
as masked language modeling (MLM), next sen-
tence prediction, and de-noising autoencoder.

Self-supervised pre-training for speech In
speech, wav2vec (Schneider et al., 2019) leverages
contrastive learning to produce contextual represen-
tations for audio input; vq-wav2vec (Baevski et al.,
2020a) and wav2vec 2.0 (Baevski et al., 2020b)
further propose to discretize the original contin-
uous audio signals in order to enable more effi-
cient MLM training with Transformer (Vaswani
et al., 2017). Pre-trained speech models have been
applied to ASR (Ling et al., 2020; Chung and
Glass, 2020a; Baevski et al., 2020b), phoneme
recognition (Song et al., 2020; Liu et al., 2020a),
speech translation (Nguyen et al., 2020; Chung
et al., 2019c), and speech synthesis (Chung et al.,
2019b), to name a few.

Nevertheless, an SLU model must incorporate
both acoustic and language understanding capabili-
ties to project speech signals to semantic outputs.
Thus, a pre-trained model for SLU needs to address
tasks beyond a single modality.

Speech and language joint pre-training Re-
cently, SLU applications have prompted joint pre-
training on both speech and text data. Speech-
BERT (Chuang et al., 2020) applies MLM to pairs
of audio and transcripts. However, there are several
crucial differences to compared to our work. First,
SpeechBERT contains a phonetic-semantic embed-
ding module that requires forced alignment to first
segment speech into word segments to obtain. Sec-
ond, both the pre-training and fine-tuning phases

of SpeechBERT require both speech and text input,
since it is designed for a specific spoken question
answering task. However, many SLU tasks only
take speech as input, which does not align with
the design of SpeechBERT. In contrast, our model
can learn to align acoustic and textual representa-
tions using just (a small amount of) paired data
during pre-training, and only needs speech input
for downstream tasks.

Denisov and Vu (2020) propose to align speech
and language embeddings in a method similar to
ours. However, there are several key differences.
First, Denisov and Vu (2020) employ the encoder
of a pre-trained ASR model, which already requires
plentiful of annotated speech to obtain. Our model,
on the other hand, conducts self-supervised learn-
ing to pre-train the speech module using unanno-
tated speech. Secondly, besides sequence-level
alignment, we propose a token-level alignment
method, which is suitable for token-level down-
stream tasks. Last but not least, our model uses
a much smaller paired speech and text for align-
ment (10 hours) than Denisov and Vu (2020) (1,453
hours), yet still largely outperforms their method
in intent detection and dialog act classification.

3 Method

In this section we present SPLAT, a framework for
learning joint contextual representations of speech
and language. The model consists of a speech
module and a language module that share a simi-
lar architecture and learning algorithm. The pre-
training of SPLAT is divided into two steps. First,
we individually pre-train the speech and language
modules using unannotated speech and text, respec-
tively. Then, we leverage a simple yet effective
alignment task that uses only a small amount of
paired speech and text data to align the represen-
tations from both modules in a shared latent se-
mantic space such that the information learned by
the language module is transferred to the speech
module. After pre-training, the language module
is discarded and only the speech module is used in
downstream tasks.

Below we formally describe the procedures for
pre-training the speech (§3.1) and language mod-
ules (§3.2), and the alignment loss (§3.3) for align-
ing the representations from the two modules. Fig-
ure 1 provides an overview of the pre-training pro-
cedures of SPLAT.
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Figure 2: Token-level alignment between speech and language modules. (s1, ..., s5) are the output embeddings of
the speech module and (t1, ..., t4) are those of the language module.

3.1 Speech module pre-training

The goal of this module is to leverage unlabeled
speech data to learn representations that capture
meaningful acoustic information about speech ut-
terances such as their phonetic content and speaker
characteristics. Formally, the input to the speech
module is a 80-dimensional log Mel spectrogram,
(x1, ...,xn), where xi ∈ R80, 1 ≤ i ≤ n. The
speech module, which is implemented as a Trans-
former architecture, then produces hidden repre-
sentations (s1, ..., sn) and predictions (x̂1, ..., x̂n),
where si ∈ R768 and x̂i ∈ R80.

To boost its capacity for contextual understand-
ing, we borrow the idea of masked language mod-
eling (MLM) (Devlin et al., 2019; Liu et al., 2020c;
Wang et al., 2020; Liu et al., 2020b). Specifically,
each audio frame xi is replaced with a zero vector
with a probability of 15%. The corresponding out-
put x̂i is trained to be close to the original frame xi

via minimizing their L1-distance. Additionally,
since consecutive frames are highly correlated, it
is possible that the model simply utilizes the local
smoothness of speech signals for reconstructing a
single frame and thus fails to capture useful infor-
mation. To avoid such issue, when a frame xi is
selected to be masked, its following three frames
xi+1, xi+2, and xi+3 are also masked, and the
model is asked to reconstruct all these masked
frames.

Furthermore, according to SpecAugment (Park
et al., 2019), the input features (x1, ...,xn) can
be seen as comprising two dimensions: time, i.e.,
the subscript i, and channel, i.e., the elements in
each xi. While conventional MLM masks along
certain time steps, the input signals can also be
masked along the channel dimension. In other
words, each column vector [x1,j , ...,xn,j ] for 1 ≤
j ≤ 80 has a 15% of chance to be masked, i.e., re-
placed with a zero vector. This channel masking is

combined with temporal masking to reinforce the
model’s capability to utilize contextual information
from both time and channel, and reduce the impact
of co-adaptation between acoustic frames. The fi-
nal pre-training objective for the speech module is
to reconstruct the entire input sequence from the
altered version of it:

Lsp =
∑

i=1,2,...,n

‖xi − x̂i‖1 (1)

We use the speech portion of the train-clean-360
subset from the LibriSpeech corpus (Panayotov
et al., 2015) to pre-train the speech module, i.e.,
to minimize Lsp. This subset contains 360 hours
of read speech produced by 921 speakers. We fol-
low the standard Kaldi setting, using a frame size
of 25ms and a time shift of 10ms for generating
the 80-dimensional log Mel spectrograms. The
spectrograms are normalized to zero mean and unit
variance per speaker.

3.2 Language module pre-training

The language module aims to offer contextual un-
derstanding for text input. We directly employ the
BERTBASE model released by Devlin et al. (2019),
which is pre-trained on a large text corpus with
the MLM task and contains rich textual representa-
tions, as the language module. We denote the cross-
entropy loss for the language MLM task as Ltext.

Given input token embeddings (y1, ...,ym),
where y1 corresponds to the [CLS] token,
the module produces contextual representations
(t1, ..., tm), where tj ∈ R768, 1 ≤ j ≤ m.

3.3 Aligning speech and language
representations

The input to most SLU tasks consists of only audio
signals, but the model is required to conduct seman-
tic understanding, which can be best handled when



textual information is present. Therefore, we pro-
pose to align the pre-trained speech and language
representations in a shared semantic latent space.

Suppose a pair of speech and text data consisting
of an acoustic feature sequence (x1, ...,xn) and its
transcript (y1, ...,ym). The speech and language
modules separately produce the output representa-
tions (s1, ..., sn) and (t1, ..., tm). We then propose
two methods to align the embeddings from the mod-
ules: sequence-level and token-level alignment.

Sequence-level alignment For sequence-level
alignment, we treat the first embeddings from the
two output representations, i.e., s1 and t1, as the
sequence-level representations of their respective
sequences, and minimize their L1-distance:

Lseq = ‖s1 − t1‖1 (2)

Since our goal is to transfer the textual knowledge
contained by the language module to the speech
module, we only update the speech module to min-
imize Lseq and keep the language module fixed.

After pre-training, when the transcript is absent
in downstream tasks, the first output embedding of
the speech module s1 will still be close to its cor-
responding text embedding t1 from the language
module, as if the transcript were given. It follows
that s1 can then be used to predict the property of
the whole audio input, e.g., intent classification.

Token-level alignment To achieve a finer level
of alignment, each audio feature should be com-
pared with its each text token. Although forced
alignment (Gorman et al., 2011) can establish this
correspondence between audio signals and individ-
ual words, it requires a pre-trained ASR system to
obtain. Here we propose a method that automati-
cally aligns audio features with textual tokens.

Inspired by BERTScore (Zhang et al., 2020a),
for each output text embedding tj , we first com-
pute its cosine similarity with each output acoustic
embedding si, and select the acoustic feature with
the highest similarity. Then, the alignment is per-
formed by maximizing the sum of these maximum
similarities over all tokens, weighted by each to-
ken’s inverse document frequency (idf) to reduce
the impact of common words:

Ltok = −
∑m

j=1 idf(tj)maxi cossim(si, tj)∑m
j=1 idf(tj)

(3)

The token-level alignment loss is illustrated in Fig-
ure 2. Same as Lseq, when minimizing Ltok, the

Algorithm 1 Pre-training SPLAT

Input: An unlabeled speech corpus X =
{x(p)}Np=1, an unlabeled text corpus Y =

{y(q)}Mq=1, and a paired speech-text corpus
Z = {(x(k),y(k))}Kk=1, where K � N,M .

1: Use X to train the speech module by minimiz-
ing Lsp (Equation 1).

2: Use Y to train the language module by mini-
mizing Ltext (we directly employ BERTBASE

from Devlin et al. (2019) for this step).
3: Use {y(k)}Kk=1 from Z to train the language

module by minimizing Ltext.
4: Use Z to align the two modules by minimiz-

ing Lseq (Equation 2) or Ltok (Equation 3).
5: Discard the language module.

Output: The final speech module.

language module is kept fixed and only the speech
module is updated.

To minimize the alignment loss, we randomly
sample 10 hours of audio paired with its tran-
scripts from the train-clean-360 subset, of which
the speech portion is used to pre-train the speech
module (§ 3.1). In practice, before minimizing the
alignment loss, we find it beneficial to train (i.e.,
minimize Ltext) the language module initialized
with BERTBASE with the 10-hour LibriSpeech tran-
scripts with the MLM task. This step allows the
model to adapt to the speech domain and facilitates
the following alignment task.

We summarize the complete procedure of pre-
training SPLAT in Algorithm 1. After pre-training,
the language module is discarded and only the
speech module is used in downstream tasks.

4 Experiment Setup

4.1 Baselines
We include a number of strong baselines from re-
cent literature for each downstream task (Lugosch
et al., 2019; Duran and Battle, 2018; Ghosal et al.,
2018; Chuang et al., 2020). We also compare with
another speech-language joint pre-training frame-
work (Denisov and Vu, 2020). For each baseline,
the reported performance is achieved by system
that either uses similar or more amounts of data
than our model.

To verify the effectiveness of each component
in SPLAT, we experiment with the following vari-
ants of it, including whether to pre-train the model,



Table 1: Variants of SPLAT. An 7 indicates that the variant does not incorporate this step during pre-training. The
step numbers correspond to those listed in Algorithm 1.

Model variant
Step 1. Pre-train
speech module

Step 2. Pre-train
language module

Step 3. Adapt language
module before alignment

Step 4. Type of
alignment loss

SPLAT-Scratch 7 7 7 7

SPLAT-Speech 3 7 7 7

SPLAT-Seq 3 3 7 Lseq
SPLAT-Seq-MLM 3 3 3 Lseq
SPLAT-Tok 3 3 7 Ltok
SPLAT-Tok-MLM 3 3 3 Ltok

Table 2: Summary of SLU datasets. For the rows of Train, Validation, and Test, the numbers indicate the number
of utterances in the split.

Task
Intent

detection
Dialog act

classification
Spoken sentiment

analysis
Spoken question

answering
Dataset FSC SwBD CMU-MOSEI Spoken SQuAD
Num. of classes 31 42 7 -
Train/val/test 23.1k/3.1k/3.8k 97.8k/8.6k/2.5k 16.2k/1.8k/4.6k 35.1k/2.0k/5.4k

whether to use the language module and which
alignment task to apply. Table 1 summarizes the
considered model variants.

• SPLAT-Scratch: No pre-training is con-
ducted at all. Speech module is trained from
scratch on downstream tasks.

• SPLAT-Speech: Only the speech module is
pre-trained. Language module and alignment
loss are not incorporated.

• SPLAT-Seq: SPLAT with sequence-level
alignment loss Lseq, but language module is
not trained on LibriSpeech transcripts with
MLM before alignment.

• SPLAT-Seq-MLM: SPLAT with sequence-
level alignment loss Lseq, and language mod-
ule is trained on LibriSpeech transcripts with
MLM before alignment.

• SPLAT-Tok: SPLAT with token-level align-
ment loss Ltok, but language module is not
trained on LibriSpeech transcripts with MLM
before alignment.

• SPLAT-Tok-MLM: SPLAT with token-level
alignment loss Ltok, and language module is
trained on LibriSpeech transcripts with MLM
before alignment.

The speech module of SPLAT is a 3-layer Trans-
former encoder where each layer has a hidden size

of 768 and 12 self-attention heads. The language
module is directly initialized from the pre-trained
BERTBASE released by Devlin et al. (2019).

4.2 Downstream SLU Tasks

We evaluate our model on four different SLU appli-
cations: intent detection, dialog act classification,
spoken sentiment analysis, and spoken question
answering. The first three belong to multi-class
classification tasks, and the last one is a span pre-
diction problem, which will be described in more
detail below. Table 2 summarizes the used dataset
for each application. For all datasets, we use 80-
dimensional log Mel spectrograms as input acous-
tic features as in the pre-training stage.

Intent detection We use the Fluent Speech Com-
mands corpus (FSC) (Lugosch et al., 2019) for
intent detection, where the goal is to correctly pre-
dict the intent of an input utterance. In this dataset,
each utterance is annotated with three slots: action,
object, and location, where each slot can take one
of multiple values. The combination of slot values
is defined as the intent of the utterance, and there
are 31 unique intents in total. In this work we fol-
low the original paper to formulate intent detection
as a simple 31-class classification task.

Dialog act classification We use the NTX-
format Switchboard corpus (SwDA) (Calhoun
et al., 2010), a dialog corpus of 2-speaker conver-
sations. The goal is to correctly classify an input



Table 3: Results on all downstream datasets. All numbers of our models are an average of three runs, of which
variances are negligibly small and not included. The metric is classification accuracy for FSC, SwBD and CMU-
MOSEI. The metric for Spoken SQuAD is Audio Overlapping Score (AOS).

Model FSC SwBD CMU-MOSEI Spoken SQuAD
Ours
SPLAT-Scratch 97.6 65.8 68.8 30.4
SPLAT-Speech 99.5 67.5 69.0 57.7
SPLAT-Seq 99.5 74.6 72.5 62.7
SPLAT-Seq-MLM 99.5 76.3 74.7 65.9
SPLAT-Tok 99.2 71.2 70.4 58.0
SPLAT-Tok-MLM 99.2 72.7 71.2 63.8
SPLAT-Seq-MLM 1-hour 99.5 75.8 65.3 65.3
Baselines
Lugosch et al. (2019) 98.8 - - -
Duran and Battle (2018) - 75.5 - -
Ghosal et al. (2018) - - 75.9 -
Chuang et al. (2020) - - - 59.7
Denisov and Vu (2020) 95.5 60.2 - -

utterance into one of the 42 dialog acts.

Spoken sentiment analysis We use the CMU-
MOSEI dataset (Zadeh et al., 2018), where each
utterance is annotated for a sentiment score on
a [−3, 3] Likert scale: [-3: highly negative, -2: neg-
ative, -1: weakly negative, 0: neutral, +1: weakly
positive, +2: positive, +3: highly positive]. We
treat the task as a 7-class classification problem.
And we only use audio signals in the input data.

For the above three tasks, during fine-tuning, an
MLP network with one hidden layer of 512 units is
appended on top of the speech module. It converts
the output representation of the first frame, i.e., s1,
for class prediction. Both the pre-trained speech
module and the randomly initialized MLP are fine-
tuned on the training set for 10 epochs with a batch
size of 64 and a fixed learning rate of 3e-4. We
compute classification accuracy after each training
epoch and pick the best-performing checkpoint on
the validation set to report results on the test set.

Spoken question answering We use the Spoken
SQuAD dataset (Li et al., 2018), which is aug-
mented1 from SQuAD (Rajpurkar et al., 2016) for
spoken question answering. The model is given
an article in the form of speech and a question
in the form of text. The goal is to predict a time
span in the spoken article that answers the ques-
tion. In other words, the model outputs an audio

1Li et al. (2018) used Google text-to-speech to generate
the spoken version of the articles in SQuAD.

segment extracted from spoken article as the an-
swer. The model is evaluated by Audio Overlap-
ping Score (AOS) (Li et al., 2018): the greater the
overlap between the predicted span and the ground-
truth answer span, the higher the score will be.

During fine-tuning, given a spoken article and
a question in the text form, the pre-trained speech
module extracts audio representations of the arti-
cle and pass them to a randomly initialized 3-layer
Transformer encoder along with the tokenized tex-
tual question as input. The Transformer then uses
the self-attention mechanism to implicitly align el-
ements of the input audio and textual features. For
each time step of the audio input, the Transformer
is trained to predict whether this is the start of the
span with a simple logistic regression. A separate
classifier is used for predicting the end of the span.

5 Results and Analysis

5.1 Main results
Table 3 shows the performance of models on all
four downstream tasks. Each number from our
model is an average over three runs. Based on the
results, we make the following observations.

Firstly, compared with SPLAT-Scratch, all pre-
trained models achieve superior results, especially
more than 30% gain on Spoken SQuAD, proving
the effectiveness of pre-training.

Secondly, the inclusion of language module and
the alignment task during pre-training is very ben-
eficial. For instance, on CMU-MOSEI, SPLAT-
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Figure 3: Performance on downstream tasks with varying training data sizes. All numbers are an average of three
runs, of which variances are negligibly small and not included.

Seq-MLM outperforms SPLAT-Speech by 5.7%,
and outperforms several baseline systems from re-
cent literature. We argue that as SLU tasks require
the model to interpret acoustic signals and their un-
derlying semantics, the language module will guide
the speech module towards a mutual understanding
of both modalities via our alignment task.

Thirdly, updating the language module using
MLM during pre-training is helpful. Although the
language module has been initialized with BERT,
adaptation to the speech domain can help with se-
mantic understanding in the downstream task.

Types of alignment Comparing SPLAT-Seq
against SPLAT-Tok, we find that sequence-level
alignment outperforms token-level alignment on
all four tasks, although the latter is supposed to
learn more fine-grained multi-modal representa-
tions. We leave the investigations of reasons for
such phenomenon and more advanced token-level
alignment approaches for future work.

Low-resource scenario We experiment with a
version of SPLAT that uses only 1 hour of tran-
scribed speech randomly sampled from the Lib-
riSpeech train-clean-360 subset for aligning speech
and language modules, denoted as SPLAT-Seq-
MLM 1-hour. The language module of SPLAT-
Seq-MLM 1-hour—after being initialized with
BERTBASE—is trained on the 1-hour LibriSpeech
transcripts before minimizing the alignment loss.
It achieves comparable results with the best vari-
ant SPLAT-Seq-MLM: same accuracy on FSC,
0.5% less on SwBD, and 0.6% less on Spoken
SQuAD. This shows that with a small amount of
labeled speech data, our pre-training framework
can achieve good results on downstream tasks.

5.2 Robustness to the size of downstream
training data

As human labeling is time-consuming and labor-
intensive, the amount of labeled training data for
downstream tasks is often small and insufficient.
In this section, we show that with effective pre-
training, the model will be less dependent on the
amount of downstream labeled data.

We randomly sample 50%, 10%, 5%, and 1%
of the training data in the downstream tasks, and
evaluate the performance of different variants of
SPLAT when fine-tuned on the sampled data.

Figure 3 shows the performance on all four
downstream tasks with varying training data sizes.
We observe that among the variants, SPLAT-Seq-
MLM is least sensitive to training data sizes. For
instance, in FSC, with only 10% of the training
data, its accuracy only drops 0.4 points. In compar-
ison, both SPLAT-Scratch and SPLAT-Speech
drops about 10 points. And the gaps are in gen-
eral larger when the size of training data further
shrinks. Therefore, our proposed joint pre-training
of speech and language modules can help the model
quickly adapt to downstream tasks given a modest
amount of training data.

5.3 The geometry of the speech latent space
before and after alignment

So far we have empirically demonstrated the effec-
tiveness of SPLAT for learning multi-modal speech-
language representations that are useful in various
SLU tasks. Here we further show that our sequence-
level alignment loss (Equation 2) can help project
two speech utterances that have similar textual em-
beddings to nearby points in the speech latent space.

Recall that we use the embedding of the first
token/feature to represent an utterance and con-
duct sequence-level alignment (Equation 2). Sup-



Table 4: Average cosine similarity between all pairs
of speech embeddings (Savg), and the average cosine
similarity between a speech embedding s

(p)
1 and that

of an utterance whose textual embedding is closest to
the corresponding textual embedding t

(p)
1 (Sclosest).

Model Savg Sclosest

SPLAT-Speech 0.136 0.238
SPLAT-Seq 0.144 0.781
SPLAT-Seq-MLM 0.148 0.829

pose t
(p)
1 and s

(p)
1 correspond to the textual and

speech embeddings of the first utterance by SPLAT
and t

(q)
1 and s

(q)
1 correspond to the embeddings

of the second utterance. Then, if t
(p)
1 ≈ t

(q)
1 ,

our SPLAT model trained with the sequence-level
alignment loss will produce s

(p)
1 ≈ s

(q)
1 .

We use the dev-clean subset from the Lib-
riSpeech corpus for the analysis. First, we compute
the average pairwise cosine similarity between the
utterances of all speech embeddings:

Savg =
1

K(K − 1)/2

K∑
p=2

p−1∑
q=1

cossim(s
(p)
1 , s

(q)
1 ),

(4)
where K is the number of utterances in dev-clean.

Next, for each utterance with its speech and
textual embeddings denoted as s

(p)
1 and t

(p)
1 re-

spectively, we first use t
(p)
1 to retrieve the utter-

ance with the most similar textual embedding t
(q∗)
1 ,

i.e., q∗ = argmax1≤q≤K,q 6=pcossim(t
(p)
1 , t

(q)
1 ). We

then compute the cosine similarity between s
(p)
1

and s
(q∗)
1 and take the average of such value over

all utterances in dev-clean:

Sclosest =
1

K

K∑
p=1

cossim(s
(p)
1 , s

(q∗)
1 ). (5)

We show the Savg and Sclosest of embeddings
produced by SPLAT-Speech, SPLAT-Seq, and
SPLAT-Seq-MLM in Table 4.

We see that Savg is approximately the same
for all model variants. However, Sclosest, the av-
erage similarity between the speech embeddings
of two linguistically similar utterances, increases
from 0.238 to 0.781 after aligning the speech and
language modules, and further increases to 0.829
after adapting the language module on LibriSpeech
transcripts with MLM before the alignment. Over-
all, SPLAT can make a pair of semantically similar

utterances to have much closer speech embeddings,
compared with other random pairs of utterances.

These results demonstrate that via an cross-
modal alignment loss as simple as Equation 2,
SPLAT can effectively transfer knowledge from the
language module to the speech module to capture
both acoustic and linguistic information of speech
utterances.

6 Conclusions

Spoken language understanding (SLU) tasks re-
quire an understanding of the input audio signal
and its underlying semantics. In this paper, we
present a novel speech-language joint pre-training
framework, SPLAT, to carry out both speech and
language understanding tasks during pre-training.
Besides a self-supervised training on the speech
and language modules, we propose two methods to
align the semantic representations from both mod-
ules using a modest amount of labeled speech data.
The speech module can quickly adapt to down-
stream tasks and achieve superior results on vari-
ous SLU datasets including intent detection, dialog
act classification, spoken sentiment analysis, and
spoken question answering. This joint pre-training
also makes the model less sensitive to the amount
of labeled training data in downstream domains.

For future work, we plan to integrate automatic
speech recognition and natural language genera-
tion into our framework to achieve good results on
spoken language generation tasks.
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