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Abstract

Recently, Transformer-based language models have demonstrated remarkable
performance across many NLP domains. However, the unsupervised pre-training
step of these models suffers from unbearable overall computational expenses.
Current methods for accelerating the pre-training either rely on massive parallelism
with advanced hardware or are not applicable to language modeling. In this
work, we propose a method based on progressive layer dropping that speeds
the training of Transformer-based language models, not at the cost of excessive
hardware resources but from model architecture change and training technique
boosted efficiency. Extensive experiments on BERT show that the proposed method
achieves a 24% time reduction on average per sample and allows the pre-training
to be 2.5× faster than the baseline to get a similar accuracy on downstream tasks.
While being faster, our pre-trained models are equipped with strong knowledge
transferability, achieving comparable and sometimes higher GLUE score than the
baseline when pre-trained with the same number of samples.

1 Introduction

Natural language processing (NLP) tasks, such as natural language inference [1, 2] and question
answering [3–5], have achieved great success with the development of neural networks. It has
been demonstrated recently that Transformer-based networks have obtained superior performance in
many NLP tasks (e.g., the GLUE benchmark [6] and the challenging multi-hop reasoning task [7])
than recurrent neural networks or convolutional neural networks. BERT trains a deep bidirectional
Transformer and obtains outstanding results with transfer learning [3]. RoBERTa [2], which is a
robustly optimized version of BERT trained with more steps and larger corpora, achieves state-of-
the-art results on 9 GLUE tasks. Megatron-LM [8] further advances the state-of-the-art in NLP
by significantly increasing the size of BERT model. Finally, there are multiple research proposing
different enhanced versions of Transformer-based networks, such as GPT-2/3 [9, 10], XLNet [1],
SpanBERT [11], BioBERT [12], UniLM [13], Turing-NLG [14], and T5 [15]. Due to the exciting
prospect, pre-training Transformer networks with a large corpus of text followed by fine-tuning on
specific tasks has become a new paradigm for natural language processing.

Despite great success, a big challenge of Transformer networks comes from the training efficiency –
even with self-attention and parallelizable recurrence [16], and extremely high performance hard-
ware [17], the pre-training step still takes a significant amount of time. To address this challenge,
mixed-precision training is explored [8, 18], where the forward pass and backward pass are computed
in half-precision and parameter update is in single precision. However, it requires Tensor Cores [19],
which do not exist in all hardware. Some work resort to distributed training [20, 21, 8]. However,
distributed training uses large mini-batch sizes to increase the parallelism, where the training often
converges to sharp local minima with poor generalizability even with significant hyperparameter
tuning [22]. Subsequently, Yang et al. propose a layer-wise adaptive large batch optimizer called
LAMB [23], allowing to train BERT with 32K batch size on 1024 TPU chips. However, this type of

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



approach often requires dedicated clusters with hundreds or even thousands of GPUs and sophisti-
cated system techniques at managing and tuning distributed training, not to mention that the amount
of computational resources is intractable for most research labs or individual practitioners.

In this paper, we speedup pre-training Transformer networks by exploring architectural change and
training techniques, not at the cost of excessive hardware resources. Given that the training cost grows
linearly with the number of Transformer layers, one straightforward idea to reduce the computation
cost is to reduce the depth of the Transformer networks. However, this is restrictive as it often
results in lower accuracy in downstream tasks compared to full model pre-training, presumably
because of having smaller model capacities [24, 25]. Techniques such as Stochastic Depth have been
demonstrated to be useful in accelerating supervised training in the image recognition domain [26].
However, we observe that stochastically removing Transformer layers destabilizes the performance
and easily results in severe consequences such as model divergence or convergence to bad/suspicious
local optima. Why are Transformer networks difficult to train with stochastic depth? Moreover, can
we speed up the (unsupervised) pre-training of Transformer networks without hurting downstream
performance?

To address the above challenges, we propose to accelerate pre-training of Transformer networks by
making the following contributions. (i) We conduct a comprehensive analysis to answer the question:
what makes Transformer networks difficult to train with stochastic depth. We find that both the choice
of Transformer architecture as well as training dynamics would have a big impact on layer dropping.
(ii) We propose a new architecture unit, called the Switchable-Transformer (ST) block, that not only
allows switching on/off a Transformer layer for only a set portion of the training schedule, excluding
them from both forward and backward pass but also stabilizes Transformer network training. (iii) We
further propose a progressive schedule to add extra-stableness for pre-training Transformer networks
with layer dropping – our schedule smoothly increases the layer dropping rate for each mini-batch as
training evolves by adapting in time the parameter of the Bernoulli distribution used for sampling.
Within each gradient update, we distribute a global layer dropping rate across all the ST blocks to
favor different layers. (iv) We use BERT as an example, and we conduct extensive experiments to
show that the proposed method not only allows to train BERT 24% faster than the baseline under the
same number of samples but also allows the pre-training to be 2.5× faster to get similar accuracy on
downstream tasks. Furthermore, we evaluate the generalizability of models pre-trained with the same
number of samples as the baseline, and we observe that while faster to train, our approach achieves a
1.1% higher GLUE score than the baseline, indicating a strong knowledge transferability.

2 Background and Related Work

Pre-training with Transformer-based architectures like BERT [3] has been demonstrated as an effective
strategy for language representation learning [2, 1, 27, 8]. The approach provides a better model
initialization for downstream tasks by training on large-scale unlabeled corpora, which often leads to
a better generalization performance on the target task through fine-tuning on small data. Consider
BERT, which consists a stack of L Transformer layers [16]. Each Transformer layer encodes the the
input of the i-th Transformer layer xi with hi = fLN (xi + fS−ATTN (xi)), which is a multi-head
self-attention sub-layer fATTN , and then by xi+1 = fLN (hi + fFFN (hi)), which is a feed-forward
network fFFN , where xi+1 is the output of the i-th Transformer layer. Both sub-layers have an
AddNorm operation that consists a residual connection [28] and a layer normalization (fLN ) [29].
The BERT model recursively applies the transformer block to the input to get the output.

While the Transformer-based architecture has achieved breakthrough results in modeling sequences
for unsupervised language modeling [3, 9], previous work has also highlighted the training difficulties
and excessively long training time [2]. To speed up the pre-training, ELECTRA [30] explores the
adversarial training scheme by replacing masked tokens with alternatives sampled from a generator
framework and training a discriminator to predict the replaced token. This increases the relative
per-step cost, but leads to fewer steps, leading to the overall reduced costs. Another line of work
focus on reducing the per-step cost. Since the total number of floating-point operations (FLOPS) of
the forward and backward passes in the BERT pre-training process is linearly proportional to the
depth of the Transformer blocks, reducing the number of Transformer layers brings opportunities to
significantly speed up BERT pre-training. To show this, we plot the FLOPS per training iteration
in Fig. 6, assuming we can remove a fraction of layers at each step. Each line in the figure shows
the FLOPS using different layer removal schedules. Regardless of which schedule to choose, the

2



majority of FLOPS are reduced in the later steps, with the rate of keep probability saturating to a
fixed value θ̄ (e.g., 0.5). We will describe our schedule in Section 4.2.

Figure 1: The norm of the gradi-
ent with respect to the weights,
with PostLN and PreLN.

Figure 2: The norm preserving
ratio with respect to the inputs,
with PostLN and PreLN.

Figure 3: Lesioning analysis
with PostLN and PreLN.

Despite the FLOPS reduction, directly training models like BERT with a smaller depth incurs a
significant loss in accuracy even with knowledge distillation [24, 25]. Prior work [31] proposes to
accelerate pre-training by first training a 3-layer BERT model and then growing the network depth
to 6-layer and subsequently 12-layer. However, the number of steps required at each depth before
the network growth is not known a prior, making applying this approach challenging in practice.
On the other hand, stochastic depth has been successfully demonstrated to train deep models with
reduced expected depth [26, 32]. However, we observe that directly pre-training BERT with randomly
dropping fATTN and fFFN converges to bad/suspicious local optima under the same hyperparameter
setting. When increasing the learning rate, the training often diverges even by tuning the warmup
ratio. What causes the instability of BERT pre-training with layer drop?

3 Preliminary Analysis

This section presents several studies that guided the design of the approach introduced in Section 4.
We used BERT trained on Bookcorpus and Wikipedia dataset from Devlin et. al. with standard
settings as the baseline 1. First, we carry out a comparison between BERT with PostLN and PreLN.
Our goal is to measure how effective these two methods at stabilizing BERT training. Our second
analysis considers measuring the dynamics of BERT pre-training, including both spatial and temporal
dimensions. Finally, we analyze the effect of the removal of the Transformer layers. This leads us to
identify appealing choices for our target operating points.

3.1 Training Stability: PostLN or PreLN?

We consider two variants of BERT, namely the PostLN and PreLN. The default BERT employs
PostLN, with layer normalization applied after the addition in Transformer blocks. The PreLN
changes the placement of the location of fLN by placing it only on the input stream of the sublayers so
that hi = xi + fS−ATTN (fLN (xi)) and then xi+1 = hi + fFFN (fLN (hi)), which is a modification
described by several recent works to establish identity mapping for neural machine translation [33–
37]. Fig. 1 reports the norm of gradients with respect to weights in backward propagation for both
methods, varying the depth L (e.g., 12, 24, 48). The plot shows that while PostLN suffers from
unbalanced gradients (e.g., vanishing gradients as the layer ID decreases), PreLN eliminates the
unbalanced gradient problem (solid green lines) and the gradient norm stays almost same for any
layer. Furthermore, Fig. 2 shows that for PreLN the gradients with respect to input xi have very
similar magnitudes (norm preserving ratio close to 1) at different layers, which is consistent with
prior findings that a neural model should preserve the gradient norm between layers so as to have
well-conditioning and faster convergence [38, 39]. Indeed, we find that PostLN is more sensitive to
the choice of hyperparameters, and training often diverges with more aggressive learning rates (more
results in Section 5), whereas PreLN avoids vanishing gradients and leads to more stable optimization.
We also provide preliminary theoretical results in Appendix B on why PreLN is beneficial.

1Appendix A provides detailed training hyperparameters.
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3.2 Corroboration of Training Dynamics

Hereafter we investigate the representation xi learned at different phases of BERT pre-training and
at different layers. Fig. 4 shows the L2 norm distances and cosine similarity, which measures the
angle between two vectors and ignores their norms, between the input and output embeddings, with
PostLN and PreLN, respectively. We draw several observations.

First, the dissimilarity (Fig. 4a and Fig. 4b) stays high for both PostLN and PreLN at those higher
layers in the beginning, and the L2 and cosine similarity seems to be less correlated (e.g., step =
300). This is presumably because, at the beginning of the training, the model weights are randomly
initialized, and the network is still actively adjusting weights to derive richer features from input data.
Since the model is still positively self-organizing on the network parameters toward their optimal
configuration, dropping layers at this stage is not an interesting strategy, because it can create inputs
with large noise and disturb the positive co-adaption process.

Second, as the training proceeds (Fig. 4c and Fig. 4d), although the dissimilarity remains relatively
high and bumpy for PostLN, the similarity from PreLN starts to increase over successive layers,
indicating that while PostLN is still trying to produce new representations that are very different
across layers, the dissimilarity from PreLN is getting close to zero for upper layers, indicating that
the upper layers are getting similar estimations. This can be viewed as doing an unrolled iterative
refinement [40], where a group of successive layers iteratively refine their estimates of the same
representations instead of computing an entirely new representation. Although the viewpoint was
originally proposed to explain ResNet, we demonstrate that it is also true for language modeling and
Transformer-based networks. Appendix C provides additional analysis on how PreLN provides extra
preservation of feature identity through unrolled iterative refinement.

(a) (b) (c) (d)
Figure 4: The L2 distance and cosine similarity of the input and output embeddings for BERT with
PostLN and PreLN, at different layers and different steps. We plot the inverse of cosine similarity
(arccosine) in degrees, so that for both L2 and arccosine, the lower the more similar.

3.3 Effect of Lesioning

We randomly drop layers with a keep ratio θ = 0.5 to test if dropping layers would break the training
because dropping any layer changes the input distribution of all subsequent layers. The results are
shown in Fig. 3. As shown, removing layers in PostLN significantly reduces performance. Moreover,
when increasing the learning rate, it results in diverged training. In contrast, this is not the case for
PreLN. Given that later layers in PreLN tend to refine an estimate of the representation, the model
with PreLN has less dependence on the downsampling individual layers. As a result, removing
Transformer layers with PreLN has a modest impact on performance (slightly worse validation loss
at the same number of training samples). However, the change is much smaller than with PostLN.
It further indicates that if we remove layers, especially those higher ones, it should have only a
mild effect on the final result because doing so does not change the overall estimation the next layer
receives, only its quality. The following layers can still perform mostly the same operation, even with
some relatively little noisy input. Furthermore, as Fig. 4 indicates, since the lower layers remain to
have a relatively high dissimilarity (deriving new features), they should be less frequently dropped.
Overall, these results show that, to some extent, the structure of a Transformer network with PreLN
can be changed at runtime without significantly affecting performance.
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4 Our Approach: Progressive Layer Dropping

This section describes our approach, namely progressive layer dropping (PLD), to accelerate the
pre-training of Transformer-based models. We first present the Switchable-Transformer blocks, a
new unit that allows us to train models like BERT with layer drop and improved stability. Then we
introduce the progressive layer drop procedure.

4.1 Switchable-Transformer Blocks

In this work, we propose a novel transformer unit, which we call "Switchable-Transformer " (ST)
block. Compared with the original Transformer block (Fig. 5a), it contains two changes.

Identity mapping reordering. The first change is to establish identity mapping within a trans-
former block by placing the layer normalization only on the input stream of the sublayers (i.e., use
PreLN to replace PostLN) (Fig. 5b) for the stability reason described in Section 3.1.

(a) Original (b) Identity map-
ping reordering

(c) Switchable Trans-
former

Figure 5: Transformer variants, showing a single layer block.

Figure 6: FLOPS per training iter-
ation normalized to the baseline.

Switchable gates. Next, we extend the architecture to include a gate for each sub-layer (Fig. 5c),
which controls whether a sub-layer is disabled or not during training. In particular, for each mini-batch,
the two gates for the two sublayers decide whether to remove their corresponding transformation
functions and only keep the identify mapping connection, which is equivalent to applying a conditional
gate function G to each sub-layer as follows:

hi = xi +Gi × fS−ATTN (fLN (xi))×
1

pi

xi+1 = hi +Gi × fFFN (fLN (hi))×
1

pi

(1)

In our design, the function Gi only takes 0 or 1 as values, which is chosen randomly from a Bernoulli
distribution (with two possible outcomes), Gi ∼ B(1, pi), where pi is the probability of choosing 1.
Because the blocks are selected with probability pi during training and are always presented during
inference, we re-calibrate the layers’ output by a scaling factor of 1

pi
whenever they are selected.

4.2 A Progressive Layer Dropping Schedule

Based on the insights from Section 3.2, and inspired by prior work on curriculum learning [41, 42]
we propose a progressive schedule θ(t) – a temporal schedule for the expected number of ST blocks
that are retained. We limit ourselves to monotonically decreasing functions so that the likelihood of
layer dropping can only increase along the temporal dimension. We constrain θ(t) to be θ(t) ≥ θ̄ for
any t, where θ̄ is a limit value, to be taken as 0.5 ≤ θ̄ ≤ 0.9 (Section 5). Based on this, we define the
progressive schedule θ(t) as:
Definition 4.1. A progressive schedule is a function t→ θ(t) such that θ(0) = 1 and limt→∞ θ(t)→
θ̄, where θ̄ ∈ (0, 1].
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Progress along the time dimension. Starting from the initial condition θ(0) = 1 where no layer
drop is performed, layer drop is gradually introduced. Eventually (i.e., when t is sufficiently large),
θ(t)→ θ̄. According to Def. 4.1, in our work, we use the following schedule function:

θ̄(t) = (1− θ̄)exp(−γ · t) + θ̄, γ > 0 (2)

By considering Fig. 6, we provide intuitive and straightforward motivation for our choice. The blue
curve in Fig. 6 are polynomials of increasing degree δ = {1, .., 8} (left to right). Despite fulfilling the
initial constraint θ(0) = 1, they have to be manually thresholded to impose θ(t)→ θ̄ when t→∞,
which introduces two more parameters (δ and the threshold). In contrast, in our schedule, we fix
γ using the following simple heuristics γ = 100

T , since it implies |θ(T ) − θ̄| < 10−5 for θ(t) ≈ θ̄

when t ≈ T , and it is reasonable to assume that T is at the order of magnitude of 104 or 105 when
training Transformer networks. In other words, this means that for a big portion of the training, we
are dropping (1− θ̄) ST blocks, accelerating the training efficiency.

Distribution along the depth dimension. The above progressive schedule assumes all gates in ST
blocks take the same p value at each step t. However, as shown in Fig. 4, the lower layers of the
networks should be more reliably present. Therefore, we distribute the global θ̄ across the entire stack
so that lower layers have lower drop probability linearly scaled by their depth according to equation 3.
Furthermore, we let the sub-layers inside each block share the same schedule, so when Gi = 1, both
the inner function fATTN and fFFN are activated, while they are skipped when Gi = 0. Therefore,
each gate has the following form during training:

pl(t) =
i

L
(1− θ̄(t)) (3)

Combining Eqn. 3 and Eqn. 2, we have the progressive schedule for an ST block below.

θi(t) =
i

L
(1− (1− θ̄(t))exp(−γ · t)− θ̄(t)) (4)

Algorithm 1 Progressive_Layer_Dropping

1: Input: keep_prob θ̄
2: InitBERT(switchable_transformer_block)
3: γ ← 100

T
4: for t← 1 to T do
5: θt ← (1− θ̄)exp(−γ · t) + θ̄
6: step← 1−θt

L
7: p← 1
8: for l← 1 to L do
9: action ∼ Bernoulli(p)

10: if action == 0 then
11: xi+1 ← xi
12: else
13: x

′

i ← xi + fATTN (fLN (xi))× 1
p

14: xi+1 ← x
′

i+fFFN (fLN (x
′

i))× 1
p

15: xi ← xi+1

16: p← p - step
17: Y← output_layer(xL)
18: loss← loss_fn(Ȳ , Y )
19: backward(loss)

Putting it together. Note that because of the
exist of the identity mapping, when an ST block
is bypassed for a specific iteration, there is no
need to perform forward-backward computation
or gradient updates, and there will be updates
with significantly shorter networks and more di-
rect paths to individual layers. Based on this, we
design a stochastic training algorithm based on
ST blocks and the progressive layer-drop sched-
ule to train models like BERT faster, which we
call progressive layer dropping (Alg. 1). The
expected network depth, denoted as L̄, becomes
a random variable. Its expectation is given by:
E(L̄) =

PT
t=0

PL
i=1 θ(i, t). With θ̄ = 0.5, the

expected number of ST blocks during training
reduces to E(L̄) = (3L− 1)/4 or E(L̄) ≈ 3L/4
when T is large. For the 12-layer BERT model
with L=12 used in our experiments, we have
E(L̄) ≈ 9. In other words, with progressive layer
dropping, we train BERT with an average num-
ber of 9 layers. This significantly improves the
pre-training speed of the BERT model. Follow-
ing the calculations above, approximately 25% of
FLOPS could be saved under the drop schedule with θ̄ = 0.5. We recover the model with full-depth
blocks at fine-tuning and testing time.

5 Evaluation

We show that our method improves the pre-training efficiency of Transformer networks, and the
trained models achieve competitive or even better performance compared to the baseline on transfer
learning downstream tasks. We also show ablation studies to analyze the proposed training techniques.
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(a) (b)
Figure 7: The convergence curve of the baseline and our proposed
method regarding the wall-clock time.

Table 1: Training time compar-
ison. Sample RD standards for
sample reduction. SPD repre-
sents speedup.

Training
Time

Sample
RD SPD

Baseline
ckp186 38.45h 0 1

PLD
ckp186 29.22h 0 1.3×

PLD
ckp100 15.56h 46% 2.5×

PLD
ckp87 13.53h 53% 2.8×

Datasets. We follow Devlin et al. [3] to use English Wikipedia corpus and BookCorpus for pre-
training. By concatenating the two datasets, we obtain our corpus with roughly 2.8B word tokens in
total, which is comparable with the data corpus used in Devlin et al. [3]. We segment documents
into sentences with 128 tokens; We normalize, lower-case, and tokenize texts using Wordpiece
tokenizer [3]. The final vocabulary contains 30,528 word pieces. We split documents into one training
set and one validation set (300:1). For fine-tuning, we use GLUE (General Language Understanding
Evaluation), a collection of 9 sentence or sentence-pair natural language understanding tasks including
question answering, sentiment analysis, and textual entailment. It is designed to favor sample-efficient
learning and knowledge-transfer across a range of different linguistic tasks in different domains.

Training details. We use our own implementation of the BERT model [3] based on the Hugging-
face[1] PyTorch implementation. All experiments are performed on 4×DGX-2 boxes with 64×V100
GPUs. Data parallelism is handled via PyTorch DDP (Distributed Data Parallel) library [43]. We
recognize and eliminate additional computation overhead: we overlap data loading with computation
through the asynchronous prefetching queue; we optimize the BERT output processing through sparse
computation on masked tokens. Using our pre-processed data, we train a 12-layer BERT-base model
from scratch as the baseline. We use a warm-up ratio of 0.02 with lrmax=1e−4. Following [3], we
use Adam as the optimizer. We train with batch size 4K for 200K steps, which is approximately 186
epochs. The detailed parameter settings are listed in the Appendix A. We fine-tune GLUE tasks for 5
epochs and report the median development set results for each task over five random initializations.

5.1 Experimental Results

Pre-training convergence comparisons. Fig. 7a visualizes the convergence of validation loss
regarding the computational time. We make the following observations. First, with lrmax=1e−4, the
convergence rate of our algorithm and the baseline is very close. This verifies empirically that our
progressive layer dropping method does not hurt model convergence. Second, when using a larger
learning rate lrmax=1e−3, the baseline diverges. In contrast, our method shows a healthy convergence
curve and is much faster. This confirms that our architectural changes stabilize training and allows
BERT training with more aggressive learning rates.

Speedup. Fig. 7b shows both the training curve (dotted) and the validation curve (solid) of the
baseline and PLD with a zoomed-in view. The baseline curve becomes almost flat at epoch 186,
getting a validation loss of 1.75. In contrast, PLD reaches the same validation loss at epoch 87, with
53% fewer training samples. Furthermore, PLD achieves a 24% time reduction when training the same
number of samples. This is because our approach trains the model with a smaller number of expected
depth for the same number of steps. It is slightly lower than the 25% GFLOPS reduction in the
analysis because the output layer still takes a small amount of computation even after optimizations.
The combination of these two factors, yields 2.8× speedup in end-to-end wall-clock training time
over the baseline, as shown in Table 1.

Downstream task accuracy. Despite improved training speed, one may still wonder whether such
a method is as effective as the baseline model on downstream tasks. Table 2 shows our results on the
GLUE dataset compared to the baseline. Our baseline is comparable with the original BERT-Base
(on the test set), and our PLD method achieves a higher GLUE score than our baseline (83.2 vs. 82.1)
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when fine-tuning the checkpoint (186). We also dump model checkpoints from different epochs
during pre-training and fine-tune these models. The checkpoint 87 corresponds to the validation
loss at 1.75 achieved by PLD. The GLUE score is slightly worse than the baseline (81.6 vs. 82.1).
However, by fine-tuning at checkpoint 100, PLD achieves a higher score than the baseline (82.3 vs.
82.1) at checkpoint 186. In terms of the pre-training wall clock time, PLD requires 15.56h vs. the
baseline with 39.15h to get similar accuracy on downstream tasks, which corresponds to a 2.5×
speedup.

Table 2: The results on the GLUE benchmark. The number below each task denotes the number of
training examples. The metrics for these tasks can be found in the GLUE paper [6]. We compute the
geometric mean of the metrics as the GLUE score.

Model
RTE
(Acc.)

MRPC
(F1/Acc.)

STS-B
(PCC/SCC)

CoLA
(MCC)

SST-2
(Acc.)

QNLI
(Acc.)

QQP
(F1/Acc.)

MNLI-mm
-/m (Acc.) GLUE

2.5K 3.7K 5.7K 8.5K 67K 108K 368K 393K
BERTbase (original) 66.4 88.9/84.8 87.1/89.2 52.1 93.5 90.5 71.2/89.2 84.6/83.4 80.7
BERTbase (Baseline, ckp186) 67.8 88.0/86.0 89.5/89.2 52.5 91.2 87.1 89.0/90.6 82.5/83.4 82.1
BERTbase (PLD, ckp87) 66 88.2/85.6 88.9/88.4 54.5 91 86.3 87.4/89.1 81.6/82.4 81.6
BERTbase (PLD, ckp100) 68.2 88.2/85.8 89.3/88.9 56.1 91.5 86.9 87.7/89.3 82.4/82.6 82.3
BERTbase (PLD, ckp186) 69 88.9/86.5 89.6/89.1 59.4 91.8 88 89.4/90.9 83.1/83.5 83.2
Fig. 8a and 8b illustrate the fine-tuning results between the baseline and PLD on GLUE tasks
over different checkpoints (due to space limitations, the complete set of results are provided in
Appendix D). In each figure, we observe that both curves have a similar shape at the beginning
because no layer drop is added. For later checkpoints, PLD smoothly adds layer drop. Interestingly,
we note that the baseline model has fluctuations in testing accuracy. In contrast, the downstream
task accuracy from PLD is consistently increasing as the number of training epochs increases. This
indicates that PLD takes a more robust optimization path toward the optimum. Furthermore, although
PLD takes a shorter time to train, it generalizes competitively and sometimes better on downstream
tasks than our baseline does. This is presumably because by selecting a different subset of layers
in each mini-batch, PLD encourages the layers to produce good results independently. This allows
the model to learn a more general representation through averaging the noise patterns and create the
effect of ensembling different sub-networks during inference, which helps the model to generalize
better. These results confirm the validity of PLD.

(a) MNLI-m (b) QNLI
Figure 8: The fine-tuning accuracy results at dif-
ferent checkpoints.

(a) MNLI-m (b) QNLI
Figure 9: The fine-tuning accuracy results, vary-
ing different learning rates.

5.2 Ablation Studies

Downstream task fine-tuning sensitivity. To further verify that our approach not only stabilizes
training but also improves downstream tasks, we show a grid search on learning rates {1e-5, 3e-5,
5e-5, 7e-5, 9e-5, 1e-4}. As illustrated in Fig. 9, the baseline is vulnerable to the choice of learning
rates. Specifically, the fine-tuning results are often much worse with a large learning rate, while PLD
is more robust and often achieves better results with large learning rates.

The Effect of θ̄. We test different values of the keep ratio θ̄ and identify 0.5 ≤ θ̄ ≤ 0.9 as a good
range, as shown in Fig. 12 in the Appendix. We observe that the algorithm may diverge if θ̄ is too
small (e.g., 0.3).

PLD vs. PreLN. To investigate the question on how PLD compares with PreLN, we run both
PreLN with the hyperparameters used for training PostLN (lr=1e-4) and the hyperparameters used for
PLD (lr=1e-3) to address the effect from the choice of hyperparameters. We train all configurations
for the same number of epochs and fine-tune following the standard procedure. In both cases, PreLN
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is 24% slower than PLD, because PreLN still needs to perform the full forward and backward
propagation in each iteration.

Table 3 shows the fine-tuning results on GLUE tasks. When trained with the same hyperparameters
as PostLN, PreLN appears to have a much worse GLUE score (80.2) compared with PostLN (82.1)
on downstream tasks. This is because PreLN restricts layer outputs from depending too much on
their own residual branches and inhibits the network from reaching its full potential, as recently
studied in [44]. When trained with the large learning rate as PLD, PreLN’s result have improved
to 82.6 but is 0.6 points worse than PLD (83.2), despite using 24% more compute resource. PLD
achieves better accuracy than PreLN because it encourages each residual branch to produce good
results independently.

Table 3: Ablation studies of the fine-tuning results on the GLUE benchmark.

Model RTE
(Acc.)

MRPC
(F1/Acc.)

STS-B
(PCC/SCC)

CoLA
(MCC)

SST-2
(Acc.)

QNLI
(Acc.)

QQP
(F1/Acc.)

MNLI-m/mm
(Acc.) GLUE

BERT (Original) 66.4 88.9/84.8 87.1/89.2 52.1 93.5 90.5 71.2/89.2 84.6/83.4 80.7
BERT + PostLN 67.8 88.0/86.0 89.5/89.2 52.5 91.2 87.1 89.0/90.6 82.5/83.4 82.1
BERT + PreLN + Same lr 66.0 85.9/83.3 88.2/87.9 46.4 90.5 85.5 89.0/90.6 81.6/81.6 80.2
BERT + PreLN + lr↑ 67.8 86.7/84.5 89.6/89.1 54.6 91.9 88.1 89.3/90.9 83.6/83.7 82.6
Shallow BERT + PreLN + lr↑66.0 85.9/83.5 89.5/88.9 54.7 91.8 86.1 89.0/90.6 82.7/82.9 81.8
BERT + PreLN + lr↑ + Rand. 68.2 88.2/86.2 89.3/88.8 56.8 91.5 87.2 88.6/90.3 82.9/83.3 82.7
BERT + PreLN + lr↑ + TD 68.2 88.6/86.7 89.4/88.9 55.9 91.3 86.8 89.1/90.7 82.7/83.1 82.7
BERT + PreLN + lr↑ + PLD 69.0 88.9/86.5 89.6/89.1 59.4 91.8 88.0 89.4/90.9 83.1/83.5 83.2

PLD vs. Shallow network. Shallow BERT + PreLN + Large lr in Table 3 shows the downstream
task accuracy of the 9-layer BERT. Although having the same same number of training computational
GFLOPS as ours, the shallow BERT underperforms PreLN by 0.8 points and is 1.4 points worse than
PLD likely because the model capacity has been reduced by the loss of parameters.

PLD vs. Random drop. BERT + PreLN + Large lr + Random drops layers randomly with a fixed
ratio (i.e., it has the same compute cost but without any schedule), similar to Stochastic Depth [26].
The GLUE score is 0.9 points better than shallow BERT under the same compute cost and 0.1 point
better than PreLN while being 24% faster, indicating the strong regularization effect from stochastic
depth. It is 0.5 points worse than PLD, presumably because a fixed ratio does not take into account
the training dynamics of Transformer networks.

Schedule impact analysis. BERT + PreLN + Large lr + TD only (32-bit*) disables the schedule
along the depth dimension (DD) and enables only the schedule along the temporal dimension (TD)
in training. Its GLUE score matches "Random", suggesting that the temporal schedule has similar
performance as the fixed constant schedule along the time dimension and accuracy gains of PLD
is mostly from the depth dimension. However, without the temporal schedule enabled, the model
diverges with NaN in the middle of half-precision (16-bit) training and has to switch to full-precision
(32-bit) training, slowing down training speed. Furthermore, this concept of starting-easy and
gradually increasing the difficulty of the learning problem has its roots in curriculum learning and
often makes optimization easier. We adopt the temporal schedule since it is robust and helpful for
training stability, retaining similar accuracy while reducing training cost considerably.

6 Conclusion

Unsupervised language model pre-training is a crucial step for getting state-of-the-art performance
on NLP tasks. The current time for training such a model is excruciatingly long, and it is very
much desirable to reduce the turnaround time for training such models. In this paper, we study
the efficient training algorithms for pre-training BERT model for NLP tasks. We have conducted
extensive analysis and found that model architecture is important when training Transformer-based
models with stochastic depth. Using this insight, we propose the Switchable-Transformer block and a
progressive layer-wise drop schedule. Our experiment results show that our training strategy achieves
competitive performance to training a deep model from scratch at a faster rate.
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Broader Impact

Pre-training large-scale language models like BERT have an incredible ability to extract textual
information and apply to a variety of NLP tasks, but pre-training requires significant compute and
time. Pre-training the BERT baseline model is typically done through hardware acceleration and
scaling the training on 100s to 1000s of GPUs across multiple nodes. However, such a method is
very costly and consumes magnitudes higher energy.

The proposed solution achieves similar or better quality with shorter training time. It improves
robustness to further reduce the hyperparameter tuning required, improving the productivity of
AI scientists. It also saves hardware resources and trims down the total energy cost of in-situ,
resource-constrained training, yielding a less amount of carbon footprint produced. Furthermore,
the optimizations not only benefit BERT; they are also applicable to many other recent models
such as RoBERTa [2], GPT-2 [9], XLNet [1], and UniLM [13], which all adopt Transformer as the
backbone. Finally, our techniques can also help advance language understanding and inference,
enabling enterprise or consumer-facing applications, such as conversational AI. We will open-source
the code so that other practitioners and researchers can reproduce our results or re-use code into their
ventures in this field.

There are no apparent negative outcomes. However, like other AI technology, we should be mindful
of using it to transform our systems to be more efficient in fulfilling goodwill.
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A Pre-training Hyperparameters

Table 4 describes the hyperparameters for pre-training the baseline and PLD.

Table 4: Hyperparameters for pre-training the baseline and PLD.
Hyperparameter Baseline PLD
Number of Layers 12 12
Hidden zies 768 768
Attention heads 12 12
Dropout 0.1 0.1
Attention dropout 0.1 0.1
Total batch size 4K 4K
Train micro batch size per gpu 16 16
Optimizer Adam Adam
Peak learning rate 1e-04 1e-03
Learning rate scheduler warmup_linear_decay_exp warmup_linear_decay_exp
Warmup ratio 0.02 0.02
Decay rate 0.99 0.99
Decay step 1000 1000
Max Training steps 200000 200000
Weight decay 0.01 0.01
Gradient clipping 1 1

B Establishing Identity Mapping with PreLN

Prior studies [28, 45] suggest that establishing identity mapping to keep a clean information path (no
operations except addition) is helpful for easing optimization of networks with residual connections.
With the change of PreLN, we can express the output of the i-th Transformer layer as the input xi of
that layer plus a residual transformation function fRT = fS−ATTN (fLN (xi)) + fFFN (fLN (x

′

i)),
and the output layer xL = xl +

PL−1
i=l fRT (xi) as the recursive summation of preceding fRT

functions in shallower layers (plus xl). If we denote the loss function as E , from the chain rule of
backpropagation [46] we have:

∂E
∂xl

=
∂E
∂xL

∂xL
∂xl

=
∂E
∂xL

(1 +
∂

∂xl

L−1X
i=l

fRT (xi)) (5)

Eqn. 5 indicates that the gradient ∂E
∂Xl

can be decomposed into two additive terms: a term of ∂E
∂XL

that
propagates information directly back to any shallower l-th block without concerning how complex
∂
∂xl

PL−1
i=l fRT (xi)) would be, and another term of ∂E

∂XL
( ∂
∂Xl

PL−1
i=l fRT (Xi)) that propagates

through the Transformer blocks. The equation also suggests that it is unlikely for the gradient ∂
∂Xl

to be canceled out for a mini-batch, and in general the term ∂
∂Xl

PL−1
i=l fRT (Xi) cannot be always

-1 for all samples in a mini-batch. This explains why the gradients of Transformer layers in Fig. 1
become more balanced and do not vanish after identity mapping reordering. In contrast, the PostLN
architecture has a series of layer normalization operations that constantly alter the signal that passes
through the skip connection and impedes information propagation, causing both vanishing gradients
and training instability. Overall, PreLN results in several useful characteristics such as avoiding
vanishing/exploding gradient, stable optimization, and performance gain.

C PreLN From the View of Unrolled Iterative Refinement

From a theoretical point of view [40], a noisy estimate for a representation by the first Transformer
layer should, on average, be correct even though it might have high variance. The unrolled iterative
refinement view says if we treat "identity mapping" (as in PreLN) as being an unbiased estimator for
the target representation, then beyond the first layer, the subsequent Transformer layer outputs xni (e.g.,
i ∈ 2...L) are all estimators for the same latent representation Hn, where Hn refers to the (unknown)
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value towards which the n-th representation is converging. The unbiased estimator condition can
then be written as the expected difference between the estimator and the final representation:

E
x∈X

[xni −Hn] = 0 (6)

With the PreLN equation, it follows that the expected difference between outputs of two consecutive
layers is zero, because

E[xni −Hn]− E[xni−1 −Hn] = 0⇒ E[xni − xni−1] = 0 (7)

If we write representation xni as a combination of xi−1n and a residual fRT n, it follows from the
above equation that the residual has to be zero-mean:

xni = xni−1 + fRT
n ⇒ E[fRT

n] = 0 (8)
which we have empirically verified to be correct, as shown in Figure 2. Therefore, PreLN ensures
that the expectation of the new estimate will be correct, and the iterative summation of the residual
functions in the remaining layers determines the variance of the new estimate E[FRT i].

D Downstream Task Accuracy Result

Fig. 10 shows the full comparison of the baseline and PLD, fine-tuned at different checkpoints.
Overall, we observe that PLD not only trains BERT faster in pre-training but also preserves the
performance on downstream tasks. Interestingly, our model achieves higher performance on MNLI,
QNLI, QQP, RTE, SST-2, and CoLA on later checkpoints, indicating that the model trained with our
approach also generalizes better on downstream tasks than our baseline does. From a knowledge
transferability perspective, the goal of training a language model is to learn a good representation of
natural language that ideally ignores the data-dependent noise and generalizes well to downstream
tasks. However, training a model with a constant depth is at least somewhat noisy and can bias
the model to prefer certain representations, whereas PLD enables more sub-network configurations
to be created during training Transformer networks. Each of the L ST blocks is either active or
inactive, resulting in 2L possible network combinations. By selecting a different submodular in each
mini-batch, PLD encourages the submodular to produce good results independently. This allows
the unsupervised pre-training model to obtain a more general representation by averaging the noise
patterns, which helps the model to better generalize to new tasks. On the other hand, during inference,
the full network is presented, causing the effect of ensembling different sub-networks.

The effect of learning rates on downstream tasks. We focus on evaluating larger datasets and
exclude very small datasets, as we find that the validation scores on those datasets have a large
variance for different random seeds.

For fine-tuning models on downstream tasks, we consider training with batch size 32 and performing
a linear warmup for the first 10% of steps followed by a linear decay to 0. We fine-tune for 5 epochs
and perform the evaluation on the development set. We report the median development set results for
each task over five random initializations, without model ensemble.

Results are visualized in Fig. 11, which shows that the baseline is less robust on the choice of
learning rates. Specifically, the fine-tuning results are often much worse with a large learning rate. In
comparison, PLD is more robust and often achieves better results with large learning rates.

E Additional Results
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(a) MNLI-m (b) MNLI-mm (c) QNLI

(d) QQP (e) RTE (f) SST-2

(g) WNLI (h) CoLA (i) MRPC (acc.)

(j) MRPC (F1.) (k) SST-B (PCC) (l) SST-B (SCC)
Figure 10: The fine-tuning results at different checkpoints.
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(a) MNLI-m (b) MNLI-mm (c) QNLI

(d) QQP (e) RTE (f) SST-2
Figure 11: The fine-tuning results at different checkpoints.

Figure 12: Convergence curves varying the keep ratio θ̄.
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